
ASSESSMENT OF GENETIC ALGORITHM BASED ASSIGNMENT STRATEGIES

FOR UNMANNED SYSTEMS USING THE MULTIPLE TRAVELING SALESMAN

PROBLEM WITH MOVING TARGETS

A Thesis
IN

Mechanical Engineering

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by
CODY DAKOI SMITH

B. S., University of Missouri Kansas City, 2020

Kansas City, Missouri
2021

© 2021

CODY DAKOI SMITH

ALL RIGHTS RESERVED

ASSESSMENT OF GENETIC ALGORITHM BASED ASSIGNMENT STRATEGIES

FOR UNMANNED SYSTEMS USING THE MULTIPLE TRAVELING SALESMAN

PROBLEM WITH MOVING TARGETS

Cody Dakoi Smith, Candidate for the Master of Science Degree

University of Missouri–Kansas City, 2021

ABSTRACT

The continuous and rapid advancements in autonomous unmanned systems tech-

nologies presents increasingly sophisticated threats to military operations. These threats

necessitate the prioritization of improved strategies for military resources and air base

defense. In many scenarios, it is necessary to combat hostile unmanned systems before

they reach the defensible perimeters of existing fixed-base defense systems. One solu-

tion to this problem is weaponizing friendly unmanned systems to hunt and kill hostile

unmanned systems. However, the assignment and path planning of these “Hunter-Killer”

systems to incoming hostile unmanned systems, in a multiple friendly versus multiple

iii

enemy scenario, presents a major challenge and can be represented by the Multiple Trav-

eling Salesmen Problem with Moving Targets (MTSPMT). The MTSPMT is a combina-

torial optimization problem and an extension of the classical Traveling Salesman Prob-

lem whereby the number of salesmen is increased and targets (cities) move with respect

to time. The objective of the MTSPMT, for the application of military defense using a

squadron of Hunter-Killer unmanned systems, is to determine a path that minimizes the

cost required for multiple Hunter-Killer unmanned systems to successfully intercept all

incoming threats. In this study, an assessment of genetic algorithm based assignment

strategies for unmanned systems using the MTSPMT is performed. A number of scenar-

ios were constructed using up to 50 hostile unmanned systems and the generated solutions

were compared based on their resulting time to converge, solution fitness, and number of

generations required. Findings indicate that under certain conditions genetic based al-

gorithms provide better results on average and converge more rapidly than brute force

searching and existing assignment and path planning solutions.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engi-

neering, have examined a thesis titled “Assessment of Genetic Algorithm Based Assign-

ment Strategies for Unmanned Systems Using the Multiple Traveling Salesman Problem

with Moving Targets,” presented by Cody Dakoi Smith, candidate for the Master of Sci-

ence degree, and certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Travis Fields, Ph.D., Committee Chair
Department of Civil & Mechanical Engineering

Anthony Caruso, Ph.D.
Department of Physics

Roy Allen, Ph.D.
Engineering

v

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . viii

TABLES . xi

ACKNOWLEDGEMENTS . xii

Chapter

1 INTRODUCTION . 1

1.1 The Age of Automation . 1

1.2 A Brief Analysis of Weapon Assignment and Threat Spaces 4

2 LITERATURE REVIEW . 13

2.1 The Traveling Salesman Problem and its Variations 13

2.2 The Genetic Algorithm . 31

3 Problem Formulation and Model Design . 34

3.1 A Note on Permutations . 39

4 Methodology . 42

4.1 Genetic Algorithm Overview . 42

4.2 Genetic Algorithm Terminology . 44

4.3 Initialization . 45

4.4 Solution Representation . 46

4.5 Fitness Evaluation . 50

vi

4.6 Selection . 57

4.7 Crossover and Mutation . 58

4.8 Termination . 68

5 Results and Discussion . 69

5.1 Overview . 69

5.2 Tier I Engagements . 72

5.3 Tier II Engagements . 84

6 Conclusion . 91

Appendices . 97

A Engagement Scenario Starting XY Locations 97

REFERENCE LIST . 100

VITA . 108

vii

ILLUSTRATIONS

Figure Page

1 The Altitude Problem . 6

2 The Altitude Problem - Multirotor . 9

3 The Altitude Problem - Fixed-Wing . 10

4 1 Salesman - 10 Cities Locational Configuration 14

5 1 Salesman - 10 Cities Possible Route Permutations 15

6 1 Salesman - 10 Cities Example Solution 15

7 Traveling Salesman Problem with Neighborhoods Example 19

8 A Left-Right-Left Dubins Path [1] . 20

9 3 Salesmen - 10 Cities Locational Configuration 21

10 3 Salesmen - 10 Cities Potential Route Permutations 22

11 3 Salesmen - 10 Cities Example Route Solution 22

12 The Vehicle Routing Problem . 26

13 5 Red vs. 2 Blue Problem Formulation Example Scenario 35

14 Genetic Algorithm Flow Chart . 43

15 Population Comprised of 3 Individuals 45

16 Gene and Allele Example . 45

17 Knapsack Problem 5-Item Solution . 46

18 3 Salesmen - 13 City MTSP Single Chromosome Representation 47

viii

19 3 Salesmen - 13 City MTSP Two Chromosome Representation 47

20 3 Salesmen - 13 City MTSP Multiple Chromosome Representation 48

21 Triangle of Distances . 54

22 Triangle of Velocities . 55

23 KP Crossover Example . 59

24 Invalid TSP Crossover Example . 60

25 KP Mutation . 61

26 Gene Sequence Inversion . 61

27 Gene Sequence Transposition . 62

28 Gene Insertion . 62

29 Right Gene Shifting . 63

30 Left Gene Shifting . 63

31 Breakpoint Example . 63

32 Randomized Breakpoints . 64

33 Randomized Breakpoints and Gene Sequence Inversion 64

34 Randomized Breakpoints and Gene Transposition 65

35 Randomized Breakpoints and Right Gene Sliding 65

36 Randomized Breakpoints and Left Gene Sliding 66

37 Randomized Breakpoints and Gene Insertion 66

38 Chromosome Partition . 66

39 Chromosome Contraction . 67

40 Randomized Chromosome Redistribution 67

ix

41 1 Blue vs. 2 Red . 71

42 1 Blue vs. 8 Reds Optimal Solution . 75

43 BF Computation Time and Factorial Function 76

44 1 Blue vs. 1:9 GA Runtime . 78

45 2 Blues vs. 6 Reds Initial Configuration 82

46 2 Blues vs. 6 Reds Optimal Solution . 83

47 20 Blues vs. 30 Reds Initial Configuration 85

48 20 Blues vs. 30 Reds 50 Generations Converged Solution 87

49 20 Blues vs. 30 Reds Best Solution History (50 Generations) 88

50 20 Blues vs. 30 Reds 3000 Generations Converged Solution 89

51 20 Blues vs. 30 Reds 3000 Best Solution history 90

x

TABLES

Tables Page

1 Number of Permutations . 41

2 Solution Representation Search Space Comparison 50

3 Engagement Tiers . 72

4 1 Blue vs. 1:9 Configuration and Simulation Parameters 74

5 BF to GA Comparison . 79

6 1 Blue vs. 1:9 Red Results . 80

7 2 Blues vs. 6 Reds Simulation Parameters 82

8 2 Blues vs. 6 Reds Results . 84

9 20 Blues vs. 30 Reds Simulation Parameters 86

10 20 Blues vs. 30 Reds Results . 87

11 1 Blue vs. 1-9 Reds XY Locations . 97

12 2 Blues vs. 6 Reds Starting XY Locations 97

13 20 Blues vs. 30 Reds Blue Starting XY Locations 98

14 20 Blues vs. 30 Reds Red Starting XY Locations 99

xi

ACKNOWLEDGEMENTS

Funding for this work was provided by the U.S. Navy primarily under Contract

N00014-21-C-1049 for the Pulsed Tactical Effector for Regulated Attack (PTERA) pro-

gram as well as Contract N00014-18-C-1017. My sincerest thanks is extended to all the

dedicated scientists and engineers working within the Missouri Institute for Defense and

Energy at the University of Missouri - Kansas City. This effort was largely inspired by

their great work and would never have been possible if not for their generous contributions

of time and resources.

I owe a deep sense of gratitude to my mentor and advisor Dr. Travis Fields for the

nearly four years of research under his watch. His guidance in the field of unmanned sys-

tems has been second to none. I am truly grateful for the unique opportunities for applied

and in-the-field research that would elate any undergraduate and graduate researcher.

I would like to specifically acknowledge Paul Klappa and Shawn Herrington who

were more than supportive in aiding me in the framing and development of this work. Our

many hours of late night conversation undoubtedly guided me on the path I chose to take.

Additionally, I would like to express my appreciation to Michael Richman and Simeon

Karnes for their willingness to always lend an ear to my seemingly endless hypotheticals

and thought experiments.

A special thanks must be given to Moses Maddox and the staff at Veterans to

Energy Careers for affording me the opportunity to participate in their one-of-a-kind pro-

gram throughout my undergraduate and graduate studies. My many conversations with

Moses always provided a much needed note of levity.

Finally, and most importantly, considerable recognition must be extended to my

wife, best friend, and soon-to-be mother, Lauren, for her boundless support throughout

my academic journey.

xiii

CHAPTER 1

INTRODUCTION

1.1 The Age of Automation

War is changing. Gone are the days of front-line heavy armor divisions or large

battalions of soldiers storming battlefields. Instead, the future of armed conflict will

be fought through the lenses of autonomous unmanned systems colloquially known as

drones. The idea is not novel as prognosticators have been predicting this truth for

decades. However, limitations in technology have historically prevented the use of un-

manned warfare to all except the most powerful of nations. Now, because of large-scale

proliferation and rapid advances in technology, the use of unmanned systems is no longer

limited to those select few. This became astonishingly evident in 2020 with the six-week

war between Azerbaijan and Armenia over the disputed region of Nagorno-Karabakh

and the surrounding territories. Through Azerbaijan’s state-orchestrated propaganda cam-

paign, a non-superpower nation was observed for the first time inflicting crushing destruc-

tion on its adversary through the use of drone warfare. Using the Turkish made Bayraktar

TB2, loitering munitions, and other Kamikaze style drones, Azerbaijan was able to force

Armenia to agree to inequitable cease-fire terms [2]. The Nagorno-Karabakh War rep-

resents the figurative door closing to the traditional warfare exercised for the past seven

decades and opening wide to the likes of drone warfare and the Age of Automation.

The United States military, through its numerous wars and conflicts in prior years,

1

was largely built to address the needs of traditional warfare. However, as the paradigm

shifts, deficiencies in America’s fighting force become glaringly obvious. Though some

leaders and military commanders are entrenched in the classical way of viewing war,

many are scrambling to address the problem. According to the Association for Unmanned

Vehicle Systems International (AUVSI), the world’s largest nonprofit organization dedi-

cated to the advancement of unmanned systems and robotics, the United States Depart-

ment of Defense (DoD) allocated $7.5 billion in 2021 to support the research, develop-

ment, test, and evaluation (RDT&E) of unmanned and counter-unmanned systems [3].

Budget increases in unmanned systems have risen over $1 billion every year since 2017.

These increases emphasize the DoD’s demand for resources and technology in the un-

manned and counter-unmanned fields.

With the wide spread dissemination of low-cost unmanned aerial systems (UAS)

in the commercial sector, governments across the globe are also concerned with threats

from non-state actors. Incidents like the alleged assassination attempt on Venezuelan

president Nicolás Maduro in 2018 have brought to light many nefarious use capabilities

for commercial-off-the-shelf (COTS) UASs. Two DJI (the world’s leading COTS UAS

manufacturer) Matrice 600s were loaded with C4 plastic explosives and detonated above

the president during an outdoor speech [4]. Though the president was unharmed, seven

people were injured in the attack. Likewise, earlier in the year, and in another non-state

actor attack, more than a dozen homemade UASs attempted to assault two Russian air

bases at night in Syria. The drones were equipped with improvised munitions made using

crude explosives and launched from a rebel village more than 50 miles from the air base.

2

According to the Russian Defense Ministry, the drones employed GPS capabilities to

autonomously guide the systems to attack specific pre-programmed targets [5]. Though

both attacks ultimately failed, with the Russian military claiming to have intercepted the

threats using a combination of traditional anti-aircraft missilery and electronic warfare,

the attempt marked one of the first instances of homemade pre-programmed UASs being

used in an attack against a state-actor.

With elaborate multi-directional attacks like those on the Russian air bases, gov-

ernment and military leaders are racing to find solutions to combat future threats. They

understand that as time moves forward these types of attacks will become more acces-

sible, frequent, sophisticated, and deadly. Numerous solutions have been proposed in-

cluding classical kinetic weaponry, high energy lasers (HEL), high powered microwaves

(HPM), electronic warfare (EW), counter-drone drones, and even birds of prey. How-

ever, since the applications for unmanned systems are limitless, the number of companies

and organizations researching and developing UAS based technologies far exceeds those

which are researching technologies for their counter. This leads to the seemingly endless

cycle of unmanned systems technology being two steps ahead of the defense industry.

In an attempt to bridge this gap, the primary focus of this thesis was the develop-

ment of counter-UAS (CUAS) strategies and insights involving the use of defensive un-

manned combat aerial vehicles (UCAV). These UCAVs, which have been coined “Hunter-

Killers” (HK), would be designed with the specific purpose of seeking out and eliminating

UAS threats. The work herein aspired to develop an effective strategy for the management

of a squadron of HKs with respect to the assignment of hostile targets. By framing the

3

problem as an extension of the classical Traveling Salesman Problem (TSP) known as the

Multiple Traveling Salesman Problem with Moving Targets (MTSPMT), route planning

for a squadron of HKs using a metaheuristic known as the genetic algorithm (GA) was

studied.

1.2 A Brief Analysis of Weapon Assignment and Threat Spaces

1.2.1 The Altitude Problem

There are only a handful of options at the disposal of military commanders when

it comes to the defense of facilities and assets against inexpensive COTS UAS threats.

Passive defense options like camouflage, strategic asset positioning, and facility harden-

ing, though effective at mitigating damage, do nothing to actually prevent attacks from

occurring. If commanders wish to actually stop an attack, they must destroy or disable

threats before they are capable of reaching their targets. Commanders can do this by

employing various dynamic defense methods such as traditional kinetic weaponry like

anti-aircraft artillery (AAA), close-in weapons systems (CIWS), and surface-to-air mis-

siles (SAM). Other options are directed energy (DE) based weapons to include HELs,

HPMs, and defensive EW.

A problem arises, however, when due to the proliferation and inexpensiveness of

UAS technology, the threat of UAS attacks from non-state actors becomes omnipresent.

Many defensive options like fixed-base effectors may prove cost-prohibitive in certain

applications which goes without mentioning the inherent disadvantages of the various

4

defensive options themselves. All weapon types have to consider the potential for col-

lateral damage. For example, traditional kinetic weaponry is unlikely to be desired in

congested areas or when facing threats like surface-skimming UASs outside of open seas.

DE weapons, in many cases, suffer from the same issue. Kinetic weaponry also has “lim-

ited magazines” meaning there is a finite number of rounds or missiles the weapon can

shoot before its ammunition is fully expended. This may not be a significant issue for

some AAA or CIWS, but commanders may be reluctant to prefer these weapon systems

if there is fear of scaled attacks.

Imbalance in economy is of great concern as well. Questions of practicality arise

when considering the use of multimillion-dollar defense systems against threats that could

easily cost less than one thousand dollars. Defensive options such as missiles or the

notoriously expensive Phalanx CIWS very quickly become economically unfeasible with

scaled attacks. This does not even consider the number of defense systems which would

likely be required to sufficiently cover all threat spaces. Another consideration is that

of terrain and environment. In urban or wooded environments, for example, HELs may

underperform because of dwell time requirements and kinetic weapons may be restricted

due to the fear of collateral damage.

Finally, insufficiencies in threat space coverage are the primary focus of this sec-

tion. Consider a three-dimensional defensive engagement scenario with a fixed-base ef-

fector (FBE) as shown in the cross-sectional view of Figure 1. The FBE’s defensible area

is illustrated by the blue background and its maximum effective range by the hemispheri-

cal solid black line. If distance is described by the x-axis and altitude by the y-axis, then

5

Figure 1: The Altitude Problem

threat spaces can be delineated by arbitrarily defining the maximum range of the FBE.

The threat spaces are formed by plotting a horizontal line (solid red line) tangent to the

maximum height of the effective range. The threat space below the line and outside the

FBE’s defensible area (green background) defines the threat space where the FBE would

be assigned responsibility to incoming threats. Alternatively, the threat space above the

solid red line (orange background) defines the threat space where the FBE is incapable of

affecting incoming threats. That is, if an incoming threat is traveling at an altitude at or

above the solid red line, the FBE is rendered useless in its ability to destroy or disable the

threat. This problem, coined by the author as “The Altitude Problem,” poses significant

issues to some FBE systems when defending alone.

Bear in mind it has been witnessed that some COTS UASs possess the ability to fly

6

to altitudes exceeding 10,000 feet above ground level (AGL). DJI’s Phantom 4, discontin-

ued in 2017, is an inexpensive COTS UAS which has performance specifications allowing

it to reach altitudes of 20,000 feet AGL. Though DJI’s sophisticated on-board software

generally prevents pilots from flying their aircraft higher than 400 feet AGL, the tech-

nology also exists for custom drone builders to design and build homemade drones adept

in reaching extreme altitudes. This is particularly problematic because there are limited

cost-effective options in terms of defense for typical aircraft, let alone categorically small

UASs.

Once the hostile aircraft has reached an indefensible altitude, there are several

threats to be concerned with. The first major threat is that of intelligence, surveillance, and

reconnaissance (ISR). Inexpensive COTS UASs are now for the first time affording poor

non-state actors the means of fielding what is in effect the capabilities of a low-budget air

force. These UASs could provide enemies ISR of troop movements, weapon placements,

flight schedules, etc., with absolutely no recourse. Second is the potential for bombing

applications. If a hostile threat is capable of reaching an altitude that exceeds that of fixed-

base defenders, the UASs could be outfitted with small ordnance packages which could

be autonomously delivered through the use of GPS similar to that of the Russian air base

attack discussed in the previous section. Lastly, the drones could act as loitering munitions

by positioning themselves directly over their target and allowing gravity to assist their

descent. Eventually, and at high speeds, they would enter the fixed-base defense system’s

effective range, at which point if they are already on a direct trajectory to their target,

only precise and destructive kill mechanisms that destroy the on-board ordnance would

7

be effective against the attack.

One approach to tackling The Altitude Problem is through a combined effort of

two or more systems known as a “layered defense”. The use of HKs could be used as a

cost-effective approach to supplement or fully replace those fixed-base defense systems.

HKs possess the unique ability to extend the reach of defense capabilities by seeking out

threats once they have been detected. Depending on the circumstances, and where the

HKs begin their pursuit, this type of defense method could allow for the destruction or

disablement of threats at locations exceeding that of fixed-base emplacements and before

they enter indefensible threat spaces.

Consider a layered defense engagement scenario illustrated in Figure 2 which is

similar to the scenario described in Figure 1. However, Figure 2 depicts how HKs might

share responsibility with FBEs to increase protective coverage specifically against multi-

rotor UAS threats. By assuming HKs can match or exceed the altitudes of incoming

multi-rotor threats, the indefensible threat space is reduced to only the column(s) (orange

background) directly above structures, assets, weapons, etc. in need of protection. The

threat spaces in which only HK defense systems would be effective in stopping incoming

threats are shown by the red polka dots. It should also be noted that HKs are not strictly

limited to staying within these threat spaces. The beauty of HKs is not only can they

extend the overall reach of defense capabilities, but their mobility allows them to navigate

across threat spaces to share responsibilities with other defense systems. Using Figure 2

as an example, HKs would not be relegated to staying within the red polka dot threat

spaces and could aid the FBE against threats within the green threat space.

8

Figure 2: The Altitude Problem - Multirotor

The Altitude Problem can be extended further by considering fixed-wing threats

against a layered defense. Figure 3 provides an example of a worst case fixed-wing en-

gagement scenario where incoming threats are capable of entering a fixed glide slope to-

ward their targets once engaged. This means that defense solutions incapable of altering

the threat’s trajectory by compromising its structural integrity (like HPM or EW) would

need to destroy the threats before they reach a location in which they can glide to their

targets. In Figure 3, threat spaces are delineated by a very modest 2:1 glide ratio (GR)

shown by a solid red line. The threat space above the line (orange background) represents

the region in which fixed-wing threats with greater than 2:1 glide ratios would be unaf-

fected by non-destructive solutions. A layered defense framework that would fall within

this hypothetical would be an EW FBE and HKs outfitted with HPM weaponry. Because

9

neither system generally imparts physical damage to their targets, the scenario depicted

in Figure 3 would rightfully apply. Even by assuming the worst case scenario with fixed-

wing threats, defensible coverage can still be expanded by including HKs in a layered

defense. Recall that the FBE’s threat space responsibilities (blue and green backgrounds)

include only the threat spaces below its altitude threshold (dashed red line). HKs could

expand the total defensible area by intercepting threats before they are capable of reach-

ing locations where they could glide unpowered to their targets. If a threat is intercepted

in the threat space above the FBE’s altitude threshold and below the incoming threat’s

G/R (solid red line), even if the threat entered its optimal glide, they would ultimately fall

short of their desired target. This expanded protection area (red polka dots) could only be

defended using HKs.

Figure 3: The Altitude Problem - Fixed-Wing

10

In a defense system fielding single or multiple HKs, where multiple incoming

threats are detected, it is of great consequence to know which HKs should be assigned

to which targets, the order those targets should be pursued, and the path required. A

commander may also be concerned with knowing which assignment and its respective

path minimizes the time in which all threats are in the air or which assignment maximizes

the distance any one threat gets to an installation’s perimeter. Answers to these questions

are solved by framing the problem as a generalization of the Traveling Salesman Problem

(TSP), a subset of assignment problems that fall under the field of operations research.

Operations research, a sub-field of applied mathematics, pertains to the development of

problem-solving techniques and decision-making processes for business, industry, and

defense related problems [6]. There are hundreds of problems that fall within the field of

operations research including network optimization, floor planning, routing, automation,

scheduling, resource allocation, transportation, and assignment problems to name a few.

Each problem is formulated with a unique set of variables and constraints, and by solving

them, answers a specific set of questions.

Determining the assignment of each HK and the order of pursuit is by definition

a TSP operations research problem and serves as the primary motivation of this thesis.

To begin to solve the problem, a simulation framework was constructed within MATLAB

that utilizes evolutionary computation at its core. Chapter 2 provides a comprehensive

literature review of the historical TSP problems, various methods and techniques used

to solve the problems, and a review of evolutionary strategies and more specifically the

genetic algorithm (GA). Chapter 3 outlines the problem formulation and Chapter 4 details

11

the evolutionary strategies and genetic algorithms used to tackle the problem. Finally, a

discussion on the insights and results generated is provided in Chapter 5.

12

CHAPTER 2

LITERATURE REVIEW

2.1 The Traveling Salesman Problem and its Variations

The classical Traveling Salesman Problem (TSP) is a centuries-old combinatorial

optimization problem whose origins are not clearly defined. The problem was first textu-

ally introduced in 1932 in the handbook Der Handlungsreisende - Von einem alten Com-

mis - Voyageur for salesmen traveling through Switzerland and Germany [7]. However,

being straightforward to state and straightforward to understand, the problem was likely to

have been orally discussed for many years prior. Nearly a century later in 1930, at a math-

ematical colloquium in Vienna, the famous mathematician and economist Karl Menger

published “Das botenproblem” in Ergebnisse eines Mathematischen Kolloquium finally

discussing the mathematics surrounding the TSP [8]. In “Das botenproblem,” translated

from German to English meaning “The Messenger Problem,” Menger stated:

“We designate as the Messenger Problem the task of finding, for a finite number

of points whose pairwise distances are known, the shortest path connecting the points.

This problem is naturally always solvable by making a finite number of trials. Rules are

not known which would reduce the number of trials below the number of permutations

of the given points. The rule, that one should first go from the starting point to the point

nearest this, etc., does not in general result in the shortest path” [8].

Simply put, the most basic form of the TSP seeks to find the shortest distance a salesman

13

must travel to reach all of his stops and then return to his starting location. For a visual

understanding, an example formulation of the TSP is given in Figure 4. The arbitrarily

scattered locations of the 10 cities (red indexed circles) and salesman (blue indexed circle)

are depicted in the locational configuration. Figure 5 illustrates all possible routes the

salesman could choose to take and Figure 6 highlights one of the many possible tours.

Figure 4: 1 Salesman - 10 Cities Locational Configuration

Following Menger, roughly a decade later in 1940, a publication discussing the

TSP was written by the famous Indian statistician Prasanta Chandra Mahalanobis. Maha-

lanobis was concerned with optimizing the travel routes of surveyors and their equipment

on their journey to survey Bengali farmlands [9]. Further acclaim for the TSP was cham-

pioned by American mathematician Merill Flood in the 1940s and 1950s. Working for the

distinguished Rand Corporation, an American nonprofit global policy think tank, Flood

publicized the TSP within the corporation and is attributed for the coining of the modern

14

Figure 5: 1 Salesman - 10 Cities Possible Route Permutations

Figure 6: 1 Salesman - 10 Cities Example Solution

15

rendition of its name [10]. In 1956, Flood published “The Travelling Salesman Problem”

describing various heuristic methods for obtaining solutions to the TSP. These developed

heuristics, or experientially derived methods for quickly determining non-guaranteed op-

timal solutions, like the nearest-neighbor and 2-opt algorithm, are now ubiquitous in the

fields of mathematical optimization [10].

Later in the 1950s, with the advent of computer technology, many famously diffi-

cult problems were addressed with the TSP being no exception. In 1958, F. Bock proposed

the 3-opt heuristic algorithm to solve the TSP and tested the algorithm on the highly pop-

ular IBM 650 computer, the first known use of a computer used to solve the TSP [11].

In the following decades, countless men and women worked diligently on the TSP and

its variations and extensions. To this day, a verifiable method for solving the TSP has

yet to be discovered, leading many mathematicians to doubt the possibility. Instead, the

primary focus has been on the development and improvement of heuristic techniques for

generating good enough solutions.

2.1.1 A Note on Open vs. Closed Problems

All generalizations of the TSP can take the form of “open” or “closed”. The Open

Traveling Salesman Problem (OTSP) simply removes the requirement of the salesman

needing to return to their initial location to complete their tour. In other words, a viable

solution to the OTSP does not require the salesman to complete a full cycle. Inversely, a

“closed” problem requires the salesman to return to their initial location. Closed variants

of the TSP do not generally include the notional phrase “closed” because the TSP in its

16

classical formulation is inherently closed. Ultimately, by simply changing the constraint

on the salesman’s tour, the techniques used to solve both Open and Closed problems are

quite similar and need not be distinguished for every TSP generalization in this review.

2.1.2 The Traveling Salesman Problem with Neighborhoods

One popular extension of the TSP is the Traveling Salesman Problem with Neigh-

borhoods (TSPN). In the classical TSP, cities are static points. However, in the TSPN,

the points which represent cities in the classical TSP are allowed to move within speci-

fied regions (neighborhoods). Though the objective of the TSPN remains the same as the

TSP, this variation differs in that salesman need only travel through the neighborhood of

a city for the city to be counted as visited. Figure 7 provides an example of the TSPN. As

shown in the 5-city TSPN example, each city has a “neighborhood” in which it is free to

move about. Because the TSPN is an extension of the NP-Hard TSP, the complexity of

the TSPN by extension is also NP-Hard. However, because neighborhoods may take the

form of arbitrary shapes like the clouds, circle, and square shown in Figure 7, the TSPN

in its full generality is significantly more complex than that of the TSP.

Arkin and Hassin were the first to introduce and study the idea of “clients” meet-

ing salesmen along their traveling routes [12]. They presented several simple heuristic

procedures for determining tours for a variety of neighborhood types whose length is

guaranteed to be within a constant factor of the length of an optimal tour. Dumitrescu and

Mitchell developed new approximation algorithms for the TSPN in the Euclidean plane

including a constant-factor approximation algorithm for the case of arbitrary connected

17

neighborhoods (or nearly disjoint, nearly-unit disks) [13].

Many other studies extend the TSPN further by considering the salesman a Dubins

vehicle. This extension, known as the Dubins Traveling Salesman Problem with Neigh-

borhoods (DTSPN), constrains the movement of the salesman along what are known as

Dubins paths. A Dubins path simply refers to the shortest curve that connects two points

in a two-dimensional Euclidean plane with constraints on the curvature of the path and

initial and terminal headings. Figure 8 provides an example of a Left-Right-Left (LRL)

Dubins Path, one of the six variations of Dubins Paths. The other five path types in-

clude RSR, RSL, LSR, LSL, and RLR. The three letters describe the motion the vehicle

moves with “R” designating a right turn, “L” designating a left turn, and “S” designating

a straight segment movement. In Figure 8, the Dubins vehicle begins its route at point A

with an initial heading pointing toward the bottom left corner. The solid black line depicts

the shortest path the vehicle can take to finish with the terminal heading pointing toward

the top right corner at point B. The circles describe the constraints on the curvature of the

path or the vehicle’s turning radius.

Though extending the TSPN to include Dubins paths increases the complexity of

the problem, many real-world applications require optimization problems to account for

motion constraints. For example, consider the motion of a standard automobile or fixed-

wing aircraft. Both vehicle types possess similar nonholonomic motion constraints and

merely applying the more elementary TSPN would not yield sufficient results. Numerous

authors tackle the DTSPN for a multitude of applications.

Savla and Frazzoli studied the length of optimal paths showing that the worst-case

18

Figure 7: Traveling Salesman Problem with Neighborhoods Example

length of a tour grows linearly with an increasing number of cities and proposed a novel

algorithm with performance within a constant factor of the optimum for the worst-case

point sets [14]. Issacs et al. proposed two algorithms that transformed the problem into

a finite dimensional asymmetric TSP by sampling and applying the appropriate transfor-

mation, thus allowing the use of existing approximation algorithms [15]. A great deal

of work in the context of unmanned aerial vehicles has been performed as well. Owen

et al. refined the notation for the DTSPN with aerial vehicles to be more consistent with

standard aeronautical notation and furthered the study by defining and implementing a

complete architecture for following Dubins airplane paths [16]. Obermeyer formulated

the general aircraft visual reconnaissance problem for static ground targets in terrain and

showed that it could be simplified to a variant of the DTSPN [17]. The problem was

then solved using a genetic algorithm and validated using a Monte Carlo numerical study

19

Figure 8: A Left-Right-Left Dubins Path [1]

which provided results showing a performance of greater than 100% when compared to

a random search algorithm. Váňa et al. extended the DTSPN by introducing it into three

dimensional space. Due to the high computational cost of the extension, they proposed

decoupling the problem by adopting the techniques used by Savla in [18] [14]. There are

countless use cases and extensions of the DTSPN in which many hours could be spent vis-

iting each study. However, the aforementioned studies were selected in hopes of garnering

insight into the past and future direction of the body of work involving the DTSPN.

2.1.3 The Multiple Traveling Salesman Problem

The classical TSP can be extended further by including the use of additional sales-

man. This extension is referred to as the Multiple Traveling Salesmen Problem (MTSP)

and follows the same problem setup and rules as the classical TSP. Figure 9 provides the

20

locational configuration of a 3 salesmen - 10 cities example problem. Similar to the ex-

ample formulation for the TSP shown in Figure 4, an MTSP locational configuration is

shown in Figure 9. The possible route permutations for the MTSP are shown in Figure 10

and example of a route solution is shown in Figure 11. When comparing the two graphs

in Figure 5 and Figure 10, an increased number of path segments or “edges” are observed

in the MTSP variation due to the increased number of salesmen. By nature this dramati-

cally increases the complexity of the MTSP over the TSP which will be discussed in more

detail in Section 3.1.

Figure 9: 3 Salesmen - 10 Cities Locational Configuration

A great deal of study has been performed on the MTSP because of its relevancy to

many real-world applications such as delivery and transportation, data collection, schedul-

ing, autonomous vehicles, robotics, and networking. Cheikhrouhou et al. surveyed the

approaches applied to solve the MTSP as well as its application domains and proposed a

21

Figure 10: 3 Salesmen - 10 Cities Potential Route Permutations

Figure 11: 3 Salesmen - 10 Cities Example Route Solution

22

taxonomy and a classification of the assessed studies [19]. In the survey, the MTSP was

divided into two broad classes: MTSP for vehicles and robots and the MTSP for UAVs

or drones. The classes were then further subdivided based on each study’s optimization

approach such as exact, meta-heuristic, market-based, etc.

Some studies employ deterministic or exact methods to solve the MTSP to op-

timality. However, because of the complexity involved in increasing numbers of cities

and salesman, deterministic approaches often take the backseat to other heuristic based

approaches. Nonetheless, many mathematicians and scientists have found useful appli-

cations using deterministic approaches. Sundar et al. used mixed-integer linear programs

and a branch-and-cut algorithm to compute an optimal solution for a problem where a

group of heterogeneous aerial or ground vehicles, with different motion constraints and

located at distinct depots, were

tasked with visiting a set of targets [20]. They showed their developed algorithm

could solve large problems involving up to 100 targets and 5 vehicles to optimality within

300 seconds on average.

The concept of using ground vehicles in tandem with a single drone for delivery

applications is known as the Flying Sidekick Traveling Salesman Problem (FSTSP) and

was first introduced by Murray in 2015 in [21] and later expanded by the same author

to include multiple drones in [22] and coined as the Multiple Flying Sidekick Travel-

ing Salesman Problem (mFSTSP). The FSTP and its offshoots have since been studied

extensively by others and notably by [23], [24], [25], and [26]. Murray employed deter-

ministic methods to solve the FTSP by formulating the problem as a Mixed-Integer Linear

23

Program (MILP), a technique not uncommon when solving the TSP and its variation as

demonstrated in [27], [28], [29], and many others.

Non-exact metaheuristic based approaches such as the Genetic Algorithm (GA),

Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc., have all been

used to solve the MTSP. One body of work which utilized meta-heuristic techniques and

served as a great inspiration to the direction of this thesis was produced by Király and

Abonyi in [30]. In the study, Király and Abonyi developed a novel representation based

GA to allow for easier incorporation of heuristic techniques. The specifics of the novelty

of their approach is discussed in greater detail in Section 4.4. Kivelevitch broadens the

work performed in [30] by allowing for variable salesman starting locations (colloqui-

ally known as “depots” which are addressed further in the Vehicle Routing Problem of

Section 2.1.4) and known as the Multiple Depot Multiple Traveling Salesman Problem

(MDMTSP) [31]. Kivelevitch also expanded the capabilities of the GA to account for the

new variability introduced by the MDMTSP. Hundreds of studies have been performed

on the MTSP and its extensions to which this literature review was not designed to be

a full survey of the body of knowledge. The author did, however, strive to evaluate and

acknowledge the bodies of work which were paramount in the creation of this thesis.

2.1.4 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP), one of the most famous combinatorial op-

timization problems, is another generalization of the TSP formulated as the Truck Dis-

patching Problem in 1959 by the famed American mathematician and Stanford professor

24

George Dantzig and his colleague John Ramser [32]. The problem was concerned with

determining the optimal routing of a fleet of gasoline delivery trucks between a bulk ter-

minal and a large number of service stations supplied by the terminal. In this context, the

“bulk terminal” as described by Dantzig and Ramser has become colloquially known in

VRP problems as a “depot” which simply describes the location in which the “vehicle”

or salesman begins their tour. Additionally, the “service stations” are analogous to the

concept of cities in the classical TSP and MTSP. Dantzig and Ramser proposed a proce-

dure based on linear programming for obtaining near optimal solutions for the VRP. Five

years later in 1964, Clarke and Wright improved upon Dantzig and Ramser’s method by

developing an iterative procedure (now known as the Clarke-Wright Algorithm) to find

optimal or near-optimal routes [33]. The seminal works of both Dantzig and Ramser and

Clarke and Wright paved the way for thousands of further studies on the VRP and its

variations.

In many regards, the formulation of the VRP is quite similar to the MTSP. An

example of a solution to the classical VRP is provided in Figure 12. The example provided

is akin to the previously discussed MTSP example in Figure 9. Assuming both problems

are formulated to minimize the Euclidean distance the vehicles/salesmen are to travel, the

only difference between the two problems is in how the vehicles/salesmen are initially

configured. In the classical VRP, the vehicles are all stationed at a single depot to begin

their tours. In the MTSP the salesmen are not constrained to the same initial location. The

VRP, however, is considered a generalization of the MTSP because the VRP, in its various

applications over time, involves the addition of unique requirements. For example, the

25

Figure 12: The Vehicle Routing Problem

inclusion of constraints on vehicle carrying capacity, time windows, and endurance are

commonplace in the literature for VRPs.

Kumar et al. conducted a comprehensive survey where they discussed the various

exact methods, heuristics, and metaheuristics used to solve the VRP and its variants [34].

In their work, they suggest that exact VRP solutions have size limitations between 50-

100 locations a vehicle may travel to. Similar to that of any of the TSP variations, the

breadth of work has focused on developing approximate non-deterministic techniques.

When there are constraints on the time a vehicle may visit a stop the problem is classified

as The Vehicle Routing Problem with Time Windows (VRPTW). Many important studies

have been performed on the VRPTW like those in [35], [36], [37], and many others.

When there are constraints on a vehicle’s payload capacity, the problem is classified as

The Capacitated Vehicle Routing Problem (CVRP) which is studied in [38], [39], and

26

[40].

2.1.5 The Moving Target Traveling Salesman Problem

The Moving Target Traveling Salesman Problem (MTTSP or sometimes TSPMT)

is a time-dependent generalization of the TSP. The basic formulation is the same as the

TSP, but in the MTTSP, “targets” (termed “cities” in the TSP) move at constant veloci-

ties. The MTTSP offers many use cases in the fields of defense, communications, and

space with specific applications in naval refueling/resupply, aircraft weapons targeting,

communications, networking, etc.

Helvig et al. introduced the MTTSP for defense and military applications in their

seminal papers in 1998 and 2003 which has been of great influence to the work of this the-

sis [41] [42]. Their study involves “pursuers” (salesmen) attempting to intercept fixed ve-

locity targets moving either away or toward the origin on the two-dimensional XY-plane.

They provided some of the first heuristic based approaches and performance bounds for

the problem and other time-dependent variations of the MTTSP. They looked particularly

at applications of the problem where the pursuer is required to return to the origin for

“resupply” after every target interception; unsurprisingly, they named the variation The

Moving Target Traveling Salesman Problem with Resupply. In the resupply variation,

they proposed an exact algorithm with the assumption that targets move sufficiently slow

or begin sufficiently far away as to not reach the origin before the pursuer can intercept

all targets. They also studied a variation of the problem where they provided an exact al-

gorithm for scenarios with multiple homogeneous pursuers pursuing multiple targets [41]

27

[42]. As it will be discussed later in this manuscript, there are great similarities to Helvig

et al.’s work and the topic of this thesis.

Englot et al. investigated a version of the MTTSP where a relatively large number

of targets (25-50) moved freely within the Euclidean plane [43]. Considering the targets

occasionally changed direction, the problem required the pursuers to be knowledgeable

on the instantaneous speed and direction of the targets in order to make path-planning

decisions. In their work, Englot et al. compared planning performance between a greedy

based heuristic and the Lin-Kernighan heuristic (LKH), a generalization of the 2-opt and

3-opt algorithms.

Choubey studied the MTTSP using various genetic algorithm techniques and com-

pared the results to that of greedy based algorithms [44]. His work showed that his GA

techniques, while tested on various datasets, performed more efficiently than that of the

greedy based techniques. Moraes and De Freitas also conducted experiments using ge-

netic algorithms to evaluate the performance of various metaheuristics and showed that

their genetic algorithm solution provided superior performance when compared to Ant

Colony Optimization and Simulated Annealing [45].

Stieber et al. studied the MTTSP and more specifically a defense application of

the MTTSP known as The Multiple Weapons to Multiple Targets Assignment Problem

(MWMTAP) [46]. In their work they attempt to optimize the targeting strategy of a battery

of laser guns to a set of hostile targets with the goal of destroying all incoming targets

as quickly as possible. Their approach provided an integer programming formulation

based on time discretization capable of producing viable solutions in small periods of

28

time (approximately less than 3 seconds). Fugenschuh along with Stieber again tackled

the MTTSP by extending the problem to include multiple salesmen [47]. Termed The

Multiple Traveling Salesman Problem with Moving Targets (MTSPMT), which is the

primary subject of this thesis and will be discussed thoroughly in later sections, Stieber

and Fugenschuh add further constraints to the problem by adding time windows for which

the targets are visible to the salesmen. They investigate the time aspect of the MTSPMT

by comparing the performance of four different model formulations. Uçar and Isleyen

approached the MTTSP from a defense perspective as well by developing a metaheuristic

solution algorithm based on simulated annealing for the destruction of moving targets

through air operations [48].

2.1.6 Conventional Assignment Techniques

One class of fundamental combinatorial optimization problems is known as the

assignment problem. In assignment problems, a set of agents is assigned to a set of tasks

with each assignment incurring a specific cost with the goal of the problem being to min-

imize the overall cost. Similar to the focus of this thesis, a defense specific extension of

the assignment problem was developed which is known as the weapon target assignment

(WTA) problem. The WTA consists of finding the optimal assignment of a set of weapons

to a set of targets which maximizes the total expected damage inflicted.

In times past, WTA problems were understood, but efficient execution especially

in the era before computers was unachievable. As an example, consider large-scale air-

to-air battles from WWII. The 50-day Battle of Kursk between the German and Soviet

29

Union forces, regarded as the largest air-to-air battle in human history, involved more

than 2,100 aircraft from Germany and more than 2,700 from the Soviet Union. For these

types of engagements, commanders would do their best to plan and coordinate assign-

ment priorities at the squadron level, but in highly dynamic environments planning often

went out the window. Instead, these large-scale aerial battles often devolved into mere

chaos with pilots individually choosing targets they felt would optimize their position and

mission success. From the previous discussions, this would be analogous to the pilot’s

using heuristic approaches (their personal decision making) in attempt to influence the

global optima (mission success).

In modern times, battle management is provided using a collective network of

advanced air and ground systems to enhance command and control (C2) of military as-

sets. For aerial engagements and airborne early warning and control (AEW&C), the

United States employs both the E-8 Joint STARS and E-3 Sentry (commonly known

as the AWACS [Airborne Warning and Control System]). These systems utilize highly

classified software suites to optimize the management of battlefield assets likely through

a combination of state-of-the-art metaheuristics and other optimization techniques. In

September of 2021, the U.S. Air Force announced the Advanced Battle Management Sys-

tem (ABMS) as the next-generation command and control system as part of a combined

effort between all military services to consolidate sensor and decision making systems

into a single joint network. The overall effort, known as the Joint All-Domain Command

and Control (JADC2), will utilize artificial intelligence and cloud computing to improve

performance and response time of previous systems. The inner workings of these battle

30

management and C2 systems are classified and the guiding algorithms and approaches

are unknown. However, the scope of this thesis would comprise only a small subset of

the necessary types algorithms and techniques used in these complex battle management

systems.

2.2 The Genetic Algorithm

The primary focus of this thesis is the development of a genetic algorithm (GA) for

solving the MTSPMT. Earning its inspiration from Charles Darwin’s theory of evolution

by natural selection, the GA is a metaheuristic used in optimization problems to generate

sufficiently good results. The idea behind the process is that the most fit individuals sur-

vive, reproduce, and pass on their genetics. A deeper look into the GAs methodology will

be discussed in Chapter 4.

The origins of the field of evolutionary computing are complicated and could

likely be considered to have begun with Alan Turing in the 1950s. Evolutionary based

strategies were employed in the following years, but the GA’s origin story really begins

with who is considered to be the “Father of the Genetic Algorithm” John Holland, a pro-

fessor of electrical engineering and computer science at the University of Michigan. In the

1960s and 1970s, together with his associates and students at the University of Michigan,

they developed the fundamentals of the GA to what is now a colossal subfield of evolu-

tionary computing [49]. According to Goldberg, a former doctoral student of Holland, in

his book on GAs, Holland and his colleagues developed the GA around the central theme

of “robustness,” a need for balance between efficiency and efficacy [50].

31

Countless scientists have used genetic algorithms for an endless amount of appli-

cations. In the context of the TSP, numerous authors have applied GAs to their specific

applications to some of which have been previously discussed in this chapter. Al-Omeer

and Ahmed performed a comparative analysis of six unique crossover operators (dis-

cussed in depth in Section 4.7) when solving the MTSP [51]. Bolaños et al. formulated a

generalization of the MTSP known as the Multi-Objective Multiple Traveling Salesman

Problem (MOMTSP) as an interger multi-objective optimization model and proposed a

non-dominated sorting genetic algorithm (NSGA-II) for determining its solution [52].

Zhou et al. proposed a genetic algorithm to solve an extension of the VRPTW known as

the Bioobjective Vehicle Routing Problem with Time Windows. In their work they devel-

oped a new chromosomal representation for solutions to the vehicle’s route and evaluate

other GA parameters to solve the problem with sufficient performance [53]. Kurnia et

al. utilized GAs in their assessment of an application of the VRP concerning the efficient

distribution of vegetables [54]. Pereira et al. proposed a new evolutionary approach to

the VRP through the use of a two-level representational scheme designed to effectively

incorporate all data in the encoding of candidate solutions [55].

Multiple authors have investigated what is known as chromosomal representation

in GAs; the method in which solutions are encoded programmatically in the algorithm.

Again, an earnest discussion on the workings of a GA are provided in Chapter 4. There

are a few commonly acknowledged techniques in the literature for chromosomal represen-

tation. The one chromosome technique was utilized by Zhang et al. in their work on team

scheduling for multiple teams of photographers [56]. The two chromosome technique is

32

utilized by Malmborg in his GA implementation for a vehicle scheduling problem. Carter

and Ragsdale develop a two-part chromosome technique which was shown to reduce the

search space and in many cases produce better solutions than other chromosomal repre-

sentation techniques [57]. Finally, Király and Abonyi proposed the multi-chromosome

technique used to minimize the solution space while allowing for easier interpretation of

the chromosomal representation [30]. Király and Abonyi’s representation technique is

used for the formulation of the GA proposed in this thesis and will be discussed in greater

detail in subsequent chapters.

33

CHAPTER 3

PROBLEM FORMULATION AND MODEL DESIGN

Before beginning the simulation process to generate insights into how a real-world

multi-agent vs. multi-target engagement would play out, a model first had to be created

to represent the engagement scenario. For simple understanding, friendly unmanned HKs

are taxonomically referred to as “Blues” and hostile unmanned threats are referred to as

“Reds.” This chapter strives to define the problem and detail each rule and constraint used

to create the model so the reader has better understanding of the insights the simulation

has to offer. The overall problem is as follows:

There are a variable number of Reds whose objective is to reach a specific goal

location. There are a variable number of Blues whose objective is to prevent said Reds

from reaching their goal location. Reds win if they are capable of reaching their goal

location. Blues win if they intercept all Reds before any one Red is capable of reaching

their goal location. What is the optimal Blue-to-Red assignment strategy for a Blue Team

success?

For a better visual understanding when discussing the rules and constraints, Fig-

ure 13 illustrates a hypothetical 5 Reds vs. 2 Blues engagement scenario. Subsequent to

Figure 13, a comprehensive bulleted list of the specific set of rules and constraints that

govern the model are provided and a more thorough explanation of each is provided on

the following pages.

34

Figure 13: 5 Red vs. 2 Blue Problem Formulation Example Scenario

3.0.1 Test

• Red Team wins if any one Red reaches their goal location

• Reds travels linearly at a constant velocity toward their respective goal location

• The objective of each Blue is to prevent all Reds from reaching their respective goal

locations

• Blues travel linearly at a constant velocity toward the closest interception location

between them and their assigned Red

• Red Team wins if any one Red reaches their goal location

• Blue Team wins if the entire Red Team is eliminated before any one Red can reach

their goal location

35

• Two-Dimensional Engagement Scenario

• The number of Reds ≥1 and the number of Blues ≥1

• Red and Blue speeds may vary

• Blues always travel toward their next assignment

• Blues are holonomic systems

• Multiple Blues cannot be assigned the same Red

• Engagements are deterministic

The objective of all Reds is to reach their respective goal location.

All Reds operates with the singular objective of reaching a specific goal location.

A Red can have a unique goal location or it can share the same goal location with any

number of other Reds. The Red team wins if any one Red reaches their respective goal

location.

Reds travels linearly at a constant velocity toward their respective goal location

All Reds travels linearly at a constant velocity toward their respective goal loca-

tion. At no point is a Red allowed to slow, stop, or perform any other evasive maneuver

in an attempt to impede Blue Team’s interception attempt.

The objective of each Blue is to prevent all Reds from reaching their respective goal

locations

Each Blue operates with the objective of preventing all Reds from reaching their

respective goal locations. A Blue may have more than one Red assigned to it, but two

36

Blues may never pursue the same Red at any one time.

Blues travel linearly at a constant velocity toward the closest interception location

between them and their assigned Red

Each Blue travels linearly at a constant velocity toward the intercept location for

their assigned Red. In other words, Blues know that Reds may only travel linearly and

at a constant velocity and therefore each Blue calculates an intercept location along their

assigned Red’s path that would minimize the shortest path Blue would need to travel to

intercept Red. A more detailed breakdown of the methodology used in calculating inter-

cept locations is provided in Section 4.5.1. An interception location is defined as the point

when both Red and Blue are colocated. Future models could include variable proximity

interceptions where Blue would only be required to travel within a certain distance of

Red to intercept it. This would be analogous to adding “neighborhoods” to the problem

as discussed in Section 2.1.2, and could certainly be foreseen as a future extension of this

application of the MTSPMT.

Red Team wins if any one Red reaches their goal location

If any Red reaches their goal location the Red Team is victorious.

Blue Team wins if the entire Red Team is eliminated before any one Red can reach

their goal location

If all Reds are eliminated before any one Red can reach their goal location Blue

Team is victorious. Future models could investigate the concept of “acceptable loss”

where an allowable number of Reds are allowed to leak, but this model prohibits any

leakers for a Blue Team victory.

37

Two-Dimensional Engagement Scenario

The engagement scenario occurs on a 2-dimensional XY-plane where both the

x- and y-axis is represented by units of distance. For the reader’s understanding, the

engagement plane could be considered a top-down view of a playing field, landscape,

battlefield, etc. It is worth noting that although the inclusion of a third dimension in

the model was not considered for the purposes of this study, the addition would be of

minimal effort and could provide additional insight to the user depending on their needs

of the simulation.

The number of Reds ≥ 1 and the number of Blues ≥ 1

The number of Reds participating in the simulation must be greater than or equal

to one. The number of Blues participating in the simulation must be greater than or equal

to one.

Both Reds and Blues may be initialized at any location

Any participant in the simulation, either Red or Blue, may be initialized at any

location on the XY-plane. Initializing colocating participants is allowed.

Red and Blue speeds may vary

The speeds for both Reds and Blues are not required to be homogeneous. The

model provides the freedom for Red and Blue participants to move at any desired speed.

Blues always travel toward their next assignment

Situations could be hypothesized where Blues either wait for Reds to come closer

before engaging or reposition themselves in a manner that is more advantageous to defeat-

ing the incoming Reds. Upon simulation start, this model assumes each Blue immediately

38

travels toward the interception location of their assigned Reds and continue to travel to

their next assignment upon each subsequent interception. Because Blues are not subject

to inertial forces, they can travel from interception point to interception point without

slowing.

Blues are holonomic systems

Blues are considered holonomic systems, meaning they can occupy any position

in the XY-plane regardless of the path taken.

Multiple Blues cannot be assigned the same Red

No more than one Blue is allowed to be assigned to the same Red.

Engagements are deterministic

Each engagement with the same parameter set will provide the same result. There

is no randomness included in the current model.

3.1 A Note on Permutations

It is well known the number of possible assignment permutations for a salesman

to cities is equal to n! where n is the number of cities to be visited. This is derived from

the basic definition of a permutation itself and also in Eq. (3.1). Using the equation, n

refers to the total number of objects to choose from, or in the case of the TSP, the total

number of cities. The variable r refers to the number of objects or cities that are chosen

out of the total set to permute. In the majority of TSP problems, the number of cities to

permute is equal to the entire set where r = n causing the equation to be reduced to the

previously discussed n!.

39

n

P r =
n!

(n− r)!
(3.1)

where:

n = total number of objects

r = number of objects selected

The problem becomes slightly more complex when extending the TSP to include

multiple salesmen as in the MTSP and the MTSPMT. When additional salesmen are in-

volved the number of possible tour permutations is calculated using Eq. (3.2) where m(n)

is described as “m to the rising factorial of n.” A table of the unique number of permu-

tations that can be formed from a variable number of salesmen and cities is provided in

Table 1. Notice that by assuming m = 1, Eq. (3.2) is reduced to the standard permutation

definition n!, the equation used to solve the single salesman TSP. However, because of

the factorial nature of Eq. (3.2), Table 1 shows rapid growths in the number of permuta-

tions with increases in either salesmen or cities. This behavior is known as combinatorial

explosion and is the prime reason techniques like brute force searching are ineffective for

the large majority of TSP type problems.

m(n) = m(m+ 1)(m+ 2) · · · (m− n+ 1) =
(m+ n− 1)!

(m− 1)!
(3.2)

where:

m = number of salesmen

n = number of targets

40

Table 1: Number of Permutations

N
um

be
ro

fC
iti

es
,n

8 40320 362880 1814400 6652800 19958400 51891840 121080960 259459200
7 5040 40320 181440 604800 1663200 3991680 8648640 17297280
6 720 5040 20160 60480 151200 332640 665280 1235520
5 120 720 2520 6720 15120 30240 55440 95040
4 24 120 360 840 1680 3024 5040 7920
3 6 24 60 120 210 336 504 720
2 2 6 12 20 30 42 56 72
1 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
Number of Salesmen, m

41

CHAPTER 4

METHODOLOGY

As discussed in Section 2.2, genetic algorithms (GA) are techniques used to find

non-exact yet sufficiently good solutions to optimization problems. These non-deterministic

techniques, also known as metaheuristics, are not guaranteed to find the global optimum

of a solution, but are used to efficiently converge on feasible solutions more rapidly than

their deterministic counterparts. This chapter describes in great detail the development of

the GA used to acquire viable solutions for the specific MTSPMT as defined in Chapter 3.

4.1 Genetic Algorithm Overview

Inspired by the concept of natural selection, GAs are constructed in a way to

follow a similar process as would be observed in nature. There are generally five core

phases that comprise GAs: Initialization, Fitness Evaluation, Selection, Crossover, and

Mutation. These phases are thoroughly detailed in the following sections. Figure 14

provides a flowchart as a guide to the sections of this chapter.

42

Figure 14: Genetic Algorithm Flow Chart

43

4.2 Genetic Algorithm Terminology

To fully understand the methods used in developing the GA, a breakdown of the

general terminology must first be discussed. Using the TSP as an example, a “solution”

refers to the sequential assignment of cities the salesman is to visit. For example, in a

5-city TSP a viable solution would be O-1-5-3-2-4-O where the salesman travels in order

from their starting location (or origin, O) to city 1, then 5, then 3, then 2, then 4, and then

back to their starting location. Another possible solution could be O-5-2-1-3-4-O. These

solutions would be referred to as “individuals” in GA terminology. Furthermore, a set of

solutions is defined as a population. As an example, a population of three individuals for

a TSP is provided in Figure 15.

Each individual is characterized by a set of variables or parameters. Using bi-

ologically inspired terminology, these parameters are defined as “genes.” Genes are the

positions where variable data is stored that composes an individual. Using the individuals

from Figure 15, the genes represent the five positions where each city index is located.

Notice how the values of the genes change between the individuals. Similar to the ter-

minology used in DNA, the value of a particular gene is defined as an “allele.” Using

Individual 1 as an example, the allele of gene 2 is 5. Refer to Figure 16 for an illustration.

The overall construct used to combine the genes and alleles is defined as a chro-

mosome. For simple problems, the terms chromosome and solution often refer to the

same thing. However, because the MTSPMT requires a more complex encoding scheme

than most GA applications, a distinction between the two terms is required. Further elab-

oration on this topic will be discussed in Section 4.4.

44

Figure 15: Population Comprised of 3 Individuals

Figure 16: Gene and Allele Example

4.3 Initialization

As shown by the GA flowchart in Figure 14, Initialization is the first step in any

GA. In the initialization phase, a specific number of individuals are randomly chosen. The

number of individuals used to form the initial population is of great importance. Larger

initial populations increase diversity and aid in avoiding local optimums. In cases of

smaller problems with large initial populations there is often a good chance of having the

global optimum within the initial population. Small initial populations converge on local

optimums more rapidly, but due to lower diversity often have less optimized results. It

is up to the user of the GA to tune the initial population size to a number that produces

sufficient results within a reasonable amount of time.

For the MTSPMT GA, the initial population was created by randomly generating

pi number of permutations of the possible solutions where pi is the chosen number of

45

Figure 17: Knapsack Problem 5-Item Solution

the initial population. Because of the complexity of the problem, pi was generally kept

to a number between 10 and 80. This allowed for sufficient solution convergence while

maintaining adequate diversity.

4.4 Solution Representation

One of the most important aspects of GAs is determining how best to represent

solutions. In the early years of the GA, solutions were often represented by a string of

binary numbers. Take the classical Knapsack Problem (KP) as an example. The KP is

another combinatorial optimization problem whereby a person attempts to maximize the

value of the items they put in a knapsack. The stipulation is that each item has a weight

and the total weight of the items must not exceed the weight limit of the knapsack. Con-

sider a hypothetical problem with five items each with their own respective weight and

value. A solution to the problem can be represented by a simple binary string. A chro-

mosome would be constructed with five genes representing the five items in the problem

of Figure 17. The alleles (or values) of the genes would either be a 1 – yes it goes in

the knapsack or a 0 – no it does not go in the knapsack. The items corresponding to the

genes with alleles equal to 1 would be summed and compared with the weight limit of

the knapsack. If the summed weight is less than the weight limit, then the chromosome

represents a valid solution.

46

The problem with binary representation is that it fails to capture all necessary in-

formation for certain problem types. Binary representation would not sufficiently explain

a salesman’s tour in the TSP or its extensions. It could show which cities are to be visited

but it provides no information on their sequence. Because of this, a new representation

technique is needed permutation representation. In this representation technique, the in-

dex of the gene represents the sequential order of the solution. Alleles are no longer

restricted to binary values and can instead take on any numbered value prescribed by the

problem. An example of permutation representation was used in Figures 15 and 17 with

the precise explanation unbeknownst to the reader until this point.

An extension to permutation representation must be implemented to the TSP when

multiple salesmen become involved. As discussed in Section 2.2 of the literature review,

numerous studies have been conducted on the topic of efficient solution representation for

the MTSP. A multitude of techniques have been used throughout the years including but

not limited to representation using a single chromosome, two chromosomes, and multiple

chromosomes. A visual comparison of these representation techniques are provided in

Figures 18 to 20.

Figure 18: 3 Salesmen - 13 City MTSP Single Chromosome Representation

Figure 19: 3 Salesmen - 13 City MTSP Two Chromosome Representation

47

Figure 20: 3 Salesmen - 13 City MTSP Multiple Chromosome Representation

Single chromosome representation includes all problem data in one chromosome.

This technique is shown in Figure 18. In the solution, the first set of genes are filled with

the first salesman’s route permutation. After the route permutation, a special dummy gene

with a negative value is used to symbolize the end to the salesman’s route. This process

is continued for as many salesmen as are used in the problem.

Double chromosome representation uses a city chromosome and a mapping chro-

mosome to represent valid solutions. The city chromosome provides the indices of each

city and the mapping chromosome provides the indices of the salesman assigned. For ex-

ample, the city indexed by the value of the first gene of the city chromosome is assigned

to the salesman represented by the value of the first gene in the mapping chromosome.

Furthermore, the city indexed by the value by the second gene of the city chromosome is

assigned to the salesman represented by the value of the second gene in the mapping chro-

mosome. Salesman route sequencing is still ordered from left to right. This representation

is shown in Figure 19.

Finally, multiple chromosome representation operates slightly differently than the

previous examples. Keeping in mind the discussion from Section 4.2, an individual rep-

resents a valid solution to a problem and for many problems an individual and a chromo-

some have the same meaning. However, in the case of the MTSPMT, and the method

48

chosen to represent its solutions, a distinction between the two terms must be made.

In multiple chromosome representation, an individual is comprised of multiple chromo-

somes equal to the number of salesman used in the problem. Therefore, an individual

of a 10 city -3 salesman MTSP would be comprised of three chromosomes representing

the routes of the three salesmen. In this representation scheme, the sum of the lengths

of the chromosomes would be equal to the number of cities involved in the problem. An

example of this representation technique is provided in Figure 20.

Unfortunately, the discussed solution representations all have inherent flaws in

their design. For example, the set of all possible permutations that can be formed us-

ing the double chromosome representation far exceeds the number of valid solutions in

the problem. The first and last genes of the city chromosome and the mapping chromo-

somes could be swapped to form new chromosomes, although the solutions are the exact

same. Due to these redundancies, the set of all possible chromosomes in the search space

is much larger than the set of all possible solutions in the problem space. An analysis

was performed by [57] and [30] where the three representation types were evaluated and

compared based on total search space.

Table 2 provides the comparison between representation type and their respective

search spaces. Király showed that multi-chromosome representation, although gener-

ally more difficult to implement programmatically, offers the smallest search space of

n!

(
n− 1

m− 1

)
[30]. Ultimately the multiple chromosome representation was chosen for

this thesis in order to reduce the search space of the GA and thus the number of computa-

tions required; a necessity due to the expected complexity requirements of the MTSPMT.

49

Table 2: Solution Representation Search Space Comparison

Technique Search Space Size
One Chromosome (n+m− 1)!
Two Chromosome n!mn

Multiple Chromosome n!

(
n− 1

m− 1

)

4.5 Fitness Evaluation

The phase after initialization is what is known as fitness evaluation. In this phase,

a fitness function is used to determine the quality of solutions produced. It answers the

question of how fit a solution is based on the problem at hand. Referring again to the

classical KP, the fitness function would simply be the maximization of the value of the

items with the condition the sum of the weight of the items is less than or equal to the

knapsack’s weight limit. Given a set of n numbered items from 1 to n, each with a

weight wi and a value vi along with a maximum weight capacity of W , Eq. (4.1) can be

mathematically produced for the KP.

max
n∑

i=1

vixi

s.t. wixi ≤ W

xi ∈ {0, 1}

(4.1)

There are an endless amount of fitness functions that could be applied to the MT-

SPMT. It is fully dependent on what the creator of the GA is trying to get out of the

problem. In this work, four different fitness functions were created.

50

1. Minimization of total tour length

2. Minimization of total tour time

3. Minimization of the maximum of any salesman’s tour length

4. Minimization of the maximum of any salesman’s tour time

For each fitness function of the MTSPMT, solutions are only valid under the con-

dition that targets do not reach the origin before being intercepted by a salesman. If the

solution possesses targets that have reached the origin a large penalty is applied to the

overall fitness of the solution. This has the effect of preventing invalid solutions from

being selected as parents for reproduction of new offspring solutions.

The development of the GA for the MTSPMT differs from TSP extensions with

static cities/targets in that the MTSPMT cannot precalculate distances between targets.

Typical applications of problems like the MTSP would utilize distance matrices where the

distance from every city/target and salesman would be calculated beforehand and would

be used as a lookup table during fitness evaluation. This feature reduces computation time

and results in GAs that quickly converge to sufficient solutions. Because it is impossible

to construct a distance matrix for problems with moving cities/targets, the GA of this work

must iteratively calculate where a salesman would intercept a target and then calculate the

interception point of the next target based on the interception points of the last targets.

This characteristic unfortunately results in a significant increase in computation because

of the required calculations for every target. By increasing the number of targets and

cities involved in the problem, computational complexity would increase proportionally.

51

Therefore, it is important the user of the GA be cognizant of the limitations at hand

and perform parameterization tuning to take advantage of the strengths of the GA where

possible.

4.5.1 Interception Methodology

It is important to discuss the methodology used for calculating interception points

of moving targets as it is directly used in calculating the fitness of solutions in the MT-

SPMT. It is assumed in the formulation of the problem that salesmen have global knowl-

edge of the instantaneous velocities of all targets. Salesmen also have global knowledge

of the assignments of all other salesmen. Recall from Chapter 3 that targets always move

linearly and at constant velocity toward their goal locations. There are numerous pur-

suit algorithms used for many different applications throughout the literature. Often these

applications involve an evader that is unconstrained and free to change its velocity. For ex-

ample, anti-aircraft missiles would likely utilize sophisticated guidance algorithms since

aircraft would not be bound by the same constraints as in this problem. In the case of

this work, because the targets are non-evasive and travel at a constant velocity, simple

trigonometry can be used to determine the interception points if the velocity of both the

salesman and the target are known.

The first step to finding the interception point is to determine the time at which the

interception occurs. This can be calculated by assuming the interception will occur (there

are cases where it is an impossibility) and constructing a triangle based on the distances

between the initial positions. Figure 21 illustrates the construction of the triangle with

52

the three points of the triangle being PS , PT , and PI where PS is the position vector of

the salesman, PT is the position vector of the target, and PI is the position vector of the

interception. The distances between the points are also shown in Figure 21 where dTS is

the distance between the target and the salesman, dSI is the distance between the salesman

and the interception point, and dTI is the distance between the target and the interception

point. A, B, and C are annotated to simply refer to the legs of the triangle. γ refers to the

angle between legs A and B.

Since both PS and PT are known, dTS was found by inserting the XY-coordinates

in Eq. (4.2), the elementary distance equation.

dTS =
√

(xS − xT)2 + (yS − yT)2 (4.2)

where:

xS = x-coordinate of salesman

xT = x-coordinate of target

yS = y-coordinate of salesman

yT = y-coordinate of target

Since PI is unknown, Eq. (4.2) cannot be used to determine the distances dSI and

dTI . However, with the knowledge that distance is equal to the product of speed and time,

dSI and dTI were arranged as shown in Eqs. (4.3) and (4.4).

dSI = sSt (4.3)

dTI = sT t (4.4)

53

Figure 21: Triangle of Distances

where:

sS = speed of salesman

sT = speed of target

t = time

Since sS and sT are known values, the arrangement of dSI and dTI in this manner

reduced the unknown variables to just time, t. Now, with time being the only unknown,

the standard law of cosines from Eq. (4.5) can be applied to solve for t by substituting the

known values of the legs of the triangle in Figure 21 into Eq. (4.6).

C2 = A2 +B2 − 2AB cos γ (4.5)

(sSt)
2 = (dTS)

2 + (sT t)
2 − 2(dTS)(sT t) cos γ (4.6)

54

Figure 22: Triangle of Velocities

By expanding Eq. (4.6), the equation can be arranged into the standard quadratic

form ax2+bx+c and solved for t using the quadratic formula. By observing the quadratic

formula in Eq. (4.7), it can be seen that x = t, and the coefficients a = (sS
2 − sT

2),

b = 2(dTS)(sT t) cos γ, and c = −dTS
2. However, there are still two unknowns in the

quadratic: t and cos γ.

x =
−b±

√
b2 − 4ac

2a
when ax2 + bx+ c = 0 (4.7)

To begin solving for cos γ, another triangle must be constructed but this time using

the velocity and position vectors of both the salesman and the target. This triangle is

shown in Figure 22. The term cos γ can be derived by applying the dot product formula

as provided in Eq. (4.8).

55

cos γ =
A · B

∥A∥∥B∥
(4.8)

Substituting in the velocities of the vector triangle into the formula and solving

for the magnitudes of legs A and B yields Eq. (4.9).

cos γ =
DTS · VT

(dTS)(sT)
(4.9)

Now Eq. (4.9) can be substituted into coefficient b of the quadratic formula.

b = 2dTSsT cos γ = 2dTSsT cos γ
DTS · VT

(dTS)(sT)
= 2(DTS · VT) (4.10)

The quadratic was then solved to determine the time at which the interception

occurs. The time can then be used to determine the location of interception by applying it

to either Eq. (4.3) or Eq. (4.4).

Because of the inherent nature of solving for t using the quadratic formula, there

are few unique cases that must be noted. First, solving the quadratic will lead to two

answers for the time of interception. This means that in many cases there are two viable

intercept locations the salesman could intercept with the target. For the development of

the fitness function of the GA, the shortest time to intercept the target was always chosen.

Second, if the calculations of the quadratic formula yielded nonreal numbers, it signified

that the target was unreachable by the salesman. This situation could arise because the

salesman was too slow and at an undesirable angle from the target. Finally, if the speeds of

the salesman and the target are equal, the quadratic formula breaks down due to division

by zero. For these cases, a conditional statement was added in the GA to solve for the

56

linear equation to produce only one value of t.

During the process of calculating interception points in the fitness function, if the

interception was determined impossible based on returning nonreal or negative numbers

in the results of the quadratic formula, the penalty for the invalid solution was then ap-

plied. However, simply because the quadratic formula produces positive and real results

for t, does not mean the solution is valid. There are situations where targets could be in-

tercepted if they were to continue along their linear path past their goal locations. Because

of this, a simple check was added to the fitness function to determine if the time required

to intercept was longer than the time required for the target to reach its goal location. If

the time for the target to reach the goal location was shorter than the time required for the

salesman to intercept the target, then the solution was considered invalid and a penalty

was added.

4.6 Selection

After fitness evaluation of the initial population, a selection of “parent” individuals

occurs. Parents are used in the following phases to produce offspring. The idea is that if

fitter and fitter individuals are selected and reproduced, eventually the GA will converge

onto a local optimum. There are numerous selection methods used in GAs for selecting

parent individuals. Some examples to name a few are the Roulette Wheel, Rank, Elitism,

and Tournament Selection. In the case of this work, tournament selection was chosen for

no particular reason other than its ease in implementation.

Tournament selection operates by hosting multiple “tournaments” among a select

57

number of random individuals from within the population. The number of tournaments

performed and the randomization of selected individuals are yet another feature included

in the GA to increase diversity among the population.

Once selected, individuals then square off in their respective tournaments where

the winner is decided by the individual with the greatest fitness. The winners of each

tournament are then put into a new population called the “selected population.” Now,

because it is comprised of only tournament winners, the selected population is a set of

individuals with an overall greater fitness than the initial population. From there, the

most fit of the selected population is selected as the “parent” individual to generate new

offspring in the following phase.

4.7 Crossover and Mutation

4.7.1 Crossover

Now that a parent solution has been selected, the next phase in traditional GAs is

the crossover phase. The crossover phase is where the genetic material of two parent indi-

viduals is taken and recombined into a child individual. There are many unique crossover

techniques used for a variety of problems, including: one-point, two-point, k-point, par-

tially mapped, cycle, order-based, etc.

To illustrate the one-point crossover operator, the most basic of crossover tech-

niques, the KP is once again used as an example in Figure 23. A single point between

genes 3 and 4 on both parents’ chromosomes was picked randomly and designated as

the “crossover point” where a solid red line was drawn on Figure 23 for emphasis. The

58

values of the genes to the right of that point were swapped between the two parent chro-

mosomes which resulted in two children individuals possessing genetic information from

both parents. The children would then be added to the population and carried on to the

next phase.

Figure 23: KP Crossover Example

The problem, however, when using crossover techniques of this nature, is that they

often produce invalid children for many problems. Consider a pair of parents in a 5-city

TSP as shown in Figure 24. In the figure, one-point crossover is performed just as it was

in Figure 23. However, because the TSP employs permutation representation and the KP

employs binary representation, the crossover operator results in an invalid solution where

children visit the same city more than one time (cities 2 and 1 for the first child and cities

4 and 5 in the second child).

Since the TSP and similar problems employ solution representations of this type,

very few GA crossover techniques are compatible. The issue is further compounded when

extending the problem to include multiple salesmen as in the MTSP and even further when

considering the multiple chromosome solution representation as is used in the GA of this

work. For problems of this type, in order to employ crossover operators that only produce

valid solutions, complicated conditionals and checking would need to be implemented

59

leading to potentially increasing computational requirements of the algorithm itself. In-

stead, the author elected to forego the crossover operator and implement more complex

mutation operators as would typically be seen in the field known as “evolutionary strat-

egy.”

Figure 24: Invalid TSP Crossover Example

4.7.2 Mutation

In the mutation phase a mutation operator is designed and implemented to pre-

vent solutions from prematurely settling into local minimums by continuing to randomly

explore the solution space. Like the crossover operator, there are a variety of mutation

operators that have been employed in various problems utilizing GAs. Traditional muta-

tion operators would randomly choose a gene and flip its value and then add the mutated

solution back into the population to be assessed with the other solutions. This type of op-

eration is illustrated in Figure 25 for the KP. However, because the crossover operator was

foregone as discussed in the previous section, the mutation operator in this work acts as

the primary operator for both promoting diversity and generating solutions that eventually

converge on quality solutions.

In this work, 15 various mutation operators were employed, some novel and some

60

Figure 25: KP Mutation

designed by Király and Abonyi in [30]. Using their terminology, mutation operators

are divided into two classes: In-route Mutations and Cross-route Mutations. In-route

mutations work within a single chromosome of the multiple chromosome solution repre-

sentation whereas cross-route mutation operators operate on multiple chromosomes. The

mutation operators used in this work are provided in the following subsections categorized

by their mutation class.

4.7.2.1 In-route Mutation Operators

As described in [30], the Gene Sequence Inversion mutation operator randomly

selects two points within a single chromosome and inverts the order of the genes within

the selection. In the example in Figure 26, selection points were randomly chosen between

genes 2 and 3 and between genes 5 and 6 (selection points indicated by the solid red lines).

The values of the genes within the selection (3-4-5) were inverted along the median (5-4-

3). The final mutated chromosome is shown as the lower of the two chromosomes.

Figure 26: Gene Sequence Inversion

61

Arguably the most simple mutation operator, Gene Sequence Transposition ran-

domly chooses two genes within an single chromosome and swaps their values. In Fig-

ure 27, the values of genes 2 and 7 are swapped.

Figure 27: Gene Sequence Transposition

Gene Insertion randomly chooses both a gene and insertion point within a single

chromosome and inserts the gene to the left at the position of the insertion point. In the

example illustrated in Figure 28, gene 2 is randomly selected to be moved to the randomly

chosen insertion point between genes 6 and 7.

Figure 28: Gene Insertion

Gene Shifting, similar to Gene Sequence Inversion, randomly chooses two points

within a single chromosome, but instead of inverting the genes, shifts the genes left or

right by one gene. Figures 29 and 30 provide examples of Left Gene Shifting and Right

Gene Shifting.

62

Figure 29: Right Gene Shifting

Figure 30: Left Gene Shifting

4.7.2.2 Cross-route Mutation Operators

Mutation operators become increasingly more complicated when mutations occur

across chromosomes. To understand the figures in this subsection, Figure 31 provides an

example of the notation used. The top chromosome is a combination of the all the chromo-

somes and genes used for each solution. The dashed red lines represents “breakpoints”

which are used to signify where chromosomes would be split in multiple chromosome

solution representation. Below the combined chromosome is an example solution using

multiple chromosome representation.

Figure 31: Breakpoint Example

63

The Randomized Breakpoints operator in effect reconstructs chromosomes by ran-

domly reassigning the positions of breakpoints within a solution. Figure 32 provides an

example of breakpoints going from positions between genes 2 and 3 and genes 5 and 6 to

positions between genes 5 and 6 and genes 8 and 9.

Figure 32: Randomized Breakpoints

The Randomized Breakpoints and Gene Sequence Inversion mutation operator

combines the in-route Gene Sequence Inversion operator and the cross-route Random-

ized Breakpoints operator into a single mutation operator. For the example shown in

Figure 33, breakpoints are randomly chosen between genes 2 and 3 and genes 8 and 9 and

the values to be inverted fall between gene 6 and gene 9. As shown, the mutated solution

contains not only different size chromosomes than the non-mutated solution, but also a

different sequence of values within the genes.

Figure 33: Randomized Breakpoints and Gene Sequence Inversion

64

Like the Randomized Breakpoints and Gene Sequence Inversion operator, the

Randomized Breakpoints and Gene Transposition mutation operator combines the in-

route Gene Transposition operator and the cross-route Randomized Breakpoints operator

into a single mutation operator. In Figure 34, new breakpoints are randomly chosen be-

tween genes 2 and 3 and genes 7 and 8. Additionally, Gene Transposition is performed

on genes 7 and 9.

Figure 34: Randomized Breakpoints and Gene Transposition

Another mutation operator that was employed which used a combination of in-

route and cross-mutations was the Randomized Breakpoints and Gene Sliding operator.

Figures 35 and 36 illustrate the operator with Right and Left Gene Sliding respectively.

Figure 35: Randomized Breakpoints and Right Gene Sliding

One unique mutation operator that was used was the Chromosome Partition. In

Chromosome Partition one or multiple (depending on the problem type) breakpoints were

65

Figure 36: Randomized Breakpoints and Left Gene Sliding

Figure 37: Randomized Breakpoints and Gene Insertion

added to create additional chromosomes. In Figure 38 this is illustrated by the addition of

an additional breakpoint between genes 7 and 8 (indicated by the red ellipse).

Figure 38: Chromosome Partition

Opposite to Chromosome Partition is Chromosome Contraction. Instead of the

addition of another breakpoint in the solution, a random breakpoint is taken away and the

66

genes that would otherwise makeup that chromosome are contracted onto another chro-

mosome. Figure 39 illustrates this operator where the breakpoint between genes 5 and 6

is removed in the solution and the genes that would otherwise be part of chromosome 3

are contracted onto chromosome 2.

Figure 39: Chromosome Contraction

The last mutation operator, Chromosome Redistribution, randomly chooses a chro-

mosome and then randomly redistributes its genes among the other chromosomes in the

solution. An example of this is provided in Figure 40 where chromosome 3 is randomly

redistributed among chromosomes 1 and 2.

Figure 40: Randomized Chromosome Redistribution

67

4.8 Termination

Subsequent to the mutation phase is another phase of fitness evaluation where

the fitness of each individual of the population is once again assessed. After the fitness

evaluation is completed, the GA checks to see if any termination conditions have been

met. Termination conditions generally include stopping criteria based on both solution

convergence and number of generations. If the fitness of any one individual meets the

specified termination criteria then the GA is considered to have sufficiently converged

on a solution and is terminated. Likewise, if the GA is unable to sufficiently converge

on a solution, yet meets the generational termination criteria, the GA is terminated. The

responsibility of intelligently choosing the termination criteria to allow for quality results

lies with the user of the GA and should be specific to each problem.

68

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Overview

For engagements consisting of a small number of participants (less than 10), the

solutions generated using the GA were compared to solutions found using a brute force

search (BF). The BF algorithm used in this study was created in MATLAB and was used

to calculate the solution to every possible permutation in which Blues could be assigned

to Reds. Recall from Section 3.1 the number of permutations of a given problem is found

using Eq. (3.2). Unfortunately, due to the inherent nature of BF, problems quickly become

computationally intractable as a result of combinatorial explosion. Because of this, as

engagement scenarios became more complicated, difficulties arise in the methods used to

compare the performance of the developed GA.

For small engagements the solutions generated by the GA are compared to the

performance of BF searching, but for large scale engagements, unless the scenario is con-

trived in a way for the solution to be obvious, there is no way to determine if the solution

produced by the GA is optimal or for that matter even good. Future work would certainly

include a performance comparison of other heuristic based algorithms, but considering

the applications of this study are relatively new, these algorithms are scarce throughout

the literature and would likely also need to be custom made. Instead, without a base-

line to compare to, which would generally be the optimal solution using BF or known

69

benchmarks from studied metaheuristics, other metrics had to be used to quantify the

performance of the developed GA. These metrics are enumerated below:

1. Total Runtime

2. Runtime per Generation

3. Solution Fitness

4. Rate of Convergence

5. Generation of Converged Solution

6. First Solution Fitness

7. Runtime of First Solution

Considering the context of this work, engagement scenarios were designed to sim-

ulate hypothetical HK battles. The speeds of both Reds and Blues for each scenario were

designed to resemble realistic COTS UAS speeds. For most engagements, the Blue-to-

Red Speed Ratio (SR) was set at a value greater than one. The primary reason for this is

that in highly asymmetric engagements, when Reds largely outnumber Blues, a situation

arises where a viable solution cannot be found or simply does not exist. It was discovered

through experimentation of many different engagement scenario designs that speed ratio

plays a significant, if not the most important, role in determining whether Blue Team is

victorious in their pursuit to intercept all Reds. This characteristic becomes obvious when

considering a simple 1 Blue vs. 2 Red engagement where Blue is centered at an origin

70

and Reds are separated equidistant from the origin and at angle of 180 degrees. This ex-

ample scenario is provided in Figure 41. The Red Team’s objective as usual is to reach

the origin and the Blue Team’s objective is to intercept both Reds before they can do so.

If all three move at the same speed, a SR of 1:1, then it is geometrically impossible for

Blue to intercept both Reds before they reach the origin. If Blue were to travel toward

Red 1 until it was intercepted, the intercept location would be half the distance between

the origin and Red 1’s starting location. At that point in time, Red 2 would be equally

distanced from the origin in the opposite direction from Blue. If Blue attempted to in-

tercept Red 2, interception would occur exactly at the origin. Blue in effect would have

achieved the same outcome had it not moved at all! This emphasizes the idea that SR is a

fundamental parameter to maintaining a competitive advantage against incoming threats.

Any SR greater than 1 would have been successful in this hypothetical. Future work in

this field would definitely include an optimization study on speed ratio and its effect on

asymmetrical engagement victory conditions.

Figure 41: 1 Blue vs. 2 Red

The designed engagement scenarios were divided into two tiers (Table 3) based

on the scale of the number of participants. Tier I represents small-scale engagements

where the number of both Reds and Blues is less than or equal to ten. Because of the

few participants in the problems of Tier I, BF solutions could be computed and were used

as a baseline for assessing GA performance. In many cases, especially when Reds and

Blues are homogeneous, the solutions to the problems in Tier I can easily be identified

71

using just the human eye. However, the significance of the developed GA truly begins

to actualize when studying Tier II. Tier II represents medium- to large-sized engagement

scenarios with greater than 10 participants. In problems of this type, a human may still

be able to determine an optimal solution in certain contrived engagements. However, in

a large-scale Tier II problem, a human finding the solution is essentially considered an

impossibility. Even if a solution was found by a human for a Tier II engagement, they

would undoubtedly find difficulty in the physical act of inputting orders for a large number

of targets. This highlights the need for assignment algorithms to automatically and rapidly

determine viable solutions; the ultimate goal of this work. The sections of this chapter are

arranged by the tier level of each engagement scenario. Each section provides a thorough

discussion on the design of each scenario, the results generated by both the BF algorithm

(when applicable) and the GA, and any insights obtained.

Table 3: Engagement Tiers

Tier Participants
I ≤ 10
II > 10

5.2 Tier I Engagements

5.2.1 1 Blue vs. 1:9 Reds

To obtain a greater understanding of the behavior of the developed GA, simula-

tions were first run on Tier I engagements involving only a single Blue. Though these

engagements would not technically fall within the scope of the MTSPMT because of the

72

Blue singularity, they still provide valuable insights into the performance of the GA. A

series of engagements were performed with increasing numbers of Reds against a single

Blue. Starting with a 1 Blue vs. 1 Red Scenario, participating Reds were increased by

one for each engagement until a 1 Blue vs. 9 Red scenario was reached. The first en-

gagement was the trivial 1 Blue vs. 1 Red scenario where the Blue was positioned at the

origin and Red at a distance of 1000m and an angle (θ) of 0 degrees from the x-axis. For

every engagement scenario, each Red was positioned equidistant from one another cir-

cumferentially at the 1000m radius. For example, with two Reds, Red 1 and Red 2 were

positioned at θ = 0 and 180 degrees respectively. For three Reds, Red 1, 2, and 3 were

positioned at θ = 0, 120, and 240 degrees respectively. This pattern was employed for

all nine engagements which can be observed by the starting engagement configurations

presented in Table 11 in Appendix A. The x and y values of Table 11 are the starting x-

and y-coordinates of the participating Reds and θ is the angle formed with respect to the

x-axis.

The parameters used in the GA for each engagement are provided in Table 4. A

SR equal to 1.5 was chosen to allow for a Blue Team victory condition and for the reasons

discussed in the previous section. To gather insight into convergence capabilities when

compared to BF searching, a small initial population (pi) of 16 was selected. The number

of generations (G) selected for GA computation was 50. A greater number of generations

certainly could have been selected, but in most instances was more than sufficient for

solution convergence. Finally, the GA was run a total of 30 trials for each engagement

scenario.

73

Table 4: 1 Blue vs. 1:9 Configuration and Simulation Parameters

Parameter Value
No. of Blues, m 1
No. of Reds, n 1:9
Blue Speeds sB 45 m/s
Red Speeds, sR 30 m/s
Initial Population Size, pi 16
Generations, G 50
Trials 30

Since the engagements fall within Tier I, a BF search was utilized to find the

optimal solution for all nine engagements. An example of one of the optimal solutions for

a 1 Blue vs. 8 Reds engagement is provided by the MATLAB simulation output shown in

Figure 42. The figure shows the labeled starting positions for all participants along with

the points (red Xs) where Blue was able to intercept each Red. One thing to notice is that

in the “end game,” the final seconds of the simulation, the last few interceptions occur in

close proximity and within fractions of a second. The optimal solution and last Red was

intercepted at 33.15s, only .18s from reaching the origin. This outcome is representative

of engagement scenarios where configuration parameters were conservatively selected to

allow for narrow Blue Team victories. These types of problems are reasonable to study

analytically, but in real world scenarios the margin of victory provided in Figure 42 would

be completely unfeasible. Two ways to avoid similar endgames, at least in the context of

this work, are increasing SR or increasing the number of participating Blues. This analysis

will be touched on further in the chapter.

Combined results for the 30 trials of each of the 1 Blue vs. 1:9 engagements are

74

Figure 42: 1 Blue vs. 8 Reds Optimal Solution

provided in Table 6. In the first row, Optimal Fitness is the optimal solution calculated

using BF searching and the second row, Average BF Runtime, contains the total runtime

of each BF search through all possible route permutations. The BF total runtime repre-

sents the factorial nature of the single salesman TSP and is shown in Figure 43 compared

against the factorial function n!. It is important to understand that BF searching required

more than 90 minutes of computation on a standard home personal computer for an en-

gagement scenario composed of 9 Reds where the solution is readily obvious to the human

eye. This further highlights the need for heuristic based solutions for the automation of

these types of problems.

For every engagement scenario except for the 1 Blue vs. 9 Reds, when the GA was

able to discover a solution, the optimal solution was reached 100% of the time. However,

75

Figure 43: BF Computation Time and Factorial Function

in engagements where n = 7, 8, and 9, there were trials where the GA was incapable of

discovering a viable solution within the 50 generations. Number of Simulations to Con-

verge shows the number of trials for each engagement capable of finding viable solutions.

There are two primary issues responsible for the GA’s inability to converge for these

cases: number of generations and initial population size. Had the number of generations

been increased, because of the mutation operator, the GA eventually would have discov-

ered viable solutions. Part of the issue as well was the chosen initial population size was

very small and did not allow for a large diversity within the solution space. As discussed

in Section 4.5, due to the inherent randomness when generating the initial population, a

possibility would exist for the entire initial population to be composed of unviable solu-

tions causing the GA to require more generations to converge. Considering the increasing

76

solution space with increasing numbers of Reds, this is likely what occurred during the

three engagements where not all trials were able to converge.

Average Fitness Discovered refers to the average solution fitness the GA was able

to find for each engagement scenario across all 30 trials. Average GA Runtime is the av-

erage amount of time between all trials that it took the GA to compute all 50 generations.

The runtimes are plotted and shown in Figure 44. A regression line was plotted on top of

the runtimes with a coefficient of determination of R = 0.95 indicating that runtimes for

GA computation for TSPMT type problems increase linearly with an increasing number

of Red targets. Average Runtime Per Generation is simply the amount of time it took on

average for GA to compute one generation for the respective engagement. Average Final

Solution Efficiency is the ratio of the final converged solution calculated by the GA to the

optimal solution discovered using BF. The equation for solution efficiency is provided by

Eq. (5.1).

Solution Efficiency =
Converged Solution

Optimal Solution
× 100 (5.1)

Average Generations to Reach Optimality refers to the average generation in which

the GA was able to converge to optimality. For the cases where the GA was incapable

of determining a solution, the trial was left out of the calculations. Without that context,

this metric may be deceptive at first glance, though it still provides valuable insight into

convergence performance for the trials that do converge. Average First Solution Fitness

refers to the average fitness across all trials of the first viable solution that was computed

using the GA. The efficiency of the first solution was also computed under Average First

77

Figure 44: 1 Blue vs. 1:9 GA Runtime

Solution Efficiency using the same efficiency equation from Eq. (5.1). As indicated in the

results, oftentimes the first solution was very close to the optimal solution. However, for

engagements where n = 3, 4, 7, and 8, though optimal solutions were not found immedi-

ately, the GA still converged on the optimal solution within the set number of generations.

The last metric gathered was the Average Runtime for First Viable Solution. This metric

is simply the runtime required to achieve any solution that resulted in a Blue Team victory

and is particularly valuable because it provides insight into how quickly the GA is able to

produce viable solutions regardless of whether they are globally optimal.

78

Table 5: BF to GA Comparison

No. of Reds
Average BF
Runtime [s]

Average GA
Runtime [s]

Performance
Increase

1 0.07 0.04 1.87x
2 0.06 0.07 0.82x
3 0.10 0.09 1.11x
4 0.29 0.21 1.38x
5 1.11 1.15 0.97x
6 6.34 10.01 0.63x
7 70.41 5.77 12.21x
8 746.96 6.25 119.48x
9 6223.90 NA NA

79

Ta
bl

e
6:

1
B

lu
e

vs
.1

:9
R

ed
R

es
ul

ts

N
um

be
ro

fP
ar

tic
ip

at
in

g
R

ed
s

1
2

3
4

5
6

7
8

9
O

pt
im

al
Fi

tn
es

s
[s

](
Fo

un
d

U
si

ng
B

F)
13

.3
3

29
.3

3
32

.1
8

32
.7

8
32

.9
8

32
.9

8
33

.1
2

33
.1

5
33

.1
7

B
F

R
un

tim
e

0.
07

0.
06

0.
10

0.
29

1.
11

6.
34

70
.4

1
74

6.
96

62
23

N
um

be
ro

fS
im

ul
at

io
ns

to
C

on
ve

rg
e

(O
ut

of
Tr

ia
ls

=
30

)
30

30
30

30
30

30
28

2
0

A
ve

ra
ge

Fi
tn

es
s

D
is

co
ve

re
d

[s
]

13
.3

3
29

.3
3

32
.1

8
32

.7
8

32
.9

8
32

.9
8

33
.1

2
33

.1
5

N
A

A
ve

ra
ge

G
A

R
un

tim
e

fo
r5

0
G

en
er

at
io

ns
[s

]
3.

72
5.

98
8.

34
10

.4
4

12
.5

0
18

.3
8

16
.7

2
18

.9
5

N
A

A
ve

ra
ge

R
un

tim
e

Pe
rG

en
er

at
io

n
[s

]
0.

07
0.

12
0.

17
0.

21
0.

25
0.

37
0.

33
0.

38
N

A
A

ve
ra

ge
Fi

na
lS

ol
ut

io
n

E
ffi

ci
en

cy
10

0%
10

0%
10

0%
10

0%
10

0%
10

0%
10

0%
10

0%
N

A
A

ve
ra

ge
G

en
er

at
io

ns
to

R
ea

ch
O

pt
im

al
ity

1
1

1
1

4.
6

27
.2

3
17

.2
5

16
.5

N
A

A
ve

ra
ge

Fi
rs

tD
is

co
ve

re
d

So
lu

tio
n

Fi
tn

es
s

[s
]

13
.3

3
29

.3
3

32
.1

8
32

.7
8

32
.9

8
32

.9
8

33
.1

1
33

.0
1

N
A

A
ve

ra
ge

Fi
rs

tS
ol

ut
io

n
E

ffi
ci

en
cy

10
0%

10
0%

99
.9

9%
99

.9
9%

10
0.

00
%

10
0.

00
%

99
.9

7%
99

.5
8%

N
A

A
ve

ra
ge

R
un

tim
e

to
D

is
co

ve
rF

ir
st

V
ia

bl
e

So
lu

tio
n

[s
]

0.
04

0.
07

0.
09

0.
11

0.
13

0.
19

0.
24

0.
30

N
A

80

5.2.2 2 Blues vs. 6 Reds

The next engagement scenario assessed was the 2 Blues vs 6 Reds scenario shown

in Figure 45. This particular scenario was designed to assess the GA’s performance when

including multiple Blues in the problem. The solution to the problem is readily obvious

to the human eye, but there are many permutations where the solution is far from the

global optimum. Though it was suspected the GA would perform exceptionally, it was

still worthwhile to investigate. The parameters used in the configuration of the problem

and for the GA are provided in Table 7. The initial population size was increased from

the previous problem because the GA was observed to converge much more rapidly than

expected. An increased initial population size could be afforded to the GA to increase

diversity and search for better solutions while still completing within a reasonable time.

It should also be observed the two Blues are no longer positioned at the origin but at

100m away from the origin and opposite each other on the y-axis. This was designed

to limit the number of symmetric solutions that share the same fitness (e.g., Blue 1 or

Blue 2 having the option to go north or south on the y-axis while still achieving the same

fitness). The values for the starting locations of each participant are provided in Table 12

of Appendix A.

Since the number of participants falls within the Tier I category, the optimal solu-

tion was calculated using BF searching. Using Table 1, the number of permutations that

had to be searched through was equal to 5,040. The BF search was able to compute all

5,040 permutations in approximately 107 seconds. One of the four optimal solutions (all

81

Figure 45: 2 Blues vs. 6 Reds Initial Configuration

Table 7: 2 Blues vs. 6 Reds Simulation Parameters

Parameter Value
No. of Blues, m 2
No. of Reds, n 6
Blue Speeds, sB 45 m/s
Red Speeds, sR 30 m/s
Initial Population Size, pi 64
Generations, G 50
Trials 30

82

with equal fitness) generated using the BF is shown in Figure 46. Comparing the perfor-

mance of the BF to the performance of the GA, the GA was capable of converging to the

optimal solution on average within 3.89 seconds, nearly 27.5 times faster than that of the

BF. Using the same performance metrics from Table 6, the performance data from the 2

Blues vs. 6 Reds simulation is provided in Table 8. Unlike some of trials in the 1 Blue

vs. 1:9 simulation, every trial in the 2 Blues vs. 6 Reds engagement scenario converged

to the optimal solution and did so within 5.76 generations on average. For this particular

engagement scenario, the GA performed extraordinarily well and would likely always be

the preferred technique over the BF search.

Figure 46: 2 Blues vs. 6 Reds Optimal Solution

83

Table 8: 2 Blues vs. 6 Reds Results

Performance Metric Value
Optimal Fitness (Found Using BF) 15.57s
BF Runtime 157.69s
Number of Simulations to Converge (Out of Trials = 30) 30
Average Fitness Discovered 15.57s
Average GA Runtime for 50 Generations 33.19s
Average Runtime Per Generation 0.66s
Average Final Converged Solution Runtime 3.89s
Average Final Solution Efficiency 100%
Average Generations to Reach Optimality 5.76
Average First Discovered Solution Fitness 22.11s
Average First Solution Efficiency 75.22%
Average Runtime to Discover First Viable Solution 0.66s

5.3 Tier II Engagements

5.3.1 20 Blues vs. 30 Reds

To start off the analysis on Tier II engagements, a 20 Blues vs. 30 Reds engage-

ment scenario was designed. Blues were positioned in defensive concentric circles with

the first 10 evenly spaced and forming a circle around the origin at a radius of 100m.

The final set of 10 Blues were positioned evenly spaced and at a radius of 500m from the

origin. The starting configuration of the engagement is shown in Figure 47 and the initial

XY locations of the Blue Team are provided in Table 13 in Appendix A. 30 Red Team

participants were randomly distributed at locations between 2000m and 3000m from the

origin and their XY locations are provided in Table 14 also in Appendix A. The idea

behind the design was to simulate a potential real world engagement where a squadron

of HKs would need to defend a medium-scale multi-directional attack. It is uncertain

what Blue Team configuration would be the most ideal, so to make things simple, their

84

positions were symmetrical distributed around the origin. The parameters of the simula-

tion are given in Table 9. Once again, the SR of the engagement scenario is 1.5 where

Blues move at speeds of 45 m/s and Reds at a speed of 30 m/s. The initial population

was selected at 64 to increase overall diversity. It was expected that due to the number of

participants in the Tier II engagement the GA would take substantially longer to converge

on quality solutions. Because of this, and to efficiently investigate each of the 30 trials,

the number of generations was selected at 50 regardless of the quality of solution.

Figure 47: 20 Blues vs. 30 Reds Initial Configuration

The various performance metrics for the 20 Blues vs. 30 Reds engagement are

provided in Table 10. Again, because it is a Tier II engagement, the optimal solution

cannot be calculated using BF searching and therefore performance metrics like solution

efficiency are not provided in the table. A few key performance metrics to note are the

85

Table 9: 20 Blues vs. 30 Reds Simulation Parameters

Parameter Value
No. of Blues, m 20
No. of Reds, n 30
Blue Speeds, sB 45 m/s
Red Speeds, sR 30 m/s
Initial Population Size, pi 64
Generations, G 50
Trials 30

average GA runtime per generation and the average fitness discovered. Compared to the

average GA runtime per generation of the 2 Blues vs. 6 Reds engagement, the average

GA runtime per generation of the 20 Blues vs. 30 Reds engagement was over six times

slower. That being said, given the same amount of generations, the resulting solutions,

though viable, were less than ideal. This is not necessarily a condemnation on the GA

itself because had BF been used, it would have had to search through over 5× 1045 possi-

ble permutations, a number unimaginable considering current computational capabilities.

Furthermore, unlike in the Tier I engagements, where the GA was able to consistently

converge upon the optimal solutions within 50 generations 100% of the time, for the 20

Blues vs. 30 Reds engagement, the GA clearly did not converge on an optimal solution.

Though had the GA not been restricted to only 50 generations, it would have undoubtedly

converged on higher quality solutions. Additionally, the fitnesses of the solutions the GA

converged upon were unique in almost every case with the best fitness being 64.81s and

the worst being 80.94s. The fittest solution among the 30 trials is shown in Figure 48 with

its best solution history shown in Figure 49.

86

Table 10: 20 Blues vs. 30 Reds Results

Performance Metric Value
Best Solution Fitness (Out of Trials = 30) Fitness 64.81s
Worst Solution Fitness (Out of Trials = 30) Fitness 80.94s
Number of Simulations to Converge (Out of Trials = 30) 30
Average Fitness Discovered 73.07s
Average GA Runtime for 50 Generations 208.39s
Average Runtime Per Generation 4.17s
Average Final Converged Solution Runtime 181.69s
Average First Discovered Solution Fitness 88.39s
Average Runtime to Discover First Viable Solution 3.93s

Figure 48: 20 Blues vs. 30 Reds 50 Generations Converged Solution

87

Figure 49: 20 Blues vs. 30 Reds Best Solution History (50 Generations)

Because the solutions discovered in the 30 trial series were relatively insufficient,

the engagement was simulated using the same parameters but with 3000 generations. The

GA was run for nearly 2.5 hours before it was completed with its output provided in Fig-

ure 50. The converged solution is obviously better with the interception locations being

far from the origin and the pursuit time (fitness) improving by more than 20 seconds.

One interesting thing to note is not all Blues were utilized in the engagement indicating

that, given even more time, the GA might converge to an even better solution. In certain

instances, depending on mission requirements, it may be desirable for for all Blues to be

utilized rather than allowing the algorithm to omit some Blues from valid solutions. In

these cases, constraints could be added to the algorithm forcing every Blue to pursue at

least one target. However, the problem formulation of this work was designed to maxi-

mize the insights generated from simulations. Hypothetically speaking, there could exist

valid solutions which omit a number of Blues yet perform only marginally worse than so-

lutions that utilize all Blues. Users may determine they prefer sufficient solutions which

maximize fitness while minimizing the number of employed Blues. By leaving the prob-

lem unconstrained, users are given the freedom to make these decisions for themselves.

88

The best solution history is provided in Figure 51. The steps in the plot show

where the mutation perform their intended function of untrapping the algorithm from

local minimums. Another feature to analyze is that the highest rate of convergence occurs

within the first couple hundred generations. After that, it is often just a matter of slowly

stepping to better and better results.

Figure 50: 20 Blues vs. 30 Reds 3000 Generations Converged Solution

89

Figure 51: 20 Blues vs. 30 Reds 3000 Best Solution history

90

CHAPTER 6

CONCLUSION

The rapid technological advancement and the proliferation of autonomous un-

manned systems presents a major threat to military commanders and government leaders

when it comes to the defense of personnel, structures, weapons, and other assets. With the

inexpensiveness of both COTS and custom made UASs, the possibility of nefarious UAS

use cases has become globally pervasive. There exists a need for defensive solutions to

combat both current and future unmanned systems threats. As discussed, one solution is

through the use of HK UASs that seek out and destroy hostile threats. However, with that

comes the problem of how best to assign friendly HKs to incoming hostile UASs. This

work tackled the issue by framing the problem as a Multiple Traveling Salesman Problem

with Moving Targets (MTSPMT), a combinatorial optimization problem and extension of

the classical Traveling Salesman problem. Once framed, the MTSPMT was then solved

using a custom made genetic algorithm, a heuristic technique used to solve for sufficient

but not necessarily optimal results.

A simulation framework was developed using MATLAB to quickly generate in-

sights into HK behavior for multiple friendly vs. multiple hostile engagements. Various

engagement configurations were designed and divided into two tiers based on the number

of participants involved in the engagement. Tier I engagements involved a number of

participants less than or equal to 10 and Tier II involved engagements with the number

91

of participants greater than 10. When applicable, primarily for Tier I engagements, the

results of the GA were compared to that of brute force searching. It was shown that in

almost every instance, especially when the number of participants in an engagement was

greater than 4, the GA was capable of converging to quality solutions significantly faster

than BF was capable of finding the optimal solution. In the case of a single friendly vs.

multiple hostile engagement, the BF searching was shown to possess a factorial increase

in computation time compared to a linear increase with the GA. Additionally, solution

efficiency was calculated where the solutions generated by the GA were compared to the

solutions found using BF.

In all Tier I engagements, when the GA was capable of finding a valid solution,

the GA converged to the optimal solution 100% of the time. When engagement scenarios

became too complex, like those in Tier II, optimal solutions could not be computed and

thus there was no benchmark to compare to when using the GA. Instead, the performance

of the GA could only be compared against itself. In the rare instances where the developed

GA was unable to discover a valid solution, particularly in complex engagement scenarios

where BF searching would be of no value, it was impossible to determine if a solution

actually existed or if the GA was simply underperforming. Future work would include

the development of other heuristic based techniques for ways to compare and understand

the performance of the GA when dealing with complex problems.

This work was only formulated to start the discussion on how best to handle un-

manned systems threats. That being said, there are a multitude of ways the formulated

problem and the GA could be advanced. The following list is a small sample:

92

• Motion/aerodynamic constraints

• Intelligent engagement scenario design

• GA parameter optimization

• Extending the problem formulation to include aspects of other TSP variants

– Neighborhoods

– VRP

– Dubins Constraints

• Advanced fitness function design

– Magazine capacity

– Aircraft endurance & range

– Payload

– Fuel

– Communications range

– Networking limitations

• Layered defense network

The problem formulation in this work is primitive and does not sufficiently repre-

sent real world UAS flight dynamics. Future work should definitely include aerodynamic

and vehicular constraints for the participants. The first step may be to simply add turning

93

constraints like those described for the Dubins TSP in Chapter 2. It is likely for certain

engagements the addition of constraints to the participants would drastically alter assign-

ment and path-planning solutions.

More work could also be done on intelligently designing engagement scenarios.

The few scenarios described in this work were designed to flesh out the behavior and

characteristics of the GA, but there are still many valuable insights that could be garnered

from analyzing unique and additional engagements. For example, a commander may

want to know the ideal speed of friendly HKs to maximize their effectiveness. Though

this was briefly discussed in Chapter 5, a definitive answer to this question was not cal-

culated. With proper engagement scenario design, answers to questions like this may be

discovered.

GA parameter tuning and optimization would also be advantageous to future ex-

perimenters. Analysis on ideal values for initial population and number of generations

could help aid in reducing computation time and increase solution convergence. Addi-

tionally, a comparative analysis on mutation operator performance might arguably be the

most beneficial mechanism in increasing the overall GA performance. With the under-

standing that mutation operators are designed to prevent the algorithm from becoming

trapped at local minimums, certain mutation operators undoubtedly perform better at

maintaining ergodicity. It would be worthwhile to determine which operators fall into

this category. Successive designers could even design their own mutation operators for

specific GA applications.

Subsequent problem formulations could entertain the idea of including aspects of

94

other TSP variants. For instance, TSP problems with neighborhoods (TSPN) as discussed

in Chapter 2 could be used as a method for simulating the range of an on-board weapon.

The problem formulated in this work requires friendly HKs to “intercept” or become

colocated with incoming threats. In real world applications HKs would be able to attack

their targets at defined ranges. Extensions like the TSPN would further the shaping of

more realistic problems.

The fitness function of a GA allows for versatility in the problem design. The

fitness functions used in this work utilized only a single metric like Euclidean distance or

time to compare fitness. Extended problems could include sophisticated combinations for

their fitness functions. The possibilities are limitless. Examples could include an HK’s

magazine size, endurance, range, communications and networking, radar, etc. Further-

more, a fitness function could be designed to incorporate threat space responsibilities as

described in Section 1.2 for layered defense networks.

Ultimately, the work herein was not designed to be a final solution. Instead, the

intention was to build a framework to be used as a stepping stone for the discussion and

development of solutions for more intricate and complex problems. It is the hope of the

author that the work of this thesis provided insight into ideas and strategies that could be

employed against the ever-growing unmanned systems threat.

95

Appendices

96

APPENDIX A

ENGAGEMENT SCENARIO STARTING XY LOCATIONS

Table 11: 1 Blue vs. 1-9 Reds XY Locations

Number of Participating Reds
1 2 3 4 5

x y θ x y θ x y θ x y θ x y θ
Red 1 1000 0 0 1000 0 0 1000 0 0 1000 0 0 1000 0 0
Red 2 - - - -1000 0 180 -500 866.03 120 0 1000 90 309.02 951.06 72
Red 3 - - - - - - -500 -866.03 240 -1000 0 180 -809.02 587.79 144
Red 4 - - - - - - - - - 0 -1000 270 -809.02 -587.79 216
Red 5 - - - - - - - - - - - - 309.02 -951.06 288

6 7 8 9
x y θ x y θ x y θ x y θ

Red 1 1000 0 0 1000 0 0 1000 0 0 1000 0 0
Red 2 500 866.03 60 623.49 781.83 51.43 707.11 707.11 45 766.04 642.78 40
Red 3 -500 866.03 120 -222.52 974.92 102.86 0 1000 90 173.65 984.81 80
Red 4 -1000 0 180 -900.97 433.88 154.29 -707.11 707.11 135 -500 866.03 120
Red 5 -500 -866.03 240 -900.97 -433.88 205.717 -1000 0 180 -939.69 342.02 160
Red 6 500 -866.03 300 -222.52 -974.93 257.14 -707.11 -707.11 225 -939.69 -342.02 200
Red 7 - - - 623.49 -781.83 308.57 0 -1000 270 -500 -866.03 240
Red 8 - - - - - - 707.11 -707.11 315 173.65 -984.81 280
Red 9 - - - - - - - - - 766.04 -642.79 320

Table 12: 2 Blues vs. 6 Reds Starting XY Locations

Participant x y
Blue 1 0 100
Blue 2 0 -100
Red 1 0 1000
Red 2 -100 1000
Red 3 100 1000
Red 4 0 -1000
Red 5 -100 -1000
Red 6 100 -1000

97

Table 13: 20 Blues vs. 30 Reds Blue Starting XY Locations

Participant x y Theta
Blue 1 100 0 0
Blue 2 80.90 58.78 36
Blue 3 30.90 95.11 72
Blue 4 -30.90 95.11 108
Blue 5 -80.90 58.78 144
Blue 6 -100 0.00 180
Blue 7 -80.90 -58.78 216
Blue 8 -30.90 -95.11 252
Blue 9 30.90 -95.11 288
Blue 10 80.90 -58.78 324
Blue 11 500 0 0
Blue 12 404.51 293.89 36
Blue 13 154.51 475.53 72
Blue 14 -154.51 475.53 108
Blue 15 -404.51 293.89 144
Blue 16 -500 0 180
Blue 17 -404.51 -293.89 216
Blue 18 -154.51 -475.53 252
Blue 19 154.51 -475.53 288
Blue 20 404.51 -293.89 324

98

Table 14: 20 Blues vs. 30 Reds Red Starting XY Locations

Participant x y
Red 1 -1715.50 -1340.30
Red 2 -2009.39 390.59
Red 3 2096.46 1162.09
Red 4 -2178.23 -1158.19
Red 5 2580.18 -1095.22
Red 6 776.93 -1922.98
Red 7 -2916.41 566.89
Red 8 -732.46 2733.57
Red 9 2643.69 1122.18
Red 10 2894.00 0
Red 11 -729.19 2003.42
Red 12 372.84 -2652.93
Red 13 -1901.37 -2265.96
Red 14 -378.27 -2691.55
Red 15 1985.01 569.19
Red 16 2814.81 969.22
Red 17 -2380.73 1794.01
Red 18 -2759.46 241.42
Red 19 1319.70 1956.53
Red 20 2794.88 492.81
Red 21 -668.71 2058.09
Red 22 2780.38 243.25
Red 23 -1063.49 -2180.47
Red 24 -1614.88 2066.95
Red 25 1202.32 -2261.23
Red 26 -1790.16 2133.43
Red 27 -534.65 -2750.52
Red 28 -1888.78 -687.46
Red 29 1323.39 1756.20
Red 30 -2549.67 -449.58

99

REFERENCE LIST

[1] Albain, S., “Dubins3,” , 2016. URL https://commons.wikimedia.org/wiki/File:Dubins3.svg.

[2] BBC, “Armenia, Azerbaijan and Russia sign Nagorno-Karabakh peace deal,” BBC News,

2020. URL https://www.bbc.com/news/world-europe-54882564.

[3] AUVSI, “2021 Defense Budget for Unmanned Systems and Robotics,” 2021.

[4] BBC, “Venezuela President Maduro survives ’drone assassination attempt’,” BBC News,

2018. URL https://www.bbc.com/news/world-latin-america-45073385.

[5] TRIPwire, “Syria: Drone Swarm Attacks Russian Military Bases,” TRIPwire, 2018. URL

https://tripwire.dhs.gov/news/209478.

[6] Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, seventh ed.,

McGraw-Hill, New York, NY, USA, 2001.

[7] Schrijver, A., “On the History of Combinatorial Optimization (Till 1960),” Discrete

Optimization, Handbooks in Operations Research and Management Science, Vol. 12, edited

by K. Aardal, G. Nemhauser, and R. Weismantel, Elsevier, 2005, pp. 1–68.

https://doi.org/https://doi.org/10.1016/S0927-0507(05)12001-5, URL

https://www.sciencedirect.com/science/article/pii/S0927050705120015.

[8] Menger, K., “Das Botenproblem,” Ergebnisse eines Mathematischen Kolloquiums, Vol. 2,

No. 4, 1932, pp. 11–12.

[9] Mahalanobis, P. C., “A Sample Survey of the Acreage under Jute in Bengal,” Sankhyā: The

Indian Journal of Statistics (1933-1960), Vol. 4, No. 4, 1940, pp. 511–530. URL

http://www.jstor.org/stable/40383954.

[10] Flood, M. M., “The Traveling-Salesman Problem,” Operations Research, Vol. 4, No. 1,

1956, pp. 61–75. URL http://www.jstor.org/stable/167517.

100

https://commons.wikimedia.org/wiki/File:Dubins3.svg
https://www.bbc.com/news/world-europe-54882564
https://www.bbc.com/news/world-latin-america-45073385
https://tripwire.dhs.gov/news/209478
https://doi.org/https://doi.org/10.1016/S0927-0507(05)12001-5
https://www.sciencedirect.com/science/article/pii/S0927050705120015
http://www.jstor.org/stable/40383954
http://www.jstor.org/stable/167517

[11] Bock, F., “An Algorithm for Solving Travelling-Salesman and Related Network

Optimization Problems,” Operations Research, Vol. 6, INST OPERATIONS RESEARCH

MANAGEMENT SCIENCES 901 ELKRIDGE LANDING RD, STE . . . , 1958, pp.

897–897.

[12] Arkin, E. M., and Hassin, R., “Approximation algorithms for the geometric covering

salesman problem,” Discrete Applied Mathematics, Vol. 55, No. 3, 1994, pp. 197–218.

https://doi.org/https://doi.org/10.1016/0166-218X(94)90008-6, URL

https://www.sciencedirect.com/science/article/pii/0166218X94900086.

[13] Dumitrescu, A., and Mitchell, J. S., “Approximation algorithms for TSP with

neighborhoods in the plane,” Journal of Algorithms, Vol. 48, No. 1, 2003, pp. 135–159.

https://doi.org/https://doi.org/10.1016/S0196-6774(03)00047-6, URL

https://www.sciencedirect.com/science/article/pii/S0196677403000476, twelfth Annual

ACM-SIAM Symposium on Discrete Algorithms.

[14] Savla, K., Frazzoli, E., and Bullo, F., “Traveling Salesperson Problems for the Dubins

Vehicle,” IEEE Transactions on Automatic Control, Vol. 53, No. 6, 2008, pp. 1378–1391.

https://doi.org/10.1109/TAC.2008.925814.

[15] Isaacs, J., Klein, D., and Hespanha, J., “Algorithms for the traveling Salesman Problem with

Neighborhoods involving a dubins vehicle,” 2011, pp. 1704 – 1709.

[16] Owen, M., Beard, R. W., and McLain, T. W., Implementing Dubins Airplane Paths on

Fixed-Wing UAVs*, Springer Netherlands, Dordrecht, 2015, pp. 1677–1701.

[17] Obermeyer, K., “Path Planning for a UAV Performing Reconnaissance of Static Ground

Targets in Terrain,” 2009. https://doi.org/10.2514/6.2009-5888.

[18] Váňa, P., Sláma, J., and Faigl, J., “The Dubins Traveling Salesman Problem with

Neighborhoods in the Three-Dimensional Space,” 2018 IEEE International Conference on

Robotics and Automation (ICRA), 2018, pp. 374–379.

https://doi.org/10.1109/ICRA.2018.8460957.

101

https://doi.org/https://doi.org/10.1016/0166-218X(94)90008-6
https://www.sciencedirect.com/science/article/pii/0166218X94900086
https://doi.org/https://doi.org/10.1016/S0196-6774(03)00047-6
https://www.sciencedirect.com/science/article/pii/S0196677403000476
https://doi.org/10.1109/TAC.2008.925814
https://doi.org/10.2514/6.2009-5888
https://doi.org/10.1109/ICRA.2018.8460957

[19] Cheikhrouhou, O., and Khoufi, I., “A comprehensive survey on the Multiple Traveling

Salesman Problem: Applications, approaches and taxonomy,” Computer Science Review,

Vol. 40, 2021, p. 100369. https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100369,

URL https://www.sciencedirect.com/science/article/pii/S1574013721000095.

[20] Sundar, K., and Rathinam, S., “Algorithms for Heterogeneous, Multiple Depot, Multiple

Unmanned Vehicle Path Planning Problems,” Journal of Intelligent & Robotic Systems,

Vol. 88, No. 2–4, 2016. https://doi.org/10.1007/s10846-016-0458-5.

[21] Murray, C. C., and Chu, A. G., “The flying sidekick traveling salesman problem:

Optimization of drone-assisted parcel delivery,” Transportation Research Part C: Emerging

Technologies, Vol. 54, 2015, pp. 86–109.

https://doi.org/https://doi.org/10.1016/j.trc.2015.03.005, URL

https://www.sciencedirect.com/science/article/pii/S0968090X15000844.

[22] Murray, C. C., and Raj, R., “The multiple flying sidekicks traveling salesman problem:

Parcel delivery with multiple drones,” Transportation Research Part C: Emerging

Technologies, Vol. 110, 2020, pp. 368–398.

https://doi.org/https://doi.org/10.1016/j.trc.2019.11.003, URL

https://www.sciencedirect.com/science/article/pii/S0968090X19302505.

[23] Dell’Amico, M., Montemanni, R., and Novellani, S., “Models and algorithms for the Flying

Sidekick Traveling Salesman Problem,” , 2019.

[24] de Freitas, J. C., and Penna, P. H. V., “A variable neighborhood search for flying sidekick

traveling salesman problem,” International Transactions in Operational Research, Vol. 27,

No. 1, 2020, pp. 267–290. https://doi.org/https://doi.org/10.1111/itor.12671, URL

https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12671.

[25] Dell’Amico, M., Montemanni, R., and Novellani, S., “Drone-assisted deliveries: new

formulations for the flying sidekick traveling salesman problem,” Optimization Letters,

Vol. 15, No. 5, 2019, p. 1617–1648. https://doi.org/10.1007/s11590-019-01492-z, URL

http://dx.doi.org/10.1007/s11590-019-01492-z.

102

https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100369
https://www.sciencedirect.com/science/article/pii/S1574013721000095
https://doi.org/10.1007/s10846-016-0458-5
https://doi.org/https://doi.org/10.1016/j.trc.2015.03.005
https://www.sciencedirect.com/science/article/pii/S0968090X15000844
https://doi.org/https://doi.org/10.1016/j.trc.2019.11.003
https://www.sciencedirect.com/science/article/pii/S0968090X19302505
https://doi.org/https://doi.org/10.1111/itor.12671
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12671
https://doi.org/10.1007/s11590-019-01492-z
http://dx.doi.org/10.1007/s11590-019-01492-z

[26] Ezici, B., Cakmak, E., and Şişman, T., “Clarke & Wright’s Savings Algorithm and Genetic

Algorithms Based Hybrid Approach for Flying Sidekick Traveling Salesman Problem,”

European Journal of Science and Technology, 2019, pp. 185–192.

https://doi.org/10.31590/ejosat.637816.

[27] Roberti, R., and Ruthmair, M., “Exact Methods for the Traveling Salesman Problem with

Drone,” 2019.

[28] Cavani, S., Iori, M., and Roberti, R., “Exact methods for the traveling salesman problem

with multiple drones,” Transportation Research Part C: Emerging Technologies, Vol. 130,

2021, p. 103280. https://doi.org/https://doi.org/10.1016/j.trc.2021.103280, URL

https://www.sciencedirect.com/science/article/pii/S0968090X21002928.

[29] Radmanesh, M., Kumar, M., Nemati, A., and Sarim, M., “Solution of Traveling Salesman

Problem with Hotel Selection in the framework of MILP-tropical optimization,” 2016

American Control Conference (ACC), 2016, pp. 5593–5598.

https://doi.org/10.1109/ACC.2016.7526547.

[30] Király, A., and Abonyi, J., Optimization of Multiple Traveling Salesmen Problem by a

Novel Representation Based Genetic Algorithm, 2011, Vol. 366, pp. 241–269.

https://doi.org/10.1007/978-3-642-21705-0 9.

[31] Kivelevitch, E., “Mdmtspv ga-multiple depot multiple traveling salesmen problem solved

by genetic algorithm,” , 2011. URL

https://www.mathworks.com/matlabcentral/fileexchange/31814-mdmtspv

ga-multiple-depot-multiple-traveling-salesmen-problem-solved-by-genetic-algorithm.

[32] Dantzig, G. B., and Ramser, J. H., “The Truck Dispatching Problem,” Management Science,

Vol. 6, No. 1, 1959, pp. 80–91. https://doi.org/10.1287/mnsc.6.1.80, URL

https://doi.org/10.1287/mnsc.6.1.80.

[33] Clarke, G., and Wright, J. W., “Scheduling of Vehicles from a Central Depot to a Number of

Delivery Points,” Operations Research, Vol. 12, No. 4, 1964, pp. 568–581. URL

http://www.jstor.org/stable/167703.

103

https://doi.org/10.31590/ejosat.637816
https://doi.org/https://doi.org/10.1016/j.trc.2021.103280
https://www.sciencedirect.com/science/article/pii/S0968090X21002928
https://doi.org/10.1109/ACC.2016.7526547
https://doi.org/10.1007/978-3-642-21705-0_9
https://www.mathworks.com/matlabcentral/fileexchange/31814-mdmtspv_ga-multiple-depot-multiple-traveling-salesmen-problem-solved-by-genetic-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/31814-mdmtspv_ga-multiple-depot-multiple-traveling-salesmen-problem-solved-by-genetic-algorithm
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80
http://www.jstor.org/stable/167703

[34] Nanda Kumar, S., and Panneerselvam, R., “A Survey on the Vehicle Routing Problem and

Its Variants,” Intelligent Information Management, Vol. 04, 2012.

https://doi.org/10.4236/iim.2012.43010.

[35] Schrage, L., “Formulation and structure of more complex/realistic routing and scheduling

problems,” Networks, Vol. 11, No. 2, 1981, pp. 229–232.

https://doi.org/https://doi.org/10.1002/net.3230110212, URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110212.

[36] Wang, Y., and Lang, M., “Study on the model and tabu search algorithm for delivery and

pickup vehicle routing problem with time windows,” 2008 IEEE International Conference

on Service Operations and Logistics, and Informatics, Vol. 1, 2008, pp. 1464–1469.

https://doi.org/10.1109/SOLI.2008.4686632.

[37] Zhen, F., “Multi-period vehicle routing problem with recurring dynamic time windows,”

ICSSSM11, 2011, pp. 1–6. https://doi.org/10.1109/ICSSSM.2011.5959442.

[38] Baldacci, R., Hadjiconstantinou, E., and Mingozzi, A., “An Exact Algorithm for the

Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow

Formulation,” Operations Research, Vol. 52, 2004, pp. 723–738.

https://doi.org/10.1287/opre.1040.0111.

[39] Ropke, S., Cordeau, J.-F., and Laporte, G., “Models and branch-and-cut algorithms for

pickup and delivery problems with time windows,” Networks, Vol. 49, No. 4, 2007, pp.

258–272. https://doi.org/https://doi.org/10.1002/net.20177, URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20177.

[40] Nazif, H., and Lee, L. S., “Optimised crossover genetic algorithm for capacitated vehicle

routing problem,” Applied Mathematical Modelling, Vol. 36, No. 5, 2012, pp. 2110–2117.

https://doi.org/https://doi.org/10.1016/j.apm.2011.08.010, URL

https://www.sciencedirect.com/science/article/pii/S0307904X11005105.

[41] Helvig, C., Robins, G., and Zelikovsky, A., “Moving-Target TSP and Related Problems,”

1998, pp. 453–464. https://doi.org/10.1007/3-540-68530-8 38.

104

https://doi.org/10.4236/iim.2012.43010
https://doi.org/https://doi.org/10.1002/net.3230110212
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110212
https://doi.org/10.1109/SOLI.2008.4686632
https://doi.org/10.1109/ICSSSM.2011.5959442
https://doi.org/10.1287/opre.1040.0111
https://doi.org/https://doi.org/10.1002/net.20177
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20177
https://doi.org/https://doi.org/10.1016/j.apm.2011.08.010
https://www.sciencedirect.com/science/article/pii/S0307904X11005105
https://doi.org/10.1007/3-540-68530-8_38

[42] Helvig, C., Robins, G., and Zelikovsky, A., “The moving-target traveling salesman

problem,” Journal of Algorithms, Vol. 49, No. 1, 2003, pp. 153–174.

https://doi.org/https://doi.org/10.1016/S0196-6774(03)00075-0, URL

https://www.sciencedirect.com/science/article/pii/S0196677403000750, 1998 European

Symposium on Algorithms.

[43] Englot, B., Sahai, T., and Cohen, I., “Efficient tracking and pursuit of moving targets by

heuristic solution of the traveling salesman problem,” 52nd IEEE Conference on Decision

and Control, 2013, pp. 3433–3438. https://doi.org/10.1109/CDC.2013.6760409.

[44] Choubey, N., “Moving Target Travelling Salesman Problem using Genetic Algorithm,”

International Journal of Computer Application, Vol. 70, 2013, pp. 975–8887.

https://doi.org/10.5120/11937-7726.

[45] Moraes, R., and Pignaton de Freitas, E., “Experimental Analysis of Heuristic Solutions for

the Moving Target Traveling Salesman Problem Applied to a Moving Targets Monitoring

System,” Expert Systems with Applications, Vol. 136, 2019.

https://doi.org/10.1016/j.eswa.2019.04.023.

[46] Stieber, A., Fügenschuh, A., Epp, M., Knapp, M., and Rothe, H., “The Multiple Traveling

Salesmen Problem with Moving Targets,” Optimization Letters, Vol. 9, 2014, pp.

1569–1583. https://doi.org/10.1007/s11590-014-0835-6.

[47] Fügenschuh, A., and Stieber, A., “Dealing with Time in the Multiple Traveling Salesmen

Problem with Moving Targets,” 2019. https://doi.org/10.26127/btuopen-4824.

[48] Uçar, U., and Isleyen, S. K., “A Meta-Heuristic Solution Approach for the Destruction of

Moving Targets through Air Operations,” International Journal of Industrial Engineering:

Theory, Applications, and Practice, Vol. 26, No. 6, 2020.

https://doi.org/10.23055/ijietap.2019.26.6.4266, URL

https://journals.sfu.ca/ijietap/index.php/ijie/article/view/4266.

[49] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA,

USA, 1992.

105

https://doi.org/https://doi.org/10.1016/S0196-6774(03)00075-0
https://www.sciencedirect.com/science/article/pii/S0196677403000750
https://doi.org/10.1109/CDC.2013.6760409
https://doi.org/10.5120/11937-7726
https://doi.org/10.1016/j.eswa.2019.04.023
https://doi.org/10.1007/s11590-014-0835-6
https://doi.org/10.26127/btuopen-4824
https://doi.org/10.23055/ijietap.2019.26.6.4266
https://journals.sfu.ca/ijietap/index.php/ijie/article/view/4266

[50] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 1st

ed., Addison-Wesley Longman Publishing Co., Inc., USA, 1989.

[51] Al-Omeer, M. A., and Ahmed, Z. H., “Comparative study of crossover operators for the

MTSP,” 2019 International Conference on Computer and Information Sciences (ICCIS),

2019, pp. 1–6. https://doi.org/10.1109/ICCISci.2019.8716483.

[52] Bolaños, R., Granada-Echeverri, M., and Escobar, J., “A multiobjective non-dominated

sorting genetic algorithm (NSGA-II) for the Multiple Traveling Salesman Problem,”

Decision Science Letters, Vol. 4, 2015. https://doi.org/10.5267/j.dsl.2015.5.003.

[53] Zhou, W., Song, T., He, F., and Liu, X., “Multiobjective Vehicle Routing Problem with

Route Balance Based on Genetic Algorithm,” Discrete Dynamics in Nature and Society,

Vol. 2013, 2013, p. 325686. https://doi.org/10.1155/2013/325686, URL

https://doi.org/10.1155/2013/325686, publisher: Hindawi Publishing Corporation.

[54] Kurnia, H., Wahyuni, E., Pembrani, E., Gardini, S., and Aditya, S., “Vehicle Routing

Problem Using Genetic Algorithm with Multi Compartment on Vegetable Distribution,”

IOP Conference Series: Materials Science and Engineering, Vol. 325, 2018, p. 012012.

https://doi.org/10.1088/1757-899X/325/1/012012.

[55] Pereira, F. B., Tavares, J., Machado, P., and Costa, E., “GVR: A New Genetic

Representation for the Vehicle Routing Problem,” Artificial Intelligence and Cognitive

Science, edited by M. O’Neill, R. F. E. Sutcliffe, C. Ryan, M. Eaton, and N. J. L. Griffith,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 95–102.

[56] Zhang, T., Gruver, W., and Smith, M., “Team scheduling by genetic search,” Proceedings of

the Second International Conference on Intelligent Processing and Manufacturing of

Materials. IPMM’99 (Cat. No.99EX296), Vol. 2, 1999, pp. 839–844 vol.2.

https://doi.org/10.1109/IPMM.1999.791495.

[57] Carter, A. E., and Ragsdale, C. T., “A new approach to solving the multiple traveling

salesperson problem using genetic algorithms,” European Journal of Operational Research,

Vol. 175, No. 1, 2006, pp. 246–257.

106

https://doi.org/10.1109/ICCISci.2019.8716483
https://doi.org/10.5267/j.dsl.2015.5.003
https://doi.org/10.1155/2013/325686
https://doi.org/10.1155/2013/325686
https://doi.org/10.1088/1757-899X/325/1/012012
https://doi.org/10.1109/IPMM.1999.791495

https://doi.org/https://doi.org/10.1016/j.ejor.2005.04.027, URL

https://www.sciencedirect.com/science/article/pii/S0377221705004236.

107

https://doi.org/https://doi.org/10.1016/j.ejor.2005.04.027
https://www.sciencedirect.com/science/article/pii/S0377221705004236

VITA

Cody Dakoi Smith was born on Jan 5, 1991, in Independence, Missouri. He at-

tended Grain Valley High School in Grain Valley Missouri for his Freshman and Sopho-

more years. He later transferred to the Missouri Academy of Science, Mathematics, and

Computing in Maryville, Missouri where he graduated in 2009 with his high school

diploma and an associate degree. After graduation he enlisted in the United States Air

Force and served as a Crew Chief on the B-52 Stratofortress for the 2nd Bomb Wing lo-

cated at Barksdale AFB, Louisiana. In 2020, he graduated from the University of Missouri

- Kansas City with a Bachelor’s of Science degree in Mechanical Engineering. During his

tenure at the University of Missouri - Kansas City, he worked as an undergraduate and

graduate research assistant under Dr. Travis Fields in the Parachute and Aerial Vehicle

Systems Laboratory. His research focused primarily on directed energy based counter-

unmanned aerial systems technologies.

	ABSTRACT
	ILLUSTRATIONS
	TABLES
	ACKNOWLEDGEMENTS
	INTRODUCTION
	The Age of Automation
	A Brief Analysis of Weapon Assignment and Threat Spaces
	The Altitude Problem

	LITERATURE REVIEW
	The Traveling Salesman Problem and its Variations
	A Note on Open vs. Closed Problems
	The Traveling Salesman Problem with Neighborhoods
	The Multiple Traveling Salesman Problem
	The Vehicle Routing Problem
	The Moving Target Traveling Salesman Problem
	Conventional Assignment Techniques

	The Genetic Algorithm

	Problem Formulation and Model Design
	Test
	A Note on Permutations

	Methodology
	Genetic Algorithm Overview
	Genetic Algorithm Terminology
	Initialization
	Solution Representation
	Fitness Evaluation
	Interception Methodology

	Selection
	Crossover and Mutation
	Crossover
	Mutation

	Termination

	Results and Discussion
	Overview
	Tier I Engagements
	1 Blue vs. 1:9 Reds
	2 Blues vs. 6 Reds

	Tier II Engagements
	20 Blues vs. 30 Reds

	Conclusion
	Appendices
	Engagement Scenario Starting XY Locations
	REFERENCE LIST
	VITA

