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Abstract. The rapid development of histopathology scanners allowed
the digital transformation of pathology. Current devices fastly and accu-
rately digitize histology slides on many magnifications, resulting in whole
slide images (WSI). However, direct application of supervised deep learn-
ing methods to WSI highest magnification is impossible due to hardware
limitations. That is why WSI classification is usually analyzed using stan-
dard Multiple Instance Learning (MIL) approaches, that do not explain
their predictions, which is crucial for medical applications. In this work,
we fill this gap by introducing ProtoMIL, a novel self-explainable MIL
method inspired by the case-based reasoning process that operates on
visual prototypes. Thanks to incorporating prototypical features into
objects description, ProtoMIL unprecedentedly joins the model accu-
racy and fine-grained interpretability, as confirmed by the experiments
conducted on five recognized whole-slide image datasets.

Keywords: Multiple instance learning · Digital pathology ·
Interpretable deep learning

1 Introduction

A typical supervised learning scenario assumes that each data point has a sepa-
rate label. However, in Whole Slide Image (WSI) classification, only one label is
usually assigned to a gigapixel image due to the laborious and expensive label-
ing. Because of the hardware limitations, the direct application of supervised
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Fig. 1. ProtoMIL divides the whole slide image into patches and analyzes their simi-
larity to the reference prototypical parts that describe the given data class. As a result,
it can provide a visual explanation of its prediction. One can observe that ProtoMIL
identifies the most important patches with attention weights, that can appear both
inside and outside a cancer region (marked as green and blue areas, respectively).
Moreover, these patches are described by cancer or healthy tissue prototypes (corre-
sponding to patches in green and red frames, respectively), showing their resemblance
to the training examples. (Color figure online)

deep learning methods to WSI two highest magnification is impossible. That is
why recent approaches [24] divide the WSI into smaller patches (instances) and
process them separately to obtain their representations. Such representations
form a bag of instances associated with only one label, and it is unspecified
which instances are responsible for this label [15]. This kind of problem, called
Multiple Instance Learning (MIL) [12], appears in many medical problems, such
as the diabetic retinopathy screening [30,31], bacteria clones identification using
microscopy images [7], or identifying conformers responsible for molecule activity
in drug design [42,47].

In recent years, with the rapid development of deep learning, MIL is com-
bined with many neural network-based models [14,20,24,27,34,38,39,43–45].
Many of them embed all instances of the bag using a convolutional block of a
deep network and then aggregate those embeddings. Moreover, some aggrega-
tion methods specify the most important instances that are presented to the
user as prediction interpretation [20,24,27,34,39]. However, those methods usu-
ally only exhibit instances crucial for the prediction and do not indicate the
cause of their importance. Naturally, there were attempts to further explain the
MIL models [6,7,25], but overall, they usually introduce additional bias into the
explanation [33] or require additional input [25].

To address the above shortcomings of MIL models, we introduce Prototyp-
ical Multiple Instance Learning (ProtoMIL). It builds on case-based reasoning,
a type of explanation naturally used by humans to describe their thinking pro-
cess [23]. More precisely, we divide each WSI into patches and analyze how
similar they are to a trainable set prototypical parts of positive and negative
data classes, as defined in [8]. Since, the prototypes are trainable, they are auto-
matically derived by ProtoMIL. Then, we apply an attention pooling operator
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to accumulate those similarities over instances. As a result, we obtain bag-level
representation classified with an additional neural layer. This approach signifi-
cantly differs from non-MIL approaches because it applies an aggregation layer
and introduces a novel regularization technique that encourages the model to
derive prototypes from the instances responsible for the positive label of a bag.
The latter is a challenging problem because those instances are concealed and
underrepresented. Lastly, the prototypical parts are pruned to characterize the
data classes compactly. This results in detailed interpretation, where the most
important patches according to attention weights are described using prototypes,
as shown in Fig. 1.

To show the effectiveness of our model, we conduct experiments on five WSI
datasets: Bisque Breast Cancer [16], Colon Cancer [41], Camelyon16 Breast Can-
cer [13], Lung cancer subtype identification TCGA-NSCLC [5] and Kidney can-
cer subtype classification [2]. Additionally, in the Supplementary Materials, we
show the universal character of our model in different scenarios such as MNIST
Bags [20] and Retinopathy Screening (Messidor dataset) [11]. The results we
obtain are usually on par with the current state-of-the-art models. However, at
the same time, we strongly enhance interpretation capabilities with prototypical
parts obtained from the training set. We made our code publicly available at
https://github.com/apardyl/ProtoMIL.

The main contributions of this work are as follows:

– Introducing the ProtoMIL method, which substantially improves the inter-
pretability of existing MIL models by introducing case-based reasoning.

– Developing a training paradigm that encourages generating prototypical parts
from the underrepresented instances responsible for the positive label of a bag.

The paper is organized as follows. In Sect. 2, we present recent advancements
in Multiple Instance Learning and deep interpretable models. In Sect. 3, we define
the MIL paradigms and introduce ProtoMIL. Finally, in Sect. 4, we present the
results of conducted experiments, and Sect. 5 summarizes the work.

2 Related Works

Our work focuses on classification of whole slide images which is described using
Multiple Instance Learning (MIL) framework. Additionally, we develop an inter-
pretable method which relates to eXplainable Artificial Intelligence (XAI). We
briefly describe both fields in the following subsections.

2.1 Multiple Instance Learning

Before the deep learning era, models based on SVM, such as MI-SVM [3], were
used for MIL problems. However, currently, MIL is addressed with numerous
deep models. One of them, Deep MIML [14], introduces a sub-concept layer
that is learned and then pooled to obtain a bag representation. Another exam-
ple is mi-Net [44], which pools predictions from single instances to derive a

https://github.com/apardyl/ProtoMIL
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bag-level prediction. Other architectures adapted to MIL scenarios includes cap-
sule networks [45], transformers [38] and graph neural networks [43]. Moreover,
many works focus on the attention-based pooling operators, like AbMILP intro-
duced in [20] that weights the instances embeddings to obtain a bag embedding.
This idea was also extended by combining it with mi-Net [24], clustering sim-
ilar instances [27], self-attention mechanism [34], and sharing classifier weights
with pooling operator [39]. However, the above methods either do not contain
an XAI component or only present the importance of the instances. Hence, our
ProtoMIL is a step towards the explainability of the MIL methods.

2.2 Explainable Artificial Intelligence

There are two types of eXplainable Artificial Intelligence (XAI) approaches, post
hoc and self-explaining methods [4]. Among many post hoc techniques, one can
distinguish saliency maps showing pixel importance [32,36,37,40] or concept
activation vectors representing internal network state with human-friendly con-
cepts [9,17,21,46]. They are easy to use since they do not require any changes
in the model architecture. However, their explanations may be unfaithful and
fragile [1]. Therefore self-explainable models were introduced like Prototypical
Part Network [8] with a layer of prototypes representing the activation patterns.
A similar approach for hierarchically organized prototypes is presented in [18] to
classify objects at every level of a predefined taxonomy. Moreover, some works
concentrate on transforming prototypes from the latent space to data space [26]
or focus on sharing prototypical parts between classes and finding semantic sim-
ilarities [35]. Other works [28] build a decision tree with prototypical parts in
the nodes or learn disease representative features within a dynamic area [22].
Nonetheless, to our best knowledge, no fine-grained self-explainable method,
like ProtoMIL, exists for MIL problems.

3 ProtoMIL

Due to the large resolution of whole slide images, which should not be scaled
down due to loss of information, we first divide an image into patches. However,
we do not know which patches correspond to the given disease state. Therefore,
this problem boils down to Multiple Instance Learning (MIL), where there is a
bag of instances (in our case patches) and only one label for the whole bag. This
bag is passed trough the four modules of ProtoMIL (see Fig. 2): convolutional
network fconv, prototype layer fproto, attention pooling a, and fully connected
last layer g. Convolutional and prototype layers process single instances, whereas
attention pooling and the last layer work on a bag level. More precisely, given a
bag of patches X = {x1, . . . ,xk}, each x ∈ X is forwarded through convolutional
layers to obtain low-dimensional embeddings F = {fconv(x1), . . . , fconv(xk)}. As
fconv(x) ∈ H × W × D, for the clarity of description, let Zx = {zj ∈ fconv(x) :
zj ∈ R

D, j = 1..HW}. Then, the prototype layer computes vector h of similarity
scores [8] between each embedding fconv(x) and all prototypes p ∈ P as
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Fig. 2. ProtoMIL passes a bag of patches through four modules. First, convolutional
layer fconv generates embeddings for each patch. Then, the prototype layer fproto cal-
culates similarities between patches representations and its prototypes. The similarities
are aggregated using the attention pooling a to obtain the bag similarity scores classified
using the last layer g. Notice that particular colors in vectors hi and hbag correspond
to prototypes similarities.
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h =
(

g(Zx,p) = max
z∈Zx

log
(

‖ z−p ‖2+1
‖ z−p ‖2+ε

))
p∈P

for ε > 0.

This results in a bag of similarity scores H = {h1, . . . ,hk}, which we pass to the
attention pooling [20] to obtain a single similarity scores for the entire bag

hbag =
k∑

i=1

ai hi, where ai =
exp{wT (tanh(VhT

i ) � sigm(UhT
i )}

k∑
j=1

exp{wT (tanh(VhT
j ) � sigm(UhT

j )}
, (1)

w ∈ R
L×1, V ∈ R

L×M , and U ∈ R
L×M are parameters, tanh is the hyperbolic

tangent, sigm is the sigmoid non-linearity and � is an element-wise multiplica-
tion. Note that weights ai sum up to 1, and thus the formula is invariant to the
size of the bag. Such representation is then sent to the last layer to obtain the
predicted label y̌ = g(hbag) as in [8].

Regularization. In MIL, the instances responsible for the positive label of a bag
are underrepresented. Hence, training ProtoMIL without additional regulariza-
tions can result in a prototype layer with only prototypes of a negative class.
That is why we introduce a novel regularization technique that encourages the
model to derive positive prototypes. For this purpose, we introduce the loss
function composed of three components

LCE(y̌, y) + λ1 LClst +λ2 LSep,

where y̌ and y denotes respectively the predicted and ground truth label of bag
X, LCE corresponds to cross-entropy loss, while

LClst =
1

|X|
∑
xi∈X

ai min
p∈Py

min
z∈Zxi

‖z−p‖22,

LSep = − 1
|X|

∑
xi∈X

ai min
p/∈Py

min
z∈Zxi

‖z−p‖22,

where P y is a set of prototypes assigned to class y. Comparing to [8], components
LClst and LSep additionally use ai from Eq. 1. As a result, we encourage the model
to create more prototypes corresponding to positive instances, which usually
have higher ai values.

4 Experiments

We test our ProtoMIL approach on five datasets, for which we train the model
from scratch in three steps: (i) warmup phase with training all layers except
the last one, (ii) prototype projection, (iii) and fine-tuning with fixed fconv and
fproto. Phases (ii) and (iii) are repeated several times to find the most optimal
set of prototypes. All trainings use Adam optimizer for all layers with β1 = 0.99,
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β2 = 0.999, weight decay 0.001, and batch size 1. Additionally, we use an expo-
nential learning rate scheduler for the warmup phase and a step scheduler for
prototype training. All results are reported as an average of all runs with a stan-
dard error of the mean. In the subsequent subsections, we describe experiment
details and results for each dataset.

Across all datasets we use convolutional block from ResNet-18 followed by
two additional 1×1 convolutions as the convolutional layer fconv. We use ReLU
as the activation function for all convolutional layers except the last layer, for
which we use the sigmoid activation function. The prototype layer stores proto-
types shared across all bags, while the attention layer implements AbMILP. The
last layer is used to classify the entire bag. Weights between similarity scores of
prototypes corresponding class logit are initialized with 1, while other connec-
tions are set to −0.5 as in [8]. Together with the specific training procedure, such
initialization results in a positive reasoning process (we rather say “this looks
like that” instead of saying “this does not look like that”).

4.1 Bisque Breast Cancer and Colon Cancer Datasets

Experiment Details. We experiment on two histological datasets: Colon Can-
cer and Bisque Breast Cancer. The former contains 100 H&E images with
22, 444 manually annotated nuclei of four different types: epithelial, inflamma-
tory, fibroblast, and miscellaneous. To create bags of instances, we extract 27×27
nucleus-centered patches from each image, and the goal is to detect if the bag
contains one or more epithelial cells, as colon cancer originates from them. On
the other hand, the Bisque dataset consists of 58 H&E breast histology images
of size 896 × 768, out of which 32 are benign, and 26 are malignant (contain at
least one cancer cell). Each image is divided into 32×32 patches, resulting in 672
patches per image. Patches with at least 75% of the white pixels are discarded,
resulting in 58 bags of various sizes.

We apply extensive data augmentation for both datasets, including random
rotations, horizontal and vertical flipping, random staining augmentation, stain-
ing normalization, and instance normalization. We use ResNet-18 convolutional
parts with the first layer modified to 3×3 convolution with stride 1 to match the
size of smaller instances. We set the number of prototypes per class to 10 with
a size of 128 × 2 × 2. Warmup, fine-tuning, and end-to-end training take 60, 20,
and 20 epochs, respectively. 10-fold cross-validation with 1 validation fold and 1
test fold is repeated 5 times.

Results. Table 1 presents our results compared to both traditional and attention-
based MIL models. On the Bisque dataset, our model significantly outperforms
all baseline models. However, due to the small size of the Colon Cancer dataset,
ProtoMIL overfits, resulting in poorer AUC than attention-based models. Nev-
ertheless, in both cases, ProtoMIL provides finer explanations than all baseline
models (see Fig. 3 and Supplementary Materials).
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Table 1. Results for small histological datasets, where ProtoMIL significantly outper-
forms baseline methods on the Bisque dataset. However, it achieves worse results for
the Colon Cancer dataset, probably due to its small size. Additionally, interpretabil-
ity of the methods is noted and further discussed in Sect. 4.6. Notice that values for
comparison indicated with “*” and “**” comes from [20] and [34], respectively.

Method Bisque Colon Cancer

Accuracy AUC Accuracy AUC Inter.

instance+max* 61.4% ± 2.0% 0.612 ± 0.026 84.2% ± 2.1% 0.914 ± 0.010 +

instance+mean* 67.2% ± 2.6% 0.719 ± 0.019 77.2% ± 1.2% 0.866 ± 0.008 −
embedding+max* 60.7% ± 1.5% 0.650 ± 0.013 82.4% ± 1.5% 0.918 ± 0.010 −
embedding+mean* 74.1% ± 2.3% 0.796 ± 0.012 86.0% ± 1.4% 0.940 ± 0.010 −
AbMILP* 71.7% ± 2.7% 0.856 ± 0.022 88.4% ± 1.4% 0.973 ± 0.007 ++

SA-AbMILP** 75.1% ± 2.4% 0.862 ± 0.022 90.8% ± 1.3% 0.981 ± 0.007 +

ProtoMIL (our) 76.7% ± 2.2% 0.886 ± 0.033 81.3% ± 1.9% 0.932 ± 0.014 +++

4.2 Camelyon16 Dataset

Experiment Details. The Camelyon16 dataset [13] consists of 399 whole-slide
images of breast cancer samples, each labeled as normal or tumor. We create
MIL bags by dividing each slide 20x resolution image into 224 × 224 patches,
rejecting patches that contain more than 70% of background. This results in 399
bags with a mean of 8, 871 patches and a standard deviation of 6, 175. Moreover,
20 largest bags are truncated to 20, 000 random patches to fit into the memory
of a GPU. The positive patches are again highly imbalanced, as only less than
10% of patches contain tumor tissue.

Due to the size of the dataset, we preprocess all samples using a ResNet-18
without two last layers, pre-trained on various histopathological images using
self-supervised learning from [10]. The resulting embeddings are fed into our
model to replace the feature backbone net. ProtoMIL is trained for 50, 40, and
10 epochs in warmup, fine-tuning, and end-to-end training, respectively. The
number of prototypes per class is limited to 5 with no data augmentation. The
experiments are repeated 5 times with the original train-test split.

Results. We compare ProtoMIL to other state-of-the-art MIL techniques, includ-
ing both traditional mean and max MIL pooling, RNN, attention-based MIL
pooling, and transformer-based MIL pooling [38]. ProtoMIL performs on par
in terms of accuracy and slightly outperforms other models on AUC metric
(Table 2) while providing a better understanding of its decision process, as pre-
sented in Fig. 4 and Supplementary Materials.
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Fig. 3. Similarity scores between five crucial instances of a bag (columns) and ten pro-
totypical parts (rows) for a positive and negative bag (left and right side, respectively)
from the Colon Cancer bags. Each prototypical part is represented by a part of the
training image and three nearest training patches, and each instance is represented
by the patch and the value of its attention weight ai. Moreover, each cell contains a
similarity score and a heatmap corresponding to prototype activation. One can observe
that instances of a negative bag usually activate prototypes of a negative class (four
upper prototypes in red brackets), while the instances of positive bags mostly activate
positive prototypes (four bottom prototypes in green brackets). (Color figure online)

4.3 TCGA-NSCLC Dataset

Experiment details. TCGA-NSCLC includes two subtype projects, i.e., Lung
Squamous Cell Carcinoma (TGCA-LUSC) and Lung Adenocarcinoma (TCGA-
LUAD), for a total of 956 diagnostic WSIs, including 504 LUAD slides from
478 cases and 512 LUSC slides from 478 cases. We create MIL bags using WSI
Segmentation and Patching from [27] with default parameters, except patch-
level parameter set to 1. Each slide image is cropped into a series of 224 × 224
patches. This results in 1, 016 bags with a mean of 3, 961 patches. We randomly
split the data in the ratio of train:valid:test equal 60:15:25 and assure that there
is no case overlap between the sets, and use the same ProtoMIL settings as in the
Camelyon16 dataset are used. The results are reported for 4-fold cross-validation.

Results. Results for the TCGA-NSCLC dataset are presented in Table 2 along-
side results of other state-of-the-art approaches from [38]. ProtoMIL performs
slightly lower on the Area Under the ROC Curve (AUC) and accuracy metrics
than the powerful transformer-based model TransMIL but still is competitive to
other CNN-based approaches. However, the advantage of ProtoMIL is its capa-
bility to provide a detailed explanation of predictions as presented in Fig. 5 and
Supplementary Materials.
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Table 2. Our ProtoMIL achieves state-of-the-art results on the Camelyon16 dataset in
terms of AUC metric, surpassing even the transformer-based architecture. Moreover,
it is competitive on TCGA-NSCLC and slightly worse on TCGA-RCC, with a small
drop of accuracy and AUC compared to TransMIL. Additionally, interpretability of the
methods is noted and further discussed in Sect. 4.6. Notice that values for comparison
marked with “*” and “**” are taken from [24] and [38], respectively.

Method Camelyon16 TCGA-NSCLC TCGA-RCC

Accuracy AUC Accuracy AUC Accuracy AUC Inter.

instance+mean* 79.84% 0.762 72.82% 0.840 90.54% 0.978 −
instance+max* 82.95% 0.864 85.93% 0.946 93.78% 0.988 +

MILRNN* 80.62% 0.807 86.19% 0.910 – – −
ABMILP* 84.50% 0.865 77.19% 0.865 89.34% 0.970 ++

DSMIL* 86.82% 0.894 80.58% 0.892 92.94% 0.984 ++

CLAM-SB** 87.60% 0.881 81.80% 0.881 88.16% 0.972 +

CLAM-MB** 83.72% 0.868 84.22% 0.937 89.66% 0.980 +

TransMIL** 88.37% 0.931 88.35% 0.960 94.66% 0.988 +

ProtoMIL (our) 87.29% 0.935 83.66% 0.918 92.79% 0.961 +++

4.4 TCGA-RCC Dataset

Experiment details. TCGA-RCC consists of three unbalanced classes: Kidney
Chromophobe Renal Cell Carcinoma (TGCA-KICH, 111 slides from 99 cases),
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC, 489 slides from 483 cases),
and Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP, 284 slides from 264
cases) for a total of 884 WSIs. We create MIL bags using WSI Segmentation and
Paching from [27] with default parameters and a patch-level parameter set to 1.
Each slide image is cropped into a series of 224× 224 patches. This results in 884
bags with a mean of 4, 309 patches. A separate model is trained for each class,
and scores are averaged for all classes. Other experiment settings are identical
as for TCGA-NSCLC described above.

Results. We compare ProtoMIL to other state-of-the-art MIL techniques, includ-
ing both traditional mean and max MIL pooling, attention-based MIL pooling,
and transformer-based MIL pooling [38]. ProtoMIL performs on par in terms of
accuracy and AUC metric (Table 2) while providing a better understanding of
its decision process, as presented in Supplementary Materials.
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Fig. 4. Similarity scores between five crucial instances of a bag (columns) and eight
prototypical parts (rows) for a negative bag from the Camelyon16 dataset. One can
observe that ProtoMIL strongly activates only one prototype and focuses mainly on
nuclei when analyzing the healthy parts of the tissue. Please refer to Fig. 3 for a detailed
description of the visualization.

Table 3. The influence of ProtoMIL pruning on the accuracy and AUC score. One can
notice that even though the pruning removes around 30% of the prototypes, it usually
does not noticeably decrease the AUC and accuracy of the model.

Dataset Before pruning After pruning

Proto. # Accuracy AUC Proto. # Accuracy AUC

Bisque 20 ± 0 76.7% ± 2.2% 0.886 ± 0.033 13.6 ± 0.25 73.0% ± 2.4% 0.867 ± 0.022

Colon Cancer 20 ± 0 81.3% ± 1.9% 0.932 ± 0.014 15.69 ± 0.34 81.8% ± 2.4% 0.880 ± 0.022

Camelyon16 10 ± 0 87.3% ± 1.2 % 0.935 ± 0.007 6.4 ± 0.24 85.9% ± 1.5% 0.937 ± 0.007

TCGA-NSCLC 10 ± 0 83.66% ± 1.6% 0.918 ± 0.003 7.6 ± 1.2 81.1% ± 1.4% 0.880 ± 0.003

TCGA-RCC 10 ± 0 94.66% ± 1.0% 0.988 ± 0.009 6.2 ± 1.2 91.5% ± 1.2% 0.955 ± 0.006

4.5 Pruning

Experiment Details. We run prototype pruning experiments on all the datasets
to remove not class-specific prototypical parts and check their influence on the
model performance. For each of them, we use the model trained in the previously
described experiments. As pruning parameters, we use k = 6 and l = 40% and
fine-tuned for 20 epochs. Details about pruning operation are described in the
Supplementary Materials.

Results. The accuracy and AUC in respect to the number of prototypes before
and after pruning are presented in Table 3. For all datasets, the number of pro-
totypes after pruning has decreased around 30% on average. However, it does
not result in a noticeable decrease in accuracy or AUC, except for Colon Can-
cer, where we observe a significant drop in AUC. Most probably, it is caused by
the high visual resemblance of nuclei patches (especially between epithelial and
miscellaneous) that after prototype projection may be very close to each other
in the latent space.
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Fig. 5. Similarity scores between five crucial instances of a bag (columns) and eight
prototypical parts (rows) for a LUAD type bag from the TCGA-NSCLC dataset.

4.6 Interpretability of MIL Methods

Column Inter. in Tables 1, and 2 indicates how interpretable are the consid-
ered models. Instances and embeddings-based methods, except instance-max,
are not interpretable, similarly to MILRNN, since they lose information about
instances crucial for the prediction. On the other hand, the AbMILP [20] iden-
tifies crucial instances within a bag and can present the local explanation to
the users. However, other attention-based methods, such as SA-AbMILP [34],
TransMIL [38] and CLAMs [27] perform additional operations, like self-attention,
requiring more effort from the user to analyze the explanation. That is why those
methods have been assigned with lower interpretability. Moreover, DS-MIL [24]
finds a decision boundary on the bag level and can produce a more detailed
explanation than AbMILP, but only for a single prediction (local explanations).
In contrast, the ProtoMIL can produce both local (see Fig. 3) and global expla-
nations (see Supplementary Materials).

5 Discussion and Conclusions

In this work, we introduce Prototypical Multiple Instance Learning (ProtoMIL),
a method for Whole Slide Image classification that incorporates a case-based
reasoning process into the attention-based MIL setup. In contrast to existing
MIL methods, ProtoMIL provides a fine-grained interpretation of its predictions.
For this purpose, it uses a trainable set of prototypical parts correlated with
data classes. The experiments on five datasets confirm that introducing fine-
grained interpretability does not reduce the model’s effectiveness, which is still
on par with the current state-of-the-art methodology. Moreover, the results can
be presented to the user with a novel visualization technique.

The experiments show that ProtoMIL can be applied to a challenging prob-
lem like Whole-Slide Image classification. Therefore, in future works, we plan
to generalize our method to multi-label scenarios and multimodal classification
problems since WSI often comes with other medical data like CT and MRI.
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5.1 Limitations

ProtoMIL limitations are inherited from the other prototype-based models, such
as non-obvious prototype meaning. Ergo, prototype projection might still result
in uncertainty on which attributes it represents. However, there are methods
mitigating these, e.g. explainer defined in [29].

5.2 Negative Impact

Our solution is based on prototypical parts that are susceptible to different
types of adversarial attacks such as [19]. That is why practitioners shall address
this risk in a deployed system with ProtoMIL. What is more, it may be used
in information war to disinform societies when prototypes are obtained with
spoiled data or are shown without appropriate comment, especially in fields like
medicine.
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