
Expert Systems With Applications 224 (2023) 119968

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Loki – the semantic wiki for collaborative knowledge engineering
Krzysztof Kutt ∗, Grzegorz J. Nalepa
Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Institute of Applied Computer Science, and Jagiellonian Human-Centered AI
Lab, and Mark Kac Center for Complex Systems Research, S. Lojasiewicza 11, Kraków, 30-348, Poland

A R T I C L E I N F O

Dataset link: https://loki.re/

Keywords:
Knowledge engineering
Semantic wiki
Software engineering
Unit tests
Prolog

A B S T R A C T

We present Loki, a semantic wiki designed to support the collaborative knowledge engineering process with
the use of software engineering methods. Designed as a set of DokuWiki plug-ins, it provides a variety of
knowledge representation methods, including semantic annotations, Prolog clauses, and business processes
and rules oriented to specific tasks. Knowledge stored in Loki can be retrieved via SPARQL queries, in-line
Semantic MediaWiki-like queries, or Prolog goals. Loki includes a number of useful features for a group of
experts and knowledge engineers developing the wiki, such as knowledge visualization, ontology storage, or
code hint and completion mechanism. Reasoning unit tests are also introduced to validate knowledge quality.
The paper is complemented by the formulation of the collaborative knowledge engineering process and the
description of experiments performed during Loki development to evaluate its functionality. Loki is available
as free software at https://loki.re.
1. Introduction and motivation

In recent years, a shift from traditional knowledge engineering (KE)
to group-based KE has been observed. This change corresponds to the
transformation from a process in which the main role was played
by knowledge engineers, to a group effort, in which domain experts
are the main contributors (McGuinness, 2017). This is in line with
the emerging movement of knowledge socialism, which promotes the
development of technologies that facilitate the exchange of knowledge
between different stakeholders for the public good (Peters, 2021).
The research literature provides several terms for such a group-based
KE process: collaborative KE, distributed KE, collective KE, and co-
operative KE. There are no well-established definitions of what they
mean (Jackson, 2016), and experts can often understand them in
different ways (Noy et al., 2008), or use some of them interchange-
ably, for example, distributed KE and collaborative KE in Baumeister
et al. (2016), or collaborative KE and collective KE in Nalepa (2010).
However, they should be distinguished on the basis of the characteristic
features indicated by experts and supported by dictionary definitions.
Making this distinction transparent allows one to differentiate various
situations where multiple users are involved in the creation of knowl-
edge. It will also support us in the specification of the context of this
work:

• Distributed KE is a general term that describes the KE process
divided into a number of users who work together on a knowl-
edge base using different terminals (Baumeister & Nalepa, 2009;

∗ Corresponding author.
E-mail addresses: krzysztof.kutt@uj.edu.pl (K. Kutt), gjn@gjn.re (G.J. Nalepa).

Distributed system, 2015). This definition is similar to the notion
of ‘‘distributed systems’’, which covers a wide range of different
systems in which communication is provided by sending messages
over the network (Coulouris et al., 2011).

• Cooperative KE is a process in which the problem is divided into
separate fragments, as in the ‘‘divide and conquer’’ approach.
Each participant is responsible for one part (Roschelle & Teasley,
1995). They pursue their own goals, but are willing to help
others (Villines, 2014). They ultimately formulate knowledge that
benefits each of them (Cooperative, 2015). An example of such a
process can be found in HermesWiki (Reutelshoefer et al., 2010),
where tasks are divided between students who can work on them
independently.

• Collaborative KE is the joint participation of the project partici-
pants for a common purpose, although it may result from different
motivations. In this scenario, users operate on the same part
of the problem, associated with the occurrence of conflicts and
the dynamics of opinions (Adrian et al., 2013; Richards, 2009).
Collaborative KE examples are ACKTUS-dementia (Lindgren &
Winnberg, 2010) and Dispedia (Elze et al., 2011) where patients
and physicians share knowledge about the same diseases, as
well as the Turkic thesaurus (Gatiatullin & Kubedinova, 2020)
developed by a group of engineers and domain experts.

• Collective KE is done by a whole group of people who aim towards
a common goal, who have similar motivations and socioeconomic
vailable online 24 March 2023
957-4174/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2023.119968
Received 21 July 2022; Received in revised form 17 March 2023; Accepted 21 Mar
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ch 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re/
https://loki.re
mailto:krzysztof.kutt@uj.edu.pl
mailto:gjn@gjn.re
https://doi.org/10.1016/j.eswa.2023.119968
https://doi.org/10.1016/j.eswa.2023.119968
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.119968&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

(
b
p
2
d
a
K

r
o
2
c
a
k
t
b
u
t
t
a
c
f
e
A
s
d

s
i
l
p
f
W
u
s
a
i
s
&
H
o
t
o
w
w
u
a
i
b
S

d
b
n
i
T
n

interests. The members of the group are equal, which means a
similar level of skills (Collective, 2015; Villines, 2014). Examples
of this group are the German Tourism Knowledge Graph (Sim-
sek et al., 2023), International Classification of Diseases (ICD-
11) (Tudorache et al., 2013) and the OpenResearch.org semantic
wiki (Vahdati et al., 2019). Projects are developed by a group
of similar participants (tourism industry professionals, physicians,
and researchers) with a shared goal, using their own resources.

Our work is established within collaborative knowledge engineering
referred to as CKE). It is the most common variant of the KE performed
y groups. However, it presents many challenges that still await a
roper solution and requires appropriate support tools (Noy et al.,
008). It is also worth noting that collaborative KE and collective KE
iffer primarily on levels of organization and communication, so prob-
bly collective KE problems may be similar to the ones in collaborative
E, and proposed solutions will also apply to collective KE.

The difference between KE and CKE, i.e., the shift of the main
ole in the knowledge engineering process to domain experts, is not
nly the highlighting of a different group of stakeholders (McGuinness,
017; Simsek et al., 2023). In a traditional KE, an engineer trained in
omputer science learns the domain and prepares the solution for the
ssumed application using tools that allow them full control over the
nowledge base. This often leads to a complex and expressive model
hat allows for making rich inferences. In the CKE, the knowledge
ase is mainly created by domain experts and the community, who
sually do not have detailed knowledge of computer science, but want
o rely on knowledge engineering methods to make the knowledge base
hey develop useful (Thanachawengsakul & Wannapiroon, 2021). Such
n approach usually implies a simple but flexible model, focused on
reating multiple instances (Simsek et al., 2023). This change there-
ore entails the need to redesign many of the established knowledge
ngineering tools and techniques and adapt them to this new situation.
lthough there are successful deployments based on a set of spread-
heets (Debruyne et al., 2022), CKE usually requires the creation of
edicated groupware tools that support it (Kutt, 2018; Torres, 2018).

In our work, we argue that one of the most suitable tools for CKE is
emantic wikis. They are built on classic wiki systems that have gained
mmense popularity, due to their usability, enhanced by easy instal-
ation and maintenance without long introduction training (Prasarn-
hanich & Wagner, 2009). Wikis are pretty simple and robust systems
or collaboration, as indicated by the relatively high quality of the

ikipedia project (Junjie et al., 2010). They were further extended by
sing Semantic Web technology. The term ‘‘semantic’’ is here under-
tood as a meaning of the information (Allemang & Hendler, 2011), and
s a machine-processability of the information, which will also allow
nformation exchange between agents (Hitzler, 2021). Incorporation of
elected technologies, such as URIs for entity identification (Allemang

Hendler, 2011), RDF for knowledge representation (Tomaszuk &
yland-Wood, 2020), OWL for more sophisticated relations in the form
f an ontology (OWL Working Group, 2009), and SPARQL for querying
he knowledge base (Harris & Seaborne, 2013) extends the capabilities
f wiki systems for automatic processing of knowledge contained in the
iki and for conducting inference. Such enriched wikis, called semantic
ikis, became useful tools for CKE: On the one hand, they are easy to
se and, on the other, they offer the ability to process knowledge at
certain level of formalization (Baumeister et al., 2011a). However,

n order for them to be fully useful in the CKE area, they need to
e enhanced to support all the requirements for CKE, identified in
ection 2.

Furthermore, we observe that today CKE can take advantage of
ecades of software engineering research (Sommerville, 2004). We
elieve that this is due to the fact that there are many software engi-
eering methods that address challenges similar to those of CKE. This
ncludes the gradual and dynamic group-based development process.
his is why in our work we propose a specific CKE process that orga-
2

izes the main KE phases and extends them with a number of software
engineering methods. Furthermore, at the level of the groupware tool
supporting the CKE process, we use selected techniques established in
practical software engineering.

In the context mentioned above, the objective of this paper is two-
fold. First, we introduce a specific and detailed workflow or process
for CKE. In this specification, we combine the methods of classic KE
with the above-mentioned software engineering techniques. Second,
we present the Loki groupware tool, which is a semantic wiki that
we developed to support our CKE workflow. It is targeted at a group
consisting of knowledge engineers(s) and domain experts with short
training in specific knowledge representation techniques used in a
project. The choice of specific solutions for this system was based on
our assumption that specific solutions developed recently in software
engineering can be useful in addressing current KE issues. Among such
practical solutions, there are, e.g., agile methodology and unit tests.
Finally, to make our considerations more specific, in this paper, the
KE process is narrowed to the creation of various types of conceptual
models, such as structured vocabularies.

The rest of the paper is organized as follows. In Section 2 we
discuss the requirements for tools that support CKE. Then, we provide
the specification of our CKE process in Section 3. The main part of
the paper, that is, the presentation of the Loki wiki, is placed in
Section 4. We discuss the use of reasoning tests to control the quality
of the knowledge base in Section 5. The experiments we carried out
during Loki development are described in Section 6. Related work
and comparison with existing wiki systems in the context of CKE are
discussed in Section 7. The summary and future works are given in
Section 8.

2. Requirements for CKE

KE experts seem to agree that specific use cases of collaboration
require adequate tools. Therefore, it is not possible and there will never
be a universally accepted tool for all possible situations. On the one
hand, there may be cases that require a specific change acceptance
protocol and, on the other hand, the situations in which everyone can
make immediate changes (Noy et al., 2008). However, there is the
possibility of specifying the list of common requirements that should
be addressed to provide the appropriate CKE tools. There were many
attempts to define such a list (Alobaid et al., 2019; Baumeister &
Reutelshoefer, 2011; John & Melster, 2004; Noy et al., 2008; Nurminen
et al., 2003; Paraiso et al., 2016; Richards, 2007, 2009; Santhosh, 2019;
Wang & Chen, 2004). Each of them paid attention to other aspects of
the problem. We have reviewed them and eventually partitioned them
into six fields of CKE support (Kutt, 2018):

• Agile CKE process – there is a need for a mature agile methodology
for CKE, as it has not yet been developed (Furth & Baumeister,
2014), in particular:

R1. Development should be fast and done in a robust agile way,
R2. Different roles of users involved in the process should be

identified and supported in a proper way,
R3. There should be a possibility for users to specify expecta-

tions which will have an impact on the direction of the
project’s development.

• Supporting tools – CKE systems must be built on a base that allows
collaboration:

R4. Provide compatibility with mainstream tools, standards
and methods, especially domain specific ones,

R5. Manage current KB status and make it possible to down-
load the stable version of KB,

R6. Adapt the system to specific project requirements.

• Knowledge representation and reasoning – as domain knowledge
should be managed by domain experts, not knowledge engineers,

there is a need to develop a suitable knowledge representation:



Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

i
t
p

3

3

K
1
K
e
i
u
a
i

Fig. 1. CKE agile process.
t
p
i

l
a
f
d
w
S
f
p
o
O
c
s
c
t

3

t
c
o
t

R7. The representation should be adapted specifically to the
project and group that will use the CKE tool and should be
easy to use for experts and powerful in terms of inference
capabilities.

• Quality management – there is a need to ensure the proper level
of knowledge base quality:

R8. Provide automatic methods for knowledge verification,
e.g., knowledge consistency check or execution of auto-
matic tests,

R9. Determine the credibility of user expertise and sources of
knowledge, especially in open environments where every-
one can make changes,

R10. Keep in mind that users are domain experts: give them a
possibility to approve, disagree, or discuss with others, but
also be prepared to resolve user conflicts.

• Change management – management of factual changes in the
collaborative setting is more difficult than in the classical KE:

R11. There is a need for a robust versioning mechanism that
takes care of different types of change and covers various
characteristics of the process.

• User involvement – since participation in the CKE process is not
spontaneous, various incentives should be considered to motivate
people:

R12. Take care of usability, that is, a powerful and easy-to-use
interface, compatibility with established practices, proper
visualization, and automation capabilities.

R13. Consider the use of gamification techniques. However, it
should be noted that some users prefer ‘‘hard work’’, and
do not find the game elements motivating at all.

This list has set the scope of the work undertaken to adjust an ex-
sting semantic wiki system to the needs of the CKE process. However,
o achieve this goal, we next provide a complete specification of a CKE
rocess.

. Formulation of the CKE complete process

.1. CKE process description

The proposed CKE process is the result of the analysis of existing
E methodologies (Fernández-López et al., 1997; Gruninger & Fox,
994; Holsapple & Joshi, 2002; Noy & McGuinness, 2001; Uschold &
ing, 1995). The intermediate results of these analyses were presented
arlier (Nalepa, Slazynski, et al., 2015). They were then combined with
nspirations from agile methodology in software engineering, partic-
larly Scrum (Schwaber & Sutherland, 2020). An important role was
lso played by the general outline of the agile CKE process proposed
3

n Baumeister (2004), which is refined and clarified here. Finally,
he CKE process consists of 9 steps grouped into 4 stages (cf. Fig. 1)
erformed in multiple iterations until the expected state of the system
s reached:

1. System metaphor : each iteration begins with the motivating sce-
narios step to regularly discuss the use cases and scenarios and
to match them to the current needs. The competency questions are
also specified here. They can be written down formally, e.g., in
a form of reasoning unit tests.

2. Planning game: the iteration planning step is explicitly introduced
into the proposed methodology to reflect an important step in
the agile process. During this step, specific tasks are created,
estimated and selected for the current iteration.

3. Implementation: the most important stage of the iteration is ac-
tual integration of knowledge into the system. It covers the
whole process that starts with knowledge acquisition from experts,
domain texts and other resources. The gathered knowledge is
then conceptualized and the integration with the existing well-
established vocabulary is considered. Finally, the knowledge is
implemented using selected formalized system, e.g., in a semantic
wiki.

4. Integration: each iteration is concluded by a proper evaluation of
the knowledge base. In addition to the verification of knowledge
at the formal level, it should also be checked at the conceptual
level to check how reliably it represents the domain, e.g., using
the reasoning unit tests specified previously. The entire process
is supplemented by documentation in a form of e.g., competency
questions and reasoning unit tests.

During the initial iterations of the presented process, a common
anguage is established (Holsapple & Joshi, 2002; Silva et al., 2009),
nd later, in the next, knowledge is created from less formal to more
ormal. This is achieved by a team in which specific roles can be
istinguished: the product owner, who represents the client and has the
hole system vision, the CKE process master (named as scrum master in
crum methodology), who oversees the project course, is responsible
or the proper implementation of the process, ensures that all obstacles
reventing the team from completing the project are removed, the team
f domain experts and 1–2 knowledge engineers, who support the team.
ne can also distinguish some roles within the team: the adders, who
reate a lot of material, but not always well semantically marked, the
ynthesizers, who take care of semantics and concepts interrelations, the
ops, who are responsible for imposing standards and schemes and then
hey are monitoring them (cf. Majchrzak et al., 2006).

.2. European Wiki case study

The sample European Wiki project is introduced here to present
he process proposed above in action. It is developed by a group of
olleagues that will work online to develop the wiki with a description
f all European countries. They will use it as a support system during
heir travels across the continent. As there is no ‘‘client’’ in this setting,



Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

i
a

s

a group member has been selected as the owner of the product, who
will supervise the main purpose of the project. In addition, one of them
was selected as the CKE process master who will take care of the whole
process. Finally, all of them except the product owner will work as a
development team that will build the wiki. To simplify the description,
only the first iteration will be presented here,together with the KB made
up of three wiki pages prepared by two users (kkutt and yoda).

1. The process begins with the definition of motivating scenarios.
During this step, three use cases for the European Wiki were
proposed: (a) I want to see cities: A, B and C. In what order do
I have to visit them to be able to use direct flights? (b) I want
to see all European capitals. List all of them. (c) I am in city A.
What is interesting here?

2. In the next step more specific competency questions were pro-
posed. They were formally specified using the reasoning unit
tests.

3. When such system specification is described, the iteration plan-
ning step takes place. In the first iteration of the European
Wiki project, three tasks were defined: (a) Describe London, (b)
Describe Paris, (c) Describe Cracow.

4. After planning game, the actual implementation stage begins.
During this block, two users made six changes to the European
Wiki project and discussed the difficult points. In the back-
ground, the semantic changelog was created and parsed to pro-
vide a gamification-based incentives for users. All task-related
decisions were marked on an iteration board (a scrum board; a
place with a list of all tasks selected for current iteration grouped
into three main categories: ‘‘to do’’, ‘‘in progress’’ and ‘‘done’’),
i.e., user kkutt assigned task (a) to himself and moved it to the
‘‘in progress’’ section.

5. Each iteration is concluded by an evaluation. During this step,
reasoning unit tests results are consulted to check the current
knowledge quality and the level of requirements fulfillment.

6. Everything is supplemented by a documentation step. Within the
first iteration of European Wiki project, the most important action
was to comment the first design decision made: cities will be
described by a city category. A note appeared in the proper
place in the system.

To make such a process successful, it is necessary to develop the
right tool. It should allow such a process to be carried out, facilitate it
and, moreover, it should meet the requirements listed in Section 2. We
argue that the Loki platform is such a system. It is described in the next
section.

4. The Loki platform

4.1. The architecture of the Loki ecosystem

Originally, we developed the preliminary version of Loki (a short
for ‘‘Logic in wiki’’ or ‘‘Logic-based wiki’’)1 engine in 2009 to show
the possibility of combining wiki systems with the representation of
knowledge in Prolog. As a base, the DokuWiki engine2 was selected.
Loki was created as a plugin for this wiki system (Nalepa, 2010,
2011). Later, we extended them to subsequent modules, as part of the
Ph.D. thesis (Kutt, 2018), leading to the emergence of the ecosystem
presented in Fig. 2. It is now made up of five groups of modules. All
of them are developed as plugins for DokuWiki that provide additional
functionalities for Loki engine.

1 For documentation and downloads see: https://loki.re/.
2 See: https://www.dokuwiki.org/.
4

• Loki core. This group represents the minimum needed for the basic
functioning of a semantic wiki. The DokuWiki engine manages
the basic functions (page editing, user accounts), while the Loki
engine handles the processing of knowledge contained in the
pages in the form of semantic annotations and in the form of
Prolog’s code. It adds the appropriate notation, allows one to
query the knowledge base, and allows one to manage quality in
the form of reasoning unit tests. Among the core modules, there
are also RDFLoki for knowledge visualization on given page and
LokiOntology for storing the simple ontology within wiki using
selected concepts from the OWL language (OWL Working Group,
2009).

• Knowledge representation modules. These modules provide the pos-
sibility to use additional knowledge representations than the
core ones, i.e., text, images, tables, semantic annotations, Prolog
clauses. Currently, we provide modules for three such representa-
tions: Business Process Model and Notation (BPMN; business pro-
cesses)3 (Nalepa et al., 2012), Semantics of Business Vocabulary
and Rules (SBVR; business rules)4 (Nalepa, Kluza, & Kaczor, 2015)
and eXtended Tabular Trees (XTT2; production rules)5 (Nalepa,
2018).

• Semantic change graph. These modules are related to the cre-
ation (PROV) and visualization (PROVViz) of the semantic change
graph. This is an RDF-based graph that covers various aspects of
CKE process in the wiki: statistics of triples added/removed, met-
rics of KB’s subsequent states, results of reasoning unit tests, rates
from wiki users (by RevisionsRater plugin). As an RDF graph,
it forms a (meta-)knowledge base that can be further processed,
leading to more thoughtful analyses of the CKE process.

• User-oriented modules. This group consists of three modules. The
first provides gamification elements as incentives for users in an
KE process. The second module focuses on the development of a
user interface that adapts to the needs of identified user groups,
e.g., adders that create a lot of content and synthesizers that are
aimed at knowledge consistency. Finally, the ScrumIDE module
is an attempt to connect a wiki with an IDE that supports agile
software development.

• DokuWiki plugins. Due to the fact that Loki uses the DokuWiki
system as a base, one can extend Loki features with all available
DokuWiki plugins.6 They give a possibility to e.g., create multilin-
gual wiki, compile TEX commands on wiki pages or create image
galleries inside wiki.

The subject of this paper is to present the current state of Loki core.
The description of the remaining modules is beyond the scope of this
paper.

4.2. DokuWiki engine

The DokuWiki system was selected as the basis for Loki, as it is
a very compact and fast implementation of the Wiki concept. Con-
trols the creation of pages and saves them in text files, purely using
the Unix filesystem with no need for a database engine. Provides a
simple markup through which one can create headers, links, lists,
format text, or insert drawings (cf. Fig. 3). DokuWiki engine handles
all the processing of wiki pages that can be easily extended through
the plugin mechanism that modifies syntax processing, engine actions,
and page rendering. All Loki-related functionalities presented below are
mplemented as these plugins. Specifically, this architecture enforces
ll Loki-related actions to be executed by PHP scripts triggered when

3 See: http://bpmn.org, https://loki.re/wiki/docs:bpwiki-about.
4 See: https://www.omg.org/spec/SBVR/ and https://loki.re/wiki/docs:

bvr-about.
5 See: https://loki.re/wiki/docs:xttviewer.
6
 See: https://www.dokuwiki.org/plugins.

https://loki.re/
https://www.dokuwiki.org/
http://bpmn.org
https://loki.re/wiki/docs:bpwiki-about
https://www.omg.org/spec/SBVR/
https://loki.re/wiki/docs:sbvr-about
https://loki.re/wiki/docs:sbvr-about
https://loki.re/wiki/docs:xttviewer
https://www.dokuwiki.org/plugins


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa
Fig. 2. Architecture of Loki ecosystem.
Fig. 3. Sample Loki page: Wiki markup (on the left) and rendered page (on the right).
the page is loaded (e.g., executing SPARQL queries, cf. Section 4.3),
when the editor is opened (e.g., loading the code hint mechanism, cf.
Section 4.6), or when the page is saved (e.g., running unit tests, cf.
Section 5).

4.3. Knowledge engineering with Loki engine

For the implementation of Loki, we selected SWI-Prolog,7 as it is
a mature, popular, and well supported open implementation of Prolog.
The basic knowledge representation in semantic wikis is semantic anno-
tations. To provide compatibility with existing solutions, it was decided
to use annotation markup similar to the one available in Semantic
MediaWiki (SMW), one of popular semantic wikis (see Section 7 for
description and comparison with Loki). When the wiki page is saved, it
is parsed and the annotations are translated into Prolog code for further
processing. There are three types of annotation available in Loki. All of
them will be depicted with examples from the city:london page of
European Wiki (see Fig. 3 for the full wiki page).

• Category specifies the type of concept described on a given page.

7 See: http://www.swi-prolog.org/.
5

Example: London page describes a city.
Annotation: [[category:city]]
RDF triple: :city:london rdf:type :city .

Prolog statement: wiki_category(’city:london’,‘city’).
• Relation describes the connection between two concepts (wiki

pages). It is equivalent to an object property in OWL.
Example: London is the capital of England.
Annotation: [[capitalOf::country:england]]
RDF triple: :city:london :capitalOf :country:england .

Prolog statement:
wiki_relation(’city:london’,‘capitalOf’,’country:england’).

• Attribute connects a concept (wiki page) with a literal value. It is
equivalent to a data property in OWL.
Example: The name of the city is ‘‘London’’.
Annotation: [[name:= London]]

RDF triple: :city:london :name ‘London’ .

Prolog statement: wiki_attribute(’city:london’,‘name’,‘London’)
.

Annotations can be supplemented by the Prolog code placed directly
in the wiki text with the <pl> tags. The result is a homogeneous
knowledge base that can be queried in three different ways (cf. Fig. 4):

http://www.swi-prolog.org/


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa
Fig. 4. Three types of queries (on the left) with sample results (on the right).
• SPARQL query language (Harris & Seaborne, 2013). A subset of
the SELECT, ASK, and DESCRIBE constructs is supported.8 Such
queries may be placed in the wiki text (see Fig. 4) or may be asked
using the built-in SPARQL Endpoint. It allows users to specify
queries to a wiki via a simple web interface without the need to
create a separate wiki page with the query. Queries can also be
remotely sent via HTTP GET Requests. Results may be returned
as HTML, JSON or RDF/XML. This functionality is currently a
standard that allows data to be retrieved from various RDF-based
systems.

• SMW-like queries. Loki adopted the query language used in Se-
mantic MediaWiki (Krötzsch & Vrandecic, 2011). It is easier to
understand than SPARQL and Prolog because it offers a syntax
similar to semantic annotations used in the wiki (see Fig. 4), but
at the cost of simpler querying capabilities.

• Prolog goals. One can also specify arbitrary Prolog goals within
the wiki. They can be used to retrieve knowledge written in both
forms: annotations and Prolog code, as they form one knowledge
base.

Besides storing and querying the knowledge in the wiki, Loki also
has the functionality to export each page as RDF/XML files. After
pressing the ‘‘Export to RDF’’ button, all semantic annotations saved on
a given page are translated into a fully compatible RDF/XML document
and available for download. A more detailed technical specification of
the Loki engine is available in Nalepa (2009) and on the Loki website.9

4.4. Visualization of knowledge

Knowledge written in the wiki is not visible to the user at a glance.
One simply sees the text and links on the page, but does not know
which fragments are formally written in the form of annotations. It
is possible only when the edition form is opened and the wiki text is
visible. To facilitate a quick look at the knowledge available on a given
page, a visualization module has been created. It is based on the RD-
F/XML export provided by the Loki engine (described in Section 4.3).
Due to the fact that the export function saves the generated RDF/XML
file in the wiki file system, it can be easily used later. For visualization
purposes, this file is parsed by the jQuery script, which immediately
generates a graph in SVG format using the <svg> tags supported by
HTML5. The sample graph generated for the London page (see Fig. 3)
is presented in Fig. 5.

8 See: https://loki.re/wiki/docs:userman#sparql_queries.
9 See: https://loki.re/.
6

Fig. 5. RDF graph visualization for London page (cf. Fig. 3).

Generated graphs use different types of nodes to differentiate be-
tween different types of elements: the current page is represented as
a gray node, other wiki pages, i.e., objects of object properties, are
shown as green nodes, while literals, i.e., objects of data properties, are
blue nodes. All properties are represented by arcs. This representation
is consistent with the convention used in the W3C RDF Recommen-
dation (Gandon & Schreiber, 2014), where the RDF resources are
represented as ovals and literals as rectangles. All oval nodes are links
to proper wiki pages, providing a simple and intuitive way to explore
the whole knowledge graph by going through the small visualizations
on each page.

4.5. Ontology storage

A separate module for ontology storage was developed for Loki,
allowing an explicit definition of the ontology and its structure. First,
to provide an easy way to store the general idea of ontology used in
one place, and secondly to help users with stating new annotations on

https://loki.re/wiki/docs:userman#sparql_queries
https://loki.re/


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa
Fig. 6. Ontology editor (on the left) and visualization (on the right).
wiki pages – with an ontology in one place, it is easy to look at the
available relations and classes and copy them to new wiki page.

Given the architecture of Loki, we decided to store ontologies in
special: ontology:{name}10 pages, where {name} represents
the name of the ontology stored on a specific page: default for base
ontology, foaf for Friend-of-a-Friend,11 etc. Ontologies are stored on
these pages using XML syntax. When combined with XSLT stylesheets,12

it offers great visualization capabilities. Two stylesheets were prepared:
one with simple edition form, that gives a possibility to enter a new
statement or delete an existing one, and the second to view the ontology
(see Fig. 6).

4.6. Code hint and completion mechanism

The code hint and completion mechanism was selected as the most
useful extension for Loki, as a solution for a problem that appears in
all performed experiments (see Section 6). That is, user-made typos
or errors in the semantic annotations led to the emergence of knowl-
edge bases that were not fully useful and required time-consuming
debugging. As annotations in Loki are case-sensitive, even mistake [
[category:name]] with [[category:Name]] leads to two very different
statements.

To overcome the discussed problems, as a part of the lokiontology
plugin used also for ontology storage within Loki, we implemented a
code hint mechanism that follows the rules using JavaScript (JS).13

The mechanism aims at suggesting matching annotations, classes, and
the available object and data properties. Its operation is based on
a continuous scan for annotations in the input entered by the user.
It is necessary to define an ontology in the wiki (cf. Section 4.5)
for the whole mechanism to work. First, the user must specify the
category. All categories defined in the ontology are suggested as a

10 special: namespace is used in Loki to store special pages, e.g., the list
of concepts, the URI resolution system, etc.

11 See: http://www.foaf-project.org/.
12 Needs xslt plugin: https://www.dokuwiki.org/plugin:xslt.
13 See: https://loki.re/wiki/docs:lokiontology.
7

hint. Proposing/verifying properties is based on a custom JS function
that checks which properties are defined for a given category in the
ontology. Object suggestion/validation is a two-phase process. First, the
object type defined for a given category and property in the ontology
is determined with a JS function. Then, a SPARQL query is executed to
generate a list of all instances of this type.

For example, consider the ontology presented in Fig. 6. On the
current page, the user has already put the [[category:city]] statement.
As a result, directFlightTo, onRiver and other properties are
proposed (cf. Fig. 7). If the user selects the former, all city class
instances are proposed as objects (cf. Fig. 7). If the second is selected,
the user has to write the string value, so nothing is proposed.

5. Controlling knowledge base quality with reasoning unit tests

CKE is related not only to ways of gathering and integrating knowl-
edge or its subsequent processing. The means to ensure the required
level of quality of this knowledge are also very important (see List R8
on page 6). In software engineering, there are various types of tests to
address this issue. Among them, there are unit tests that are used on
a daily basis to provide a quick quality check with immediate results
that will signal potential problems with the code (Khorikov, 2020).

This idea was formally adopted into KE (Vrandecic & Gangemi,
2006) and implemented in the KnowWE semantic wiki (Baumeister
et al., 2012). It was also incorporated into Loki with further improve-
ments. First of all, it is important to note that these tests can and
should be created by system users (i.e., domain experts) to reflect the
real system expectations. This allows unit tests to check not only the
quality of ‘‘abstract’’ knowledge, but also how well the system actually
performs its task according to the user’s requirements. Second, within
the unit tests module implemented in KnowWE, all tests are thrown into
a single ‘‘big bag’’, making it difficult to use with a larger number of
tests. In Loki, the hierarchy is proposed, so similar tests can be grouped
in the nested structure, with more detailed tests placed deeper in the
hierarchy. The advantage of this solution lies in the ability to not run
tests when they are not needed. This means, for example, that when any
of the parent space tests fails, it is assumed that currently checked part

http://www.foaf-project.org/
https://www.dokuwiki.org/plugin:xslt
https://loki.re/wiki/docs:lokiontology


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

1
2
3
4
5
6
7

T
i
c
n
t
u
g
u

a
q
f
t
s

Fig. 7. Code hint mechanism in Loki: List of properties for city (on the left), list of possible objects for directFlightTo (in the center) and errors highlighting (on the right).
Fig. 8. Sample test structure for European Wiki project.
1

w
n
i
f
w
i

of the KB has errors, so nested tests are not executed, because they are
very likely to fail. A sample tests structure, with indication of whether
the test was passed (green), failed (red), or not executed (yellow), is
shown in Fig. 8. The white nodes represent levels in the hierarchy.

The test structure within Loki is implemented as a tree of nested
namespaces with the unittest namespace as the root. Each test
within this structure is a separate page that consists of exactly one
SPARQL query with a set of assertions that specify restrictions on
the expected query result. The sample test structure in Fig. 8 can be
represented as follows:

unittest:citiestest
unittest:eu:largesttest
unittest:eu:contradictionstest
unittest:eu:capitals:asktest
unittest:eu:capitals:others:selectedcapitalstest
unittest:names:emptytest
unittest:names:detailed:manynamestest

he whole test structure is executed after each change in the wiki,
.e., after every page save event. The results of the most recent test exe-
ution are presented on a corresponding page in a unittestresults
amespace, e.g., for a test saved in unittest:eu:largesttest,
he results are available on the
nittestresults:eu:largesttest page. The test summary is
enerated as a table with their status in the test.
nittestsoverview page (Fig. 9).

As mentioned above, each test page is made up of an SPARQL query
nd a set of assertions. Any Loki-valid SELECT, ASK, or DESCRIBE
uery is acceptable as a test. A set of possible assertions is available
or each of the query types (see Tables 1–3). All of them are added
o the test by putting a single line on the test page, according to the
cheme:
8

e

Fig. 9. Summary of tests. It represents the structure in Fig. 8.

[[unittest_assert_{type}:?{parameter}:{value}|{comment
}]]

here: type is an assertion type (see Tables 1–314), parameter is a
ame of query column used for comparison or special value, value
s a value used for comparison in the assertion. There is also a place
or optional comment to document the assertion. The sample query
ith two assertions taken from the European Wiki project is presented

n Listing 1.

14 As Loki treats all attributes’ values as strings, there are only assertions for
quality available. Other comparisons are not as useful for strings.



Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

1
1
1

1

d
t
t
s
s
t

Table 1
Set of assertions for SELECT queries within Loki.
type parameter Description

anyequal
Attribute name

Checks whether any row/all rows/no
rows contain the given value of
specified attribute

allequal
noneequal

rowcount
equal, notequal,
lessequal, less,
greater, greaterequal

Checks the number of rows returned
e
i
b

s
T
k
w
w
n
a
F
o

d
c
b
o

6

a
P
s
O
i
f
w

p
i
a
S
t
t
b
S
n
f
t
i
d

1 ===== Capitals test =====
2 <pl format= " sparql " >
3 PREFIX wiki: <>
4 SELECT ?page ?name
5 WHERE {
6 ?page a " city " .
7 ?page wiki: name ?name .
8 ?page wiki: capitalOf ?country .
9 }
0 </pl>
1
2 [[unittest_assert_anyequal:?name:London|Is London one

of the capitals?]]\\
3 [[unittest_assert_noneequal:?name:Cracow|Cracow is

not one of the capitals!]]

Listing 1: A sample test from the European Wiki project.

Table 2
Set of assertions for ASK queries within Loki.
type parameter Description

asserttrue Empty – one can omit
the parameter:
[[unittest_assert
_asserttrue:?|]]

Checks whether the query
returns true value

assertfalse Checks whether the query
returns false value

DESCRIBE queries require more attention, as they are not well
ocumented by the W3C (Harris & Seaborne, 2013). Within Loki, they
ake a form similar to the SELECT queries , but instead of listing
he selected pages , they return all attributes that characterize the
elected pages; i.e., they return all triples where a given page is a
ubject. This characteristic gives the possibility to provide an additional
ype of assertion (attributecount) for checking the number of

occurrences of a given attribute, e.g., to check if Canada has exactly
two official_lang values (english, french) and Poland has
only one value (polish). These cannot be validated by the allequal
values, as they test only whether the requested value is available.

SPARQL Recommendation (Harris & Seaborne, 2013) also defines
the CONSTRUCT query form which returns an RDF graph. They were
not presented here due to the lack of implementation in Loki. However,
it is worth noting that from the testing point of view, they work in the
same way as SELECT queries. The main difference is that the result is
not a table, but a graph. Therefore, for these queries, one could use the
same set of assertions as for SELECT queries.

6. Experimental evaluation of Loki

We evaluated selected concepts of CKE, as well as the corresponding
features of Loki during six experiments we conducted to evaluate spe-
cific hypotheses during modules’ and CKE process’ development, Each
of these experiments was aimed at creating a knowledge base on the
wiki by a group of computer science students. They were participants
in two courses organized at AGH-UST: ‘‘Semantic Web Technologies’’
and ‘‘Artificial Intelligence Foundations’’. None of the participants had
any previous experience with knowledge engineering methods. Before
launching the experiments, each person attended a 1.5-hour training
9

session on how to use the wiki.15 All instances of the wiki were hosted
on a university server and available on the Internet to all participants.
General information and statistics of all experiments are given in
Table 4. In the following subsections, we briefly characterize the most
important results.

6.1. First experiment: Pokemons, Simpsons, et al.

In the first experiment, CKE process was carried out by a team of
xperts and a team of knowledge engineers who worked alternately and
ndependently. Specifically, there were four independent processes led
y four two-person expert teams.

The first phase was aimed at creating a wiki about the topic cho-
en by the team (Pokemons, Simpsons, Dragon Ball Z, and Drinks).
he participants took on the role of domain experts. Based on their
nowledge and on publicly available materials, they prepared ‘‘classic’’
ikis containing text, links, and media files. Then, the teams exchanged
iki systems, simulating the appearance of new actors: knowledge engi-
eers. Within this phase, their task was to identify the right vocabulary
nd to use it to annotate the content, to build a ‘‘semantic’’ wiki.
inally, during the third phase, their task was to evaluate the content
f the wiki, both text and semantic annotations.

The results of this experiment finally led to two conclusions. Firstly,
uring CKE process, domain experts and knowledge engineers must
ollaborate at every stage. Second, experiments with students should
e conducted under more strictly controlled conditions, not performed
ccasionally in the students’ free time.

.2. Second experiment: CSP library

In the second experiment, students participated in the project aimed
t transferring the knowledge available in the Constraint Satisfaction
roblem Library (CSPLib)16 to the wiki system and preparing relevant
emantic annotations. In the experiment, a simple CKE process based on
ntology 101 (Noy & McGuinness, 2001) was implemented. It was done

n an iterative manner. Each of the 5 iterations lasted 2 h. During the
irst iteration, the first set of competency questions for the CSP Library
as developed. After that, ontology prototypes were created.

Subjective teacher observations and analysis of the reports pre-
ared by the participants led to the following conclusions. First, users
dentified the lack of a proper code hint and completion mechanism
s a major disadvantage. Then it was implemented as described in
ection 4.6. Second, the formalization of the competency questions
o SPARQL queries at the end of the second iteration is too late. In
he final version of CKE process (Section 3), this issue is addressed
y incorporation of the reasoning unit tests definition (in the form of
PARQL queries), as part of the competency questions step. It was also
oted that tasks assignment may be done in a more controlled way. The
inal version of CKE process incorporates an iteration board to address
his issue. Finally, three roles were observed during the process and
mplemented later on in the wiki: a leader, a scheme designer, and a
eveloper.

15 The training is available at https://loki.re/wiki/docs:tour and is updated
with each major change in Loki.

16 See: http://www.csplib.org/.

https://loki.re/wiki/docs:tour
http://www.csplib.org/


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

i

6

a
d
(
u
t
e
w
o

u
l
s
d
d

Table 3
Set of assertions for DESCRIBE queries within Loki.
type parameter Description

anyequal

Attribute name

Checks whether any/all/no pages
contain the given value of
specified attribute

allequal
noneequal

attribute-
countXX

Checks whether all pages contain the
given attribute in specified amount.
XX should be replaced with one of
the types of assertions: lessequal,
less, greater, greaterequal,
equal, notequal

pagecount
equal, notequal,
lessequal, less,
greater, greaterequal

Checks the number of pages returned
Table 4
Summary of the CKE experiments.

Exp. Objectives No. Par-
ticipants

Changes Wiki
pages

Triples

1st Evaluation of the basic CKE
process in wiki

8 3000 345 1891

2nd Extension of the CKE process
based on Ontology 101 (Noy &
McGuinness, 2001)

13 1186 265 821

3rd Evaluation of Loki features after
the 2nd experiment

15 665 202 1031

4th Practical comparison of Loki to
SMW

105 5046 285 2535

5th Evaluation of the modules
implementing the agile process

16 579 275 890

6th Evaluation of the final version of
the process and Loki

105 2807 436 431
t

6.3. Third experiment: Pubs in Cracow

The objective of the experiment was to evaluate the new Loki
modules in action and to collect feedback on the improved CKE process.
The topic of the project was selected by the participants. It was decided
to create a wiki on pubs located in the center of Cracow. A new
observation was that one person in each team had to be responsible
for quality assurance, but in fact such a task may be automated. This
was later addressed by the introduction of a code hint and completion
mechanism that also checks the annotations and gives instant feedback
of all errors found. Furthermore, the lack of a task assignment mecha-
nism was problematic. To address it in a final version of CKE process, a
teration planning step was introduced that uses an iteration board.

.4. Fourth experiment: Artificial intelligence class

In the fourth experiment, students created a wiki on topics of
rtificial intelligence covered during the ‘‘Artificial Intelligence Foun-
ations’’ course. Among the main goals of the experiment there were:
1) to verify whether there are differences in difficulty levels of wiki
sage between Loki and the popular Semantic MediaWiki (SMW), (2)
o test the CKE process conducted by a larger group than in previous
xperiments. Due to the specific setting, that is, the fact that the project
as done as a part of a course, the process was adjusted wrt to the
riginal one (Reutelshoefer et al., 2010).

To address the first goal, a two-sided Mann–Whitney U test was
sed to check whether there were differences between the difficulty
evels for Loki and SMW reported in the survey. This statistical test was
elected as it is designed to determine whether two samples represent
ifferent distributions and does not require the assumption of normal
istributions. The test results17 do not allow the null hypothesis of

17 Results consists of two values. U is a Mann–Whitney test statistic, while
p represents the probability that the null hypothesis of no difference is true.
10
no difference between Loki and SMW to be rejected for each of four
measures of wiki aspects: overall wiki usage (U = 463.0, p = .26), a
wiki text editor (U = 633.0, p = .20), semantic annotations (U = 597.5,
p = .46), and queries (U = 576.0, p = .66).

Analysis of the process and feedback gathered from users led to the
following main observations: (1) a 1-hour introductory training at the
beginning was not sufficient for the purposes of the project, (2) groups
of 50 people are definitely too big for self-management. The need for
knowledge schemes, proper naming conventions, or even the language
used for annotations was quickly noticed, (3) some users were not
convinced of wiki technology. The most frequently pointed problems
were related to the interface and were addressed in the next version
of Loki. It is interesting that, even with these problems in mind, the
vast majority (54 out of 66 votes) decided that the wiki project should
be repeated during the next course edition. In conclusion, there are
no significant differences between the difficulty reported for Loki and
SMW.

6.5. Fifth experiment: Cookbook and movies KB

Once the complete set of Loki modules for CKE agile process was
developed, the fifth experiment was conducted. It was done in two
parallel ways: (1) students took part in a CKE agile process done in a way
presented in Section 3 aimed at cookbook development within Loki, (2)
the online evaluation call was announced on Loki web page18 and sent
to KE researchers at AGH-UST, as well as graduates of ‘‘Engineering of
Intelligent Systems’’.

Among the objectives of this study, there were to (a) check whether
all modules are compatible with each other, (b) conduct a usability
study, and (c) verify whether the proposed framework improves CKE

If the p score is less than 0.05, one can reject a null hypothesis and state that
here is a difference.
18 See: https://loki.re/wiki/evaluation2017.

https://loki.re/wiki/evaluation2017


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

1
2
3

T
t
m
t
a
t
2

w
U

s
m

Fig. 10. Summary of SUMI scales.

process. At the end of the experiment, as well as at the end of the
tasks related to the evaluation call, all participants completed the Soft-
ware Usability Measurement Inventory (SUMI) (Kirakowski & Corbett,
1993). The questionnaire allows for the evaluation of global usability,
as well as its specific aspects covered by five subscales. The results
are compared with a standardization database that contains profiles for
various software products. Each scale has a mean of 50 and a standard
deviation of 10. As a result of the evaluation, the following observations
can be made:

1. All modules smoothly interact with each other. No major flaws
were noticed (the 1st goal).

2. 18 users filled out the SUMI inventory (see Fig. 10). The results
indicates that users generally felt satisfied with the use of the
Loki (the 2nd goal).

3. Proposed framework improved the CKE process (the 3rd goal):
(a) in contrast to previous experiments, no one reported that was
‘‘the cop’’ responsible only for monitoring the quality. This task
was supported by the reasoning unit tests module, as well as the
hint and completion system. (b) thanks to the simple iteration
board, everyone knew what tasks are currently being carried out
in the wiki. Therefore, there was no redundancy in the work. It
was proposed that more advanced iteration boards, like Trello19

or JIRA,20 may be used in the future, e.g., to group tasks.

6.6. Sixth experiment: Artificial intelligence class

The final experiment was a repetition of the fourth experiment
(Section 6.4). There were again two groups, with two independent wiki
instances: one of them was a pure Loki engine, here called ‘‘wiki A’’
(as described in previous papers (Nalepa, 2010, 2011) and summarized
in Section 4.3) and the second was the new Loki core, ‘‘wiki B’’, (as
presented in Fig. 2 and described in this paper). The goal of this
experiment was to investigate how the new Loki core improves the CKE
process on the wiki. Trello was used as a professional iteration board.

Wiki A was used by 58 participants, while wiki B by 47 students.
The number of changes made in both wikis was comparable (1540
in wiki A and 126721 in wiki B) but in wiki B there were more wiki
pages (257 vs. 179) and more triples created (274 vs. 157). It is
noticeable that a small number of triples is created compared to the
number from the fourth experiment (cf. Table 4). The construction

19 See: https://trello.com/.
20 See: https://www.atlassian.com/software/jira.
21 1563 when the value is rescaled to the same number of participants.
11
of the experiment itself has not changed, but the way of evaluating
participation was different. In the fourth experiment, the creation of
relationships with other pages was more restrictively assessed, as a
result of which participants were ‘‘forced’’ to create multiple triples
if they wanted to complete the course with high scores. In the last
experiment, the rules have been loosened, and it was enough to do one
triple on a wiki page to ‘‘pass’’.

All improvements of Loki found in wiki B were found useful. From
the new remarks that emerged after this experiment: The use of Trello
as a professional task management tool was very well received. The
transparent CKE Agile process made it clear what steps were being
taken. Gamification mechanisms were found to be a useful addition to
the knowledge base development process.

7. Related works and comparative evaluation

The first semantic wiki (Platypus) was proposed in 2004. Then, in
2005–2006 ‘‘the semantic wiki explosion’’ was observed when many
semantic wiki implementations appeared. In subsequent years, more
systems were created, but not as many as in the beginning. Bry et al.
provided a comprehensive description of these systems and their his-
tory in 2012 (Bry et al., 2012).22 Only systems that have been updated
over the last 6 years (i.e., the latest release or commit was in the
2016–2022 period) are considered here: Semantic MediaWiki (Sec-
tion 7.1) (SMW), KnowWE (Section 7.2), and OntoWiki (Section 7.3).
The summary of their features with respect to CKE requirements (as
defined in Section 2) is presented in Table 5. This summary also
provides a comparison of these state-of-the-art wikis with Loki. Loki
is described separately in two columns: the Loki engine (as described
in Sections 4.2–4.3 and published previously in Nalepa (2010, 2011))
is presented in the ‘‘Loki engine (2011)’’ column, and a fully updated
Loki core (as described in Section 4.2–5) is presented in the ‘‘Loki core
(2022)’’ column. The WikiMeningitis system (Thiombiano et al., 2021)
is not included, as there are no details on the source code or the ability
to install the system. As the system is inspired by SMW, it probably has
similar capabilities.

7.1. Semantic MediaWiki

Semantic MediaWiki (Krötzsch & Vrandecic, 2011; Krötzsch et al.,
2007) (see Fig. 11) is an extension of the MediaWiki system.23 The wiki
extends MediaWiki markup to provide a way to describe categories,
relations with other wiki pages (object properties), and relations with
literal values (data properties):

Category: [[Category:City]]
Object property: [[Is capital of::United Kingdom]]
Data property: [[Has population::7,421,329]]

he wiki also provides the possibility to: define the ranges of the rela-
ions (using categories or data types), convert state values (e.g., from
iles to kilometers), and specify the hierarchy of categories and rela-

ions (Krötzsch & Vrandecic, 2011). Notable was the attempt to create
distributed SMW system that stored knowledge on multiple servers

o become independent of a single point of failure (Skaf-Molli et al.,
010).

The wiki knowledge base may be queried using SPARQL, as well as
ith a specific SMW’s query language. To list all cities located in the
nited Kingdom with their population size, one can simply state:

22 For list of current and ‘‘historical’’ semantic wikis see also: https://www.
emanticweb.org/wiki/Semantic_Wiki_State_Of_The_Art.html and http://www.
kbergman.com/sweet-tools/.
23 See: https://www.mediawiki.org/.

https://trello.com/
https://www.atlassian.com/software/jira
https://www.semanticweb.org/wiki/Semantic_Wiki_State_Of_The_Art.html
https://www.semanticweb.org/wiki/Semantic_Wiki_State_Of_The_Art.html
http://www.mkbergman.com/sweet-tools/
http://www.mkbergman.com/sweet-tools/
https://www.mediawiki.org/


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

1
2
3
4
5

S
U

K

Table 5
Loki core compared to other semantic wikis with regard to the CKE requirements.

SMW KnowWE OntoWiki Loki engine (2011) Loki core (2022)

Publications Krötzsch and Vrandecic
(2011), Krötzsch et al.
(2007)

Baumeister et al. (2012,
2011b)

Frischmuth et al. (2015),
Heino et al. (2009)

Nalepa (2010, 2011) Presented in this paper

Web page https://semantic-
mediawiki.org/

https://www.d3web.de/ http://ontowiki.net/ http://loki.re/ http://loki.re/

Last updatea 24.03.2022 (v. 4.0.1) 11.02.2022 (v. 12.7) 04.10.2016 (v. 1.0.0) 23.03.2022 (v.
2022-03-23)

23.03.2022 (v.
2022-03-23)

Technology Extension to MediaWiki
(PHP). Storage in
MediaWiki relational
database or any Triple
Storeb

Built one the JSPWiki
(Java EE). Storage in
relational database

PHP (Zend Framework).
Storage in relational
database or Triple store
(via Erfurt APIc)

Extension to DokuWiki
(PHP). Uses SWI-Prolog.
Storage in plain text files

Extension to DokuWiki
(PHP). Uses Loki engine as
a base

Agile CKE process

R1: Agile development Agile development is related to the appropriate CKE methodology, not specific tools, so all wikis may be used with CKE process
R2: User’s roles No, access rights only No, access rights only No, access rights only No, access rights only Yes, access rights &

automatic identification of
roles

R3: Expectations Yes, Unit tests Yes, Ontology & unit tests Yes, Ontology No Yes, Ontology & unit tests

Supporting tools

R4: Compatibility Yes, RDF & SPARQL
support

Yes, RDF & SPARQL
support. Compatible with
domain-specific standards

Yes, RDF & SPARQL
support. Uses
well-established
vocabularies (SKOS, FOAF,
. . . )

Yes, export to RDF;
SPARQL, BPMN & SBVR
support; SMW-style queries

Yes, as in Loki engine +
ontologies in OWL subset,
changelog in PROV

R5: Current KB state In all Wikis except KnowWE and Loki core there are no automatic tests to validate current state, so the stable and unstable versions are not differentiated.
Only KnowWE gives a possibility to download the last stable version of the KB

R6: Adaptation to project All Wikis have plugin systems that enable the possibility to connect with domain specific tools and adapt the system to the specific project needs

Knowledge representation and reasoning

R7: Adjustable KRR
methods

Yes: media, plain text,
annotations, business
processes, UML class
diagrams

Yes: media, plain text,
annotations, production
rules, decision trees,
decision tables, flowcharts,
set-covering models

No, only forms with
different types of fields’
values

Yes: media, plain text,
annotations, Prolog facts
and clauses, XTT2 rules,
business processes and
rulesd

Yes, as in Loki engine

Quality management

R8: Auto quality checks No Yes, unit tests No No, only consistency
checks limited to XTT2
rules

Yes, as in Loki engine +
unit tests

R9: Credibility
determination

No No No No Yes, for users & partially
for sources used

R10: Tools for experts’
conflicts

Yes, special page for
discussion for each wiki
page

No Yes, discussion about small
information chunks

Yes, special page for
discussion for each wiki
page

Yes, as in Loki engine +
approval/disagreement
mechanism

Change management

R11: Versioning control Yes, simple & linear Yes, simple & linear Yes, simple & linear Yes, simple & linear Yes, robust & graph-based

User involvement

R12: Usability Tested in experimental
setting, giving good overall
results (Zander et al.,
2014)

Not tested Not tested Not tested Tested in experimental
setting, giving good overall
results (Kutt, 2018)

R13: Gamification Yes, very simple No No No Yes

Requirements fulfilled 9 8 6 6 12

aChecked on 25.03.2022.
bSee: https://www.semantic-mediawiki.org/wiki/Help:Using_SPARQL_and_RDF_stores.
cSee: http://aksw.org/Projects/Erfurt.html.
dProcesses and rules may be edited and visualized, but they cannot be queried.
l
&
m

{{ #ask :
[[Category:City]]
[[Located in::United Kingdom]]
|?Population

}}

MW queries can be used to define concepts; for example, concept
K City may be a result of [[Category:City]] [[Located in::United

ingdom]] query. Such concepts may be used in the same way as
12
categories in future queries, allowing for grouping pages in a more
sophisticated way (Krötzsch & Vrandecic, 2011).

Importantly, in addition to the core SMW team,24 there is also a
arge community that not only utilizes the system (e.g., Pilkington

Pretorius, 2020; Willmes et al., 2018), but also creates their own
odules to extend its functionality (e.g., RDFIO (Lampa et al., 2017)).

24 See: https://www.semantic-mediawiki.org/wiki/Help:SMW_Project.

https://semantic-mediawiki.org/
https://semantic-mediawiki.org/
https://www.d3web.de/
http://ontowiki.net/
http://loki.re/
http://loki.re/
https://www.semantic-mediawiki.org/wiki/Help:Using_SPARQL_and_RDF_stores
http://aksw.org/Projects/Erfurt.html
https://www.semantic-mediawiki.org/wiki/Help:SMW_Project


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa
Fig. 11. Semantic MediaWiki wiki page (Krötzsch & Vrandecic, 2011).
Fig. 12. KnowWE wiki page (Baumeister et al., 2012).
7.2. KnowWE

KnowWE (Knowledge Wiki Environment) (Baumeister et al., 2012,
2011b), based on JSPWiki,25 is not a simple wiki with semantic annota-
tions. It was developed as a decision support system that mixes knowl-
edge at different formalization levels, ranging from pictures to strong
problem solving knowledge, for example, production rules (Baumeister

25 See: http://jspwiki.apache.org/.
13
et al., 2012, 2011a) (Fig. 12). KnowWE is constantly evolving, includ-
ing the introduction of new methods for quality assessment (Baumeis-
ter, 2020) and the automatic creation of technical knowledge from
documents (Furth & Baumeister, 2017). The wiki was used to de-
fine clinical guidelines and HCI devices configuration (Baumeister
et al., 2012), chemical substances assessment (Baumeister et al., 2016),
ancient Greece description (Reutelshoefer et al., 2010), and more.
KnowWE does not have a generic annotation mechanism. It uses
markup and editors created for specific use cases to reduce complexity
for domain experts (Baumeister et al., 2012; Krötzsch & Vrandecic,
2011).

http://jspwiki.apache.org/


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa
Fig. 13. OntoWiki wiki page about professor E. H. Weber.
7.3. OntoWiki

OntoWiki (Frischmuth et al., 2015; Heino et al., 2009) is not an
extension of the conventional text-based Wiki. It is based on the pOWL
editor, which is used for collaborative ontology engineering.26 As a
result, OntoWiki does not provide text pages with specific markup, but
special forms (see Fig. 13) that structure knowledge into the form of
an ontology. More precisely, OntoWiki is an overlay for an arbitrary
RDF/OWL dataset, which allows its edition without a deep knowledge
of ontology engineering (Frischmuth et al., 2015; Heino et al., 2009).
OntoWiki knowledge can be queried locally using SPARQL queries,
but it also allows external queries via the SPARQL endpoint and the
LinkedData endpoint (Frischmuth et al., 2015).

It was used successfully in many situations, ranging from histori-
cal data in Catalogus Professorum Lipsiensis (Riechert et al., 2010),
through medical diagnosis in Dispedia (Elze et al., 2011), to animal
classification in the Caucasian Spiders project (Ermilov et al., 2011).
The latter was done in the wilds of the Caucasus area, where the
desktop client is not useful, so there is also a lightweight HTML5-based
version of OntoWiki that can be browsed on mobile phones (Ermilov
et al., 2011).

8. Conclusions

In this paper, the field of collaborative knowledge engineering is
outlined. To clearly define this concept and differentiate it from related
terms, a group-based knowledge engineering taxonomy was proposed.
This allowed for further analysis of the CKE and its challenges, which
led to the identification of 13 requirements for tools supporting the
CKE. Among them, the need for a mature agile methodology for CKE
appeared, as it has not yet been developed. To address this gap, we
have prepared a detailed description of the collaborative knowledge
engineering process, which derives both from knowledge engineering
methods and from practices developed in software engineering.

26 See: http://aksw.org/Projects/Powl.html.
14
The central part of the paper presents a description of the seman-
tic wiki Loki, a groupware tool that implements the proposed CKE
process. Designed as a set of DokuWiki plug-ins, it provides a variety
of knowledge representations, including semantic annotations, Prolog
clauses, business processes, and rules (in BPMN and SBVR notations,
respectively). It can be easily extended to other ones using the plug-
in mechanism. Knowledge stored in Loki can be retrieved via SPARQL
queries, inline Semantic MediaWiki-like queries, or Prolog goals. There
is also a possibility to export knowledge in RDF/XML files or to query
the wiki remotely using the SPARQL endpoint. Loki also includes a set
of features that facilitate the work of domain experts and knowledge
engineers, including knowledge visualization, ontology storage, and a
code hint and completion mechanism. The introduction of reasoning
unit tests, apart from the method of verifying the quality of knowl-
edge, also facilitates the definition of users’ expectations regarding
the final state of the knowledge base. Finally, a description of six
experiments conducted to evaluate specific hypotheses during Loki’s
and CKE process’ development was provided.

As experiments with students have their limitations, e.g., concerning
the motivation of participants, we plan to establish cooperation with
external partners and use Loki for real use case related to digital
humanities or software engineering project. The latter will be possible
thanks to the ability to store knowledge in the form of business pro-
cesses and rules, and the plug-in system that facilitates the expansion
with new knowledge representations. We consider this to be a solid
basis for storing software engineering project specifications in the wiki.
Unlike simple wiki systems hosted in GitLab or Azure DevOps, Loki will
allow better processing and querying of stored knowledge, as well as
verification of its consistency. A connector between the programming
IDE and the wiki is in development, allowing users to link specific
pieces of code and fragments of specification stored in the wiki. The
current development also aims to improve the human-wiki interaction
through the gamification and adaptive user interface modules (see
Fig. 2).

Finally, detailed studies of the scalability of Loki are planned. In the
experiments conducted, no performance problems were encountered,
however, they were carried out on small knowledge bases of less

http://aksw.org/Projects/Powl.html


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

–

D

c
i

D

p

A

i
C
g

C
N

t
u
U

R

A

A

A

B

B

B

B

H

J

than 3,000 triples. Further experiments on larger knowledge bases are
planned. Considering the overall architecture, the narrowest bottleneck
will be the execution of queries against the knowledge base performed
by the SWI-Prolog engine. Its high performance is reported in the
literature (Lampa, 2010; Wielemaker et al., 2003), however, we do not
know what the upper acceptable limit of the knowledge base size is.
To overcome the potential limitations of SWI-Prolog, it is planned to
introduce the possibility of storing knowledge in a native triplestore,
which will increase the efficiency of the system for larger knowledge
bases.

CRediT authorship contribution statement

Krzysztof Kutt: Conceptualization, Methodology, Software, Inves-
tigation, Visualization, Writing – original draft, Writing – review &
editing. Grzegorz J. Nalepa: Conceptualization, Supervision, Writing

review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Loki is an open-source solution. To download it, simply go to the
roject webpage: https://loki.re/.

cknowledgments

This publication was funded by a flagship project ‘‘European Her-
tage in the Jagiellonian Library – Digital Authoring of the Berlin
ollections, Jagiellonian University, Poland’’ under the Strategic Pro-
ramme Excellence Initiative at Jagiellonian University.

This paper was funded by the National Science Centre, Poland under
HIST-ERA programme, the CHIST-ERA 2017 BDSI PACMEL Project,
CN 2018/27/Z/ST6/03392.

The research for this publication has been supported by a grant from
he Priority Research Area DigiWorld, Jagiellonian University, Poland
nder the Strategic Programme Excellence Initiative at Jagiellonian
niversity.

eferences

drian, W. T., Nalepa, G. J., & Ligęza, A. (2013). On potential usefulness of inconsis-
tency in collaborative knowledge engineering. In Proceedings of the 8th international
conference on knowledge, information and creativity support systems.

llemang, D., & Hendler, J. A. (2011). Semantic web for the working ontologist - Effective
modeling in RDFS and OWL (2nd ed.). Morgan Kaufmann.

lobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Pérez, I., Fernández-Izquierdo, A.,
& Corcho, Ó. (2019). Automating ontology engineering support activities with
ontoology. Journal of Web Semantics, 57, http://dx.doi.org/10.1016/j.websem.2018.
09.003.

aumeister, J. (2004). Agile development of diagnostic knowledge systems (Ph.D. thesis),
Germany: Julius Maximilians University Würzburg.

aumeister, J. (2020). Experience-based quality assessment of distributed knowledge
graphs. In P. Heisig, R. Orth, J. M. Schönborn, & S. Thalmann (Eds.), WM 2019
- Wissensmanagement in digitalen Arbeitswelten: Aktuelle Ansätze und Perspektiven -
Knowledge management in digital workplace environments: State of the art and outlook
(pp. 123–138). Bonn: Gesellschaft für Informatik e.V.

aumeister, J., & Nalepa, G. J. (2009). Verification of distributed knowledge in semantic
knowledge wikis. In H. C. Lane, & H. W. Guesgen (Eds.), FLAIRS-22: Proceedings of
the twenty-second international Florida Artificial Intelligence Research Society conference
(pp. 384–389). FLAIRS Menlo Park, California: AAAI Press.

aumeister, J., & Reutelshoefer, J. (2011). Developing knowledge systems with con-
tinuous integration. In I-KNOW 2011, 11th international conference on knowledge
management and knowledge technologies (p. 33). http://dx.doi.org/10.1145/2024288.
15

2024328.
Baumeister, J., Reutelshoefer, J., Belli, V., Striffler, A., Hatko, R., & Friedrich, M.
(2012). KnowWE–a wiki for knowledge base development. In Knowledge engineering
and software engineering.

Baumeister, J., Reutelshoefer, J., & Puppe, F. (2011a). Engineering intelligent systems
on the knowledge formalization continuum. International Journal of Applied Math-
ematics and Computer Science (AMCS), 21, http://ki.informatik.uni-wuerzburg.de/
papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf.

Baumeister, J., Reutelshoefer, J., & Puppe, F. (2011b). Knowwe: A semantic wiki
for knowledge engineering. Applied Intelligence, 1–22. http://dx.doi.org/10.1007/
s10489-010-0224-5.

Baumeister, J., Striffler, A., Brandt, M., & Neumann, M. (2016). Collaborative de-
cision support and documentation in chemical safety with knowsec. Journal of
Cheminformatics, 8, 21.

Bry, F., Schaffert, S., Vrandecic, D., & Weiand, K. A. (2012). Semantic wikis: Ap-
proaches, applications, and perspectives. In Reasoning web. Semantic technologies
for advanced query answering - 8th international summer school 2012, Vienna, Austria,
September 3-8, 2012. proceedings (pp. 329–369). http://dx.doi.org/10.1007/978-3-
642-33158-9_9.

Collective (2015). In M. Deuter, J. Bradbery, & J. Turnbull (Eds.), Oxford ad-
vanced learner’s dictionary (9th ed.). Oxford University Press, http://www.
oxfordlearnersdictionaries.com/definition/english/collective_1.

Cooperative (2015). In M. Deuter, J. Bradbery, & J. Turnbull (Eds.), Oxford
advanced learner’s dictionary (9th ed.). Oxford University Press, http://www.
oxfordlearnersdictionaries.com/definition/english/cooperative_1.

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Distributed systems:
Concepts and design (5th ed.). Pearson.

Debruyne, C., Munnelly, G., Kilgallon, L., O’Sullivan, D., & Crooks, P. (2022). Creating
a knowledge graph for Ireland’s lost history: Knowledge engineering and curation
in the beyond 2022 project. ACM Journal on Computing and Cultural Heritage, 15,
25:1–25. http://dx.doi.org/10.1145/3474829.

Distributed system (2015). In M. Deuter, J. Bradbery, & J. Turnbull (Eds.), Ox-
ford advanced learner’s dictionary (9th ed.). Oxford University Press, http://www.
oxfordlearnersdictionaries.com/definition/english/distributed-system.

Elze, R., Hesse, T.-M., & Martin, M. (2011). Dispedia.de – a linked information system
for rare diseases. In A. Holzinger, & K.-M. Simonic (Eds.), Information quality in
e-Health: 7th conference of the workgroup human-computer interaction and usability
engineering of the Austrian Computer Society (pp. 691–701). Berlin, Heidelberg:
Springer Berlin Heidelberg, http://dx.doi.org/10.1007/978-3-642-25364-5_50.

Ermilov, T., Heino, N., Tramp, S., & Auer, S. (2011). Ontowiki mobile – knowledge
management in your pocket. In G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia,
D. Plexousakis, P. De Leenheer, & J. Pan (Eds.), The semantic web: Research and
applications: 8th extended semantic web conference, ESWC 2011, Heraklion, Crete,
Greece, May 29-June 2, 2011, proceedings, part I (pp. 185–199). Berlin, Heidelberg:
Springer Berlin Heidelberg, http://dx.doi.org/10.1007/978-3-642-21034-1_13.

Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). Methontology: from
ontological art towards ontological engineering. In Proceedings of the ontological
engineering AAAI-97 spring symposium series. American Asociation for Artificial
Intelligence.

Frischmuth, P., Martin, M., Tramp, S., Riechert, T., & Auer, S. (2015). Ontowiki–an
authoring, publication and visualization interface for the data web. Semantic Web,
6, 215–240.

Furth, S., & Baumeister, J. (2014). An ontology debugger for the semantic wiki KnowWE
(tool presentation). In G. J. Nalepa, & J. Baumeister (Eds.), Proceedings of 10th
workshop on knowledge engineering and software engineering (KESE10) co-located with
21st European conference on artificial intelligence. http://ceur-ws.org/Vol-1289/.

Furth, S., & Baumeister, J. (2017). Constructing technical knowledge organizations from
document structures. In Lecture notes in computer science: vol. 10260, NLDB (pp.
210–213). Springer.

Gandon, F., & Schreiber, G. (2014). RDF 1.1 XML syntax. W3C recommendation W3C.
https://www.w3.org/TR/rdf-syntax-grammar/.

Gatiatullin, A., & Kubedinova, L. (2020). Multilingual thesaurus for turkic languages. In
2020 5th international conference on computer science and engineering (pp. 393–398).
http://dx.doi.org/10.1109/UBMK50275.2020.9219378.

Gruninger, M., & Fox, M. S. (1994). The design and evaluation of ontologies for
enterprise engineering. In Workshop on implemented ontologies, European workshop
on artificial intelligence.

Harris, S., & Seaborne, A. (2013). SPARQL 1.1 query language. W3C recommendation
W3C. https://www.w3.org/TR/sparql11-query/.

Heino, N., Dietzold, S., Martin, M., & Auer, S. (2009). Developing semantic web
applications with the ontowiki framework. In T. Pellegrini, S. Auer, K. Tochter-
mann, & S. Schaffert (Eds.), Networked knowledge - Networked media (pp. 61–77).
Berlin, Heidelberg: Springer Berlin Heidelberg, http://dx.doi.org/10.1007/978-3-
642-02184-8_5.

itzler, P. (2021). A review of the semantic web field. Communication of the ACM, 64,
76–83. http://dx.doi.org/10.1145/3397512.

Holsapple, C. W., & Joshi, K. D. (2002). A collaborative approach to ontology design.
Communication of the ACM, 45, 42–47. http://dx.doi.org/10.1145/503124.503147.

ackson, M. H. (2016). Collaboration and cooperation. In K. B. Jensen, R. T. Craig,
J. D. Pooley, & E. W. Rothenbuhler (Eds.), The international encyclopedia of
communication theory and philosophy. John Wiley & Sons, Inc., http://dx.doi.org/
10.1002/9781118766804.wbiect203.

https://loki.re/
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb1
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb1
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb1
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb1
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb1
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb2
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb2
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb2
http://dx.doi.org/10.1016/j.websem.2018.09.003
http://dx.doi.org/10.1016/j.websem.2018.09.003
http://dx.doi.org/10.1016/j.websem.2018.09.003
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb4
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb4
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb4
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb6
http://dx.doi.org/10.1145/2024288.2024328
http://dx.doi.org/10.1145/2024288.2024328
http://dx.doi.org/10.1145/2024288.2024328
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb8
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb8
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb8
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb8
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb8
http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf
http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf
http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2011/2011-Baumeister-KFC-AMCS.pdf
http://dx.doi.org/10.1007/s10489-010-0224-5
http://dx.doi.org/10.1007/s10489-010-0224-5
http://dx.doi.org/10.1007/s10489-010-0224-5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb11
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb11
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb11
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb11
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb11
http://dx.doi.org/10.1007/978-3-642-33158-9_9
http://dx.doi.org/10.1007/978-3-642-33158-9_9
http://dx.doi.org/10.1007/978-3-642-33158-9_9
http://www.oxfordlearnersdictionaries.com/definition/english/collective_1
http://www.oxfordlearnersdictionaries.com/definition/english/collective_1
http://www.oxfordlearnersdictionaries.com/definition/english/collective_1
http://www.oxfordlearnersdictionaries.com/definition/english/cooperative_1
http://www.oxfordlearnersdictionaries.com/definition/english/cooperative_1
http://www.oxfordlearnersdictionaries.com/definition/english/cooperative_1
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb15
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb15
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb15
http://dx.doi.org/10.1145/3474829
http://www.oxfordlearnersdictionaries.com/definition/english/distributed-system
http://www.oxfordlearnersdictionaries.com/definition/english/distributed-system
http://www.oxfordlearnersdictionaries.com/definition/english/distributed-system
http://dx.doi.org/10.1007/978-3-642-25364-5_50
http://dx.doi.org/10.1007/978-3-642-21034-1_13
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb20
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb21
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb21
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb21
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb21
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb21
http://ceur-ws.org/Vol-1289/
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb23
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb23
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb23
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb23
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb23
https://www.w3.org/TR/rdf-syntax-grammar/
http://dx.doi.org/10.1109/UBMK50275.2020.9219378
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb26
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb26
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb26
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb26
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb26
https://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1007/978-3-642-02184-8_5
http://dx.doi.org/10.1007/978-3-642-02184-8_5
http://dx.doi.org/10.1007/978-3-642-02184-8_5
http://dx.doi.org/10.1145/3397512
http://dx.doi.org/10.1145/503124.503147
http://dx.doi.org/10.1002/9781118766804.wbiect203
http://dx.doi.org/10.1002/9781118766804.wbiect203
http://dx.doi.org/10.1002/9781118766804.wbiect203


Expert Systems With Applications 224 (2023) 119968K. Kutt and G.J. Nalepa

J

K
K

K

K

K

L

L

L

M

M
N

N

John, M., & Melster, R. (2004). Knowledge networks – managing collaborative knowl-
edge spaces. In G. Melnik, & H. Holz (Eds.), Lecture notes in computer science: vol.
3096, Advances in learning software organizations (pp. 165–171). Springer Berlin
Heidelberg.

unjie, W., Qian, M., Dongxia, M., & Su, L. (2010). Research for collaborative
knowledge management based on semantic wiki technology. In 2010 second
international workshop on education technology and computer science, vol. 3 (pp.
464–467). http://dx.doi.org/10.1109/ETCS.2010.82.

horikov, V. (2020). Unit testing principles, practices, and patterns. Manning.
irakowski, J., & Corbett, M. (1993). Sumi: The software usability measurement

inventory. British Journal of Educational Technology, 24, 210–212.
rötzsch, M., & Vrandecic, D. (2011). Semantic mediawiki. In Foundations for the web of
information and services - A review of 20 years of semantic web research (pp. 311–326).

rötzsch, M., Vrandecic, D., Völkel, M., Haller, H., & Studer, R. (2007). Semantic
wikipedia. Web Semantics, 5, 251–261.

utt, K. (2018). Collaborative knowledge engineering. Methods and tools for system design
(Ph.D. thesis), AGH University of Science and Technology, Supervisor: Grzegorz J.
Nalepa.

ampa, S. (2010). SWI-Prolog as a semantic web tool for semantic querying in bioclipse:
Integration and performance benchmarking (Master’s thesis), Uppsala University,
Supervisor: Egon Willighagen.

ampa, S., Willighagen, E. L., Kohonen, P., King, A., Vrandecic, D., Grafstrom, R.,
& Spjuth, O. (2017). RDFIO: extending semantic mediawiki for interoperable
biomedical data management. Journal of Biomedical Semantics, 8, 35:1–13.

indgren, H., & Winnberg, P. (2010). Evaluation of a semantic web application for
collaborative knowledge building in the dementia domain. In Electronic healthcare
- Third international conference (pp. 62–69). http://dx.doi.org/10.1007/978-3-642-
23635-8_8.

ajchrzak, A., Wagner, C., & Yates, D. (2006). Corporate wiki users: results of a survey.
In Proceedings of the 2006 international symposium on Wikis (pp. 99–104).

cGuinness, D. L. (2017). Ontologies for the modern age. ISWC2017 Keynote Speech.
alepa, G. J. (2009). PlWiki – a generic semantic wiki architecture. In N. T. Nguyen,

R. Kowalczyk, & S.-M. Chen (Eds.), Lecture notes in computer science: vol. 5796,
Computational collective intelligence. Semantic web, social networks and multiagent
systems, first international conference, ICCCI 2009, Wroclaw, Poland, October 5-7,
2009. proceedings (pp. 345–356). Springer.

alepa, G. J. (2010). Collective knowledge engineering with semantic wikis. Journal
of Universal Computer Science, 16, 1006–1023, http://www.jucs.org/jucs_16_7/
collective_knowledge_engineering_with.

Nalepa, G. J. (2011). Loki – semantic wiki with logical knowledge representation.
In N. T. Nguyen (Ed.), Lecture notes in computer science: vol. 6560, Transactions
on computational collective intelligence III (pp. 96–114). Springer, http://www.
springerlink.com/content/y91w134g03344376/.

Nalepa, G. J. (2018). Intelligent systems reference library: vol. 130, Modeling with rules
using semantic knowledge engineering. Springer International Publishing.

Nalepa, G. J., Kluza, K., & Ciaputa, U. (2012). Proposal of automation of the
collaborative modeling and evaluation of business processes using a semantic wiki.
In Proceedings of the 17th IEEE international conference on emerging technologies and
factory automation.

Nalepa, G. J., Kluza, K., & Kaczor, K. (2015). Sbvrwiki a web-based tool for authoring of
business rules. In L. Rutkowski, & et al. (Eds.), Lecture notes in artificial intelligence,
Artificial intelligence and soft computing: 14th international conference (pp. 703–713).
Springer.

Nalepa, G., Slazynski, M., Kutt, K., Kucharska, E., & Luszpaj, A. (2015). Unifying
business concepts for smes with prosecco ontology. In Computer science and
information systems (FedCSIS), 2015 federated conference on (pp. 1321–1326).

Noy, N. F., Chugh, A., & Alani, H. (2008). The CKC challenge: Exploring tools for
collaborative knowledge construction. IEEE Intelligent Systems, 23, 64–68. http:
//dx.doi.org/10.1109/MIS.2008.14.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating
your first ontology. Stanford University.

Nurminen, J. K., Karonen, O., & Hätönen, K. (2003). What makes expert systems
survive over 10 years - empirical evaluation of several engineering applications.
Expert System with Applications, 24, 199–211. http://dx.doi.org/10.1016/S0957-
4174(02)00149-5.

OWL Working Group, W. (2009). OWL 2 web ontology language: Document overview.
W3C recommendation W3C.

Paraiso, E. C., Boz, G., Jr., Ramos, M. P., Sato, G. Y., & Tacla, C. (2016). Improving
knowledge acquisition in a collaborative knowledge construction tool with a virtual
catalyst. Computing and Informatics, 35, 914–940.

Peters, M. A. (2021). Knowledge socialism: the rise of peer production - collegiality,
collaboration, and collective intelligence. Educational Philosophy and Theory, 53,
1–9. http://dx.doi.org/10.1080/00131857.2019.1654375.

Pilkington, C., & Pretorius, L. (2020). A connectivist view of a research methodology
semantic wiki. In B. Tait, J. Kroeze, & S. Gruner (Eds.), ICT education (pp. 131–146).
Cham: Springer International Publishing.

Prasarnphanich, P., & Wagner, C. (2009). The role of wiki technology and altruism
in collaborative knowledge creation. Journal of Computer Information Systems, 49,
33–41.
16
Reutelshoefer, J., Lemmerich, F., Baumeister, J., Wintjes, J., & Haas, L. (2010).
Taking OWL to athens. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,
H. Stuckenschmidt, L. Cabral, & T. Tudorache (Eds.), Lecture notes in computer
science: vol. 6088, The semantic web: Research and applications (pp. 333–347).
Springer, http://dx.doi.org/10.1007/978-3-642-13486-9_23.

Richards, D. (2007). Collaborative knowledge engineering: socialising expert systems.
In 2007 11th international conference on computer supported cooperative work in design
(pp. 635–640). IEEE.

Richards, D. (2009). A social software/web 2.0 approach to collaborative knowledge
engineering. Information Sciences, 179, 2515 – 2523. http://dx.doi.org/10.1016/j.
ins.2009.01.031.

Riechert, T., Morgenstern, U., Auer, S., Tramp, S., & Martin, M. (2010). Knowledge
engineering for historians on the example of the catalogus professorum lipsiensis.
In International semantic web conference (pp. 225–240). Springer.

Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in
collaborative problem solving. In C. O’Malley (Ed.), Computer supported collaborative
learning (pp. 69–97). Berlin, Heidelberg: Springer Berlin Heidelberg, http://dx.doi.
org/10.1007/978-3-642-85098-1_5.

Santhosh, J. (2019). Towards a hybrid methodology for domain ontology development
(Ph.D. thesis), Coventry University, Supervisors: Nazaraf Shah and Craig Stewart.

Schwaber, K., & Sutherland, J. (2020). The scrum guide. The definitive guide to scrum:
The rules of the game: Technical report, https://scrumguides.org/docs/scrumguide/
v2020/2020-Scrum-Guide-US.pdf.

Silva, L. C. L., Jr., Borges, M. R. S., & de Carvalho, P. V. R. (2009). Collaborative
ethnography: an approach to the elicitation of cognitive requirements of teams.
In Proceedings of the 13th international conference on computers supported cooperative
work in design (pp. 167–172). http://dx.doi.org/10.1109/CSCWD.2009.4968053.

Simsek, U., Kärle, E., Angele, K., Huaman, E., Opdenplatz, J., Sommer, D., Umbrich, J.,
& Fensel, D. (2023). A knowledge graph perspective on knowledge engineering. SN
Computer Science, 4, 16. http://dx.doi.org/10.1007/s42979-022-01429-x.

Skaf-Molli, H., Canals, G., & Molli, P. (2010). DSMW: distributed semantic mediawiki.
In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral,
& T. Tudorache (Eds.), The semantic web: Research and applications, 7th extended se-
mantic web conference (pp. 426–430). http://dx.doi.org/10.1007/978-3-642-13489-
0_37.

Sommerville, I. (2004). Software engineering. In International computer science (7th ed.).
Pearson Education Limited.

Thanachawengsakul, N., & Wannapiroon, P. (2021). Development of a learning ecosys-
tem using digital knowledge engineering through moocs knowledge repository
system. International Journal of Engineering Pedagogy, 11, 35–48. http://dx.doi.org/
10.3991/ijep.v11i1.15011.

Thiombiano, J., Traoré, Y., Malo, S., & Sié, O. (2021). Discovery and enrichment of
knowledges from a semantic wiki. In J. Mejia, M. Muñoz, Á. Rocha, & Y. Quiñonez
(Eds.), New perspectives in software engineering (pp. 142–153). Cham: Springer
International Publishing.

Tomaszuk, D., & Hyland-Wood, D. (2020). RDF 1.1: Knowledge representation and data
integration language for the web. Symmetry, 12(84), http://dx.doi.org/10.3390/
sym12010084.

Torres, G. M. (2018). Collaborative knowledge engineering. Independently Published.
Tudorache, T., Nyulas, C. I., Noy, N. F., & Musen, M. A. (2013). Using semantic web

in ICD-11: three years down the road. In International semantic web conference (pp.
195–211). Springer.

Uschold, M., & King, M. (1995). Towards a methodology for building ontologies. In
IJCAI-95 workshop on basic ontological issues in knowledge sharing.

Vahdati, S., Fathalla, S., Auer, S., Lange, C., & Vidal, M. (2019). Semantic representation
of scientific publications. In Lecture notes in computer science: vol. 11799, TPDL (pp.
375–379). Springer.

Villines, S. (2014). Collaborative, collective, cooperative. http://www.sociocracy.info/
collaborative-collective-cooperative/.

Vrandecic, D., & Gangemi, A. (2006). Unit tests for ontologies. In On the move to
meaningful internet systems 2006: OTM 2006 workshops (pp. 1012–1020). http:
//dx.doi.org/10.1007/11915072_2.

Wang, Y., & Chen, M. (2004). A collaborative knowledge production model for
knowledge management in complex engineering domains. In Proceedings of the
IEEE international conference on systems, man & cybernetics (pp. 5050–5055). http:
//dx.doi.org/10.1109/ICSMC.2004.1400994.

Wielemaker, J., Schreiber, G., & Wielinga, B. J. (2003). Prolog-based infrastructure
for RDF: scalability and performance. In D. Fensel, K. P. Sycara, & J. Mylopoulos
(Eds.), Lecture notes in computer science: vol. 2870, ISWC (pp. 644–658). Springer,
http://dx.doi.org/10.1007/978-3-540-39718-2_41.

Willmes, C., Viehberg, F., Lopez, S. E., & Bareth, G. (2018). CRC806-KB: A semantic
mediawiki based collaborative knowledge base for an interdisciplinary research
project. Data, 3(44), http://dx.doi.org/10.3390/data3040044.

Zander, S., Swertz, C., Verdú, E., Pérez, M. J. V., & Henning, P. (2014). A semantic
mediawiki-based approach for the collaborative development of pedagogically
meaningful learning content annotations. In P. Molli, J. G. Breslin, & M. Vidal
(Eds.), Semantic web collaborative spaces - Second international workshop, SWCS 2013,
third international workshop, SWCS 2014 (pp. 73–111). http://dx.doi.org/10.1007/
978-3-319-32667-2_5.

http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb32
http://dx.doi.org/10.1109/ETCS.2010.82
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb34
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb35
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb35
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb35
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb36
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb36
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb36
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb37
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb37
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb37
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb38
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb38
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb38
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb38
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb38
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb39
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb39
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb39
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb39
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb39
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb40
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb40
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb40
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb40
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb40
http://dx.doi.org/10.1007/978-3-642-23635-8_8
http://dx.doi.org/10.1007/978-3-642-23635-8_8
http://dx.doi.org/10.1007/978-3-642-23635-8_8
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb42
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb42
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb42
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb43
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb44
http://www.jucs.org/jucs_16_7/collective_knowledge_engineering_with
http://www.jucs.org/jucs_16_7/collective_knowledge_engineering_with
http://www.jucs.org/jucs_16_7/collective_knowledge_engineering_with
http://www.springerlink.com/content/y91w134g03344376/
http://www.springerlink.com/content/y91w134g03344376/
http://www.springerlink.com/content/y91w134g03344376/
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb47
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb47
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb47
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb48
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb49
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb50
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb50
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb50
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb50
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb50
http://dx.doi.org/10.1109/MIS.2008.14
http://dx.doi.org/10.1109/MIS.2008.14
http://dx.doi.org/10.1109/MIS.2008.14
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb52
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb52
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb52
http://dx.doi.org/10.1016/S0957-4174(02)00149-5
http://dx.doi.org/10.1016/S0957-4174(02)00149-5
http://dx.doi.org/10.1016/S0957-4174(02)00149-5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb54
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb54
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb54
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb55
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb55
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb55
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb55
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb55
http://dx.doi.org/10.1080/00131857.2019.1654375
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb57
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb57
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb57
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb57
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb57
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb58
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb58
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb58
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb58
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb58
http://dx.doi.org/10.1007/978-3-642-13486-9_23
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb60
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb60
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb60
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb60
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb60
http://dx.doi.org/10.1016/j.ins.2009.01.031
http://dx.doi.org/10.1016/j.ins.2009.01.031
http://dx.doi.org/10.1016/j.ins.2009.01.031
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb62
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb62
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb62
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb62
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb62
http://dx.doi.org/10.1007/978-3-642-85098-1_5
http://dx.doi.org/10.1007/978-3-642-85098-1_5
http://dx.doi.org/10.1007/978-3-642-85098-1_5
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb64
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb64
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb64
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
http://dx.doi.org/10.1109/CSCWD.2009.4968053
http://dx.doi.org/10.1007/s42979-022-01429-x
http://dx.doi.org/10.1007/978-3-642-13489-0_37
http://dx.doi.org/10.1007/978-3-642-13489-0_37
http://dx.doi.org/10.1007/978-3-642-13489-0_37
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb69
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb69
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb69
http://dx.doi.org/10.3991/ijep.v11i1.15011
http://dx.doi.org/10.3991/ijep.v11i1.15011
http://dx.doi.org/10.3991/ijep.v11i1.15011
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb71
http://dx.doi.org/10.3390/sym12010084
http://dx.doi.org/10.3390/sym12010084
http://dx.doi.org/10.3390/sym12010084
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb73
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb74
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb74
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb74
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb74
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb74
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb75
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb75
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb75
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb76
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb76
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb76
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb76
http://refhub.elsevier.com/S0957-4174(23)00470-0/sb76
http://www.sociocracy.info/collaborative-collective-cooperative/
http://www.sociocracy.info/collaborative-collective-cooperative/
http://www.sociocracy.info/collaborative-collective-cooperative/
http://dx.doi.org/10.1007/11915072_2
http://dx.doi.org/10.1007/11915072_2
http://dx.doi.org/10.1007/11915072_2
http://dx.doi.org/10.1109/ICSMC.2004.1400994
http://dx.doi.org/10.1109/ICSMC.2004.1400994
http://dx.doi.org/10.1109/ICSMC.2004.1400994
http://dx.doi.org/10.1007/978-3-540-39718-2_41
http://dx.doi.org/10.3390/data3040044
http://dx.doi.org/10.1007/978-3-319-32667-2_5
http://dx.doi.org/10.1007/978-3-319-32667-2_5
http://dx.doi.org/10.1007/978-3-319-32667-2_5

	Loki – the semantic wiki for collaborative knowledge engineering
	Introduction and Motivation
	Requirements for CKE
	Formulation of the CKE Complete Process
	CKE Process Description
	European Wiki Case Study

	The Loki Platform
	The Architecture of the Loki Ecosystem
	DokuWiki Engine
	Knowledge Engineering with Loki Engine
	Visualization of Knowledge
	Ontology Storage
	Code Hint and Completion Mechanism

	Controlling Knowledge Base Quality with Reasoning Unit Tests
	Experimental Evaluation of Loki
	First Experiment: Pokemons, Simpsons, 
	Second Experiment: CSP Library
	Third Experiment: Pubs in Cracow
	Fourth Experiment: Artificial Intelligence Class
	Fifth Experiment: Cookbook and Movies KB
	Sixth Experiment: Artificial Intelligence Class

	Related Works and Comparative Evaluation
	Semantic MediaWiki
	KnowWE
	OntoWiki

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


