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Abstract
Purpose Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the 
survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation 
of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) 
spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in 
studying the biochemical composition of PC tissue.
Methods Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which origi-
nate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional 
ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps 
of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and 
nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep 
learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network 
(CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based 
tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared 
the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues.
Results The results showed significant differences among cancer tissues of the studied PC groups. The main findings are 
the varying content of β-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our 
CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not 
require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies.
Conclusions Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. 
The molecular fingerprint of DNA methylation and β-sheet cytoplasmic proteins established by our results is different for 
the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase 
their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the 
methodology into clinical practice by utilizing liquid biopsy testing.
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IPMN  Intraductal papillary mucinous neoplasm
PanIN  Pancreatic intraepithelial neoplasia
cPDAC  Conventional pancreatic ductal 

adenocarcinoma
AVAC  Adenocarcinoma of the ampulla of Vater
IPMC  Carcinoma derived from IPMN
FTIR  Fourier transform infrared spectroscopy
ATR-FTIR  Attenuated total reflection Fourier transform 

infrared spectroscopy
SERS  Surface-enhanced Raman spectroscopy

Introduction

Some of the most aggressive and deadly malignant neo-
plasms arise within the head of the pancreas and can pose 
diagnostic problems even for experienced pathologists [1]. 
Pancreatic cancer (PC) is the fourth most lethal neoplasm in 
the USA [2] and seventh in the world [3]. A total of 49,830 
deaths from PC were estimated in 2022 in the USA [2]. The 
5-year survival rates are still below 10% [4]. One of the 
reasons for this persistent fact is the known heterogeneity in 
both molecular and morphological phenotypes, which is not 
properly reflected in current treatment options and causes 
the tumor to be largely chemoresistant. The lack of specific 
and sensitive early diagnostic methods leads to late-stage 
disease at the time of diagnosis [4]. New molecular detection 
and differentiation methods must be introduced to increase 
PC patient survival. For this purpose, it is crucial to use a 
systemic approach, with accurate and detailed histomorpho-
logical subtyping of samples.

Raman hyperspectral mapping (RHM) is a molecular 
imaging technique that involves Raman spectroscopy meas-
urements of adjacent parts of the studied sample, resulting 
in a tissue map image. A first-ever Raman map of ampullary 
cancer was recently described in [5]. In the current study, we 
make significant progress in exploring the potential of RHM 
for pancreatic tumor characterization and show the RHM-
based distinction among the three main types of pancreatic 
malignancies. Specifically, we investigated conventional 
pancreatic ductal adenocarcinoma (cPDAC), intraductal 
papillary mucinous carcinoma (IPMC), and ampulla of Vater 
adenocarcinoma (AVAC). These tumors are treated similarly 
in terms of clinical management, but recent reports suggest 
that they differ in prognostic factors occurrences, such as 
tumor differentiation level, perineural and venous invasion, 
and lymph node involvement [6], resulting in variations in 
PC patient survival.

There are two main pathways of carcinogenesis in the 
pancreas [4]. The first is called pancreatic intraepithelial 
neoplasia (PanIN), and the second develops based on a 
benign lesion called intraductal papillary mucinous neo-
plasm (IPMN—contrary to IPMC). PanIN is a dysplastic 

change of the pancreatic ductal epithelium, either in “nor-
mal” pancreatic tissue or in so-called acinar-to-ductal meta-
plasia regions [7]. It is considered the main precursor lesion 
for cPDAC [4]. On the other hand, IPMC arises in a neo-
plastic lesion that grows inside the pancreatic ducts, causing 
them to form a mucinous cystic tumor, called IPMN. The 
dysplastic lesions of the IPMN epithelium progress from low 
grade to high grade and eventually achieve invasive poten-
tial, transforming into cancer (IPMN evolves into IPMC). 
The initiation and progression pathways of these two pre-
cursor lesions differ in many aspects, although they overlap 
in others [8]. Another tumor involving the pancreatic head 
is ampullary cancer or ampulla of Vater cancer of the duo-
denum (AVAC), which originates via dysplastic changes in 
the epithelium of either the intestinal mucosa (intestinal type 
AVAC), the pancreatobiliary ductal mucosa (pancreatobil-
iary type AVAC), or both (mixed type AVAC) [8].

Currently, the distinction among cPDAC, IPMC, and 
AVAC is recognized by pathologists mainly by the location 
of the tumor epicenter (AVAC) and by the assessment of 
specific morphological features (cPDAC, IPMC) [4]. How-
ever, in many cases, they occur as a mixture of colorectal 
and pancreatic cancers [9]. Correct diagnosis is often dif-
ficult, especially when the AVAC infiltrates deep into the 
pancreatic tissue [1, 8] or when the so-called “large duct/
cystic papillary” pattern of cPDAC occurs, which can hin-
der differentiation from IPMC [4]. The lack of specific and 
sensitive histopathological ancillary studies does not sup-
port making the diagnostic decision. Immunohistochem-
istry often gives ambiguous results [8]. Nevertheless, it is 
crucial to make the correct diagnosis, as it affects patients’ 
prognosis and care [6]. Notably, Reid et al., in a study on a 
large cohort of 232 AVAC and 476 cPDAC cases, showed 
significantly shorter survival of cPDAC patients compared to 
the worst type of AVAC, which is the pancreatobiliary type 
(15.6 vs. 41 months), regardless of the lymph node status 
and the tumor size [10]. Here, we present a new method of 
testing PC tissues that reveals the site of the cancer origin, 
thus helping to identify patients with varied prognoses but, 
most importantly, better adjusting the therapeutic manage-
ment to the PC subtype.

Different methods of molecular vibrational spectroscopy 
(VS) were shown to be usable for characterizing the chemi-
cal structure of malignant tissues [11, 12]. Raman spectros-
copy (RS) can become an efficient tool supporting the early 
diagnosis of pancreatic malignancy [5, 13]. Nevertheless, 
currently, the lack of screening methods leads to late-stage 
disease at diagnosis and consequently poor PC patient sur-
vival [14]. The interaction of the analyte with the light (elec-
tromagnetic radiation), which takes advantage of inelastic 
scattering, allows reading information about the composition 
of biologically significant molecules and functional groups, 
such as phosphates, proteins, carbohydrates, phospholipids, 
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triglycerides, and nucleic acids. The results of such experi-
ments allow conclusions to be drawn about differences in 
the metabolic pathways of various neoplasms [15]. One of 
the main advantages of molecular spectroscopic methodol-
ogy is collecting information on samples in a label-free and 
noninvasive manner, which makes it a good candidate for an 
early, serum-based diagnostic tool for PC [14]. On the other 
hand, the data about samples obtained with RS methodology 
allows a deep investigation of their molecular composition. 
Unlike other methods, such as mass spectrometry proteom-
ics, RS cannot identify specific proteins or discover new 
biomarkers. The key to success lies in identifying the “fin-
gerprint” of samples. Although many factors can interfere 
with this “global picture,” such as inflammation or tumor 
necrosis, RHM allows the precise analysis of data within 
the nuclei or cytoplasm of cancerous cells, limiting the 
possibility of falsification [5]. Neural networks are excep-
tionally efficient in reading the smallest differences in that 
“fingerprint.”

Many publications have described the successful VS-
based detection of cancer in organs such as the lung [16], 
bile duct [17], ovary [18], breast [19], or pancreas [20] by 
testing blood serum samples. None of them, however, com-
pared spectral results in various cancers, and thus the true 
specificity of this methodology has not been assessed. Our 
study and obtained results show the utility of VS in differ-
entiating various types of cancers. Although we character-
ized the spectral differences between PC groups in tissue 
samples, this knowledge can be directly translated into the 
interpretation of blood serum analysis by other FTIR or 
Raman-based methods.

To initiate the overview of insights into the PC biology 
that molecular spectroscopy might provide, we utilized Fou-
rier transform infrared (FTIR) microspectroscopic imaging 
of PC samples. Knowledge of the spatial distribution of can-
cerous and noncancerous components of studied samples 
permitted the cognitive collection of RHM maps. Subse-
quently, we employed advanced statistical tools to extract 
spectral markers of PC and explore the spectral differences 
among them. Furthermore, as a proof of concept of utilizing 
VS-based methods in the development of early PC diagnos-
tic and subtyping technology, which requires automation, we 
studied the potential of deep networking, specifically con-
ventional neural networks (CNNs), to distinguish AVAC, 
IPMC, and cPDAC from raw spectra selected from RHM 
maps. This approach allowed automatic spectral classifica-
tion without the need for human-dependent preprocessing 
or manual re-evaluation.

First, however, the investigations in this project addressed 
the biomolecular context of PC. We aimed to introduce 
the epigenetically complex reality of PC and its influence 
on protein modifications. The goal was to extend beyond 
“single-gene” genetics and transcriptomics with their (not 

unsubstantial) hope to decipher the still-elusive “language” 
of these most malignant neoplasms and to find common 
and specific differences in their observable biomolecular 
signatures. VS might be an excellent tool supporting such 
an approach.

Methods

Tissue slide preparation

Molecular imaging of 24 PC tissue slides from 17 patients 
was conducted. Specifically, 6 AVAC, 7 cPDAC, 9 IPMC, 
and 2 benign specimens were included. Patients with a diag-
nosis of PC who underwent pancreatoduodenectomy (Whip-
ple or Traverso) or distal pancreatectomy were included in 
the study. Patients with a benign pancreatic neoplasm or neu-
roendocrine neoplasm were excluded. Tissue samples were 
selected from the Cracow University Hospital’s Pathomor-
phology Department’s archive, normally stored as conven-
tional formalin-fixed paraffin-embedded (FFPE) blocks after 
the diagnostic process. Standard hematoxylin–eosin-stained 
glass slides (H&E) were used for initial sample selection, 
which was performed by two independent experienced pan-
creatic pathologists with the use of a routine light micro-
scope (Olympus BX53 Microscope, RRID:SCR_022568). 
During the selection process, a detailed reevaluation of 
the tumor type was conducted. All initial diagnoses were 
confirmed. For each selected case, a single 2.5 μm thick 
tissue section was sliced with a Microm® HM355S Auto-
matic Microtome and mounted onto a  CaF2 window (Raman 
Grade Calcium Fluoride substrates—CRYSTRAN LTD, 
England). Subsequently, on unstained  CaF2 slides, areas of 
interest including cancerous cells and the stroma compart-
ment were marked by pathologists. Then, a complete paraffin 
removal procedure was conducted involving a 12-h xylene 
bath and graded ethanol rehydration. An overview of the 
patients included in the study is summarized in Supplemen-
tary Table S1.

FTIR data acquisition

The initial FTIR measurements were executed on preproc-
essed pancreatic tissue slides (according to the procedure 
provided in the above “Tissue slide preparation” section). 
FTIR images were collected at the Chemical and Life Sci-
ence branch of the infrared Beamline SISSI, Elettra Sincro-
trone Trieste (Trieste, Italy), using a Hyperion 3000 Vis–IR 
microscope equipped with a liquid nitrogen-cooled bidi-
mensional focal plane array (FPA) detector (64 × 64 pixels) 
coupled with a Vertex 70 v interferometer (Bruker Optics 
GmbH, Ettlingen, Germany). The IR data were acquired 
in transmission mode with a 15 × objective. Spectra were 
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registered in the spectral range from 4000 to 900  cm−1 with 
a spectral resolution of 4  cm−1, averaging 256 scans. The 
FTIR images were acquired with a pixel size of 2.8 µm, and 
all the acquired maps covered the submillimeter areas of 
tissue sections (from 360 µm × 360 µm to 720 µm × 720 µm).

Raman measurements

After recognizing the spatial distribution of PC in the stud-
ied samples, Raman measurements were executed using 
a Horiba LabRam spectrometer equipped with a green 
(532 nm) laser and electron-multiplying charge-coupled 
device (EM-CCD) camera cooled to − 70 °C. During the 
measurements, the tissue sections were immersed in a physi-
ological saline solution, and a × 60 water immersion objec-
tive lens (Nikon) was used. Spectra were acquired in the 
fingerprint spectral region (1900–600  cm−1) with a spectral 
resolution of 2  cm−1. The process of RHM relies on multiple 
measurements of adjacent “pixels” of tissue and combin-
ing the resulting spectra into a single map image. In this 
study, the RHM maps included 10,000 to 18,000 spectra for 
a single slide. The exposure time for each pixel was 6 s. The 
pixels (step size) were 1 µm or smaller depending on the size 
of the area of interest, which varied from 80 µm × 80 µm to 
140 µm × 140 µm.

Raman measurements of isolated DNA

Raman spectra of two differently methylated commercially 
available genomic DNAs, both isolated from Jurkat cells 
(provided by Thermo Scientific), were acquired to explore 
reference Raman markers of DNA methylation. The sup-
plier ensures a ≥ 98% CpG methylation level of CpG-meth-
ylated Jurkat genomic DNA. Spectra were collected with 
the same device described above. The acquisition time was 
30 s per spectrum. Similarly, as tissue data, DNA spectra 
were acquired in the 1900–600  cm−1 range, with a spectral 
resolution of 2  cm−1.

Pathological re‑evaluation of areas of interest

After obtaining initial maps and basic spectral clustering, 
re-evaluation of the samples was possible. The same pathol-
ogists precisely selected and marked areas of cancer cells 
on the Raman map images. This step allowed nonrandom 
identification of valuable spectra, multivariate data analy-
sis, and comparison. The good resolution of the collected 
hyperspectral maps made it possible to distinguish particular 
cancer cell elements, such as the nucleus and cytoplasm or 
the stroma compartment of the tumor.

Multivariate data analysis

Data analysis was conducted in the MATLAB 
(RRID:SCR_001622) environment from MathWorks 
(Natick, USA). The preprocessing of acquired FTIR and 
Raman spectra involved sequentially applying a base-
line correction (3rd polynomial order), smoothing with 
the Savitzky–Golay algorithm (third-order, 17 smooth-
ing points), and normalization (Standard Normal Vari-
ate) in the range characteristic for biological molecules 
(1800–800  cm−1).

Infrared maps were processed with hierarchical cluster 
analysis (HCA) according to a previously described proce-
dure [5].

The analysis of Raman data was divided into three 
parts related to the methods used. First, by the use of HCA 
(Ward’s method), the relationships between spectra (the 
matrix of spectra) were revealed. HCA allowed dividing 
spectra into clusters found in the dendrogram. The main 
advantage of using HCA is its ability to create false-color 
maps based on dendrograms, which illustrate the arrange-
ment of clusters determined during the analysis [21]. HCA 
enabled direct comparison of the obtained experimental 
spectra. Based on the HCA results, the cancerous regions on 
false-color Raman maps were distinguished. Maps were ana-
lyzed independently; however, the same colors (revealed by 
the comparative analysis of clusters’ averaged spectra) were 
used to represent areas of similar chemical composition and 
structure in all of them. The second derivatives of the spectra 
from these sectors were calculated and utilized in subsequent 
principal component analysis (PCA). Because PCA makes it 
possible to reduce the dimensionality of the collected data, 
based on its results, we recognized the differences in Raman 
spectra from the cancerous regions for each studied type of 
PC tissue. During PCA, two important plots were produced, 
specifically the scores and loading plots. The first one ena-
bled the separation of samples based on similarities, and the 
latter visualized differences in the spectra causing data sepa-
ration marked as peaks. Scores and loading plots allowed us 
to identify areas of cancer. In parallel, on Raman maps, the 
nonnegative matrix factorization (NMF) method was carried 
out. NMF transformed the high-dimensional data into two 
matrices, which uncovered the meaningful features of the 
collected data. Most importantly, the NMF-generated matri-
ces presented the chemical compounds of the spectra and 
allowed the production of false-color distribution maps. The 
nucleic acid components extracted in NMF analysis were 
compared across all studied PC types.

CNN architecture

The last part of the study involved training CNN in the 
classification of raw Raman spectral data. The CNN was 
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trained in predicting five classes, representing AVAC, IPMC, 
cPDAC, stroma/empty space, and benign pancreatic tissue. 
A total of 18 CNN-predicted map images were acquired 
for PC tissue from 14 patients, specifically 6 AVAC cases, 
4 cPDAC cases, 6 IPMC cases, and 2 benign pancreatic 
tissue cases. We used a custom-designed CNN architec-
ture with 18 convolutional layers for feature identification 
and 4 fully connected layers for classification. The pro-
gramming of the CNN was performed in Python version 
3.10.5 (IPython, RRID:SCR_001658) with TensorFlow 
(RRID:SCR_016345) and Keras application programming 
interfaces (API). A “sequential” base model was utilized. 
The details of the proposed CNN architecture are summa-
rized in Supplementary Figure S1. For each layer, a “glorot 
uniform” initializing mode was used. The “Adam” optimizer 
and “categorical crossentropy” loss function were applied. 
The training involved 150 epochs with a batch size equal 
to 105. The selected spectra for each class were combined 
and shuffled randomly. The intensity values from each 
spectrum were combined with Raman shift values to form a 
2D NumPy (NumPy, RRID:SCR_008633) array. The total 
number of spectra used for training/testing was 53,879 with 
the NumPy array shape presented as (53879, 2, 512) and 
included spectra from cancerous and noncancerous areas, 
as well as benign pancreatic tissue areas. Then, class arrays 
were “one-hot encoded,” and the training and testing dataset 
split was conducted with a 70/30 ratio. The approximate 
CNN training time was 45 min.

CNN training and testing dataset selection

Data for training and initial testing of the CNN were selected 
on RHM maps plotted from raw (unprocessed) spectral data. 
To support the benefits of CNN-based automation, for CNN 
dataset creation, we did not use HCA maps but unstained opti-
cal microscopy tissue slide images, normally collected before 
Raman measurements. The MATLAB (RRID:SCR_001622) 
environment from MathWorks (Natick, USA) with the plot 
selection tool by John D'Errico was used to annotate the areas 
of cancer as separate classes (AVAC, IPMC, and cPDAC). 
Additionally, the stroma/empty class was annotated. The 
selections were performed by a pathologist experienced in 
PC and spectral data analysis. The tissue section containing 
the benign pancreas was used analogously for the creation 
of the benign class dataset. The process of training dataset 
annotation is depicted in Supplementary Figure S2.

CNN‑based classification plotting

In the last step of the CNN-based classification, the CNN 
was used to generate the prediction maps. Every spectrum 
obtained with RHM for each tissue sample was fed to the 
CNN and classified into one of the classes. The predicted 

class values (classes 0–4 standing for stroma/empty, AVAC, 
IPMC, cPDAC, and benign) created an array, which combined 
with the x and y coordinates of the original RHM map ena-
bled the plotting of the CNN classification map image. Each 
image pixel expressed a CNN-predicted class with a differ-
ent color. The plotting was performed in Python (IPython, 
RRID:SCR_001658) with the MatPlotLib library (MatPlot-
Lib, RRID:SCR_008624). The total number of spectra used for 
generating the prediction maps was 211,355, of which 157,476 
were new spectral data not trained on or tested by the CNN.

CNN extracted features visualization plotting

To better understand the CNN workflow in spectral pre-
diction, we visualized the features extracted by the CNN 
model in prediction mode. For each PC group, 5 representa-
tive spectra were processed. The outputs of the CNN at the 
beginning (dense layer with 512 neurons), middle (dense 
layer with 256 neurons), and end (dense layer with 128 neu-
rons) of the classification process were drawn as linear plots. 
The NumPy (NumPy, RRID:SCR_008633) array shapes 
were (1, 512), (1, 256), and (1,128). The plotting was per-
formed in Python (IPython, RRID:SCR_001658) with the 
MatPlotLib library (MatPlotLib, RRID:SCR_008624).

Results

In the first step of the study, we applied infrared imaging 
to reveal chemical differences in various types of PC, spe-
cifically AVAC, IPMC, and cPDAC (“FTIR imaging of PC 
types” section). Proper interpretation of the spectral differ-
ences within the dataset requires the use of multivariate data 
analysis, which permits reducing the dimensionality of data 
and obtaining information on the structure of the dataset, 
spectral similarity, and variability. HCA was used to distin-
guish regions of tissues with different spectral characteristics 
related to the presence and concentration of various bio-
chemical components, such as proteins and nucleic acids [5].

To precisely reveal chemical variability among pan-
creatic malignancies (AVAC, cPDAC, and IPMC), we 
implemented Raman imaging (“RHM mapping of pancre-
atic tumors” section). On the one hand, Raman maps are 
relatively small compared to FTIR maps, thus, they repre-
sent spectra obtained from a limited number of cancerous 
cells or areas of cancer stroma. On the other hand, RHM 
provides submicrometric spatial resolution enabling the 
acquisition of signals from subcellular components, such as 
cell nuclei or cytoplasm, and allows separate and detailed 
investigations of those regions [5], which was required by 
our study. To obtain good-quality RHM maps, the meas-
ured tissue should be spectroscopically adequate. This is 
best verified on a larger scale. Although the resolution 
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of infrared mapping is restricted by the diffraction limit 
related to infrared wavelength, we used FTIR spectroscopy 
as a supportive tool to obtain such large-scale maps. This 
important step allowed the selection of spectroscopically 
representative areas for further investigation by Raman 
mapping. The FTIR signal from the preselected areas (pre-
selected by pathologists on tissue slide images—see “Tissue 
slide preparation” in the “Methods” section) of tissue sec-
tions was typical, demonstrating the presence of functional 
groups expected to be found in tissues (purified from paraf-
fin). Additionally, FTIR data confirmed that the thickness 
of tissues was homogeneous or that tissues were properly 
attached to the substrate and free from contamination.

For a selected region of each PC tissue sample, we per-
formed RHM with a pixel size of 1 µm. The obtained RHM 
maps of PC tissues were treated with the HCA algorithm, 
which permitted the division of Raman spectra into clusters. 
Specifically, each studied Raman map of PC was divided into 
seven spectroscopically different clusters [21]. Furthermore, 
to comprehensively investigate the molecular relations of dif-
ferent components, all RHM maps were analyzed using NMF 
algorithms. NMF highlights the main components of Raman 
spectra from the collected maps. A significant advantage 
of the NMF method is its ability to extract the signal from 
water as one of the components. Thus, a detailed analysis of 
Raman signals from other components (proteins or nucleic 
acids) without the disruption of overlapping water bands is 
possible. Moreover, this ability is crucial when analyzing 
the secondary structure of proteins, where the O–H bending 
motion at 1643  cm−1 overlaps with the amide I band. Each 
of the derived NMF components corresponds to differences 
in the chemical composition of particular areas of the tissue.

The HCA allowed localization of the nuclei of the can-
cer cells, enabling us to further investigate these. The 
results of the PCA for each PC type are described in the 
“PCA of spectral data acquired from nuclei of the PC 
cells” section. To complete the analysis of PC nuclei, we 
present the results of NMF analysis for this region of the 
studied samples in the “Comparison of Raman signals 
from the nuclei of AVAC, IPMC, and cPDAC” section.

Finally, in the “Generating CNN-based prediction maps for 
AVAC, cPDAC, and IPMC” section, the CNN training and 
the CNN-prediction map generation results are summarized. 
Notably, in the “Visualizing the CNN extracted features” sec-
tion, we briefly show the visualization of the CNN analysis.

FTIR imaging of PC types

Representative results of FTIR imaging of PC tumors are pre-
sented in Fig. 1. The distribution of proteins and nucleic acids 
concentration is depicted in Supplementary Figure S3. For all 
the analyzed samples, 5 HCA components were revealed. The 
spectrally similar components are drawn with the same color.

The relatively intense band from the phosphate asym-
metric stretching at 1230  cm−1 can be seen in component 
1 (red spectrum). This component is associated with a high 
content of nucleic acids. We observed a relatively high 
abundance of component 1 in the investigated area of IPMC 
tissue, suggesting a high content of cells in comparison 
with the protein-rich extracellular matrix. The richness of 
nucleic acids has been reported as typical for aggressive 
(highly metastatic) cancer cells [22]. However, in the IPMC 
sample (Fig. 1G and H), most of component 1 was com-
posed of inflammatory cells (neutrophils and lymphocytes) 
that surrounded the cancerous glands. Interestingly, in the 
spectra acquired from cPDAC and AVAC tissues, the asym-
metric stretching of phosphate splits into two. This split-
ting confirms the presence of hydrogen bonding to oxygen 
atoms of phosphate groups observed previously in malignant 
colorectal cancer [23]. Conversely, in a sample of IPMC 
tissue, only one peak from phosphate is recognized, simi-
lar to that reported in normal (benign) colon tissue [23]. 
Component 2 (green spectra), which was observed mainly 
in cPDAC, appears in the locations of the tissue with high 
band area ratios of 1450/1650  cm−1 and 1406/1650  cm−1. 
These bands correspond to the bending motions of the  CH3 
groups in protein side chains (1450, 1406  cm−1) and to the 
amide I band (ν(C = O) and δ(N–H)) from cellular pro-
teins (1650  cm−1) [24, 25]. The observed high ratios may 
be considered a hallmark of collagen accumulation [26] in 
the dense fibrotic stroma of ductal adenocarcinoma [27]. 
Since the spectra of component 3 are located mainly on the 
boundaries of the tissue sections, it likely was explored by 
HCA due to the different thickness of the sample rather than 
its chemical composition, and therefore detailed interpreta-
tion of this component was not performed. No significant 
differences in the abundance and distribution of component 
3 were observed for all investigated PC tissue sections. High-
intensity amide I and amide II (δ(N–H) and ν(C-N)) bands 
at 1650  cm−1 and 1550  cm−1, respectively, can be observed 
in component 4 and component 5. Both correspond to a high 
cellular protein ratio since the observed ratios of the bending 
modes of aliphatic chains in proteins concerning amide I 
(1450/1650  cm−1 and 1406/1650  cm−1) are low in compari-
son with the ratios calculated for the spectra of component 
2. A high content of this component is observed in tissue 
samples of AVAC. The second derivatives of each compo-
nent, demonstrating spectral differences between them, are 
presented in Supplementary Figure S4.

RHM mapping of pancreatic tumors

The results of HCA of the typical tissue sections of AVAC, 
cPDAC, and IPMC are shown in Figs. 2, 3, and 4, respec-
tively. The spectroscopically similar HCA components in 
each presented map are marked by the same colors. In the 
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figures, the HCA components 1–3 (blue colors) are charac-
terized by prominent bands characteristic of proteins, spe-
cifically the  CH2 and  CH3 bending motions at 1450  cm−1, 
the amide III in the range of 1350–1220  cm−1, and phe-
nylalanine (Phe) at 1000  cm−1 (for detailed band assign-
ments, see Supplementary Table S2). No significant spec-
troscopic differences, such as changes in peak ratios and 
shifts of peak spectral positions, were detected between 
these three components. They differed mainly in total inten-
sity, which corresponds to the density of the tissue material 
and the thickness of the sample. These components specify 
the location of the cytoplasm of PC cells. In the spectra 
of components 4 (red spectra) and 5 (purple spectra), the 
band at 1370–1340  cm−1, attributed to DNA bases (T, A, G) 
[28] and phosphate motions at 1230  cm−1 and 1080  cm−1, 
are well pronounced and indicate the location of cellular 
nuclei. The relatively high intensity of bands attributed to 
proteins, together with the pronounced bands at 1250  cm−1 
and 940  cm−1 in component 6 (orange spectra), indicate the 
presence of collagen fibers in the extracellular matrix [29]. 
The spectrum of component 7 (cream color), which is domi-
nated by the O–H bending motion from water, represents 
areas lacking tissue material.

Our results obtained with RHM combined with HCA 
accurately confirmed the locations of cellular components 
previously assumed based on unstained optical microscopy 
slide images, separating the areas of the cytoplasm and nuclei 
of cancer cells. Moreover, the comparison of spectroscopic 
band intensity revealed significant differences among the 
three types of PC tumors, specifically AVAC, IPMC, and 
cPDAC. Based on the spatial distributions of components 
4 and 5, we estimated the relative amount of nucleic acids 
and the size of cellular nuclei. A significant difference was 
observed in the distribution of component 6 (orange color), 
indicating the presence of fibrillar proteins such as collagen. 
In all investigated samples, component 6 is located in the 
extracellular matrix; however, in cPDAC and AVAC, it forms 
aggregates/fibers, while in the cross-section of IPMC, it is 
distributed more homogeneously. The homogeneous distribu-
tion of components 1–3 was detected in all the investigated 
types of PC, as expected, since these components are domi-
nated by bands from proteins and peptides. These compounds 
were found lining the pancreatic duct in cPDAC.

NMF analysis was used to discover specific features of 
the studied RHM maps that formed a unique “fingerprint” 
for each type of PC. We present the three main components 
of the spectra obtained from individual PC tissues, visual-
ized as NMF maps. Figures 2, 3, and 4 depict the NMF 
components of the Raman spectra from acquired RHM 
maps, calculated separately for each PC type, specifically 
AVAC (Fig. 2C and D), cPDAC (Fig. 3C and D), and IPMC 
(Fig. 4C and D). The NMF components and corresponding 
NMF maps of benign pancreatic ductal tissue are presented 

in Supplementary Figure S6. Each component is associ-
ated with a characteristic chemical composition, including 
intracellular proteins, water, and nucleic acids, that repre-
sents the particular region of the studied tissue. The lipid 
component was not analyzed, because the lipids were dis-
solved by xylene/ethanol treatment in the slide preprocess-
ing routine before RHM map acquisition. In the figures, the 
first NMF component associated with intracellular proteins 
is characterized by high intensities of protein bands that 
include Phe vibrations at 1004  cm−1, amide I vibrations at 
1700–1600  cm−1, or amide II vibrations at 1580–1480  cm−1 
[24, 25]. The second NMF component matches OH bending 
vibrations at 1643  cm−1, which correlates with the water 
distribution, and the NMF component of nucleic acids 
demonstrates the higher intensity of bands assigned to the 
stretching of phosphate groups from the DNA backbone at 
1090  cm−1 and 1256  cm−1 (Figs. 2D, 3D, and 4D) [30]. The 
comparison of the second derivatives of NMF components 
related to proteins is presented in Supplementary Figure S7. 
The redshift (toward lower energy) of the amide I band from 
1650 (IPMC and cPDAC) to 1664  cm−1 (AVAC) illustrates 
the relatively high content of the β-sheet secondary structure 
in AVAC [31], presumably due to the presence of β-sheet-
rich proteins. In Fig. 5A, characteristic spectral bands of 
proteins are seen, and the relative ratio of β-sheet proteins 
is depicted, showing a high prevalence in all studied PC 
subtypes (Fig. 5B). Specifically, the relation between Raman 
bands characteristic of proteins’ β-sheet secondary structure, 
that is, the β-sheet amide I (1690–1668  cm−1) to total amide 
I (1750–1514  cm−1), was 0.16, 0.23, and 0.18 for cPDAC, 
AVAC, and IPMC, respectively, whereas for benign pancre-
atic duct control, this ratio was 0.10.

PCA of spectral data acquired from nuclei of the PC 
cells

PCA was applied to detect similarities within the spectral 
datasets acquired from cancer cell nuclei of PC tumors of 
different origins (AVAC, cPDAC, and IPMC). Each spec-
trum is presented as an individual point in the space of the 
new, orthogonal variables called principal components, as 
demonstrated by the scores plot in Fig. 6A. This plot is best 
viewed virtually in all 3 dimensions, as in the plain rep-
resentation image of the 3D plot, the relationship between 
some points is slightly obscured by other points. For clarity, 
2D scores plots are presented in Supplementary Figure S8. 
To avoid the influence of the baseline, calculations were 
performed on the second derivatives of the spectra. Cor-
responding loading plots highlighted the bands determining 
the separation along each principal component. However, 
since we analyzed second derivatives, the observed maxima 
were characteristic of the spectra located on the negative 
sides of the corresponding principal component (scores 
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plot), whereas the minima highlighted bands present in the 
spectra at the positive side of the principal component. In 
Fig. 6A, the spectra collected from cPDAC are clustered 

on the positive side of PC-1, in contrast to the spectra of 
AVAC and IPMC, which are located on the negative side 
of PC-1. The loading plot corresponding to PC-1 (Fig. 6B) 
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is dominated by bands from the phosphodiester contribu-
tions of nucleic acids in the spectral range 1240–1080  cm−1, 
as well as methyl and methylene deformational motions at 
1447  cm−1 and 1410  cm−1. The presence of the band from 
 CH3 wagging and bending at 1410  cm−1 and the spectral posi-
tion of phosphate stretching at 1100  cm−1 are observed on the 
positive side of PC-1, indicating more methylated DNA in 
the A conformation [28, 32] in AVAC and IPMC compared 
to cPDAC. Specifically, the relation between Raman bands 
characteristic of DNA methylation, that is, 1360–1420  cm−1 
(δ(CH2, CH3)) to 1050–1150  cm−1 (νs(PO2

−)), was 1.20, 
2.68, and 3.58 for cPDAC, AVAC, and IPMC, respectively, 
whereas for the benign pancreatic duct control, this ratio was 
4.79 (Fig. 7C). The separation along the 2nd principal com-
ponent (PC-2) in Fig. 6A is mainly driven by the second-
ary structure of nuclear proteins and peptides but also by the 
methylation level of DNA, as presented in the loading plot of 
PC-2 (Fig. 6C). PC-2 is dominated by amide I at 1630  cm−1 
(β-sheet) and 1650  cm−1 (α-helix, turns, unstructured coils), 
but also  CH3 wagging and bending motions at 1410  cm−1. 
The negative correlation of PC-2 loading at 1650  cm−1 indi-
cates a relatively high content of secondary structures in pro-
teins and peptides located within nuclei of IPMC, such as 
α-helices, turns, and unstructured coils. No clear separation of 
spectra acquired from AVAC and cPDAC throughout PC-2 is 
observed. Similar to PC-1, clustering along PC-3 (Fig. 6A) is 
related to the spectral changes in the bands from methyl and 
methylene motions, as much as bands of phosphate groups 
from nucleic acids.

Comparison of Raman signals from the nuclei 
of AVAC, IPMC, and cPDAC

In Raman spectra, molecular modifications assigned to DNA 
methylation and related conformational rearrangements are 
observed as changes in the intensities and spectral positions 
of particular bands. As shown in Fig. 7A, the increased inten-
sity of the Raman signal in the region of 1410–1360  cm−1 
indicates the methylation process [33]. Furthermore, a shift 
toward lower energy of the bands that reflect the symmetric 
(~ 1090  cm−1) and asymmetric stretching (~ 1256  cm−1) of 

phosphate is observed in the spectrum of methylated DNA, 
indicating a partial conformation change from B-like DNA 
to A-like DNA [34]. By analyzing the NMF components cor-
responding to the nucleic acids and proteins in cancer cells 
presented for each PC sample, we noticed that the changes 
characteristic of the methylation process were clearly visible 
in the spectra acquired from IPMC tissue (Fig. 7B). Addi-
tionally, the appearance of a new band associated with the 
methylation process can be observed at 1408  cm−1 along with 
the shift of bands corresponding to the DNA backbone vibra-
tions. Specifically, the band observed at 1090  cm−1 (sym-
metric stretching of phosphate groups from DNA backbone) 
was split into two peaks, and similar to the band observed 
at 1256  cm−1 (asymmetric stretching of phosphate groups), 
it was slightly shifted toward higher wavenumbers. These 
changes can be attributed to conformational modifications of 
DNA, followed by the DNA methylation process [34]. The 
intensity changes of cytosine Raman bands from the N–H 
bending at 1575   cm−1, along with the  NH2 bending and 
C4–NH2 stretching at 1614  cm−1, depicted in Fig. 7A, were 
associated with DNA methylation of isolated single-stranded 
DNA [35]. However, the straightforward observation of such 
spectral differences in NMF components, representing cellular 
nuclei of cancerous tissues (Fig. 7B), is largely prohibited due 
to the overlapping amide I band from histone proteins, thus 
we did not include these in the analyses. The full description 
of the Raman bands is presented in Supplementary Table S2.

Generating CNN‑based prediction maps for AVAC, 
cPDAC, and IPMC

On each PC tissue map, a pathologist experienced in PC and 
spectral data analysis marked cancerous and noncancerous 
areas (see “CNN training and testing dataset selection” in the 
“Methods” section for details of the methodology) (Supple-
mentary Figure S2). The annotation process was repeated for 
each PC type (AVAC, cPDAC, IPMC) and the benign pan-
creatic tissue areas in a single sample. Then, CNN training 
was conducted. The CNN was trained to classify spectra from 
all RHM maps into 5 classes, specifically to predict whether 
these were AVAC, cPDAC, IPMC, benign tissue, or stroma. 
The accuracy achieved by the CNN in the training process 
was slightly over 99%, with a validation accuracy equal to 
94% (validation loss of 0.17). The next step was employing 
the trained CNN model to generate prediction maps based on 
the spectra at each pixel of the original raw RHM map. The 
same CNN was used for predicting all 5 classes. The exem-
plary resulting maps of PC tissues are presented in Fig. 8. 
CNN handled the distinction of the origin of PC tumors effi-
ciently. Moreover, the obtained maps were comparable to 
human-dependent HCA maps, which are time-consuming to 
prepare. All maps generated with the CNN may be found in 
Supplementary Figures S10, S11, S12, and S13.

Fig. 1  HCA results of infrared tissue maps of PC tumors. A, D, G 
Optical images of PC tissues stained with hematoxylin–eosin and 
marked areas of infrared map acquisition (H&E stain, original magni-
fication × 100), B, E, H corresponding HCA maps, and C, F, I mean 
spectra of each cluster with marked characteristic protein and nucleic 
acid bands. The colors of the spectra correspond to the colors of the 
clusters in the HCA maps. The areas marked in black on the HCA 
maps of cPDAC and AVAC (B and E) correspond to a lack of tissue. 
Component 3 on HCA maps of cPDAC (B) corresponds to a border 
region of the tissue sample. See the main text (see “FTIR imaging of 
PC types” in the “Results” section) for interpretation

◂

1800 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1792–1810

1 3



Fig. 2  Raman molecular imaging of AVAC tissue. A The optical 
unstained tissue image with superimposed HCA map (unstained tis-
sue, original magnification × 600), B mean Raman spectra from the 
HCA (the color of each spectrum corresponds to the color of the clus-
ter in the HCA map), C distribution of the NMF components, high-

lighting proteins, water, and nucleic acids, and D corresponding plots 
of these NMF components. See the main text (see “RHM mapping of 
pancreatic tumors” in the “Results” section) for interpretation. For the 
comparison of HCA, unstained, and hematoxylin and eosin-stained 
slides, see Supplementary Figure S5
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Fig. 3  Raman molecular imaging of cPDAC tissue. A The optical 
unstained tissue image with superimposed HCA map (unstained tis-
sue, original magnification × 600), B mean Raman spectra from the 
HCA (the color of each spectrum corresponds to the color of the clus-
ter in the HCA map), C distribution of the NMF components, high-

lighting proteins, water, and nucleic acids, and D corresponding plots 
of these NMF components. See the main text (see “RHM mapping of 
pancreatic tumors” in the “Results” section) for interpretation. For the 
comparison of HCA, unstained, and hematoxylin and eosin-stained 
slides, see Supplementary Figure S5
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Fig. 4  Raman molecular imaging of IPMC tissue. A The optical 
unstained tissue image with superimposed HCA map (unstained tis-
sue, original magnification × 600), B mean Raman spectra from the 
HCA (the color of each spectrum corresponds to the color of the clus-
ter in the HCA map), C distribution of the NMF components, high-

lighting proteins, water, and nucleic acids, and D corresponding plots 
of these NMF components. See the main text (see “RHM mapping of 
pancreatic tumors” in the “Results” section) for interpretation. For the 
comparison of HCA, unstained, and hematoxylin and eosin-stained 
slides, see Supplementary Figure S5
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Visualizing the CNN extracted features

After successfully plotting the CNN-predicted maps, we tried to 
better understand the mechanisms of the CNN feature extraction. 
For each PC type, we visualized the CNN outputs as linear plots. 

In this way, we could see what the spectral features specific for 
AVAC, cPDAC, and IPMC looked like for the CNN. The plots 
of exemplary spectra obtained from the cancerous regions of 
each PC tissue are depicted in Supplementary Figures S14, S15, 
and S16.

Fig. 5  Spectral marker bands of proteins in NMF components of 
all studied PC types and benign pancreatic duct tissue. A A com-
parison plot of NMF components and B the relation between Raman 

bands characteristic of proteins’ β-sheet secondary structure (1690–
1668 cm −1, β-sheet amide I to 1750–1514 cm −1, total amide I)

Fig. 6  PCA of spectra extracted 
from cancerous cell nuclei 
from all the investigated 
tissue sections. A PCA plot 
showing all three principal 
components. PC-1 explains 
44%, PC-2 explains 25%, and 
PC-3 explains 12% of the total 
variance within the dataset. 
A clear clustering of cPDAC, 
IPMC, and AVAC along PC-1 is 
distinguishable (please note that 
points representing AVAC are 
partially covered by the IPMC 
points). Additional pairwise 
comparison 3D and 2D scores 
plots are presented in Supple-
mentary Figure S8. B Loadings 
plots of PC-1, C PC-2, and D 
PC-3. See the main text (see 
“PCA of spectral data acquired 
from nuclei of the cancer cells” 
in the “Results” section) for 
interpretation
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Fig. 7  Spectral marker bands of methylation and DNA conformation 
in NMF components corresponding to chromatin (nucleic acids and 
histone proteins). A Raman spectra acquired from reference isolated 
samples of methylated and unmethylated DNA with highlighted char-
acteristic spectral bands, B a comparison plot of NMF components 
calculated for chromatin of all studied PC types and a benign pancre-

atic duct tissue, and C the relation between Raman bands character-
istic of DNA methylation in mean NMF components of each of the 
studied PC types and the control benign pancreatic duct tissue (1360–
1420  cm−1, δ(CH2, CH3) to 1050–1150  cm−1, νs(PO2.−)). The com-
parison of second derivatives of NMF components related to DNA 
conformation is presented in Supplementary Figure S9

Fig. 8  Comparison of HCA 
and CNN-predicted maps of 
PC tumors. A, B, C Unstained, 
optical microscopy slide images 
of cPDAC, AVAC, and IPMC, 
respectively (unstained tissues, 
original magnification × 600). 
B, E, H Black and white HCA 
maps of cPDAC, AVAC, and 
IPMC, respectively. C, F, I Pre-
diction map images generated 
by the CNN, which classified 
each PC tumor of different 
origins with pixel colors, spe-
cifically red for cPDAC, blue for 
AVAC, and magenta for IPMC. 
Yellow was used to mark the 
stroma/empty class, and green 
(not shown in this figure) was 
used to mark benign pancreatic 
tissue
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Discussion

This study’s main goal was to demonstrate that RHM 
differentiates between three major groups of pancre-
atic masses, specifically cPDAC, IPMC, and AVAC. 
This point was established twofold by the identifica-
tion of spectroscopic differences and the usage of neural 
networks.

Multiple studies have used RS methods for the detec-
tion of various cancers, but most of them rely on random 
blind spot measurements [36] or rare grid mapping [37]. We 
used a more comprehensive and systemic approach, which 
involves collecting high-resolution RHM, followed by a 
selection of areas of interest in acquired resulting maps, and 
then proceeding to the analysis. The use of Raman imaging 
for PC subtyping was not described before, except in a recent 
preliminary report [5]. A single study by other authors uti-
lized hyperspectral mapping of PC tissue samples; however, 
they used FTIR spectroscopy for spectral data acquisition 
[26]. Although FTIR can be used to classify PC tissues, the 
RHM allowed deeper insight into cancerous tissues and the 
extraction of detailed information about the local hetero-
geneity that could not have been achieved with IR-based 
methodology due to the physical limitations of the latter, 
such as the diffraction limit. Nevertheless, our study started 
with FTIR microspectroscopy as well, although only as an 
initial step. This allowed us to view the distribution of tis-
sue components on a larger scale, recognizing their spatial 
heterogeneity. FTIR permitted analysis of the tumor stroma 
compartment and selection of the areas of interest for sub-
sequent Raman measurements. Moreover, FTIR analyses 
carried out for studied PC samples showed characteristic 
features of PC stroma, such as high collagen accumulations 
reported in [26, 27]. Subsequently, RHM investigations con-
firmed the collagen distribution surrounding the malignant 
epithelium in PC [38] and showed differences in collagen 
arrangement patterns between cPDAC, AVAC, and IPMC. 
RHM allowed spectral analyses of nuclear and cytoplasmic 
regions of PC cells separately. This was not possible with 
FTIR only, because of its lower resolution [5]. Consequently, 
we separated the spectral components of PC tissues into 
water, proteins, and nucleic acids with NMF. This approach 
facilitated the analysis of DNA methylation patterns and the 
secondary structure of proteins and revealed the differences 
among the studied PC types.

The global DNA methylation status of AVAC and IPMC 
or cPDAC has not been compared thus far. DNA methyla-
tion is one of the main epigenetic modifications of many 
malignancies. The methylation patterns of numerous PC-
related genes have been well documented for cPDAC [39, 
40], AVAC [40, 41], and IPMC [39, 40]. Recognizing some 
of these patterns can help predict PC aggressiveness or 

the survival rates of PC patients [42]. A downside of the 
genetic-based methodology in the DNA methylation status 
assessment is that the results highlight only single (or mul-
tiple, but still individual) gene promoter modifications. The 
“global view” is lost when looking too deeply or too spe-
cifically. Conversely, in VS, the information obtained from 
the analyzed sample is holistic and allows “fingerprint-like” 
interpretation. The ability to detect the DNA methylation 
status was established by the use of VS techniques such 
as surface-enhanced Raman spectroscopy (SERS) [43] or 
attenuated total reflection Fourier transform infrared spec-
troscopy (ATR-FTIR) [44]. However, most of the mentioned 
studies have not evaluated tissue samples but isolated DNA 
strands or cells.

In our study, the chosen approach of RHM allowed 
detailed analysis of the spectra from PC cellular nuclei. 
Combined with NMF and PCA techniques, we recog-
nized DNA methylation patterns in cPDAC, IPMC, and 
AVAC. The main DNA methylation aberrations recognized 
in cancerous cells are global hypomethylation and CpG 
island hypermethylation specific for particular genes [39]. 
Single-gene hypermethylation is responsible for PC car-
cinogenesis and progression [45]. Our findings confirm 
the global hypomethylation status of DNA in all PC types 
and are in line with the results described by other authors 
that cPDAC is associated with global hypomethylation 
[46]. However, it was found that the DNA of IPMN (the 
benign precursor of IPMC) was not hypomethylated [47]. 
Our results indicate that even though cancer arising from 
IPMN is slightly hypomethylated compared to benign pan-
creatic duct tissue, the DNA methylation ratio is highest 
among the other two PC types (AVAC and cPDAC). This 
might confirm that the DNA hypomethylation process is 
the domain of malignancy. Furthermore, the status of DNA 
methylation significantly differed between the studied PC 
groups (Fig. 7C). We are the first to compare the global 
DNA methylation levels among PC subtypes.

Circular dichroism (CD) spectroscopy is an efficient 
tool for determining the secondary structure of proteins 
in solutions [48]. For tissue samples in a solid state, how-
ever, Raman spectroscopy is far more effective [31]. In a 
recent work by Rasuleva et al. [49], the authors studied 
extracellular vesicles (EVs) derived from PDAC cell lines 
through CD spectroscopy and found significantly higher 
amounts of β-sheet proteins in PDAC cells and EVs than 
in nonmalignant samples. The authors suggested that the 
β-sheet-richness of proteins might be related to the activ-
ity of the mitochondria in malignant cells [50] and that it 
demonstrates the Warburg effect in PC [51]. Numerous 
β-sheet-rich proteins and peptides were reported to be crit-
ically involved in signaling pathways driving PC deregula-
tion and progression, such as the SH2 and SH3 domains of 
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the c-Src protein, epidermal growth factor (EGF), or the 
Hedgehog pathway proteins [52]. Furthermore, carcino-
genesis is characterized by abnormal aggregation of pro-
teins [53], meaning that proteins are misfolded into inac-
tive amyloid fibers. For example, mutant p53, a product of 
the tumor suppressor gene that is mutated in over 50% of 
human malignancies, undergoes numerous aggregations in 
the course of tumor progression, such as metastatic ability 
or chemoresistance [54]. Further studies showed that the 
β-sheet protein secondary structure impaired the folding 
rates and promoted aggregation of these proteins [55].

Recognizing protein secondary structure in synchrotron 
radiation-based FTIR was a subject of the classification of 
human glial tumors [56]; however, no studies have inves-
tigated spectral differences in protein composition among 
PC subtypes. In our study, the analysis of NMF compo-
nents associated with proteins of RHM spectra allowed 
us to determine the secondary structure of proteins in PC 
groups. We recognized the overall protein β-sheet rich-
ness. Additionally, their contents varied among the studied 
PC types and were particularly high in AVAC (Fig. 5B).

After successfully identifying spectroscopic markers spe-
cific to various PC groups using multivariate data analysis 
techniques, we trained a CNN in PC-type classification. The 
CNN-based approach has great advantages over standard 
processing. CNN is very sensitive to seemingly irrelevant 
differences in spectral data, requires no preprocessing, and 
permits automation. The idea of using CNN in spectral data 
classification is not new; however, none of the reported stud-
ies has utilized neural networks for the generation of PC 
tissue maps based on RHM data prediction. Li et al. [36] 
employed CNN to distinguish the Raman spectra of PC vs. 
benign pancreas and achieved results of 95% accuracy. In 
our study, we aimed at CNN-based PC subtyping, as the 
detection of PC vs. benign is possible with standard histo-
pathological assessment and does not require sophisticated 
measurements. Furthermore, we examined over 211,000 
spectra obtained from PC tissue samples, whereas the 
authors of the aforementioned article evaluated slightly over 
2500 Raman spectra from the tumor incubated in the mouse 
vector. Our results in the CNN prediction of PC subtypes 
reached over 94%.

Multiple studies have described different CNN architec-
tures in spectral data classification [57, 58]. Some of them 
used very deep and complex networks [59]. In contrast, we 
observed that the performance of the CNN is better when a 
simpler CNN architecture is used. If we added more layers 
to the CNN, it showed overfitting earlier. CNN is overfitting 
when it performs well with the training data but performs 
poorly with new datasets. Usually, when designing the CNN, 
one wants to prevent overfitting and grow the CNN’s poten-
tial to “generalize,” which stands for the ability to interpret 
new data well. The spectra from the RHM proved to be quite 

a simple model for the CNN; thus, it did not require very 
deep layers. Moreover, the CNN was trained and validated 
on only 25% of the RHM spectral data ultimately used for 
CNN-prediction map generation (53,879 of 211,355 spec-
tra) and generalized efficiently on the remaining spectra. To 
deepen our insight into the CNN prediction mechanisms, 
we visualized the patterns recognized by the feature extrac-
tion layers of the network as linear plots. Although CNNs 
are generally referred to as being opaque (which means 
that we cannot precisely show the specifics of the method), 
there are ways of depicting how the CNN “sees” the data 
in subsequent parts of the prediction process. In our study, 
we extracted the outputs of the classification layers of the 
CNN, specifically the first, second, and last dense layers, 
immediately before the final classifier (called Softmax, see 
Supplementary Figure S1). Interestingly, in the received plot 
images, no specific patterns are recognizable to the human 
eye (Supplementary Images S14, S15, and S16). However, 
the resulting classifications into 5 classes of the samples 
presented in these figures are 100% correct. This shows that 
CNN can detect otherwise unidentifiable spectral differ-
ences. Moreover, it proves that the CNN-based approach in 
spectroscopic data classification is an excellent accessory 
tool in PC diagnostics.

Our finding regarding the DNA methylation profiles in 
PC translates into the analysis of EV compounds, such as 
circulating tumor DNA (ctDNA) [14, 60]. EVs are the major 
carriers of the single-stranded and double-stranded DNA in 
a liquid biopsy [60] that might be used for the serum-based 
early diagnostics of PC [14].

Overexpression of β-sheet-rich proteins in PC tumor cells 
leads directly to the presence of these proteins in circulating 
tumor-derived EVs. Recent findings suggest that second-
ary structural signatures, specifically the content of β-sheet 
secondary structures in vesicle proteins, can be used as diag-
nostic biomarkers for noninvasive screening for PC [49]. We 
complement these reports by specifying the characteristics 
of the β-sheet protein contents to three main PC groups, dif-
ferentiating the liquid biopsy testing results. Blood tests rely-
ing on individual protein markers are characterized by low 
sensitivity and specificity in cancer diagnostics [61]. The 
use of VS methodology for the characterization of global 
proteins derived from cancerous cells and carried by EVs 
in the bloodstream might be a better candidate for early PC 
diagnosis. Our findings establish the protein spectroscopic 
profile of PC subtypes.

The results of VS studies on DNA methylation or β-sheet 
proteins in PC are important for yet another reason. The lack 
of sensitive and specific minimal residual disease (MRD) 
monitoring methods in PC patients who have undergone 
curative surgery is currently a major problem [62]. It was 
shown that ctDNA analysis in a liquid biopsy might be a 
good solution for MRD monitoring using genetic techniques 
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[62]. The idea of using VS methodology in MRD monitoring 
of PC patients is justified and might be suitable because of 
its holistic approach.

Conclusions

It is characteristic of the VS methodology that the results 
obtained are not specific to single proteins or DNA methyla-
tion locations. The information is general. What makes VS 
successful in recognizing specific malignant entities is the 
spectral data “fingerprint”, made by combined signals from 
all the molecules in the studied samples. Combined with 
CNN technology, VS is a powerful tool for the detection of 
multiple cancers [58]. The fingerprint of DNA methylation 
and β-sheet intracellular proteins established by our results 
varies among AVAC, cPDAC, and IPMC and differentiates 
these tumors with 94% accuracy.

The major barrier in translating molecular imaging meth-
ods based on VS into clinical practice is the extent of knowl-
edge and experience required for successful measurements 
and analysis. This “know-how” is not easily available. Our 
study sheds new light on ways of enabling this translation 
using CNN-based methodology. The development of new 
diagnostic technologies has thus become a possibility. The 
use of complementary to RHM vibrational spectroscopic 
methods such as SERS or not as sophisticated but commonly 
accessible ATR-FTIR might be the future of serum-based 
PC early diagnostics [14]. For proper utilization of these VS 
techniques in serum liquid biopsy testing, an understanding 
of the molecular structure and composition of PC cells is 
needed.
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