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Abstract
Pattern discovery in multidimensional data sets has been the subject of research for decades. There exists a wide spectrum
of clustering algorithms that can be used for this purpose. However, their practical applications share a common post-
clustering phase, which concerns expert-based interpretation and analysis of the obtained results. We argue that this can be
the bottleneck in the process, especially in cases where domain knowledge exists prior to clustering. Such a situation requires
not only a proper analysis of automatically discovered clusters but also conformance checking with existing knowledge. In
this work, we present Knowledge Augmented Clustering (KNAC). Its main goal is to confront expert-based labelling with
automated clustering for the sake of updating and refining the former. Our solution is not restricted to any existing clustering
algorithm. Instead, KNAC can serve as an augmentation of an arbitrary clustering algorithm, making the approach robust and
a model-agnostic improvement of any state-of-the-art clustering method. We demonstrate the feasibility of our method on
artificially, reproducible examples and in a real life use case scenario. In both cases, we achieved better results than classic
clustering algorithms without augmentation.

Keywords Data mining · Explainable AI · Clustering

1 Introduction

Cluster discovery from highly dimensional data is an impor-
tant area of research in the fields of data mining (DM)
and machine learning (ML). Most of the research in this
area is focused on unsupervised approaches that generate
clusters which have to be carefully analysed by experts to
obtain their semantic interpretation. In almost all cases, the
responsibility for the final evaluation and assessment of the
results is left to the domain experts. This fact is exploited
by some of the approaches that utilise prior knowledge
about possible clusters in supervised or semi-supervised
algorithms to improve the performance or quality of the
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results. However, we argue that this exposes the bottle-
neck in the practical application of the above-mentioned
solutions as the expert background knowledge can be altered
with the results of the clustering. This invalidates prior
knowledge used for clustering and complicates the anal-
ysis of the results, and may happen when unexpected
patterns are discovered in the data that are in contra-
diction with the existing knowledge or that extend this
knowledge.

This phenomenon is especially visible in applications
of DM in Industry 4.0 [30], where data is gathered from
a process that is usually well known and described in its
generic form, however, data exposes more patterns than
was originally perceived by experts. The difficulty lies
in the automation of the data mining process, and the
conformance checking between the theoretical knowledge
and the data delivered by the system. On the level
of industrial or business processes, such conformance
checking can be done with tools designed to work on
such a high level of abstraction [44]. However, on the low
level of multidimensional sensory data, where no process is
yet visible, atomic pattern discovery is the main objective,
which can be achieved with a variety of available clustering
algorithms. These algorithms do not inherently provide any
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tools to support the task of confronting discovered clusters
with the existing knowledge.

In this paper, we present the Knowledge Augmenting
Clustering (KNAC) approach, which can be applied as
a form of extension to an arbitrary existing clustering
algorithm. The main goal of KNAC is to confront the
existing expert knowledge about patterns that exist in
the data with the results obtained from the automated
algorithms and recommend possible modifications of the
prior expert knowledge. In such an approach, the expert
knowledge after the modifications is retained and can be
used later in the system or during further iterations of
clustering. Figure 1 presents the main functionality of our
solution and shows its place in the classic DM/ML pipeline.

There are two parallel processes of labelling the data; one
is performed by an expert and the other with an
automated clustering algorithm. Initially, the pipeline
of the automated algorithm is not affected in any
way by the knowledge-based clustering. However, there
is a possible interaction between these two. After both
labellings are finished, the results are delivered to KNAC
which performs cross-checking of the homogeneity and
completeness of automated clustering with respect to expert
labelling. Based on that, recommendations of possible splits
and merges are generated and presented to the expert,
along with appropriate explanations in the form of human-
readable rules. Finally, the expert, equipped with all of this
information, can modify the prior knowledge and repeat
the process iteratively until a convergence is achieved. This
work is a continuation of the preliminary results published
in [6] but substantially extended. The extension concerns
primarily updated recommendation and justification algo-
rithms as well as a comprehensive evaluation study with
an industrial case and publicly available benchmark dataset
that demonstrate the feasibility of our approach.

Our work is carried out within the PACMEL project
under the CHIST-ERA program.1 The main project goals
concern the development of novel methods of knowledge
modelling and intelligent data analysis in Industry 4.0. In
this paper, the industrial case study is related to underground
mining facilities. The data used for evaluation was delivered
by our industrial partner, Famur S.A.2, which is one of the
global suppliers of coal longwall mining machines used in
the so-called longwall mining process.

The rest of the paper is organised as follows: in Section 2
we present related works in the area of knowledge-enriched
and explainable clustering. We summarise the state-of-the-
art solutions and provide a brief description of our original
contribution. A detailed description of KNAC is given in
Section 3 along with artificial examples. A real-life use case

1See the project webpage at http://PACMEL.geist.re.
2See the company webpage at http://www.FAMUR.com.pl.

scenario is presented in Section 4. Then, in Section 5, we
provide the results of the evaluation with a larger group
of experts, based on a publicly available dataset from the
e-commerce business domain. Finally, we summarise our
work and discuss the limitations of KNAC in Section 6.

2 Related works

Clustering aims at unfolding hidden patterns in data to
discover similar instances and group them under common
cluster labels. This task is often performed to either discover
unknown groups, to automate the process of discovering
possibly known groups, or for segmentation of data points
into an arbitrary number of segments. Any of the above can
be done in an unsupervised, semi-supervised, or supervised
manner, which depends on the availability of the prior
knowledge and the ability to derive new knowledge based
on partial data and human interaction.

In this section, we present a landscape of related works
that consider both trends in combining clustering algorithms
with background knowledge. The first trend is focused on
obtaining clusters of better quality. The second trend is
concentrated on deriving new knowledge on top of the
analysis of the structure of the discovered clusters. Both of
these research areas contributed equally to the motivation of
our work, which we present at the end of this section along
with a comparison of existing solutions.

2.1 Knowledge-enriched clustering

In many practical applications, prior knowledge is available
for machine learning algorithms to be utilised. However,
incorporating it into the statistical learning pipeline is a
non-trivial task and has been a matter of study for decades [45].

In [12], the authors combine classification and clus-
terization to obtain methods for detecting new classes of
images that did not appear in the dataset during training.
They transfer knowledge of a previously trained classifier
by improving the C3E algorithm [1], which works under the
assumption that similar instances found by clustering algo-
rithms are more likely to share the same class label obtained
with the classifier. The authors exploited this knowledge
and observed that the lack of consensus may indicate a new
cluster appearing in the dataset. Therefore, the candidates
for new clusters are those from high-density regions and
with high classification entropy (with respect to the known
classes). Such candidates are later labelled by an expert.
However, no prior knowledge is used in this approach, nor
are the final suggestions for the expert formulated in a
semantically meaningful way, which makes the interpreta-
tion of the recommendations highly domain dependent and
requires lots of expertise in the domain.

http://PACMEL.geist.re
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Fig. 1 Workflow of the
knowledge augmented
clustering (KNAC) approach

The human-in-the-loop paradigm was also investigated
in the clustering algorithms [55], where the contextual
information and user feedback are used to merge clusters of
photographs into larger groups. The background knowledge
is partially inferred from the data and encoded in the form
of context constraints, that co-occurrence in automatically
discovered clusters may impose the need for merging or
splitting clusters. The process is iterative and the human
feedback is used as a kind of stop criterion. However,
the process of clusters’ refinement is not formalised nor
recorded, making it unsuitable for further use. Similarly,
in other approaches that incorporate domain knowledge
into the process of clustering via direct human interaction,
the knowledge itself is not retained after the process ends
and it cannot be reused later nor checked against existing
formalised knowledge [4, 21, 28].

A different approach was given in [47], whereby the
authors propose an extension to the k-means clustering
algorithm that employs constraint information in the
definition of multiple assistant representatives for the
centroids used at each iteration of k-means. These assistant
centroids are computed from the data and are considered
additional knowledge in forming the final constraints for
the clustering algorithm. Although the external knowledge
is gained through the process of generation of assistant
centroids, such knowledge is not retained for further
use. Furthermore, the approach does not assume the
incorporation of existing domain knowledge into the
process of constructing the assistant centroids.

In [41], the authors propose a semi-supervised clustering
algorithm that exploits pairwise constraints as background
knowledge and integrates it with a deep neural network
architecture for clustering. The integration of background

knowledge is done at the level of embedding of feature
space in the form of an additional layer. This influences
the embedding and, hence, impacts the clustering results
obtained on the latent space. However, the entire knowledge
compilation is done in the latent space and is hidden from
the human outside the black-box of DNN. Therefore, it
cannot be easily formalised, nor expressed semantically.

In [16], the authors present an algorithm for collaborative
clustering that aims at finding a consensus between the
clustering results from an ensemble of automated methods.
This method is similar to our approach as one of the
artificial methods can be substituted by a human operator.
The method proposes a 3-step approach: initial clustering,
results refinement, and consensus computation via a voting
algorithm. However, the input knowledge is not formalised
in any way, as it is solely based on automated algorithms and
follows the pattern of introducing a weighted constraints
approach that allows incorporating different types of
constraints as background knowledge, including cluster
quality, class label, and link-based constraints. Furthermore,
the refinement process of the algorithm is not fully
transparent to the user and does not produce any additional
knowledge which may indicate how the initial background
knowledge should be altered.

In [54], the authors provide an algorithm that uses
active learning to obtain constraints utilised later in the
clustering process. These constraints are formed from
human responses to selected queries. The authors focus
in their work on highly dimensional cases and, therefore,
implement an additional layer that limits the number of
queries to the user by selecting dimensions/features that are
most informative for the clustering mechanism. However,
the information about these informative features and the
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way they affect the clustering process is not stored nor
formalised for further reuse. It serves only for the internal
algorithm mechanism.

In [11], the Grouper framework was presented, which
is an interactive approval and refinement toolkit for the
analysis of the results of clustering. It combines the
strength of algorithmic clustering with the usability of a
visual clustering paradigm. In [52], a similar approach
was presented, however, it assumes more interactions with
visualised clusters that alters the cluster layout. Yet, neither
of these uses any kind of formalised knowledge, neither
for clustering nor after it for refinement. Therefore, the
knowledge inputted by an expert in the form of interaction
in the system is lost for further reuse. Finally, in [24], the
authors present a transfer learning approach that utilises
knowledge obtained from similar tasks in the new domain
via a fine-tuning procedure. Transfer learning allows the
encoding of domain knowledge into the embedding space
that can later be used and fine-tuned to different tasks.
However, the embedding space is latent and, therefore,
cannot be directly utilised, nor confronted with existing
domain knowledge. This limits the usage of the approach in
a setting where symbolic knowledge is already present and
used in its symbolic form.

2.2 Explainable clustering

Explainable AI (XAI) aims at bringing transparency to
the decision-making process of automated systems [38].
It has been extensively developed over the last decade,
mostly due to the rapid development of black-box machine
learning algorithms such as deep neural networks. However,
its potential usage is not limited to these methods and is
expanded to other artificial AI areas. In terms of clustering,
it is most often used in order to motivate the assignment
of a single instance to a particular cluster or to explain the
difference between discovered patterns.

In [39], the authors present EXPLAIN-IT: a mechanism
that transforms an unsupervised clustering task into a
supervised classification task, and use LIME [42] and
SHAP [33] to explain the differences between them.
They demonstrate the usage of their solution on the
YouTube video quality classification based on the traffic
information. However, in their approach, the authors do not
use any prior knowledge that is later enhanced with their
explanation mechanism. Furthermore, they do not formalise
the knowledge discovered with the XAI method for further
use. Alternatively, they limit the explanation only to the
visualisation of the contribution of different features to the
surrogate classifier built on top of the clustered data.

In [56], the authors discuss an explainable clustering
algorithm that can be used to group texts, which are
represented as a multidimensional dataset. They have taken

into consideration time-varying changes in a group of texts,
hence, bringing the problem closer to time-series clustering.
The authors emphasize the explainability of their method
by providing a highlight for words that are important in
assigning an instance to a particular cluster. However, no
prior knowledge is utilised in this approach.

In [14], the authors present a novel clustering algorithm
which is inherently explainable. The explanation granularity
is performed on the instance level. They use a decision tree
structure to obtain both clustering and explanations in the
form of rules built from decision tree branches. The decision
tree is built in an unsupervised manner, redefining the split
criterion in terms of a sum of squared errors with medians
or medoids as centroids.

In [23], the authors perform a two-step explanation
procedure. First, they obtain cluster labels with an arbitrarily
selected clustering mechanism, which later are used as the
target variable in a classification task. The classification is
finally explained using a Single Feature Introduction Test
(SFIT) [22] to denote statistically important features that
take part in the classification process. However, the obtained
explanations are feature importances that do not provide
enough expressive power to be considered stand-alone
explanations, as additional domain or expert knowledge
is required to understand the way the features affect the
classifier.

In [17], the authors present a similar solution to that
discussed in [14] by exploiting decision trees as clustering
mechanisms. They emphasise the issues related to the
trade-off between explainability and accuracy in the case
of inherently interpretable models. They introduce the
ExKMC algorithm, which is an explainable version of the
k-means clustering algorithm. They prove that the surrogate
cost is non-increasing and, hence, the aforementioned trade-
off is under control. Although the explanation is given in
the form of a rule, obtained from the translation of the tree
branches, no prior knowledge is exploited in the process of
clustering.

In [32], the authors explore decision trees to obtain
cluster labels, however, in their approach, they build several
decision trees and combine the results into the final
clustering. In contrast to previously discussed methods,
this approach takes different factors into consideration in
forming clusters, i.e., performing splits in a decision tree.
They put the emphasis on the compactness and separation
of the cluster as a forming criterion [26]. Similar approaches
were given in works describing CLUS [5] and classic
COBWEB [15] algorithms.

Other methods of exploiting ensemble classifiers were
discussed in [27, 35, 46], where the random forest algorithm
was chosen. The explanation is then obtained on the
global level by generating feature importance computed as
the (normalized) total reduction of the criterion brought
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by that feature. Alternatively, model agnostic explanation
algorithms such as LIME or SHAP are also applied to
generate local (instance-level) explanations [19].

In [18], the authors introduce ExCut, an approach
for computing explainable clusters, which combines
embedding-based clustering with symbolic rule learning to
produce human-understandable explanations for the result-
ing clusters. The method is designed for knowledge graphs,
and its goal is to cluster semantically similar entities as
denoted by the underlying background knowledge compo-
nent. The huge advantage of this method is the simplicity
in introducing background and/or expert knowledge into the
process, as the input dataset is itself a knowledge graph,
which may contain expert knowledge. The discovered
knowledge can later be incorporated into the knowledge
graph. This approach is similar to our contribution, except
it makes the explanations and knowledge enhancements an
internal component of clustering. This exposes some limita-
tions in applications of this method on a meta-level, where
the clustering methodology should be considered indepen-
dent from the explanation and expert-knowledge encoding
formalism.

Similar approaches that utilize knowledge graphs for
providing an explanation of clustering were discussed in
[50] and [51], where knowledge graphs are exploited to
obtain explanations of previously discovered clusters. The
method in [25] uses knowledge graph embedding to find
a pattern which makes similar concepts be placed close to
each other in latent space. Similar solutions exploiting latent
space as a search field for combining external and input
knowledge were also discussed in [10, 20].

In [34], the authors put emphasis on delivering expla-
nations of clustering results with a symbolic knowledge
representation mechanism. In order to do this, a methodol-
ogy based on a surrogate model is presented that, similarly
to other approaches, translates the problem of clustering into
a classification task with clustering labels as the target vari-
able. The authors aim to provide rules for the explanation of
clustering, however, they do not give any method that allows
integrating these rules with prior knowledge. Furthermore,
they mostly use tree-based surrogate models as explanation
mechanisms due to the limitations of the frameworks they
use. Finally, the approach presented in their paper focuses
on explanations of single instances belonging to particular
clusters, not a summary that can be valid for the whole clus-
ter. This results in overwhelmingly large explanations for
large datasets, which might not be useful for the end user.

In [2], the authors focus on solutions which assist users
to understand long time-series data by observing its changes
over time, finding repeated patterns, detecting outliers, and
effectively labelling data instances. It is performed mostly
via a visualisation layer over the data which dimensionality
was reduced with UMAP [37] allowing 2D/3D plotting.

However, no explicit knowledge is used in this method to
enhance the process of cluster analysis.

We summarize these relevant results in Table 2.

2.3 Our original contribution

Although there exists a large spectrum of clustering
methods that are able to incorporate external sources of
knowledge to enhance the process of clustering or provide
explanations for the clustering results they have calculated,
apparently there is no research in the area of combining
these two into one comprehensive framework. We argue
that in many practical applications, where prior knowledge
is available, it is not only important to incorporate this
knowledge into the clustering pipeline but also refine it
with the results obtained from the clustering algorithms. In
many cases, the prior knowledge is coarse and too general
to capture some patterns that are visible in the real-life
scenarios. As shown in the comparison presented in Table 1,
clustering methods that use prior knowledge most often are
focused on boosting the clustering performance and quality.
No further refinement of the initial knowledge is assumed.
There are several methods that use knowledge graphs as
a source of knowledge and allow online modifications of
the prior knowledge source. However, these refinement
methods are tightly connected with the clustering algorithm
itself, making them lack robustness and not be easily
extensible to other clustering approaches. In [4], the authors
present a comprehensive survey on interactive clustering,
comparing and deeply analysing over 100 papers from the
field. They notice the same gap in the methods that we
did, which is the lack of an algorithmic approach that will
support cluster analysis, observing that:

There is a need for developing solutions where the
machine would initiate quality improving operations,
for example, indicate to the users specific clusters that
require feedback in a form of a query, and the users
would provide information based on such requests.

We additionally claim that such machine-initiated oper-
ations should be explainable and persistent, even after
the clustering algorithm is finished for post-hoc analysis
of the clustering or expert knowledge refinement. How-
ever, the explainable clustering algorithms summarised
in Table 2 do not make any use of prior knowledge
or are tightly bounded with specific clustering algo-
rithms, making the whole method barely applicable to
other cases.

Taking all of the above into consideration, we defined
three requirements that the method should follow to solve
the problem of combining clustering explanations with the
usage of prior knowledge and refinement of this knowledge.
We argue that such a method should be:
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Table 1 Comparison of knowledge augmented clustering methods

Reference Background Integration Integration Prior Robustness

knowledge method level knowledge

refinement

[13] constraints human cluster no independent

interaction prototype

[12] ML model human cluster- no domain

interaction prototype dependent

[47] statistics constraints cluster- no independent

derived from satisfaction prototype

data

[55] informal human instance no domain-

expert interaction dependent

knowledge,

context constraints

[41] constraints constraint cluster- no model

embedding prototype dependent

[16] heterogenous constraint cluster- no independent

constraints optimization prototype

[54] pairwise human instance no independent

constraints interaction

[24] ML model transfer instance no model

learning dependant

[11, 21, 52] informal human cluster no domain

expert interaction dependent

knowledge

[28] informal human cluster no independent

expert interaction

knowledge

– (R1): Human readable – the prior knowledge, its
refinement should be delivered in a human-readable
form. This requirement is mostly affected by the
explanation form and granularity of explanation.

– (R2): Executable – it should be possible to automati-
cally process the prior knowledge and its refinements

and integrate it with state-of-the-art tools supporting
the DM/ML pipeline. This requirement depends on the
explanation mechanism used and the prior knowledge
encoding method.

– (R3): Approach agnostic – it should be possible to
apply these methods independently of the clustering

Table 2 Comparison of explainable clustering methods

Reference Explanation form Explanation mechanism Prior knowledge Explanation granularity

[39] statistical summary, visualization model-agnostic no single instance

[56] example-based model-specific no single instance

[14] rules,trees model-specific no single instance

[23] feature importance model-agnostic no global

[17] rules model-specific no single instance

[5, 15, 26, 32] rules, trees model-specific no single-instance

[18] rules, ontologies model-specific yes single instance

[34] rules model-agnostic no single instance

[31] rules model-agnostic no global

[25] knowledge graph model-specific no global
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algorithm and the clustering pipeline that was chosen.
This requirement is mostly affected by the explanation
mechanism and integration capabilities of the prior
knowledge encoding mechanism.

Therefore, we propose a method that uses rule-based
notation for encoding prior knowledge and its refinements.
This is one of the most human-readable methods of
encoding knowledge that can at the same time be executable
(R1). Rules in their preconditions use the same set of
features that an expert operates on, although the automated
clustering pipeline can include an unlimited number of
transformations of an initial dataset. We use the XTT2
notation for encoding rules and a HEARTDROID inference
engine to execute them (R2) and integrate them with
external system components [8]. Our approach can be
considered an augmentation method that can be applied
to any selected clustering algorithm, as the knowledge
refinement is performed independently on the internal
implementation of the clustering algorithms (R3).

As mentioned in the introduction, this work is a
continuation of the preliminary results published in [6];
however, substantially extended. Specifically, in the work
presented here, we changed the algorithm which is
responsible for conformance checking between domain
knowledge and automatically discovered clusters, and
for the generation of split and merge recommendations.
Previously, it depended only on the contingency matrix
and simple statistics calculated based on it. Here, we allow
measuring the quality of the refinements and adjusting
the split and merge recommendations taking those into
consideration. Furthermore, in this work, we conducted
experiments on two cases with more than 30 participants
involved in total. One of the experiments, along with its
dataset, is publicly available for benchmark and comparison
purposes.

In the following sections, the details of the underlying
mechanisms of our method are presented.

3 The knowledge augmented clustering
approach

The main goal of the work presented in this paper is to
refine the initial clustering with XAI methods and expert
knowledge via splitting and merging the clusters delivered
by an expert and generating explanations (or justifications)
of these recommendations. The goal of these refinements
is to help the experts to better understand the patterns that
exist in the data and, therefore, obtain clusters which are
of better quality. In this section, we present the theoretical
background of our approach and demonstrate its feasibility
on synthetic examples to make the work reproducible and

transparent3. All presented datasets were generated using
two functions from scikit-learn library with a make_blobs

function which generates isotropic Gaussian blobs. Every
synthetic dataset presented in this paper is 2-dimensional
for the sake of simplicity of presentation. However, we
provided more examples in a publicly available repository,
including a multidimensional case with 20 features4.

Below, we assume the following. There exist a set of
clusters obtained with expert knowledge, denoted as:

E = {E1, E2, . . . , En}
This set of clusters needs to be refined with complementary
clustering performed with automated clustering algorithms.
This clustering forms a separate set of clusters, possibly of
different sizes than E and is denoted as:

C = {C1, C2, . . . , Cm}
For both sets, we calculate a contingency matrix M

of size (n, m) where the number at the intersection of
the i-th row and k-th column holds the number of data
points assigned both by cluster labelling to cluster Ej and
automated clustering to cluster Ck .

Based on the contingency matrix M , we calculate two
helper matrices for splitting and merging strategies defined
respectively by (1) and (2). In the case of Hsplit , we
additionally l2 normalize the M matrix along columns to
appropriately deal with clusters of different sizes.

H
split
i,j = Mi,j

||Mi ||2
[

H(Mi)
log2(||E||) + 1

] (1)

Where H(Mj) is entropy calculated for the j -th column
(i.e., Cj cluster). The measure defines the consistency of
automated clustering with expert clustering. We perform
min-max scaling along the rows of Hsplit to allow
thresholding from a range [0; 1]. Because the maximum
value of H(Mj) is an entropy measure and depends on the
number of expert labels, we normalise the Hsplit matrix
accordingly.

For the merging operation, we calculate the Hmerge

matrix. It is a l2 normalised matrix M along the row axis.

H
merge
i,j = Mi,j

||Mi ||2 (2)

These two matrices are later used for the purpose of
generating split and merge recommendations. Figure 2
depicts the two simplified datasets with two possible

3For source code with reproducible examples see: http://github.com/
sbobek/knac
4See: http://gitlab.com/sbobek/knac

http://github.com/sbobek/knac
http://github.com/sbobek/knac
http://gitlab.com/sbobek/knac
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Fig. 2 Synthetic datasets with clusters to split (top row) and clusters
to merge (bottom row). Columns in the figure represent clustering
performed with expert knowledge, automated clustering, and Hsplit

matrix (upper) and Hmerge matrix (lower). Dotted lines define bound-
ing boxes for the decision stump explanation mechanism

scenarios covered by our method. These datasets will be
used to better explain the mechanisms for the generation
of splitting and merging recommendations discussed in the
following sections.

3.1 Recommendation generation

Having created the Hsplit and Hmerge matrices, we generate
two types of recommendations out of it: splitting and
merging of initial expert clustering.

Splitting This recommendation aims at discovering clusters
that were incorrectly labelled using expert knowledge. Such
a case was depicted in Fig. 2 in the upper left plot. This
operation can be performed using the Hsplit matrix in a
straightforward way. The cluster that is recommended for
splitting is chosen by investigating values corresponding
to columns of a selected row in the Hsplit matrix. Values
that lie on the intersection of the investigated expert cluster
and the automated cluster and are greater than the defined
confidence threshold εs are marked as candidates for
splitting.

Because the pure Hsplit matrix is based only on the
distribution of the points between expert labelling and auto-
mated labelling, we additionally recalculate confidences for
particular splits by checking the relative decrease in the
silhouette coefficient Sdec for every potential split. Due

to the large computational overhead of calculating the sil-
houette coefficient, we only calculate it for the fraction of
candidates. The proportion of additional candidates taken
into consideration while calculating Sdec is balanced by
the silhouette weight parameter λs in (3). The larger the
λs , the more candidates are taken into consideration while
calculating Sdec.

C
split
i =

{
cj ∈ H

split
i : cj

1 − λs
> εs

}
(3)

Once the candidates are selected, the confidence for each
of them to be included in the final split is calculated. The
relative decrease in the silhouette coefficient Sdec(C

split
i )

is calculated as a difference in the silhouette coefficient
calculated for the dataset before and after the potential split
with the set defined by C

split
i , scaled to the range of [0; 1].

The trade-off between the confidence derived from Hsplit

and the one based on the relative silhouette coefficient
decrease is also governed by the λs parameter. The
confidence for each of the split candidates Conf (C

split
i ) is

calculated according to (4). The final confidence of the rule
defining a split is calculated as an average of the confidences
of the candidates that form the rule:

Conf
(
C

split
i

)
=

{
(1 − λs)cj + λs(Sdec(C

split
i )) : cj ∈ C

split
i

}
(4)

For the example in Fig. 2, the recommendation will look
as follows, with the silhouette coefficient weight λs = 0.1
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SPLIT EXPERT CLUSTER E_1 INTO CLUSTERS

[(C_1, C_2)] (Confidence 0.87)

Merging The goal of this recommendation is to detect
concepts that were incorrectly labelled by expert knowledge
as two or more clusters. Such a case is depicted in Fig. 2 in
the lower left plot. Candidates for merging are chosen using
the Hmerge matrix. Because the matrix is l2 normalised
along the rows, calculating a dot product of selected rows
produces cosine similarity between them. This reflects the
similarity in the distribution of data points spread over
the automatically discovered clusters. If two expert clusters
have a similar distribution of points over automatically
discovered clusters, this might be a premise that they share
the same concept and should be merged. Such a case was
depicted in Fig. 2 in the lower right plot. Similar to the case
of splitting, a threshold εm is defined arbitrarily denoting the
lower bound on the cosine similarity between clusters to be
considered as merge candidates.

In the same way as in the case of splitting, we allow
for updating the confidence of merges by exploiting linkage
strategy from hierarchical clustering. For every expert
cluster, we calculate a distance matrix Dlinkage with one of
the following methods: single-link, complete-link, centroid-
link, and average link. We also calculate a similarity matrix
Hsim = Hmerge · (Hmerge)ᵀ, where each of the cells j, k

represents the cosine similarity between the distribution of
data samples of expert cluster j and k over clusters C

discovered with the automated method. We then combine
the similarity matrix Hsim and distance matrix Dlinkage

to calculate the final confidence value C
merge
j,k for merging

expert clusters j and k, as defined in (5).

C
merge
j,k =

{
E � Ej , Ek : (1 − λm)Hsim

j,k + λm(1 − D
linkage
j,k ) > εm

}
(5)

The merge recommendation for the case depicted in Fig. 2
is given below with the linkage metric weight λm = 0.2:
MERGE EXPERT CLUSTER E_0 WITH EXPERT CLUSTER

E_3 INTO CLUSTER C_0 # (Confidence 0.98)

The confidence value is calculated as the weighted sum
of a cosine similarity between rows associated to candidates
E0, E3 in the Hmerge matrix and the distance between these
two clusters according to the selected linkage strategy. In
the next section, the justification mechanism of the split and
merge recommendation is discussed.

3.2 Explanation of recommendation

Once the recommendation is generated, it is augmented with
an explanation. Depending on the recommendation type, the
explanation is created differently.

Splitting recommendation In the case of this type of
recommendation, we transform the original task from
clustering to classification, taking the automatically discov-
ered cluster labels as target values for the classifier.

Then, we explain the decision of a classifier to present
to the expert why and how the two (or more) clusters
Ci, Cj , . . . , Cn that were formed by splitting the original
one are distinguished from each other. An explanation is
formulated in the form of a rule that uses the original
features as conditional attributes, to help the expert better
understand the difference between splitting candidates. We
use the Anchor algorithm for this [43], which is model-
agnostic and allows for the explanation of an arbitrarily
selected model. Alternatively, one can use our LUX [7]
algorithm, which provides similar functionality but has
better time complexity. In both cases, the output from the
explanation mechanism is translated into XTT2 rules, which
are a human-readable and executable format of rule-based
knowledge.

The explanation for the splitting of cluster E2 presented
in Fig. 2 looks as follows:
C_1: x1 <= -8.20 AND x2 > -4.34 (Precision:

1.00, Coverage: 0.07) C_2: x2 <= -4.34

(Precision: 0.90, Coverage: 0.25)

If the difference is important, the clusters can be split and
the rules generated above can be added to the knowledge
base. The final decision on whether splitting E2 into C1 and
C2 is needed is left to the expert.

The rules presented in the listing above cannot be
executed. We, therefore, translate them to the XTT2 format
which is executable by the HEARTDROID inference engine
[8]. The precision and coverage delivered by Anchor are
translated to the rule confidence used by HEARTDROID as a
product of the two former factors. In the XTT2 format, rules
can be grouped into tables. The table for the rules above
is presented in Fig. 3. If the expert decides that the split
is relevant, it is enough to include the XTT2 rules in the
knowledge base, optionally adjusting their confidences. The

Fig. 3 XTT2 table for rules
explaining split recommendation
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HEARTDROID inference engine will process all the rules
(old and new) and decide which cluster assignment is the
most certain.

Merging recommendation In explaining the merging rec-
ommendation, we use the same approach as previously
described. The difference is that the classification models
are now trained with expert labels as a target.

After this, the explanation that answers the question as
to how the expert clusters Ei and Ej are different from
each other is generated by looking at them not through
the definition in the knowledge base, but through the data
perspective. The answer to this question is given in the form
of Anchor rules, and the final decision is left to the expert.
The explanation for the case presented in Fig. 2 is given
below:
E_0: x2 <= 5.16 AND x1 > 0.23 (Precision:

0.74, Coverage: 0.32) E_1: x1 <= 3.73

(Precision: 0.58, Coverage: 0.50)

The XTT2 table for the rules above is presented in Fig. 4.
If the expert decides that the differences between two expert
clusters are irrelevant with respect to the distinction made
by the Anchor rules, he or she may decide to merge those
clusters. Otherwise, clusters and prior knowledge remain
unchanged. In contrast to split recommendations, merges
require more delicate knowledge base modifications, which
are left solely to the expert. The Anchor rules presented
above may only serve as hints on how to modify the
knowledge base (e.g., which parameters are irrelevant).

3.3 The KNAC algorithm

In this section, we show KNAC in the form of a concise
procedure presented in Algorithm 1 that summarises all
of the steps illustrated in previous sections. The input for
the algorithm consists of the dataset D, the knowledge
base KB, and the clustering pipeline for dataset D.
The knowledge base KB is considered to be rule-based,
however, in general cases, it can also be a set of labels
for each of the instances in D. The algorithm starts by
creating a contingency matrix from labels obtained from
KB and CLA. This contingency matrix is then used to build
Hsplit and Hmerge matrices as described in Section 3.1.
Based on these structures, the split and merge candidates
are created, along with their justifications. The justifications

are assumed to be in the form of rules, however, in general
cases, they can be any type of explainable structure that
allows for labelling data and explaining differences between
particular clusters. If the expert decides that the justification
is convincing, a decision on including a new rule in KB+
can be made. The algorithm converges when no more
modifications to KB+ are performed during the last pass.

It is worth noting that the elements of KB+ do not have to
be rules. In particular, they can take the form of an instance
of clustering algorithms followed by accepted KNAC
recommendations and their explanations (not necessarily in
the form of rules). Such justification can serve as a single
interpretable clustering step that makes the whole process
more transparent.

In the following section, our approach will be presented
in a real-life case study scenario from the Industry 4.0
domain.

4 Case study

Our industrial use case concerns the operation of a coal
mine shearer [48] in an underground coal mine. A shearer
is the main element of longwall equipment and is used for
coal mining and loading on the armoured face conveyor
(AFC). A shearer consists of two mining heads (cutter
drums), placed on the arms, and a machine body containing
electric haulage, hydraulic equipment, and controls. A
shearer is mounted over the AFC. The working shearer
moves in two directions: along the longwall face (from
the maingate to the tailgate), cutting the coal and due
to mining direction – along the length of the longwall
panel. From the perspective of this case study, the main
challenge is the discovery and identification of the states
of the machine, based on the sensor reading monitoring its
operation. To evaluate the automated state detection from
data, we used expert knowledge rules to detect ground true
labels. The rules were delivered by a domain expert working
in collaboration with the Famur company that delivered
the data.

4.1 Knowledge-based labelling

The rules listed below describe the higher-level operational
state of the machine that can be referred to the process

Fig. 4 XTT2 table for rules
explaining merge
recommendation
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Algorithm 1 KnAC algorithm.

of coal extraction presented in Fig. 5. The meaning of the
identified process stages in Fig. 5 is as follows:

1. A - cutting into tailgate direction at the beginning of
the longwall,

Fig. 5 Model of a shearer cycle
[49]
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Fig. 6 Expert tree for theoretical activity description [9]

2. A - stoppage in ON mode at the beginning of the
longwall (location: 30-40m from the maingate),

3. A - cutting - return to maingate at the beginning of the
longwall,

4. A - stoppage in ON mode at the beginning of the
longwall (location: minimal value - maingate),

5. A - cutting in the middle of the longwall,
6. A - cutting into tailgate direction at the end of the

longwall,
7. A - stoppage in ON mode at the end of the longwall

(maximal value - tailgate),
8. R - cutting into maingate direction at the end of the

longwall,
9. R - stoppage in ON mode at the end of the longwall

(location: 30-40m from the tailgate),
10. R - cutting - return to tailgate at the end of the

longwall,
11. R - stoppage in ON mode at the end of the longwall

(maximal value - tailgate),
12. R - cutting in the middle of the longwall,
13. R - cutting into maingate direction at the beginning of

the longwall,
14. R - stoppage in ON mode at the beginning of the

longwall (location: minimal value - maingate).

The decision tree structuring the expert rules for each
state of the shearer, mentioned above (denoted in the picture
by an integer value from a range of 1 to 14), is presented in

Fig. 6. The first split of the decision tree corresponds to the
state of the shearer. There are three main operating states
of the shearer: cutting (moving along the longwall face
with working drums), moving (moving along the longwall
face without working drums), and stoppage. Specific rules
that denote these states are based on currents (haulages
and drum) and shearer speed5. The second split for Cutting
and Stoppage in ON mode is done by part of the cycle:
along (A) or return (R). The next split depends on the
shearer location in the longwall: the beginning (B), the
middle (M), or the end (E). The last split corresponds to the
movement direction of the shearer right (RT) or left (LT).
Moving activity is considered along with a move direction,
independently of the location of the shearer. In the case of
stoppages, the movement direction split is not applicable.

The presented tree can be expanded into a set of rules, in
the form presented below, e.g.:
If shearer state = ‘‘cutting’’ AND cycle

part = ‘‘A’’ AND location = ‘‘middle’’

AND move direction = "LT" THEN

activity = ‘‘5’’

As can be observed, the decision tree contains two states
more than in the original process from Fig. 5, namely
moving without cutting (15) and cutting in the opposite
direction to the cycle part (16). These states do not directly

5Due to the information policy of collaborating companies, the rules
cannot be presented in detail.
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Fig. 7 Expert rules for theoretical activity description from Fig. 6 for defining intermediate clusters of the shearer

refer to the regular process of coal extraction. However,
they exist in mining practice, and thus are needed to be
considered during process modelling and analysis.

The decision tree for defining the theoretical machinery
states depicted in Fig. 6 is general enough to cover
all possible characteristics of machinery operation in the
longwall face. However, it has to be adjusted in order to
fit the available data. In the real-life scenario presented in
this work, the rules were simpler due to the fact that the
shearer was cutting only along one direction. The rule-based
representation of the theoretical states is given in the XTT2
model presented in Fig. 7. In the figure, we presented only
a fragment of the rule-based encoding of theoretical states
indicated in Fig. 6. The rest of the tree is omitted, as it does
not play an explicit part in the workflow.

Rules can be applied directly to label the raw data as
they use features that are present in the raw data. Such an
application of the XTT2 rules presented in Fig. 7 is given in
Fig. 8 and this labelling can extend actual data analysis in
the direction of efficiency analysis by generating summaries
and basic statistics on the operation of the shearer. However,
in such an approach, some non-typical behaviour of the
shearer can be lost. This may occur when one of the states
denoted by the expert rule encapsulates more specific and
highly distinguishable states, which can be defined by raw
data analysis. These states may correspond, for example, to
abnormal machinery operation due to a possible hardware
fault or inappropriate device control by its operator.

Figure 8 depicts the results of expert label assignment
over a selected period of time with the knowledge base

Fig. 8 Example of clusters
discovered with expert
knowledge
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shown in Fig. 7. The figure depicts the location of the
shearer, with colours representing different machinery states
(clusters). In the ideal situation, the expert-based clustering
will be perfectly aligned with the theoretical stages depicted
in Fig. 5. However, this is clearly not the case in this
example and, hence, additional refinement of the expert
knowledge is needed. Therefore, the expert labelling will
be an input for KNAC along with automated clustering
described in more detail in the next section.

4.2 Automated clustering

Analysed sensor data is a multidimensional industrial log
from the mining shearer. It contains 148 features that
are raw sensor readings sampled every second. The full
length of the data is about one year, and as a result, the
analysed dataset contains almost 2 million time steps. In
the analysis reported here, only a one-month time span
indicated by domain experts as the most representative was
taken into consideration. As the analysed dataset contains
real industrial data which is very often incomplete and
noisy, there are many missing values. Hence, the first step
of the analysis was focused on data pre-processing.

4.2.1 Data pre-processing

Most of the variables have more than 55% of missing values
and thus data pre-processing was started with data cleaning.
The first step was to divide features into numeric, Boolean,
and categorical. After this, columns that contained more
than 65% of missing data were removed. Finally, columns
where the Pearson correlation coefficient was greater than
0.75 were removed unless a given feature was indicated by
the domain expert as important.

Among the features selected for further analysis, two
subsets were created. The first subset contained features
whose values can be interpolated and the second contained
features for which values can be imputed. In the case of the
former, a median strategy was applied to Boolean features
and a mean strategy to numeric features. For the features
selected to be interpolated, the linear interpolation method
was applied.

The last step of the dataset pre-processing was to create
additional artificial features to obtain better performance
from a clustering algorithm. In this step, the discretization
of the selected features was applied. Features related
to the electrical current (referring to shearer drums and
haulages) were discretized in accordance with the following
guidelines (based on the expert knowledge and nominal
value given in the machinery documentation):

– Idle value (0-10)% of nominal value,
– Low load (10-40)% of nominal value,

– Medium load (40-80)% of nominal value,
– High load (80-100)% of nominal value,
– Overload (above 100)% of nominal value.

After applying all the steps described above, the dataset
was correctly prepared as the input to the clustering
algorithm.

4.2.2 Clustering

As the clustering method, we selected the deep temporal
clustering algorithm [36]6. The selection of this method
was dictated by the evaluation of several different clustering
algorithms to select the one being the most promising
and robust solution for our case. This state-of-the-art
algorithm integrates dimensionality reduction and temporal
clustering into a single fully unsupervised end-to-end
learning framework that allowed us to adapt this solution to
the considered mining case.

The entire clustering algorithm is divided into two
main parts. The first part concerns a temporal autoencoder
(TAE) where an input signal is encoded into a latent
space by a convolutional autoencoder followed by a BI-
LSTM. The second part consists of a temporal clustering
layer which generates the cluster assignments based on the
latent representation of the BI-LSTM [36]. The overview
of the architecture of the Deep Temporal Clustering neural
network is presented in Fig. 9. The first level of the DTC
algorithm consists of a 1D convolution layer followed by
a max pooling layer and use of leaky rectifying linear
units (Leaky ReLU). This approach allows for reducing
the input data dimensionality and retaining only the most
relevant information which is crucial for further steps as
it helps to avoid long sequences. After this, the second
level of the autoencoder is used which allows obtaining
latent representation. The use of BI-LSTM allows learning
temporal changes in both time directions. Finally, the last
step is to assign a latent representation of the sequence
(x0, x1, . . . , xn), to the clusters. The algorithm uses two cost
functions; the first cost function is provided by the mean
square error (MSE) and is used to train the autoencoder.
The use of this metric ensures that after applying
dimensionality reduction, a good latent representation is
sustained. Reconstruction is provided by an upsampling
layer followed by a deconvolutional layer to obtain the
autoencoder output. The second cost function is provided
by the clustering metric – the KL divergence. This approach
ensures that the high-level features indeed separate the
sequences (x0, x1, . . . , xn) into k clusters of distinct spatio-
temporal behaviour. According to the obtained metrics, the

6Source code available under https://github.com/FlorentF9/DeepTem-
poralClustering

https://github.com/FlorentF9/DeepTemporalClustering
https://github.com/FlorentF9/DeepTemporalClustering
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Fig. 9 Overview of a deep
temporal clustering algorithm
used [36]

algorithm modifies the weights in the BI-LSTM layer to
optimally separate the sequences into clusters.

The clustering layer consists of k centroids ci,j ∈
(1, 2, . . . , k). To initialise these cluster centroids, a latent
signal zi was used. This latent signal was obtained by
feeding the input xi through the initialised temporal
autoencoder. A K-cut is performed to obtain the cluster and
then average the elements in each cluster to get the initial
centroids’ estimates ci,j = (1, 2, . . . , k).

After the estimation of the centroids cj , the temporal
clustering layer is trained using an unsupervised algorithm
in two steps:

1. Compute the probability of assignment of input xi

belonging to the cluster j . The closer the latent
representation zi of input xi is to the centroid ci , the
higher the probability of xi belonging to cluster j .

2. Update the centroid by using a loss function, which
maximises the high confidence assignments using a
target distribution p Eq. (7).

To obtain cluster assignment, an input zi is fed to
the temporal clustering layer and the distances di,j are
computed from each of the centroids cj using similarity
metrics. The next step is to normalise the distance di,j and
convert it into probability assignments using a Student’s t
distribution kernel [29].

qi,j = (1 + siml(zi ,cj )

α
)− α+1

2

∑k
J=1(1 + siml(zi ,cj )

α
)− α+1

2

(6)

where:

– qi,j is the probability of input i belonging to cluster j ,

– zi corresponds to the signal in the latent space, obtained
from the temporal autoencoder,

– α is the number of degrees of freedom of the Student’s
t distribution,

– siml is the temporal similarity metric which is used to
compute the distance between the encoded signal zi and
centroid cj .

In this study, similarity metrics were computed based on
Euclidean distance.

To obtain the best results, the key is to train the temporal
clustering layer iteratively. The main goal is to minimise the
KL divergence loss between qi,j given by E(6) and a target
distribution pi,j given by (7).

pi,j = q2
i,j /fj∑

j∈1...k q2
i,j /fj

(7)

where: fj = ∑n
i=1 qi,j . Further empirical properties were

discussed in [53]. Based on this target distribution function,
the KL divergence loss can be calculated using (8), where:
n and k are the number of samples in the dataset and the
number of clusters respectively.

L =
∑

i∈1...n

∑
j∈1...k

pi,j log
pi,j

qi,j

(8)

To apply the described clustering algorithm, the first
step was to prepare sliding window features based on the
pre-processed dataset.

Let us define a continuous multivariate time-series
data D of dimension d with n time-stamps, D =
(X1, X2, . . . , Xn) where each Xi = {

x1
i , . . . , xd

i

}
. Let w

be the window width, s the stride, and t the start time of a
sliding window in the data. A matrix Zk can now be defined,
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where each row is a vector of size w of data extracted from
the kth dimension [3]. The matrix definition is given in (9),
where r is the number of desired rows and the following
inequality holds: t + (r − 1)s + w − 1 ≤ n. In our work,
the reprocessed dataset was divided into sliding windows
containing w = 10 time steps and stride set to s = 5.

Zk(w, s, t)=

⎛
⎜⎜⎜⎝

xk
t xk

t+1 · · · xk
t+w−1

xk
t+s xk

t+s+1 · · · xk
t+s+w−1

...
...

. . .
...

xk
t+(r−1)s xk

t+(r−1)s+1 · · · xk
t+(r−1)s+w−1

⎞
⎟⎟⎟⎠

(9)

Having the input data prepared, the clustering algorithm
was run with the following parameter values:

– The convolution layer has 10 filters with kernel size 5
and two Bi-LSTM’s have filters 50 and 1, respectively,

– The pooling size is set to 5,
– The deconvolutional layer has kernel size 5,
– The autoencoder network is pre-trained using the Adam

optimiser over 10 epochs,
– Temporal clustering layer centroids are initialised using

k-means clustering,
– The mini-batch size is set to 512 for both pre-training

and end-to-end fine-tuning of the network,
– Dropout is set to 0.1,
– Recurrent dropout is set to 0.3.

The selected clustering algorithm assigns the same
cluster to all time steps contained in a given window.
Having the stride different than 0, there are multiple clusters
assigned for a single time step. To determine the final cluster

for a given timestep, the median of these assigned cluster
numbers is calculated.

The final clustering result, for a selected period of time, is
presented in Fig. 10. One can see that some parts of the plot
are aligned with expert labelling presented in the previous
section, but in some places, there are a lot more automatic
clusters than those assigned by an expert. Both expert
labelling and automated labelling are inputs for KNAC.

4.3 Knowledge refinement

In this section, we describe the process of application of
KNAC to refinement of the initial expert knowledge. The
refinement was performed by an expert in the domain,
who also delivered rules to encode prior knowledge and
work in collaboration with Famur company, which delivered
the data for analysis. The input for this method is the
contingency matrix depicted in Fig. 11 which was computed
with expert-based labelling and automated labelling, and
partial results were given in Figs. 8 and 10, respectively.

One can see that there are several expert labels with
various matched clusters, meaning that in the expert
label, more specific states can be found (compared to
what the expert expressed explicitly). Thus, these findings
can be investigated in terms of tree rule extensions
(Fig. 6) with an assumption of a minimal confidence ratio
threshold.

We automated the process by providing two algorithms
for split and merge operations, using the approach presented
in Section 3. Below, the split suggestions are presented for
a threshold value εs = 0.8 and silhouette weight λs = 0.5
obtained from the Hsplit matrix:

Fig. 10 Example of clusters
discovered with DTC algorithm
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Fig. 11 Contingency matrix M

over expert clustering (rows) and
automated clustering (columns)

SPLIT Cutting_right_middle INTO

[(4, 10)] (Confidence 0.64)

In order to decide which clusters should be merged, we
used the Hmerge matrix and calculated cosine similarity
between rows in the matrix. As a result, we obtained
a distance matrix that presents high cosine similarity
between expert labels that were similarly split by the split
matrix. Cosine similarity allowed us to bound the similarity
between 0 and 1 and allow for a better comparison of cluster
matches that differ in the number of points (magnitude
of the vector). The choice of expert labels to merge was
parameterised by the threshold value. Below, the merge
suggestions are presented for a threshold value εs = 0.8 and
linkage weight λm = 0.2:
MERGE Cutting_left_middle WITH Cutting_

right_end (Confidence 0.99)

MERGE Cutting_left_beginning WITH Cutting_

left_middle (Confidence 0.99)

MERGE Cutting_left_end WITH Cutting_left_

middle (Confidence 0.98)

MERGE Cutting_left_end WITH Cutting_right_

end (Confidence 0.98)

The aforementioned split and merge recommendation
needs to be revised by an expert and incorporated into
the knowledge base manually based on the explanations
generated either as Anchor rules or decision stumps.

4.4 Explanations

We will focus only on one recommendation per type for the sake
of simplicity. In particular, we will investigate the split recom-
mendation generated for the expert label Cutting_{r}ight
_{m}iddle and the merge recommendation for two
expert clusters, i.e.: Cutting_{l}eft_{e}nd and
Cutting_{r}ight_{e}nd.

Split explanations The explanation for the rec-
ommendation on splitting the expert cluster
Cutting_{r}ight_{m}iddle into clusters 4 and 10
returned by Anchor is given in Fig. 12. It was obtained
using the XGBoost classifier. In the split recommendation,
some specific simpler states in the shearer operation can
be found that are related to slower cutting (C 4) and faster

Fig. 12 Explanations for the
split recommendations with
textual version obtained from
Anchor at the top and visual
representation in the form of
XTT2 table at the bottom
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Fig. 13 Explanations for the
merge recommendations with
textual version obtained from
Anchor on the left and visual
representation in the form of
XTT2 table on the right

cutting (C 10). There is a clear explanation given by the
SM_{S}hearerSpeed variable, indicating the slow move-
ment of the shearer (<5.0) and fast movement (>10). Worth
noting is that these simpler states can also be matched with
cutting in other locations, as presented in the contingency
matrix.

Merge explanations Explanations for the recommendation
on merging expert clusters Cutting_{l}eft_{e}nd and
Cutting_{r}ight_{e}nd are given in Fig. 13 for
the Anchor explainer. Merging recommendations suggest
joining two states of cutting realised at the end of the
longwall face, with different movement directions. As a
result, a more general state will be obtained. The suggested
merge is relevant from a practical point of view. Very often,
at a more general level of abstraction, such a state is isolated
during shearer operation. What matters is this general state
has its own specifics related to the location of operation.

The final decision on the appropriate action is always left
to the expert and, hence, additional analysis of the clusters
that were pointed out by KNAC can be performed with
external methods. However, this reduces the overhead of
analysis only to the subset of clusters.

5 Evaluation of the approach
using an observational study

In order to evaluate our approach on a larger group of
experts, we designed a separate evaluation study that was
based on the publicly available dataset from the e-commerce
business area. We used a sample dataset from Consumer
Reviews of Amazon Products7. The sample consists of
1664 Amazon products with descriptions and one of the 26
categories assigned. We treated categories from the dataset
as expert labels and descriptions as data for clustering. In
Listing 1, a random product description from the dataset is
presented for the category: Games > Card Games.

We intentionally corrupted the label assignment given in
the dataset by performing fake merges and splits of several
categories. The goal of the study was to use KNAC in order
to find these corrupted categories of products. After the

7See: https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-
products, accessed (10.11.2021).

completion of the assignment, the experts were obliged to
fill in the evaluation survey containing 13 questions:

1. How much time did you spend on the task?
2. Which Amazon categories should be merged into a

meta-category?
3. Which Amazon category should be split? Select all that

should be split.
4. How confident are you about the correctness of your

solution?
5. How helpful were the recommendations provided by

KNAC for merges?
6. How helpful were the justifications of KNAC recom-

mendations for merges?
7. How helpful were the recommendations provided by

KNAC for splits?
8. How helpful were the justifications of KNAC recom-

mendations for splits?
9. How intuitive was usage of KNAC?

10. How skilled are you in data science?
11. What is the biggest strength of KNAC?
12. What is the biggest weakness of KNAC?
13. Additional comments.

We also gathered information about meta-parameters
that participants finally selected for KNAC merge and split
recommendations. This allowed us to reproduce their results
and compare final clustering with classic, state-of-the-art
approaches.

The case study was available online through Google
Colab Notebook and Microsoft Forms Survey8. We tested
three groups of target experts. The first group contained
five domain experts with knowledge about the e-commerce
area. The second group contained 3 data scientists with
no professional knowledge of the e-commerce area. The
third group contained 22 participants with different, yet
minimal experience in data-science and the e-commerce
area. Neither of the groups has prior experience with KNAC.

5.1 Setup of the study

In the study, we assumed that the labelling provided by
Amazon is correct and, therefore, we needed to corrupt the

8The study is available on the KNAC GitHub repository: https://github.
com/sbobek/knac.

https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products
https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products
https://github.com/sbobek/knac
https://github.com/sbobek/knac
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Listing 1 Product description
from the Games > Card Games
category.

dataset to include some redundant categories (candidates for
merges) and some general categories (candidates for split).
After the analysis of the dataset, we merged the following
two categories:

– Figures & Playsets > Science Fiction & Fantasy,
– Characters & Brands > Star Wars > Toys.

Additionally, we split the category Puppets & Puppet
Theatres > Hand Puppets into three synthetic categories:

– Figures > Fluffy,
– Dolls & Accessories > Teddybears,
– Puppets & Puppet Theatres > Hand Puppets.

We selected products for each of the synthetic categories
randomly and distributed them uniformly between the three
new categories.

On such data, we performed product description cluster-
ing in order to obtain automatic labels. The initial pipeline
containing data pre-processing, vectorization, dimensional-
ity reduction, and clustering were provided for the users
in order not to make the results dependent on the cluster-
ing method use or prior data prepossessing. We followed
a classic data clustering pipeline for the sake of simplicity
and computational efficiency. This included TF-IDF vector-
ization, SVD-based dimensionality reduction, and K-Means

clustering. We obtained 20 automatic clusters, compared to
26 clusters originally present in the dataset.

The experts were asked to use KNAC to discover if there
are clusters that should be merged or split. The experts did
not know that we had modified the original clustering and
believed that they had been working on the real dataset.

Due to the fact that the dataset was not tabular
data, but text, we changed the way the explanations
were presented to the experts. Figure 14 presents the
justification for a split for two arbitrary selected clusters
which was generated with the LIME framework. We also
investigated translations from LIME format to rules if
there was a need for an executable format of the new
knowledge and the fulfilment of the requirements presented
in Section 2.3. However, in the evaluation, we were mostly
concerned with the recommendations and justification,
hence, we did not include the aspect of the executable
format.

The blue cluster represents Figures & Playsets >

Science Fiction & Fantasy, while the orange cluster
represents Puppets & Puppet Theatres > Hand Puppets
categories. The prediction probabilities indicate that there
is high confidence in distinguishing one cluster from
another (therefore, they should be separated concepts). The
importance of each word in favour for one of the clusters is

Fig. 14 Justification of a difference between two clusters obtained with LIME. Highlighted words were the most important in distinguishing the
two clusters. The opacity of the highlight corresponds to the importance level
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Table 3 Comparison of performance in clustering with KNAC and other approaches

Homogeneity Completeness V-measure

Classic 0.70 ± 0.04 0.55 ± 0.04 0.62 ± 0.02

KNAC 0.98 ± 0.00 0.91 ± 0.02 0.94 ± 0.01

Transformers 0.75 ± 0.04 0.59 ± 0.05 0.66 ± 0.03

Mean values of the measure along with standard deviation are given. The bold entries represents best obtained results for particular method

depicted as the opacity of a highlight; the higher the opacity,
the more important the word is.

5.2 Discussion of results

We have analysed the results in total for all of the
participants, but also separately for each of the three groups:
1) e-commerce experts with data-science skills, 2) data-
scientists without e-commerce skills, and 3) participants
with neither experience in e-commerce nor data-science.
We first analysed how many of the artificially prepared
categories were captured by the experts as merge and split
candidates. Over 93% of the experts identified correctly at
least two of the three categories which should be merged.
However, only 53% of the participants correctly identified
three categories as candidates for a merge. In the case
of splits, over 53% of participants correctly identified the
category which we had combined previously. Such a low
number compared to the merge results may be caused by
the fact that, in the categories we combined, split was very
difficult to spot due to their similar content, and required
a deeper look into the data, which either requires more
data-science skills or domain knowledge. The correct split
identification rises to 71% when we limit the observation to
data-scientists and domain-experts only.

In addition, we compared final clustering results from
automatic clustering algorithms and the KNAC-guided
approach with respect to completeness, homogeneity, and
v-measure. In Table 3, a comparison between KNAC
and other state-of-the-art approaches is shown. For text
vectorization, we used the clustering performed with TF-
IDF vectorized text (Classic) and the clustering performed
with transformer-based embedding (Transformer). For
transformer-based embeddings, we used the all-MiniLM-
L6-v2 pre-trained model trained on a corpus containing
more than 1 billion sentences, available in the sentence-
transformer9 package [40]. The results presented in the
Table were obtained from 12 participants who were given
the same task as the previous group, however, KNAC was
never introduced to them and they were asked to perform

9See: https://www.sbert.net/

clustering with classic approaches. Participants had a choice
to select the clustering algorithm they consider best for this
task. The selected algorithms included: K-Means, Spectral
clustering, Gaussian mixture, and Agglomerative clustering.

As for their confidence in the results, e-commerce
experts and regular participants were more certain about
the correctness of their answers than data-scientists, as
depicted in Fig. 15b. They give KNAC loewr scores for
intuitiveness than data-science experts, which may suggest
they put more emphasis on their expert knowledge during
the task resolution and were more sceptical towards KNAC.
This observation was true for almost all of the survey
questions, where KNAC received lower scores from domain
experts with lower data-science skills than from skilled
data-scientists with no domain knowledge.

Completion time for all of the groups was short and
oscillated around 20 minutes, as presented in Fig. 16a.
Groups with higher data-science skills spent less time
on the task on average, as shown in Fig. 16b. Merge
recommendations and merge justifications were equally
rated for all of the groups of experts (see Fig. 17).
However, slightly better scores were assigned to KNAC
recommendations by data-scientists. Split recommendations
were given much worse ratings by e-commerce experts and
participants without experience than by the data-science
group of experts, as shown in Fig. 18. This might be related
to the specificity of the split we delivered, as the two
categories that were combined by us as a candidate for a
split were very similar in their content (Action figures and
Star Wars characters toys), which might not be clear enough
for the experts to divide them. Also, the justifications for
this case were not that obvious.

All of the participants marked simplicity of the rec-
ommendation output as the biggest strength. Some of the
participants focused on the presentation aspects, which was
not the original contribution of KNAC (we used the LIME
method for text highlighting), yet this indicates how impor-
tant the proper presentation of the explanation is for the
audience. Finally, the biggest weakness was related to the
process of fine-tuning (i.e., selection of threshold values),
which was not intuitive for some of the experts and data
scientists as well as the non-experienced participants. This,
however, does not undermine our results.

https://www.sbert.net/
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Fig. 15 Confidence and
intuitiveness of KNAC by
different groups of experts

Fig. 16 Completion time of the
task and their data-science skills

Fig. 17 Usefulness of merge
recommendations and
justifications

Fig. 18 Usefulness of split
recommendations and
justification
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6 Summary and future work

In the paper, we introduced a new approach for extending
the practical use of clustering algorithms for multidimen-
sional time series. KNAC allows for the incorporation of
expert knowledge into the clustering process, thus making
it more robust and useful. We presented the detailed formu-
lation of our approach as well as demonstrated its practical
use. Using an industrial case study based on real-life sen-
sor data, we described how an automated mechanism for
labelling operational states of an industrial device can be
used to refine expert-based labelling. These refinements
were defined by us as splits and merges of expert labelling.
Such refined knowledge can contribute to a better under-
standing of the modelled phenomena. As demonstrated in
our case study, it can be used for generating more detailed
reports on machine operational states as well as for detect-
ing abnormal behaviour in the machinery, which was not
detected by the original expert-knowledge rules. To boost
the reproducibility of our results and ease benchmarking,
complementary to the real use-case scenario, we delivered
artificially generated data sets with publicly available source
code of KNAC on GitHub 10. Moreover, to fully evaluate
KNAC as a generic method, we performed an evaluation
study with the participation of experts on a public real-data
set from a different domain (e-commerce). The results we
obtained from surveying the participants of the study indi-
cate that both merge and split recommendations provided
by KNAC are useful in analysing clusters. The quality of
the clustering was much better with KNAC than with clas-
sic and state-of-the-art clustering methods. Furthermore,
our approach delivers recommendations and suggestions
along with explanations of these recommendations. Both of
these recommendations and explanations are encoded in the
form of human-readable and executable rules. Finally, our
method is robust as it is able to work with arbitrary existing
clustering algorithms.

Future works may include covering some of the
limitations discussed below and wrapping the mechanism
into a Python package available for installing from public
repositories. First of all, the order in which recommended
splits and merges will be applied may affect the final
clustering result and the final knowledge base. This is
especially important in cases when splits and merges
concern the same expert clusters. In the current version of
our approach, there is no optimisation mechanism that could
govern this process.

Furthermore, in our solution, we assume that the process
is iterative, and hence it is safe to recommend minimal
numbers of clusters for split/merge. This is why for merges,
only two cluster merges at a time are possible. This

10Source code available under http://github.com/sbobek/knac

may negatively affect the performance of the process and
the granularity of the knowledge base. For instance, in
a case where there is a need to perform n merges in
order to converge, these merges will have to be performed
independently �log2(n)� times.

The final limitation that is currently under our investi-
gation is the explainability mechanism used for explaining
split and merge recommendations. Most of the solutions use
cluster centroids in the form of means or medians as rep-
resentative examples of a cluster (cluster prototypes). We
also followed this trend in KNAC. However, this method has
serious drawbacks in clusters that are of varying densities or
shapes, so some other representation of clusters is required
that will address this issue. In fact, in our other research, we
investigate the possible usage of multidimensional bounding
boxes as cluster representations for the explanation mech-
anism. This will possibly contribute to the improvement of
our method.
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