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Abstract
Purpose: Magnetic resonance imaging (MRI) has a special place in the evaluation of orbital and periorbital lesions. 
Segmentation is one of the deep learning methods. In this study, we aimed to perform segmentation in orbital and 
periorbital lesions.

Material and methods: Contrast-enhanced orbital MRIs performed between 2010 and 2019 were retrospectively 
screened, and 302 cross-sections of contrast-enhanced, fat-suppressed, T1-weighted, axial MRI images of 95 pa-
tients obtained using 3 T and 1.5 T devices were included in the study. The dataset was divided into 3: training, test, 
and validation. The number of training and validation data was increased 4 times by applying data augmentation 
(horizontal, vertical, and both). Pytorch UNet was used for training, with 100 epochs. The intersection over union 
(IOU) statistic (the Jaccard index) was selected as 50%, and the results were calculated.

Results: The 77th epoch model provided the best results: true positives, 23; false positives, 4; and false negatives, 8. The pre
cision, sensitivity, and F1 score were determined as 0.85, 0.74, and 0.79, respectively.

Conclusions: Our study proved to be successful in segmentation by deep learning method. It is one of the pioneering 
studies on this subject and will shed light on further segmentation studies to be performed in orbital MR images.
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Introduction
Preoperative imaging and localization of the lesion are 
very important in orbital and periorbital tumours [1].  
The main methods in the evaluation of orbital and peri-
orbital-periocular lesions are orbital ultrasound, com-
puted tomography (CT), and magnetic resonance im-
aging (MRI) [2]. Orbital MRI has an important place in 
the evaluation of orbital and periorbital lesions because 
it does not use radiation, provides more information 
about the internal structure of the lesion, and better dem-
onstrates invasion to surrounding tissues. Conventional 
fat-suppressed, T1-weighted sequences are indispensable 

in conventional orbital MRI examinations. In addition to 
these sequences, multiparametric images assist in the dia
gnosis [3,4]. For orbital lesions, their location in orbital 
compartments may also guide the diagnosis [5]. With the 
introduction of deep learning methods in radiology, fea-
tures such as detection, classification, and segmentation 
have been integrated into imaging. A convolutional neural 
network (CNN) is a frequently used algorithm in these 
steps [6,7]. The traditional UNet architecture [8] extended 
to handle volumetric input has 2 phases: the encoder part 
of the network where it learns representational proper-
ties at different scales and gathers contextual information, 
and the decoder part where it extracts information from 
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the observed context and previously learned features. Skip 
connections used between the corresponding encoder and 
decoder layers enable the deep parts of the network to be 
trained efficiently and allows the comparison of the same 
receiver characteristics with different receiver areas [9]. 
Segmentation is often used in the first stage of image 
analysis. Image segmentation can be defined as separat-
ing an image into meaningful regions in which different 
features are kept [10]. In our study, we aimed to perform 
segmentation in orbital and periorbital lesions using deep 
learning methods.

Material and methods
Ethical approval for this study was obtained from the Ethics 
Committee of the Eskisehir Osmangazi University (No. 
25403353-050.99-E.46807). Contrast-enhanced orbital 
MRIs taken between 2010 and 2019 were retrospectively 
screened from the picture archiving and communication 
system (PACS). The scans had been performed on 3 T 
(General Electric, Discovery 750 W with GEM Suit) and 
1.5 T (Siemens, Magnetom Avanto) MRI devices. The axial 
contrast-enhanced T1-weighted sequences of 95 patients 
were examined. In cases of multiple MRI examinations, 
only one examination for each patient was included in the 
study. The imaging protocol was as follows: pixel resolu-
tion: 706 x 706; echo time (TE): 11 ms; repetition time 
(TR): 680 ms; window centre/window width: 446/945; slice 
thickness: 2.5 mm for 1.5 T, and pixel resolution: 705 × 705; 
echo time (TE): 9.5 ms; repetition time (TR): 578 ms; and 
window centre/window width: 3175/6351; slice thickness: 
3 mm for 3T. A total of 302 axial sectional images obtained 
from 95 patients were included in the study. MR imaging 
of 42 patients was performed at 1.5 T, and MR imaging of 
53 patients was performed at 3 T.

The mask images of the tagged regions were created 
and saved with the same names. The dataset was divided 
into 3: training, test, and validation. Finally, 110 slices 
obtained from 42 patients taken at 1.5 T were used in the 
training phase, 15 slices were used in the validation phase, 
and 12 slices were used in the testing phase. Also, 122 slic-
es obtained from 53 patients taken at 3 T were used in the 
training phase, 20 slices were used in the validation phase, 
and 23 slices were used in the testing phase.

In total, 232 of 302 images were used in training, 35 in 
validation, and 35 in the test phase. The number of train-
ing and validation data was increased 4 fold by applying 
data augmentation (horizontal, vertical, and both). As 
a result, the total number of training and validation data 
increased to 928 and 140, respectively. Pytorch UNet was 
used to train the data with 100 epochs, and the model that 
provided the best results, i.e. the 77th epoch model, was 
recorded. Digital imaging and communications in medi-
cine (DICOM) is a digital data format standard developed 
to be used in the storage, display, and analysis of 2- and 
3-dimensional scientific data obtained from medical im-

aging devices [11]. In this study, there were 302 images 
in the raw dataset of grey-space DICOM images. While 
these images were in the form of a square with a size of 
705 × 705 and 706 × 706 pixels, all images were converted 
to a 512 × 512 pixel standard so that the segmentation 
process would give better results.

After the mask images of the tagged regions of the 
images were created and saved with the same names, the 
dataset was divided into 3 parts as training, verification, 
and test at a ratio of 8 : 1 : 1, respectively. The reliability of 
the model was increased by increasing the sample size in 
the training and validation datasets 4 fold by applying the 
augmentation method. In this process, horizontal, verti-
cal, and both horizontal and vertical symmetries of each 
image are taken. This increased the training dataset vol-
ume from 232 to 928 images and the verification dataset 
volume from 35 to 140 images.

The traditional Pytorch UNet architecture extended 
to handle volumetric input was used to perform train-
ing with 100 epochs. Skip connections used between the 
corresponding encoder and decoder layers allowed for 
the deep parts of the network to be trained efficiently and 
facilitated comparison of the same receiver characteris-
tics with different receiver areas [8]. The threshold value 
of the intersection over union (IoU) statistic (the Jaccard 
index), which measures the similarity between finite sam-
ple sets and is calculated by dividing the size of the inter-
section by the size of the combination of the sample sets 
[12], was selected as 50%, and the results were calculated.

Statistical analysis, model construction, training,  
and validation 

Statistical analysis was evaluated with the SPSS v.22 pack-
age program (IBM Corp., Chicago, USA). Descriptive sta-
tistics were given as a mean ± standard deviation.

In this study, an AI model was designed using UNet 
inception architecture to segmentation. The training 
process was handled on a PC equipped in the Eskisehir 
Osmangazi University Faculty AI Laboratory, which in-
cluded a Dell PowerEdge T640 Calculation Server (Dell 
Inc., Texas), a Dell PowerEdge T640 GPU Calculation 
Server with 32 GB RDIMM, an NVIDIA Tesla V100 16G 
Passive GPU display card (Dell Inc., Texas), and a Dell 
PowerEdge R540 Storage Server (Dell Inc., Texas).

Results
A total of 95 patients with orbital lesions were included in 
the study. The mean age of the patients was 45.36 ± 10.23 
years. Thirty-seven patients were female, and 58 patients 
were male. Fifty-six of these patients were diagnosed ra-
diologically and pathologically while the remaining 39 did 
not have a pathological diagnosis. Multiple sections were 
taken from the single view of each patient. Each patient 
had a single lesion. Of the orbital lesions, 12 were basal 
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or squamous cell carcinomas of the skin originating from 
the eyelid and around the eye, 20 were orbital multiple 
myelomas, 15 were cavernous venous malformations, and 
9 were cysts. The remainder of the lesions belonged to 
patients who were not followed up. Segmentation was ap-
plied to the lesions. The 77th epoch was identified as the 
best model providing the following results: true positives, 
23; false positives, 4; and false negatives, 8. Examples of 
the segmentation process and UNet architecture of the 
accurately identified lesions are shown in Figures 1 and 
2. The precision, sensitivity, and F1 score values are given 
in Table 1. A flow chart of the model was also constructed 
(Figure 3).

Discussion
The current study was designed according to the segmen-
tation of orbital and periorbital lesions. 

The precision, sensitivity, and F1 score were determined 
as 0.85, 0.74, and 0.79, respectively. In our study, segmenta-
tion revealed the most successful model to be the 77th ep-
och. Because there are few studies on this subject in the 
literature, orbital and periorbital lesions are rarely detected, 
and segmentation and artificial intelligence are a current 
topic, our study makes a great contribution to the literature. 
Of course, better results will be obtained as a result of seg-
mentation studies with more homogeneous patient groups.

Figure 2. UNet architecture of the segmentation process given in Figure 1

Figure 1. Raw data (A) and segmentation (B) output of the contrast-enhanced, T1-weighted, fat-suppressed, axial image of a patient who was primarily 
considered to have a dermoid cyst, which was not pathologically confirmed
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Manual segmentation is widely used in many clinics, 
but it is a time consuming and demanding task with re-
sults varying between operators. There are many segmen-
tation studies on CT. Manual segmentation is also widely 
used in the treatment phase in radiation oncology [13,14]. 
Particularly in the segmentation process performed in 
non-contrast CT, there may be difficulties due to low 
soft tissue contrast [15]. The soft tissue contrast resolu-
tion of MRI is better than that of CT [16]. Therefore, the 
segmentation process can be performed more successfully 
in MRI examinations. In the literature, segmentation has 
been used in many radiology studies; however, we found 
no segmentation study in orbital and periorbital lesions 
in MRI. The literature contains only a few studies on seg-
mentation regarding the orbit. In 2 of these studies, seg-
mentation was performed in optical coherence tomogra-
phy [17,18]. In one of them, 3D images were used, and the 

segmentation performance and detection performance 
were measured in this study [18].

In another study, the segmentation procedure was un-
dertaken on oxygen-induced retinopathy images, and in 
contrast to our study, it was performed automatically [19].

Segmentation is performed on either whole-volume 
images or cross-sectional views [20]. Our segmentation 
process consisted of the cross-sectional views of the le-
sions. We used the axial sections of MRI images obtained 
from the PACS of our hospital. Since volumetric MRI 
studies can take a longer time during imaging, volume 
images were not available for all patients. With the de-
veloping MRI technologies, volume images are more 
commonly used [21], which can help extend the use of 
segmentation in orbital lesions over volume images in 
the future. Similarly, Brown et al. [22] performed man-
ual and automatic segmentation on orbital fat tissue on  
T1-weighted images using 3 T and 1.5 T MRI, and com-
pared these processes and used them for calibration. In 
another study, segmentation was performed in the in-
ner boundary of the bony orbit in both CT and MR exa
minations. In this study, CNN was used, and time was 
saved with automatic segmentation compared to manual 
segmentation [23].

In our study there was no categorization in terms of 
lesions, and they were all collected in a single group. Be-
cause there were no groups of similar number showing 
a homogeneous distribution, a single group was formed. 
This can be considered as one of the limitations of our 
study. Also, the small sample size, heterogeneity of pa-
thologies, heterogeneity of image quality, and the use of 
augmentation to increase the volume of data should be 
counted as study limitations in our study.

In the presence of groups with a sufficient and homo-
geneous distribution, segmentation can also be compared 
between these groups. 

Automatic segmentation will reach an important stage 
in the future in head and neck radiology and is clinically 
important because it will provide a significant time advan-
tage when evaluating MRI.

Conclusions
We achieved successful results in segmentation by deep 
learning method in orbital and periorbital lesions. When 
datasets with the same pathology are obtained in orbital 
and periorbital lesions, a correlation between the MRI im-
ages and pathological diagnosis can be observed in the 
segmentation process. We consider our study to be one 
of the pioneering works on this subject, which will shed 
light on further segmentation studies to be carried out in 
orbital MRI images. 

Conflicts of interest 
The authors report no conflict of interest.

Table 1. Results of the 77th epoch model

Statistic Value (%)

True positives 23

False negatives 8

False positives 4

Precision 0.85

Sensitivity 0.74

F1 Score 0.79

Figure 3. Flow chart of the datasets
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