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Abstract

Noise driven escape from the potential well is the basic component of various noise induced effects.
The efficiency of the escape process or time scales matching is responsible for occurrence of the
stochastic resonance and (stochastic) resonant activation. Here, we are extending the discussion on
how the structure of the potential can be used to optimize the mean first passage time. It is
demonstrated that corrugation of the potential can be beneficial under action of the weak Gaussian
white noise. Furthermore, we show that the noise tuning can be more effective than shaping the
potential. Therefore, action of the tuned additive a-stable noise can accelerate the escape kinetics
more than corrugation of the potential. Finally, we demonstrate that mean first passage time from a
potential well can be a non-monotonous function of the stability index a.

1. Introduction

Stochastic resonant activation [1, 2] and stochastic resonance [3—5] changed our perception of noise [4]. These
two seminal effects have indicated that efficiency of some processes depends on noise—optimal dose of noise
can significantly increase system efficiency, as measured by mean first passage time, or input output
synchronization. These effects play an important role not only as theoretical concepts but also in real life
situations and biological realms [6-8].

In the overdamped regime, without a noise, a particle cannot surmount the potential barrier. Therefore, the
escape from the potential well is possible due to the action of noise only. The mean first passage time is one of the
main quantities which characterizes escape kinetics. The escape from the potential well [9, 10] underlines
various noise induced effects. In (stochastic) resonant activation [ 1] a modulation of the potential barrier is used
to minimize the mean first passage time, while in the stochastic resonance [3, 4] the noise is used to amplify weak
signal by fine-tuning time scales associated with the noise driven escape and external modulation. Analogously,
in ratchets [11], the motion in periodic potential, assumes multiple escapes from sequence of periodic potential
wells.

The noise driven dynamics in the static potentials is sensitive to the shape and structure of the potential
[12—14]. Inratchets [15, 16], it has been demonstrated that the corrugated structure of the potential can increase
the efficiency of the ratcheting devices [17, 18]. It indicates that the mean first passage time depends not only on
the potential shape but also on its internal structure [19]. Superimposed corrugation [20] on the potential profile
can be used to modify the escape rate.

Typically it is assumed that the noise is Gaussian and white [21], which is the natural consequence of the large
number of statistically independent interactions of a test particle with other molecules which are bounded in
time. Nevertheless, various non-Gaussian and non-white extensions have been suggested [22, 23]. One can
assume that noise is still white but follow a more general power-law, heavy-tailed distributions, often of the a-
stable Lévy type [24, 25, 23], what resembles the transition from the central limit theorem to the generalized
central limit theorem [26, 27]. The white Lévy noise naturally appears in descriptions of out-of-equilibrium
systems. It breaks the microscopic reversibility [28] and changes properties of stationary states of systems
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compared to their equilibrium counterparts [29, 30]. Classical examples of systems displaying heavy-tailed
fluctuations of the a-stable type includes, but are not limited to, turbulent fluid flows [31-34], magnetized
plasmas [35, 36], optical lattices [37], heartbeat dynamics [38], neural networks [39], search on a folding
polymers [40], animal movement [41], climate dynamics [42], financial time series [43], spreading of diseases
and dispersal of banknotes [44]. a-stable variables are also used in financial markets [45], portfolio optimization
[46] and neuroscience [47, 48].

Here, we explore how the corrugation of the potential, modeled as superimposed oscillations [20], affect the
mean first passage time from an interval restricted by two absorbing boundaries. In particular, we compare the
gain due to corrugation of the potential with yield due to noise tuning as we relax the assumption that the motion
is driven by the Gaussian white noise. The more general noise of the a-stable type [23] can be used to modify the
mean first passage time from a potential well. The model under study is described and analyzed in the next
section (section 2 Model and Results). The manuscript is closed with Summary and Conclusions (section 3).

2.Model and Results
The (overdamped) Langevin equation [49-51]

dx

== V() + o), @

dt
is used as an efficient tool to describe stochastic dynamics. In equation (1), x(¢) represents the particle position,
—V'/(x) stands for the deterministic force while £(¢) represents the random forces modeled here by the zero
mean and delta correlated Gaussian white noise

(@) =0 and  (£(1)E() = 6@ — 9). 2

The overdamped Langevin equation is the strong friction limit of the full (underdamped) Langevin equation
[52, 53], which is obtained via the adiabatic elimination of the fast variables [21]. The problem of dimensionality
of the (overdamped) Langevin equation is discussed in the appendix. Examination of the Langevin equation
underlines studies on noise induced effects like (stochastic) resonant activation [ 1], stochastic resonance [3, 4],
noise enhanced stability [54] to name a few.

In the overdamped regime, in the absence of stochastic force the system is fully determined by the
deterministic force. The observed dynamics is especially simple—if there are local minima of the potential—a
particle deterministically slides towards one of them or moves towards infinity. After reaching alocal minimum
it stands there forever. The situation drastically changes in the presence of noise. Action of noise can result in a
noise induced escape. Now, minima of the potential are not absolutely stable—deeper minima are more stable
because it is harder to leave them. Under action of the Gaussian white noise, the mean time to escape from the
potential well grows exponentially with the barrier height.

We study the problem of the first escape from the finite interval under combined action of the deterministic
and random forces. The first escape is characterized by the mean first passage time (MFPT) which is the average
of first passage times, i.e. times needed to leave the domain of motion €2 for the first time

T = (tp) = (min{t: x(0) = xo A x(t) € Q}), 3)

where x, is the initial position (x, € §2). For example, for escape from the interval [a, b] restricted by two
absorbing boundaries the mean first passage time reads [21]

2 x dy b _dyt 9@
Tal) = f”y[(fa wm]fx e
a V()

b dy xdyl oy (2)
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(f" ¢(y))f“ w(y’)f“ 2 Zl “

g

where x is the initial position (a < x < b)and 1 (x) = exp(—2V (x) /o?). Considering symmetries, under action
of the Gaussian white noise, for x = 0,a = — band even V(x), i.e. V(x) = V(— x), the escape from the interval
restricted by two absorbing boundaries is equivalent to the escape from the interval restricted by reflecting
boundary at a = 0 and the absorbing boundary at b (b > 0). In such a case the MFPT reads

g
Tn(x = 0) = 2 j; W};) Oy %dz. )

The MFPT is fully determined by barrier type, barrier position, starting point and the potential, see equations (4)
and (5).
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Figure 1. The corrugated potential V,(x), see equation (6), for various values of the control (corrugation) parameter k (top panel—
(a)), obtained values of the MFPT (bottom panel—(b)). Solid line in the bottom panel shows the theoretical value of the MFPT, see
equation (4). Absorbing boundaries are located at £1, while the scale parameter o is set to unity. Numerical results, see equations (3)
and (11) have been averaged over 10° realizations. Various points correspond to different values of the integration time step At. Error
bars represent the standard deviation of the mean.

Here we assume that the potential well is not fully smooth, but it has the internal structure in the form of
superimposed oscillations. The potential V(x) is corrugated, i.e. on the dominating x*/2 profile ripples are
added. For that purpose we use

x?  sin(kx?)
Vi) = X2 4 Sl .
1(x) > + 5 ©
and
2 . 2 e
Va(x) = % 4 SinCex )izp( 5x%) o

For both potentials k is the parameter controlling the corrugation level. For k = 0, V(x) and V,(x) reduce to the
harmonic potential V(x) = x°/2. Exemplary potentials V;(x) and V,(x) corresponding to various values of the
corrugation parameter k are presented in top panels of figures 1 and 2. Potentials V;(x) and V,(x) differ by the
corrugation type. For V(x) corrugations are undamped, i.e. superimposed oscillations are of the same order,
while for V;(x) they are exponentially damped with the increasing distance from the origin, c.f.,, figures 1(a) and
2(a). For setups studied in figures 1 and 2 absorbing boundaries are located at +1, while the scale parameter o is
settoo=1.

From equation (4) one can calculate the MFPT from [—1, 1] for the noise driven motion in the deterministic
potential V(x) and V,(x). Theoretical dependence of the MFPT is plotted with the solid line in bottom panels of
figures 1 (V1(x)) and 2 (V,(x)). For V(x), as a function of the corrugation parameter k, the MFPT displays
multiple local minima and maxima as its shape resembles damped oscillations. These multiple minima could be
attributed to the corrugation induced locking, in a manner similar to emergence of non-equilibrium stationary
states [55]. For V5(x) the MFPT is a non-monotonous function of k with a minimum at k ~ 18.2. Theoretical
dependence of MFPT clearly demonstrates that the corrugation parameter k can be used to optimize the process
of the first escape. The internal structure of the potential builds steps/micro-wells like structure which
simultaneously helps climbing up the potential and weakens the deterministic sliding [ 17]. Now, instead of
sliding to the global minimum (x = 0) a particle slides to the nearest local minimum, which can be left due to the
action of the noise only. Therefore, for the motion in the corrugated potential, it is harder to lose reached
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Figure 2. The same as in figure 1 for the V,(x) potential, see equation (7).

‘height’. Figures 1(b) and 2(b) indicate that the corrugation of the potential can be used for optimization of the
first escape process. Therefore, among considered values of the parameter k controlling the level of corrugation
there are such values which result in the fastest escape process as measured by the MFPT. For V;(x) extrema of
MFPT (starting with the maximum) are approximately recorded at k € {1.92,5.99,9.22,12.39, 15.6, 18.72,
21.93,25.1,28.21}. Interestingly for V;(x) with k > 5 extrema of MFPTs are recorded at k values that do not
change the height of the potential barrier measured at the absorbing boundary (x = 1),i.e. Vi(x)|x=1 = %
Therefore, decrease or increase of the MFPT (except k & 1.92 case) cannot be attributed to lowering or
increasing the potential barrier. Moreover, exploration of V(x) has revealed that minima of the MFPT are
recorded when the last bending is convex. At the same time maxima are recorded when the last bending is
concave. When the final bending is convex it builds a step which allows for additional accumulation of the
probability mass closer to the absorbing boundary. Contrary to V;(x), exploration of the first escape process
from V,(x) indicates a different source of optimization as the damping term exp(—5x2) makes final parts of the
potential well practically k independent. Therefore, the problem of optimization of the escape kinetics calls for
further studies.

In figures 1(b) and 2(b) in addition to theoretical values of the MFPT 7y, see equation (4), results of
computer simulations are presented. In order to estimate first passage time we simulate the Langevin
equation (1) using the Euler-Maruyama scheme (11) until absorption at the absorbing boundaries located at
x == b=+ 1. From the ensemble of estimated first passage times we calculate the mean first passage time and
its error (standard deviation of the mean). Points in figures 1(b) and 2(b) represent results of computer
simulations with varying the integration time step At € {10~*,107,10~°} and averaged over 10° realizations,
but we have also verified that averaging over 10 realizations produces statistically same results.

For o = 1, results corresponding to At = 10~ * reconstruct the dependence of the MFPT, but the level of
agreement is not very good. Decrease in the integration time step improves the level of agreement and makes it
sufficient. Nevertheless, the problem is hard to tackle numerically. Subsequent figure 3 shows the ratio between
numerically obtained and theoretical results, namely

x 100 [%], (8

‘ T _,
T
for both potentials V(x) (top panel) and V,(x) (bottom panel). From figure 3 it is clearly visible that already for
At = 10""*the relative errors are smaller than 2.5%. The decrease of the integration time step decreases the
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Figure 3. The ratio between theoretical 7y, and numerically approximated MFPTs 7 for V,(x) (top panel—(a)) and V;(x) (bottom
panel—(b)) as a function of k, see figures 1 and 2. Various curves depict results with different integration time steps At. Results have
been averaged over 10 realizations.

relative errors well below 1%. Moreover, for At = 10~° the relative errors are slightly smaller than for

At =10"". The problem of reconstruction of theoretical results by methods of stochastic dynamics originates in
the fact that minima of MFPT, as a function of the corrugation parameter k, are very shallow. Exact values of the
MEPT can be calculated by use of equations (4) and (5). For instance, for V/(x), the minimal MFPT, i.e.

ming {7y}, is smaller than the MFPT for the non corrugated potential, i.e. 7y,(k = 0), by 1.8%, while for V,(x) it
is 3.1%, but this time the minimum is not very well localized and separated from MFPTs at large k values. For
that reason, the very high precision of simulations is required. In order to increase accuracy it is necessary to
decrease the time step of integration and increase the number of repetitions. However, within the used class of
potentials, the decrease in MFPT due to the structure of the potential is minimal. Nevertheless, one can play with
the model parameters. For instance, for the same potentials decrease of o from 1 to 0.5 results in a stronger effect,
i.e. due to potential roughening MFPT can be reduced by 11.8% for V;(x) and by 15.1% for V,(x) what can be
verified by numeric evaluation of the integral (5). Smaller acceleration is observed for the potential V;(x),
because superimposed oscillations are undamped and they produce deeper local minima of the potential, which
are harder to escape from. Contrary to the potential V(x) for V,(x) corrugations are damped and consequently
local minima are shallower. They still act as steps but now these steps do not introduce (strong) additional
trapping like for V;(x) On the one hand, numerical evaluation of equation (5) gives trustworthy results and can
be used to assess the role of potential roughening on the optimization of the escape kinetics under action of the
Gaussian white noise. On the other hand, we are interested in verifying if a change of the driving noise type can
be more beneficial than shaping of the potential. Therefore, in the next step we exchange the Gaussian white
noise in equation (1) by the symmetric a-stable noise [23] to check if noise tuning can be more beneficial than
corrugation of the potential. Trajectories of overdamped processes driven by -stable noises are discontinuous
[24, 27]. A particle driven by Lévy noise does not need to hit the boundary but it can jump over it [56]. The
possibility of not visiting intermediate points due to long jumps makes the escape scenario different than for the
Gaussian white noise driving [57-59], which is going to be explored in more details in the further part of the
manuscript. Contrary to the Gaussian driving, under Lévy noise the barrier width is more important than its
height [57-59].

The a-stable noise is a generalization of the Gaussian white noise to the nonequilibrium realms [24], where
heavy tailed fluctuations are abundant [42, 60—65]. The noise produces independent increments which follow a
heavy-tailed a-stable density [24, 27]. The symmetric a-stable noise is the formal time derivative of the
symmetric a-stable process L(t), see [23, 24]. Increments, AL = L(t + At) — L(t), of the symmetric a-stable
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process L(#) are stationary, independent and identically distributed according to the a--stable density. Symmetric
«-stable distributions are defined by the characteristic function [24, 27]

p(k) = (™) = exp[—aglkl* /2], (€)

where o) is the scale parameter. Without loss of generality, within the manuscript we use o, = 1, because the
scale parameter o can be incorporated into the fluctuation strength o in equation (1). The characteristic
function (9) is a slightly modified [26, 66] standard form of the characteristic function of a-stable densities. Such
an amendment assures that for = 2 the Gaussian white noise with (£()&(s)) = 8(¢ — s) is recovered, see
equation (1). Therefore, for o = 2, the characteristic function of a-stable densities, see equation (9), reduces to
the characteristic function of the normal distribution N (0, 03) = N (0, 1).

Increments AL are distributed according to the unimodal probability density with the characteristic
function (e*A) = exp [—Ato§|k|* /2]. The stability index o (0 < « < 2) controls the asymptotics of the
distribution, which for a < 2 is of power-law type p(x) o |x] ~(@+D The scale parameter o (0 > 0) determines
the width of the distribution, which can be defined by an interquantile width or by fractional moments, i.e. {|x|")
with v < a, because the variance of a-stable variables with o < 2 diverges. The scale parameter o, in equation (9)
and fluctuation strength o in equation (1) play the same role. More precisely, setups { oy = 0,0 = 1} and
{oo = 1,0 = o} are equivalent. Consequently, without loss of generality, o can be set to unity and the width of
thea-stable distribution is controlled by the strength of fluctuations o. From general theory, it implies that an «-
stable process L(f) can be decomposed [67-69] into a compound Poisson process that describes long jumps and
the Wiener part responsible for small displacements. Possibility of long jumps makes the MFPT more dependent
on the barrier width [57-59] than its height [21], which is the main factor determining the MFPT under
Gaussian white noise driving.

Trajectories of processes driven by a-stable noise are no longer continuous [24]. Therefore, systems driven
by such a noise do not display the property present for Gaussian white noise allowing for transformation of
equation (4) into equation (5), i.e. absorbing-absorbing setup cannot be replaced by the reflecting-absorbing
one. Moreover, analytical results for systems driven by Lévy noise are very limited. The general formula for the
escape of a free particle from [—L, L] interval reads [70-74]

1 (LZ _ x2)a/2
L1+ a) (o/J2)

The +/2 factor in the denominator comes from the used form of the characteristic function, see equation (9). For
x = 0, the MFPT reduces to 7(0) = [L/(0/~/2)]*/T'(1 + «). The scaling of the MFPT on the scale parameter &
and the interval width can be deducted from arithmetic properties of a-stable distributions [75]. In more general
cases than escape from a finite interval some scaling [76] or weak noise limits [77, 78] are known. Therefore, we
continue studies on the MFPT, see equation (3), numerically. The Langevin equation, see equation (1), is
approximated by the (stochastic) Euler—Maruyama method [79, 80]

x(t + A = x(t) — V')At 4+ o Art/og! (11)

T(x) = (10)

In equation (11) !, represents the sequence of independent identically distributed a-stable random variables
which can be generated using well-known algorithms [81-83]. The Gaussian white noise is recovered for a = 2,
see [27], and the Euler-Maruyama scheme attains the standard form [84]. Figure 4 presents results for the MFPT
under action of a-stable noise for a particle moving in V;(x) (top panel) and V,(x) (bottom panel) as a function
of the corrugation parameter k. Various curves correspond to different values of the stability index o (o € {0.5,
0.75,1,1.25,1.5,1.75,2.0}). The scale parameter o is set to o = 1. In addition to o = 2, for V(x) with « € {0.75,
1, 1.25}, the weak periodicity of MFPT is visible, see figure 4(a). Actually, for o = 0.75 local minima of MFPT are
(relatively) deeper than for the Gaussian white noise. Importantly, the MFPT is more sensitive to the value of the
stability index a than to the structure of the potential as the curves corresponding to various values of the
stability index o are spread along the figures, c.f., figure 4.

For the escape of a Lévy noise driven free particle from a finite interval [70, 7274, 85] the MFPT can be a
non-monotonous function of the stability index o, see [86]. Therefore, one can expect a similar behavior for a
particle moving in a deterministic potential, see figure 5. Due to the action of the deterministic, restoring force,
recorded values of the MFPT are significantly larger than for a free particle. For studied setups, the MFPT is a
non-monotonous function of the stability index . Therefore, it is possible to find such o which minimizes
MEFPT. In the models under study it is & = 2 (Gaussian white noise) and « = 0.5 (heavy tailed, non-equilibrium
noise). Maximal values of MFPT, for both setups V;(x) and V,(x), are recorded for o &~ 1.25. Figure 5 clearly
indicates that it can be more beneficial to optimize the a-stable noise type («) than the potential structure (k).
Accidentally, the Gaussian white noise, which we started with, resulted in the minimal MFPT. Figure 5 confirms
that variability in the MFPT due to change of « is significantly larger than the spread due to the corrugation
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Figure 4. MFPT for V;(x) (top panel—(a)) and V,(x) (bottom panel—(b)) as a function of the corrugation parameter k. Various curves
correspond to different c-stable noises, see equation (9). Results have been constructed numerically, see equations (3) and (11), with
At = 10~%and averaged over 10° realizations.

parameter k. Moreover, except o = 2 case, recorded MFPT do not differ between both setups V;(x) and V,(x)
significantly, see figures 5(a) and (b).

Using formula (10) it can be demonstrated that for a free particle the MFPT can be not only a non-
monotonous function of the stability index o, see [86], but it can change its monotonicity depending on o.
Therefore, finally, we have repeated some of the simulations with other values of o in order to see differences and
similarities between escape kinetics from finite intervals and the potential well. The case of ov = 2 can be studied
with use of equation (5), while « < 2 needs to be analyzed numerically. Not surprisingly, the inspection of
equation (5) shows that for the Gaussian white noise with decreasing o corrugation plays an increasing role.
Nevertheless, changes in the recorded values of the MFPT caused by the noise type dominate over amendments
produced by the potential roughening. Furthermore, as for o = 1 results for V;(x) and V,(x) are very similar, we
present additional results, see figure 6, for V1 (x) only, see figure 1. Despite the fact that decrease in o can make
MEFPT more sensitive to corrugation optimization, in the studied cases we have observed larger spread of MFPT
values due to noise type, than corrugation strength, see figure 6. Figure 6 presents mean first passage time 7 asa
function of the stability index av. Various points correspond to different values of the corrugation parameter k.
Various panels (a)—( f) display results for different values of the scale parameter o (o € {0.5, 1, /2, 2, 4, 16}).
Additional solid lines in each panel depict the mean first passage time of a free particle from a finite interval, see
equation (10). Spread of results with a fixed value of the stability index « is produced by the corrugation of the
potential, which is particularly well visible for & = 2 and small 7, e.g. o = 0.5. Especially at low values of 7,
corrugation of the potential can be used for fine-tuning of escape kinetics, but a more important role is played by
the adjustment of the noise type, i.e. the exponent cv. The change in ¢ not only changes recorded values, but also
modifies monotonicity of 7(«) in an analogous way like for the escape of a free particle from a finite interval, see
[86]. In the large o limit, e.g. o € {4, 16}, a particle practically does not feel the deterministic force and the MFPT
approaches the MFPT of a free particle from a finite interval, see equation (10). For moderate and small o, escape
from the potential well is visibly slower than escape from a finite interval. These results are not only coherent with
studies on the escape from a finite interval but also on the escape from a potential well [76], indicating that the
escape kinetics is affected by the scale parameter o.
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Figure 5. MFPT for V;(x) (top panel—(a)) and V(x) (bottom panel—(b)) as a function of the stability index . Various curves
correspond to different corrugations of the potential. Results have been constructed numerically, see equations (3) and (11), with
At = 10®and averaged over 10° realizations.

3. Summary and conclusions

The mean first passage time is an important quantifier characterizing efficiency of the noise driven dynamics.
MFPT can be optimized in numerous ways, like shaping of the potential and noise tuning. Here, we have
demonstrated that the internal structure of the potential produced by the additional corrugation superimposed
on the potential profile can be used to decrease the MFPT. Nevertheless, the decrease in the MFPT does not need
to be significant. It turned out that tuning of the a-stable noise can be more beneficial than corrugation of the
potential. The type of the optimal noise is sensitive to the noise strength measured by the scale parameter o. For
small o fastest escape is recorded at lowest values of the stability index «, while for large o, Gaussian white noise
produces the fastest escape. There is also an intermediate range, with minima recorded at small and ov = 2
drivings. Finally, we have verified that for strong noise (large o) the escape kinetics approaches the one of a free
particle from a finite interval.
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Appendix. Units in the Langevin equation

Units in the Langevin equation can be established from general physical principles [21, 52] like equipartition
theorem or from probabilistic considerations. Both approaches are fully coherent. We start with the use of the
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Figure 6. Dependence of the mean first passage time 7~ on the stability index av. Various points correspond to different values
of the corrugation parameter k, while various panels (a)—( f) represent different values of the scale parameter &
(o € {0.5, 1, v/2, 2, 4, 16}). The solid lines show the MFPT from the finite interval, see equation (10).

following (overdamped) Langevin equation [50]

2(1) = % + ot (1), (A1)

where: x—is a position of the particle, 7—stands for a friction coefficient, c—represents strength of the noise and £
(t)—is the a-stable, Lévy type white noise characterized by the stability index o (o € (0, 2]). The force f(x) acting on
aparticle is determined by the external potential, f (x) = — dV(x)/dx. Corresponding units in equation (A.1) are:
[x] = [length], [y] = [mass]/[time], [ f (x)] = [V'(x)] = [mass] x [length]/[time]* = [force], [V(x)] =
[force] x [length] = [energy], [0] = [length]/ [time]"/® and Em1=1/ [time]' "/, Stability index v is dimension-
less. In the asymptotic limit of v = 2 the Lévy white noise is equivalent to the Gaussian white noise and it has
standards units, i.e. [§,_,()] =1 / 4/ [time] . Moreover, in an alternative approach, the strength of fluctuation &
can be transformed into the diffusion constant D o< o %, see [25, 76, 87]. For o« = 2, the diffusion constant is related
to the system temperature and friction D = kgT/~y by the Einstein-Smoluchowski-Sutherland relation. For a free
particle (with & = 2) ([x(f) — x(0)]*()) = 2Dt. For @ < 2, the friction and the strength of fluctuations are two
independent parameters. Furthermore, the mean square displacement diverges. The MFPT given by equation (10)
is measured in units of time. Finally, the Langevin equation (1) is obtained from equation (A.1) by setting v = 1.
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