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Poland

We compare the proposals that have appeared
in the literature to describe a measurement of
the time of arrival of a quantum particle at a de-
tector. We show that there are multiple regimes
where different proposals give inequivalent, ex-
perimentally discriminable, predictions. This
analysis paves the way for future experimental
tests.

Introduction

The trajectory of a classical system can be uniquely de-
termined from its dynamics and initial conditions. We
can invert it to compute the value of the time at which
the object is at a certain position. If this is the posi-
tion of the detector, the time of detection is commonly
known as time of flight or time of arrival (TOA).

Determining the TOA of a quantum system is far
more complicated. In quantum mechanics each observ-
able quantity must be described by a self-adjoint oper-
ator that acts on the Hilbert space of the system, or by
a positive-operator valued measure. Usually the quan-
tization of a classical system is done by means of the
correspondence principle, i.e. by promoting each classi-
cal observable to a self-adjoint operator on the Hilbert
space. This procedure cannot be directly employed for
time, which is a (scalar) parameter in textbook quan-
tum mechanics. There are several reasons for this, e.g.
the Pauli objection [1]: since the energy is responsible
for time translations, any time operator must be conju-
gated to an energy operator whose spectrum then, must
be continuous and unbounded. However, the Hamilto-
nian does not usually satisfy such a condition, prevent-
ing the possibility to directly construct a self-adjoint
time operator.
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Figure 1: Qualitative representation of the regimes considered
in our comparison. A particle is initially prepared in a superposi-
tion of two Gaussian wave packets. When the packets overlap
near the detector, TOA interference is observed. (a) In this
regime two packets with initial average positions x0, x1 cross
the detector from the same side, with average momenta p0, p1.
A limit case is provided by the overtaking condition, in which
the packets completely overlap at the detector with the same
average TOA. (b) In this scenario two wave packets cross the
detector from opposite directions. We refer to this regime as
counter-propagating.

In experiments the TOA is usually computed using
the semiclassical approximation [2, 3], which holds only
in regimes where quantum effects can be neglected, i.e.
if the particle is approximated by a well localized wave
packet, with negligible spatial uncertainty compared to
the detector dimension [4]. Due to the limited validity of
this approach, several quantum time and quantum TOA
formulations have been proposed. Some of these have
been achieved in the framework of standard quantum
mechanics, e.g. through canonical quantization [5–7] or
following different constructions [8–13], while others are
derived from extensions or alternative formulations of
the quantum theory [14–21] and also within the frame-
work of Bohmian mechanics [2, 22–24] (see [25, 26] for
a comprehensive selection of works about time in quan-
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tum mechanics).

In this paper we review and compare some of these
proposals. We analyse the interference patterns that
arises in the TOA probability distribution, when con-
sidering a state described by a superposition of Gaus-
sian wave packets. We explore different regimes (see
Fig. 1) where we can compare the Kijowski’s axiomatic
construction [8] (which is in agreement with [5–7]), the
quantum flux approach [4, 9], the semiclassical approx-
imation [3] and the quantum clock proposal [19, 20].
Our discussion is not limited to predicting a specific
experimental result, nor it specializes to any particular
model of particle detection: it highlights those regimes
in which different theoretical approaches lead to con-
tradicting predictions, by analysing the distribution of
times at which the particle occupies a certain position,
i.e. where the detector should be placed. Finally, we
explore a possible experimental implementation to dis-
criminate between these TOA proposals, using a super-
position of packets obtained by applying Bragg diffrac-
tion [27] to a Bose-Einstein condensate trapped in an
accelerator ring [28].

The paper is outlined as follows. In Section 1 we re-
view the Kijowski’s axiomatic construction, the quan-
tum flux approach, the semiclassical approximation and
the quantum clock proposal. In Section 2 we com-
pare them for different superpositions of Gaussian wave
packets. In Section 3 we analyse the previously men-
tioned experimental regime.

1 Time of arrival distributions

In this section we review some of the proposed TOA
distributions.

1.1 The Kijowski’s proposal

A potential solution to the TOA problem is discussed by
Kijowski [8], adopting an axiomatic approach. In prin-
ciple, the Kijowski’s axioms can be potentially satisfied
by infinitely many candidates of a TOA distribution Π.
However, there exists a unique choice of Π which best
approximates any other possible candidate Π′, by pro-
viding the same TOA expectation value of any Π′ and
a lower bound to its second moment. For simplicity, we
restrict the results of [8] to the case of a one-dimensional
particle, for a detector placed in the origin.

We consider a particle with either positive or negative
momenta p, i.e. described by a wave function Ψ with
momentum representation supported for either positive
or negative values of p. Respectively, two probability

distributions Π+, Π− are obtained

Π±(t) = 1
4π2m

√
~

∣∣∣∣ ∫ ±∞
0

dp Ψ̃(p, t)
√
|p|
∣∣∣∣2 , (1)

with m the mass of the particle and

Ψ̃(p, t) = exp
(
− itp

2

2m~

)
Ψ̃(p) . (2)

Here Ψ̃(p) = 〈p|Ψ(0)〉 denotes the Fourier transform of
the wave function at t = 0. The distribution of Kijowski
can be rewritten using the wave function in the position
representation. This equivalent formulation is due to
Leavens [29], which reads

Π±(t) = ~
32πm

∣∣∣∣ ∫ +∞

−∞
dx

1± isign(x)
|x|3/2

g(x, t)
∣∣∣∣2 , (3)

with
g(x, t) = [Ψ(x, t)−Ψ(0, t)] . (4)

Regardless of the representation, for a generic particle
whose momentum is not supported only on positive or
negative p, the two contributions are combined so that
the total TOA probability distribution reads (see e.g.
[30] and references therein)

ΠK(t) = Π+(t) + Π−(t)
NK

, (5)

with the normalization constant NK given by

NK =
∫ +∞

−∞
dt

∑
α∈{+,−}

Πα(t) . (6)

The results of Kijowski reproduce the distribution that
Aharonov and Bohm obtained through the quantization
of the classical TOA, based on the correspondence prin-
ciple [5]. See [31] for a review and a comparison between
these two results.

Other proposals reproduce or are at least in agree-
ment with the predictions of Kijowski. For example, in
[6] the quantization of the classical TOA uses a different
symmetric ordering of the operator, with respect to the
approach of Aharonov and Bohm. When considering
a particle with either positive or negative momentum,
this TOA distribution takes the same form of Eq. (1).

Instead of a free particle, a different solution consists
in confining the motion within a given space interval.
This idea has been followed by Galapon, who considers
the discrete probability distribution of a particle quan-
tized in a finite box [7]. In the limit of an infinite inter-
val, this reproduces the same distribution of Eq. (1).

In [30] Leavens discusses some paradoxical behaviours
arising from the Kijowski’s TOA: for a particle that
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propagates towards an infinite potential barrier, the dis-
tribution predicts non-vanishing probabilities even in
prohibited regions. In this regard, further comments
are given in [32, 33] while other paradoxes and issues
are analysed in [31].

1.2 The quantum flux proposal
A straightforward way to obtain a TOA distribution
starts from the definition of the Schrödinger current op-
erator, or quantum flux, as

Ĵ = p̂

2m |x〉 〈x|+
1

2m |x〉 〈x| p̂ , (7)

with m the mass of the particle, x the eigenvalues of
the position operator and p̂ the momentum operator.
By taking the expectation value of Eq. (7) on the state
vector |Ψ(t)〉, it yields

ΠF (x, t) = ~
NFm

Im[Ψ∗(x, t)∂xΨ(x, t)] , (8)

with normalization constant NF given by [9]

NF =
∫ +∞

−∞
dt ΠF (t) . (9)

For a detector placed at the origin we denote the TOA
distribution as ΠF (t) = ΠF (0, t).

In [8] Kijowski notes that such an operator cannot be
generally interpreted as a probability current, due to
lack of a condition that makes Eq. (7) positive-definite.
In [9] Delgado and Muga shows that this interpreta-
tion is possible under a specific choice of states. To
this extent, they construct a self-adjoint operator whose
orthonormal and complete set of eigenstates are well-
behaved under time translations, while being conju-
gated not to the Hamiltonian of the system but to an-
other operator with dimensions of energy. Such energy-
like operator is the Hamiltonian multiplied by the sign
of the momentum operator. They show that Eq. (7) is
positive-definite only for states with definite momentum
sign, thus admitting a probabilistic interpretation. The
TOA distribution is then obtained by projecting such
states along the basis of this self-adjoint temporal-like
operator.

The TOA probability distribution of Eq. (8) can also
be derived in the framework of Bohmian mechanics
[2, 4, 31]. In [2] the authors discuss the existence of free
particle states which forbid the probabilistic interpreta-
tion of the quantum flux, leading to negative probabil-
ity contributions even for definite momenta signs. This
eventuality takes the name of quantum backflow, which
was historically introduced by Bracken and Melloy [34].
We will show that even in presence of backflow in the
quantum flux, the quantum clock and Kijowski’s TOA
distributions take only positive values.

1.3 The semiclassical approximation
Experimentally, time measurements are often treated
semiclassically as a momentum measurement [2, 3],
from which the TOA distribution reads

Πsc(x, t) = mL

t2

∣∣∣∣Ψ̃(mLt
)∣∣∣∣2 , (10)

with Ψ̃(p) the components of the Fourier transform
of Ψ(x, 0) and L the distance between the source of
the wave and the detector [2, 4]. Due to the nature
of this definition, Eq. (10) gives sensible results only
for those states that possess a trajectory interpretation
(e.g. Gaussian wave packets), and for which the width
of the wave function at t = 0 can be considered negligi-
ble with respect to the source-detector distance.

1.4 The quantum clock proposal
So far we have considered only proposals that treat time
as a label attached to the particle. There are alternative
points of view in which time arises as a property of a
quantum reference frame: the quantum clock of a phys-
ical system [14, 18]. An example is given by the Page
and Wooters mechanism, in which time and dynamics
emerge from the entanglement between the system and
the clock [18]. Several criticisms have been addressed
to this (e.g. see [35]). To overcome them, a modifica-
tion of the mechanism has been recently discussed [20].
This slight extension correctly reproduces the standard
quantum mechanics predictions such as measurements
statistics and propagators, under proper conditioning
of the entangled state. In this framework a well-defined
time operator can be constructed, giving rise to time-
energy uncertainty relation, while bypassing the above
mentioned Pauli objection [36].

As shown in [19], we can employ the quantum clock
approach to describe generic quantum time measure-
ments, like the TOA of a particle at the detector. We
now review the construction of the quantum clock TOA.
The Hilbert space of the physical systemHS is equipped
with an ancillary one HC , that describes time as “what
is measured by the clock”, with a Hamiltonian linear in
momentum. This last condition is necessary to obtain a
Schrödinger dynamics. The global Hilbert space is con-
structed as H = HS ⊗ HC , so do the global states |Φ〉
that are the eigenvectors of the total Hamiltonian, un-
der a constraint with the form of the Wheeler–DeWitt
equation [37]. These states are static, simultaneously
encoding the history of the system in the time interval
T = [−T/2, T/2]

|Φ〉 = 1√
T

∫
T
dt |t〉 ⊗ |Ψ(t)〉 , (11)
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where T → ∞ is a regularization parameter. Here
|Ψ(t)〉 is the time-dependent state so far considered,
which is obtained from Eq. (11) by conditioning on t,
i.e. projecting |Φ〉 on |t〉.

For a dimensionless detector placed at x, a positive-
operator-valued measure (POVM) describes a joint
measurements on the particle and on the clock as

∀t : Θt = |t〉 〈t| ⊗ |x〉 〈x| , (12)

Θna = 1−
∫
dt Θt , (13)

where each value of t labels a different element of the
POVM [19]. Using the Born rule together with the
Bayes formula on Θt, for x = 0 the TOA distribution
reads

ΠC(t) = 1
NC(T ) |Ψ(0, t)|2 , (14)

that is the conditioned probability that the particles
arrives at the detector with time of flight t, with nor-
malization constant NC(T ) that depends from the reg-
ularization parameter T by

NC(T ) =
∫ +T/2

−T/2
dt |Ψ(0, t)|2 . (15)

The TOA distribution (14) becomes independent of T
if the probability that the particle remains at the detec-
tor at arbitrary large times is sufficiently low, namely
whenever the integral in Eq. (15) converge in the limit
T → +∞.

Similar results are also obtained by Fredenhagen and
Brunetti in [21], where they discuss a generalization of
quantum states in term of particle weights [38] and in a
way that is consistent with the Gelfand–Naimark–Segal
(GNS) representation theorem. In [39], Gambini and
Pullin combine the Page and Wooters mechanism with
Rovelli’s evolving constant of motions, both for a clock
Hamiltonian that is unbounded or bounded-below. In
the former case, i.e. when the clock Hamiltonian is lin-
ear in momentum, this yields the same TOA distribu-
tion of Eq. (15) normalized on the whole time interval.
The authors discuss that, in contrast to the Kijowski’s
proposal, no paradoxical behaviour occurs for a parti-
cle travelling towards an infinite potential barrier, since
ΠC predicts no TOA in the prohibited regions.

Before discussing our comparisons, we address the
normalizability of each TOA distribution. For simplic-
ity we consider a Gaussian wave packet (see Eq. (18)
below). At later times the behaviour of the wave packet

can be approximated as |ψ(0, t)|2 ' e−p
2
0/t. Such con-

tribution diverges logarithmically when integrated on
the whole time domain, yielding

NC(T ) =
∫ +T/2

−T/2
dt |ψ(0, t)|2 ' 2e−p

2
0 log T2 . (16)
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Figure 2: Normalization constant of the quantum clock TOA
for a single right-moving Gaussian wave packet, see Eq. (18).
The parameters of the packet are x0 = −10 l0, p0 = 7 ~/l0 and
σ0 = 1 l0. We observe an initial increase of NC as T . 5 t0,
that is when the bulk of the wave packets approaches the de-
tector. For greater values of the regularization parameter the
integral shows a slow logarithmic growth which is not apprecia-
ble in this graph, produced by the trailing tale of the packet that
spreads while crossing the detector. For a reasonable choice of
the integration domain, no numerical difference arises in NC .

As a consequence ΠC turns out to be non-normalizable.

Such an obstruction does not appear neither in the
Kijowski nor in the quantum flux proposals. In the
former, the normalization is guaranteed a priori and in-
dependently from the choice of the packet (see the ax-
iomatic construction of Kijowski in [8]). In the latter, a
Gaussian wave packet gives ∂xψ(x, t) = ψ(x, t)(−x +
x0 + ip0)/(1 + it). In the same regime this yields
Im[Ψ∗(0, t)∂xΨ(0, t)] ' p0/t

3, which implies that the
normalization constant converges on the whole time in-
terval.

The behaviour of ΠC is due to the choice of a Gaus-
sian wave packet, which is, in turn, non-normalizable.
Unlike the other proposals, the quantum clock directly
depends from the probability density of the wave func-
tion, thus it inherits its properties, including the non-
normalizability. We observe that such an issue arises
also classically. For example, let us consider the motion
of a classical cloud that propagates towards a detector
from the left, while spreading due to diffusion. We can
describe the probability density of the cloud using |ψ|2
from Eq. (20). When the diffusion is non-negligible with
respect to the global translation of the cloud, its left tail
may spread faster than the way it is approaching the de-
tector. This is what happens also in Eq. (16), where a
faster translation of the packet (controlled by p0) results
in a slower divergence of the normalization constant. In
this regime, it is however impossible to completely de-
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tect the cloud even by keeping the detector switched on
indefinitely. This results in a non-normalizability of the
TOA distribution.

These considerations suggest that it is ill advised to
postulate that the TOA distribution should be normal-
ized as is done in Kijowski [8]. Indeed, there are trivial
situations in which it cannot be normalizable at all, such
as when the particle is stationary at the detector posi-
tion or in the above scenario, when the particle wave
function spreads so quickly that the trailing tail has
sufficiently large probability to be found at the detector
position at arbitrarily large times.

In practical situations this is not an issue because
typically the divergence is not appreciable (see Fig. 2).
In any case, the value of the regularization parameter T
is given by the total duration of the experiment. For our
purpose, in the next section we consider T = 100 1/ω
(in the units introduced below).

2 Comparisons
We now present a comparison of the previous TOA pro-
posals in several scenarios. We focus on the TOA in-
terference patterns of Gaussian wave packets that over-
lap near a detector, whose cross-sectional area is much
greater than the transversal width of each packet, so
that a click can happen whenever a particle reaches the
longitudinal position of the detector. In this section,
we perform our comparisons by analysing the distribu-
tion of times at which the particle occupies a certain
position, without specializing to any particular detec-
tion model, i.e. by keeping the TOA independent of
any particle-detector interaction. Moreover, we restrict
to those regimes in which each packet can be detected
at most once, so that its subsequent collapse provides
no contributions in the TOA distribution.

Our results highlight the differences between the pre-
viously introduced proposals, allowing to discriminate
between them. We keep ΠK and ΠF separate, under-
lining those regimes in which they produce significantly
different predictions, e.g. when quantum backflow con-
tributions cannot be neglected.

We consider a Gaussian wave packet with initial po-
sition x0, momentum p0 and standard deviation σ0

ψ(x, 0) = 1
(πσ2

0)1/4 e
−(x−x0)2/2σ2

0+ip0(x−x0)/~ . (17)

Its time evolution, governed by the free Hamiltonian
H = p̂2/2m, reads

ψ(x, t) = A(t)e
−(x−x0−p0t/m)2

2σ2
0(1+i~t/mσ2

0) e
ip0
~ (x−x0− p0t

2m ) (18)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5
Quantum clock
Quantum flux
Kijowski
Semiclassical

Figure 3: Time of arrival of a single right-moving Gaussian wave
packet propagating towards the detector. The parameters of
the packet are x0 = −10 l0, p0 = 7 ~/l0 and σ0 = 1 l0. In this
regime ΠF and ΠK overlap, while ΠC and Πsc give different
predictions.

with

A(t) =
[
π1/2

(
σ0 + i~t

mσ0

)]−1/2
. (19)

The probability density is

|ψ(x, t)|2 = e
−(x−x0−p0t/m)2

σ2
0+~2t2/m2σ2

0

√
π
√
σ2

0 + ~2t2/m2σ2
0
. (20)

Unless explicitly stated, we work in units of length, time
and energy respectively given by l0 =

√
~/mω, t0 = 1/ω

and E0 = ~ω, with ω the frequency of the harmonic trap
where the particle is initially prepared in the ground
state. After the preparation, the trap is turned off and
the particle is kicked so that its probability density is
described by Eq. (20).

2.1 Gaussian wave packet

We preliminarily consider the TOA distributions of a
single Gaussian wave packet that travels towards the
detector from the left, i.e. right-moving, and whose
time evolution is given by Eq. (18).

Since Gaussian states allow a trajectory interpreta-
tion, in this section we can safely employ also the semi-
classical approximation.

From Fig. 3 we notice that ΠC gives a similar predic-
tion with respect to ΠF and ΠK . The last two overlaps
in this regime.
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Kijowski
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-0.02

0
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Figure 4: Time of arrival of a train of n = 4 right-moving
Gaussian wave packets that overlap near the detector. The
packets parameters are xk = (−10−8k) l0, pk = (7+3k) ~/l0
and σk = 1 l0, with k ∈ {0, 1, 2, 3}. In this regime ΠF and ΠK

almost overlap (missing markers are due to sampling differences
between ΠK and ΠF ), while ΠC produces significantly different
results. Here no negative values occur for the quantum flux,
which means that in this regime all the TOA distributions admit
a probabilistic interpretation. The inset is a zoom-in of the
main plot close to the horizontal axis.

2.2 Gaussian wave train and time of arrival in-
terference
In this section we consider sequences of n Gaussian wave
packets, described by the superposition

|Ψ(t)〉 = 1√
n

n−1∑
k=0
|Ψk(t)〉 , (21)

where |Ψk(t)〉 has position representation given by
Eq. (18). We denote xk and pk, respectively, the aver-
age position and momentum of the k-th Gaussian wave
packet.

An analysis similar to [4] revealed that all the TOA
proposals are well-behaved for a Gaussian train that
satisfies a no-spreading condition, namely when quan-
tum diffusion is negligible and the propagation of each
packet is approximately a rigid translation.1 In this
regime, each TOA distribution yields an equiprobable
sequence of peaks centred around the classical TOA
|xkm/pk|. When diffusion is taken into account, a simi-
lar behaviour is obtained with a sequence of peaks that
show an overall exponential decay. In our comparisons
we do not make such approximation and we always con-
sider Gaussian trains that propagates while spreading.

1The no-spreading condition can be employed in the Kijowski’s
proposal by using, instead, the Leavens prescription of Eq. (3).

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
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Quantum clock
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Kijowski

2.5 3 3.5
-0.05

0

0.05

0.1

Figure 5: Time of arrival of n = 2 right-moving Gaussian
wave packets that completely overlap at the detector under
the overtaking condition. The parameters of each packet
are x0 = −30 l0, p0 = 10 ~/l0 and p1 = 15 ~/l0 and
σ0 = σ1 = 1 l0, which give x1 = −45 l0. While the pre-
diction of ΠF and ΠK are similar in this regime, ΠC produces
significantly different results. In the inset we show that ΠF

takes negative values due to the presence of quantum back-
flow, for this reason it cannot be interpreted as a probability
distribution (see the text for a detailed discussion).

2.2.1 Overlapping packets

We consider a train of Gaussian wave packets that prop-
agates in the same direction. We adjust the parameters
of each packet such that they partially overlap near the
detector.

We compute the TOA according to each proposal. In
Fig. 4 all the distributions show an interference pattern,
which is due to the superposition of the packets starting
to overlap near x = 0. However, we observe that ΠC

behaves quite differently from ΠF and ΠK in a way
that cannot be reabsorbed by a certain choice of the
normalization constant.

2.2.2 Overtaking packets

We now specialize to the case of two Gaussian wave
packets, respectively localized at x0 and x1, with mo-
menta p0 and p1. Given p1 > p0, we adjust x1 in such a
way that both wave packets arrive at the detector with
the same average TOA, that is when the faster but de-
layed packet overtakes the other one at x = 0. We
refer to this last requirement as an overtaking condition
which is guaranteed when x1/p1 = x0/p0.

From Fig. 5 we see that TOA interference arises with
some marked differences between ΠF , ΠK and ΠC . As
happened in the previous regime, this behaviour cannot
be justified by a proper redefinition of the normalization
factor of ΠC .
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Figure 6: Quantum clock time of arrival of a train of n = 2
right-moving Gaussian wave packets. We consider different val-
ues of the momentum separation ∆p, showing that lower is the
value of ∆p, the wider and less numerous are the TOA interfer-
ence fringes, until a minimum value is reached and interference
completely disappears. This behaviour is also reproduced by
ΠK and ΠF .

The number of interference fringes is related to the
momentum separation between the two packets ∆p =
|p0 − p1|. The lower the value of ∆p, the wider and
fewer are the fringes in the TOA interference pattern.
When this separation is sufficiently low, interference dis-
appears and a result similar to the single packet regime
of Fig. 3 is obtained. In Fig. 6 we explicitly show this
behaviour for ΠC , that is similarly reproduced by the
other TOA proposals.

The quantum flux distribution is not positive-definite
in this regime, so its probabilistic interpretation is not
allowed here. This issue is due to the presence of quan-
tum backflow [34]: although both packets have support
for positive momenta only (i.e. they are right-moving),
interference may produce a temporary inversion of the
motion at the detector. This yields both right and left-
moving contributions in the quantum flux current, lead-
ing to a TOA distribution with negative probabilities.
See the appendix of [2] for a discussion of backflow in
this same regime, but analysed in terms of Bohmian
trajectories.

In this regime, both ΠK and ΠC remains positive-
definite, although they still produce different results.

2.2.3 Counter-propagating packets

We now apply the same procedure to test the combined
Kijowski distribution of Eq. (5), using a superposition
of packets supported for both positive and negative mo-
menta values. To this extent, we consider a couple of
counter-propagating Gaussian wave packets that cross

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.5

1

1.5

2

2.5

3

3.5

4 Quantum clock
Kijowski

Figure 7: Comparison between ΠC and ΠK for n = 2 counter-
propagating packets that meet at the detector with the same
average TOA. The parameters of each packet are x0 = −30 l0,
p0 = 10 ~/l0, x1 = 45 l0, p1 = −15 ~/l0 and σ0 = σ1 = 1 l0.
The Kijowski’s proposal lacks the interference fringes, while the
quantum flux cannot be applied in this regime.

the detector from two opposite directions with the same
average TOA.

In Fig. 7 we compare the TOA distributions ΠC and
ΠK , while ΠF gives meaningless results in this non-
classical regime. In this case, the anomalous behaviour
of the quantum flux is not related to the presence of
quantum backflow, it rather arises from our choice of
packets with opposite momenta signs. In contrast to
quantum clock, the Kijowski’s proposal shows no inter-
ference pattern in this regime. This is due to the in-
dependent treatment of positive and negative momenta
contributions in Eq. (1), which are recombined by sep-
arately adding the two distributions Π+ and Π−.

For two counter-propagating packets, the quantum
clock interference pattern is exactly the same as the
one obtained in Fig. 5, where the packets approach the
detector from the same side. This is due to ΠC being
proportional to |Ψ(0, t)|2, which for two Gaussian wave
packets gives

ΠC(t) = 1
NC

∣∣∣∣∣
1∑
k=0

e−
1
2 (x2

k−2ixkpk+itp2
k)/(σk+it/σk)√

σk + it/σk

∣∣∣∣∣
2

,

(22)
with xk and pk the initial average position and mo-
mentum of each packet. The substitutions x1 → −x1
and p1 → −p1 preserve the right-hand side of Eq. (22)
while translating the counter-propagating regime into
the overtaking one (or the other way round). This has
no effect on the quantum clock TOA which then pre-
dicts these regimes to be equivalent, when the detector
is placed in the origin. This symmetry is not present
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in ΠK and cannot be observed in ΠF , which is not well
defined under such transformations.

3 Experimental considerations
In this section we analyse the possibility to observe the
TOA interference patterns described above.

We consider the experimental parameters of a Bose-
Einstein condensate (BEC) trapped in an accelerator
ring [28]. We prepare the BEC by using a cloud of
87Rb subject to a harmonic potential. After releasing
the trap, we load and accelerate the condensate along
a ring of radius R = 443 µm. We describe each atom
of the cloud using a Gaussian wave packet that prop-
agates on the circle of length d = 2πR, with periodic
boundary conditions in the interval [−d/2, d/2], thus
both its momentum and energy take discrete eigenval-
ues pn = 2πn~/d and En = 2π2n2~2/md2. We fo-
cus only on the longitudinal degree of freedom, assum-
ing that the cloud is sufficiently confined and that its
transversal spreading is negligible with respect to length
of the ring.2 Then, each wave packet is described by

ψ(x, t) =
N∑

n=−N
ane

ipn(x−x̄0)/~e−iEnt/~ , (23)

where x labels the curvilinear coordinate on the ring.
For a packet with initial spatial width σ0 � d, the wave
plane coefficients read

an =
(

4πσ2
0

d4

) 1
4

e−(pn−p̄0)2σ2
0/2~

2
. (24)

Here x̄0 and p̄0 respectively denote the initial average
position and momentum of the packet in the period
[−d/2, d/2].3

We prepare the superposition of propagating pack-
ets by letting the BEC interact with a standing light
wave. Due to Bragg diffraction, this coherently splits
each packet with a momentum transfer that depends
on the angle of incidence of light [27]. Detection is then
indirectly achieved, targeting the BEC with a focused
laser beam (which is kept on for the entire duration of
the experiment). The interaction with the beam ex-
tracts some atoms out of the condensate (with almost

2As long as the confinement is sufficiently strong, the atoms oc-
cupy only the lowest energy level of the transverse degree of free-
dom. In this case, the BEC truly behaves like the one-dimensional
system described by Eq. (23).

3For σ0 � d the tails of the Gaussian are negligible outside
the period, so we can approximate the wave plane coefficients
by integrating the packet on the whole space interval, i.e. by
substituting the discrete momentum eigenvalues in the Fourier
transform of the packet.

negligible feedback on the BEC). By collecting these
atoms (or the photons scattered during the process),
we can use the corresponding extraction rate to recon-
struct the TOA distribution. In this case, the arrival of
the particle is conditioned at the longitudinal position
where the focused laser beam intersects the BEC. This
corresponds to virtually place a detector in the ring,
with temporal resolution controlled by the beam waist
of the laser.

With the detector placed in the origin, we consider
a packet with x̄0 = −d/2, σ0 = 100 µm and p̄0 = p450.
Using Bragg diffraction, we coherently split it into an-
other one with same initial position and width, but
momentum p̄1 = p350. In Fig. 8a we plot the TOA
distributions given by the superposition of these two
packets. With these initial conditions a partial overlap
occurs, in a similar way it does in Fig. 4. In this regime
ΠC produces significantly different results from ΠF and
ΠK . The contributions from negative momentum com-
ponents are negligible, hence the differences between ΠC

and ΠK cannot be attributed to the incoherent sum in
Kijowski’s case, Eq. (5), where Π− ' 0.

In Fig. 8b we perform the same analysis for two
counter-propagating packets with initial positions x̄0 =
x̄1 = −d/2, and momenta p̄0 = p450, p̄1 = −p400
with same initial standard deviation. Similarly to what
happened in Fig. 7, Kijowski’s predicts no interference
fringes with respect to the quantum clock proposal, so
also in this regime an experimental comparison is desir-
able.

Taking into account experimental errors, we now es-
timate the minimum amount of data to achieve the re-
sults of this section. Let Π1 and Π2 be two TOA dis-
tributions. Consider Ns detector clicks temporally dis-
tributed in a histogram with a certain number of bins.
In the k-th bin there are two possible outcomes, which
are described by a Bernoulli distribution: the click falls
within the bin ∆tk with probability fk, or it does not
with probability 1−fk. Discrimination is possible when-
ever the error bar in the k-th bin is sufficiently smaller
than the vertical separation between Π1 and Π2

D =
∣∣∣∣∫

∆tk
dt [Π1(t)−Π2(t)]

∣∣∣∣ , (25)

namely when εk < D/2, with εk the standard error
on the k-th bin. For a Bernoulli distribution εk =√
fk(1− fk)/Ns, which implies that the condition to

achieve experimental discrimination becomes

Ns >
4fk
D2 (1− fk) . (26)

Here fk is approximated by the experimental sample in
terms of the relative frequencies Nk/Ns, with Nk the
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Figure 8: Comparison between ΠC , ΠF and ΠK for a superposition of n = 2 Gaussian wave packets with periodic boundary
conditions on a ring, which mimics the properties of a BEC split using Bragg diffraction. The TOA distributions are normalized
in their respective plot interval. (a) The detector is located at x = 0, the two packets are placed at x̄0 = x̄1 = −1.39 mm
and propagate clockwise with p̄0 = 1.07× 10−25 mm kg s−2 and p̄1 = 0.83× 10−25 mm kg s−2. Under these initial conditions,
the packets partially overlap at the detector. For this reason, the effects of quantum backflow in ΠF cannot be appreciated
in this regime. (b) The second packet is initially placed at x̄1 = −1.39 mm, but it propagates counter-clockwise with p̄1 =
−0.95× 10−25 mm kg s−2. The Kijowski’s TOA distribution shows no interference fringes, while the quantum flux cannot be
applied in this non-definite momentum sign regime. Both (a) and (b) requires a temporal resolution of 0.1 s, which approximately
corresponds to a detector size of 50 µm.

number of clicks in the k-th bin. Then, through a con-
ventional χ2 test we can compare the experimental data
with the different theoretical predictions to determine
which of the TOA proposals correctly reproduces the
measurement outcomes.

In the case of Fig. 8a we choose as bin ∆tk =
[1.29 s, 1.83 s]. We theoretically estimate fk by inte-
grating the TOA distribution that maximises the lower
bound of Eq. (26) in ∆tk. In this regime Ns ' 300
clicks (i.e. single packet detections) represent a suffi-
cient amount of data to discriminate between ΠC and
ΠK .

Discussion and perspectives
In this paper we reviewed some of the proposals that
aim to solve the quantum TOA problem. We com-
pared the Kijowski’s, the quantum flux and the quan-
tum clock TOA distributions, using different superpo-
sitions of Gaussian wave packets in multiple regimes.
Although inequivalent, the Kijowski’s and the quan-
tum flux distributions behave in a similar way, except
when the quantum backflow contributions are not neg-
ligible. Instead, the quantum clock TOA produces sig-
nificantly different results, in particular when the two
packets are counter-propagating. In this regime the

Kijowski’s distribution predicts no interference fringes,
while the quantum clock yields exactly the same pat-
tern that occurs for two right-moving overtaking pack-
ets. This symmetry is not reproduced by the Kijowski’s
proposal, while it cannot be observed in the quantum
flux.

Such differences can be tested in the laboratory. In
the last section, we discussed this possibility for an ex-
perimental implementation that combines BEC interfer-
ometry with Bragg diffraction. This design is capable
of experimentally discriminating the predictions of Ki-
jowski and of the quantum flux from those of the quan-
tum clock approach. It also provides a useful test for the
quantum clock symmetry, by comparing the overtaking
and the counter-propagating regimes for two packets
with the same absolute value of initial position and mo-
mentum.
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