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Despite incredible advancements in the utilization of learning-based architectures
(AI) in natural language and image domains, their applicability to the domain of
music has remained limited. In fact, the performance of state-of-the-art Automated
Music Transcription (AMT) systems has seen only marginal improvements from
novel AI architectures. Moreover, the importance of psychoacoustic perception and
its incorporation into MIR systems have mostly stayed addressed, leading to short-
comings in current approaches. This thesis provides an overview of music process-
ing and novel neural architectures, investigates the reasons behind the subpar per-
formance achieved by their utilization in music information retrieval (MIR) tasks,
and proposes several ways of adjusting both the music (data-related) pre-processing
pipelines, and psychoacoustically-adjusted transformer-based model to improve the
performance on MIR and AMT tasks. In particular, a new music transformer archi-
tecture is proposed, and various algorithms of music pre-processing for psychoa-
coustic optimization are implemented along with several adaptive models aimed at
addressing the missing factor of modeling human music perception. The prelimi-
nary performance results exhibit promising outcomes, warranting the continued in-
vestigation of transformer architectures for music information retrieval applications.
Several intriguing insights unveiled during the research process are discussed and
presented. The thesis concludes by delineating a set of promising future research di-
rections, paving the way for further advancements in the field of music information
retrieval and generation using proposed architectures.
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Chapter 1

Introduction

1.1 Problem Definition

Music, as a powerful form of human expression, has been an essential component of
human culture for millennia. With the advent of digital technologies and the rapid
growth of audio and music data, the field of Music Information Retrieval (MIR) has
emerged as an interdisciplinary research area dedicated to extracting meaningful in-
formation from music data for a wide range of applications. Examples of such tasks
include music transcription, beat tracking, chord estimation, composer style trans-
fer, stylized music generation, lyrics matching, key estimation, modulation tracking,
and genre classification.

Despite the significant progress made in MIR research, the performance of state-
of-the-art techniques is still far from perfect. One of the main reasons for this is the
lack of suitable representation of audio data that reflects the intricacies of human
auditory perception. Most existing approaches in MIR tasks rely on raw waveform
data or simple frequency-domain representations, which fail to capture the complex-
ity of human auditory perception. This limitation results in suboptimal performance
across various MIR tasks.

In recent years, advanced neural network architectures, such as vector-quantized
variational autoencoders (VQ-VAEs) and transformers, have shown remarkable suc-
cess in domains like natural language processing and image processing. These archi-
tectures have demonstrated their ability to efficiently preserve inter-token informa-
tion, leading to significant improvements in performance. However, the application
of these novel architectures to the audio/music processing domain has not yielded
comparable improvements, primarily due to the difficulty in mapping audio data
to a representation that closely approximates human auditory perception - a broad
research field known as psychoacoustics.

1.2 Scope and Motivation

The central motivation of this thesis is to bridge the gap between existing neural
network architectures and the unique requirements of MIR tasks by incorporating
psychoacoustic principles into the representation of audio data and the design of
neural architectures. Psychoacoustics is the study of the human perception of sound,
investigating the relationships between physical properties of sound stimuli and the
sensations they evoke in the human auditory system.

By leveraging insights from psychoacoustic research, this thesis aims to develop
a new dataset that incorporates psychoacoustic features, such as frequency loga-
rithmization, multi-pitch harmonic perception, and relative scale degree perception.
Furthermore, the thesis will explore the adaptation and optimization of VQ-VAE
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and transformer architectures to work with the psychoacoustic dataset, potentially
leading to the development of new neural networks tailored for music information
retrieval and generation tasks.

This research has the potential to significantly improve the performance of MIR
tasks and contribute to the development of more effective and human-like auditory
perception models. The outcomes of this research could have wide-ranging implica-
tions for various applications in music production, analysis, recommendation, and
education.

In summary, this thesis seeks to address the following research questions:

1. How can psychoacoustic principles be incorporated into the representation of
audio data to better approximate human auditory perception?

2. How can existing VQ-VAE and transformer architectures be adapted and op-
timized to work with a psychoacoustic dataset for MIR tasks?

3. To what extent does the incorporation of psychoacoustic features improve the
performance of neural architectures in music information retrieval and gener-
ation tasks?
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Chapter 2

Theoretical Background

2.1 Devil in the Details: Music Representation

To analyze and process digital audio signals effectively, it is crucial to understand
the fundamental aspects of music representation. Digital audio is typically repre-
sented as a continuous waveform, which is discretized into individual samples using
quantization techniques. In this section, key aspects of digital audio representation,
including waveform, bit depth, and sampling rate, are discussed.

2.1.1 Waveform

A waveform is a visual representation of the amplitude of an audio signal as a func-
tion of time. In the case of digital audio, the continuous waveform is discretized into
a series of discrete samples. The amplitude of each sample corresponds to the air
pressure variation at a specific point in time. Mathematically, a continuous wave-
form can be represented as a function x(t), where t denotes time and x(t) denotes
the amplitude of the waveform at time t.

2.1.2 Bit Depth

Bit depth, also known as quantization, is the process of converting the continuous
amplitude values of an audio waveform into discrete digital values. The bit depth
determines the number of possible amplitude values that a sample can have. The
higher the bit depth, the more accurate the representation of the original continuous
waveform. Bit depth is usually measured in bits, and the total number of possible
amplitude values can be calculated as 2n, where n is the bit depth. For example, a
16-bit audio file has 216 or 65,536 possible amplitude values.

The quantization error, or the difference between the original continuous ampli-
tude and its discrete representation, is given by the following formula:

eq(t) = x(t)− xq(t) (2.1)

where x(t) is the original continuous amplitude, and xq(t) is the quantized ampli-
tude.

2.1.3 Sampling Rate

The sampling rate, or sample rate, is the number of samples taken per second to
represent the audio signal. It is measured in Hertz (Hz) and directly affects the
audio quality and the highest frequency that can be accurately represented in the
digital audio file. The Nyquist-Shannon sampling theorem states that to accurately
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represent a signal, the sampling rate must be at least twice the highest frequency
present in the signal:

fs ≥ 2 fmax (2.2)

where fs is the sampling rate and fmax is the highest frequency present in the audio
signal.

For example, the standard sampling rate for CD-quality audio is 44,100 Hz, as
it allows for accurate representation of audio signals up to 22,050 Hz, which covers
the entire range of human hearing (20 Hz to 20,000 Hz).

In summary, digital audio representation relies on waveform discretization using
bit depth and sampling rate. Understanding these fundamental aspects of music
representation is essential for designing effective music information retrieval and
generation models that can accurately process and analyze audio signals.

2.2 MIR and AMT

The field of Music Information Retrieval (MIR) encompasses various tasks related
to the analysis and understanding of music, including Automated Music Transcrip-
tion (AMT). AMT is the process of converting an audio recording of a musical per-
formance into a corresponding sheet music representation or - at the very least -
harmonic chord labels. This involves the accurate detection of various musical at-
tributes, such as pitch, timing, and velocity (dynamics), which are essential for a
complete and accurate transcription.

Currently, state-of-the-art (SOTA) AMT systems perform well in transcribing
piano-only music, capturing both pitch and velocity information. Piano music is
often considered a simpler case due to its well-defined, percussive sound and rela-
tively limited polyphony compared to orchestral music. For orchestral music, where
multiple instruments with complex timbres and overlapping notes are present, the
performance of existing AMT systems is more limited. In such cases, the systems
can generally detect pitch information but struggle to accurately estimate other at-
tributes like velocity or instrument identification.

A significant limitation of current SOTA AMT systems is the absence of a rein-
forcement learning (RL) component or feedback loop, which could enable the sys-
tem to correct its transcription as it processes the music. In human transcription,
listeners can identify errors in their transcription as they compare it to the music
being transcribed, and iteratively refine their transcription to improve its accuracy.
Incorporating an RL-based approach in AMT systems would allow them to mimic
this human-like adaptive behavior, potentially leading to more accurate and robust
transcriptions.

In summary, while the current state-of-the-art AMT systems show promising re-
sults in specific domains, such as piano-only music, there is significant room for
improvement, particularly in more complex scenarios like orchestral music with
polyphony and subtle variations in tuning and tempo. By integrating reinforcement
learning components and feedback loops into AMT systems, it may be possible to
enhance their performance, enabling them to produce more accurate and complete
transcriptions across a wider range of music.
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2.2.1 Pitch and Frequency

Pitch is a perceptual property of sound that allows us to differentiate between high
and low sounds. In music, pitch refers to the musical note or tone produced by a
vibrating source, such as a vocal cord or a string on a musical instrument. The pitch
of a sound is directly related to its frequency, which is the number of oscillations or
cycles of a waveform per second, measured in Hertz (Hz).

The fundamental frequency, also known as the first harmonic, is the lowest fre-
quency of a periodic waveform and is the most significant contributor to the per-
ceived pitch of a sound. The frequencies that are integer multiples of the funda-
mental frequency are called harmonics or overtones. The presence of harmonics is
responsible for the unique timbre or tone quality of a sound, which allows us to dis-
tinguish between different instruments or voices even when they produce the same
pitch.

Pitch Notation

Pitch is typically represented using a system of musical notation, which assigns a
unique symbol or note name to each pitch within a specific range or scale. The
most common notation system is the staff notation, where pitches are represented
by placing note symbols on a series of horizontal lines called a staff. The position of
the note on the staff indicates its pitch relative to a reference note, usually C or A.

Accurate pitch detection is a crucial task in various music information retrieval
applications, such as automated music transcription, melody extraction, and key
detection. Numerous pitch detection algorithms (PDAs) have been developed to
estimate the fundamental frequency of a given audio signal. These methods can
be broadly classified into time-domain, frequency-domain, and joint time-frequency
domain approaches. Some popular PDAs include the Autocorrelation Method, the
YIN Algorithm, and the Harmonic Product Spectrum.

In Western music, the standard reference pitch is A4, which has a frequency of
440 Hz. The pitches of other notes can be determined using the equal-tempered
scale, where the frequency ratio between adjacent semitones is constant, given by
the twelfth root of 2 (approximately 1.0595). This scale divides an octave, the in-
terval between two pitches with a frequency ratio of 2:1, into 12 equal parts called
semitones.

2.2.2 Tempo

Tempo is a fundamental aspect of music, often described as the "speed" or "pace" at
which a piece of music is played. In a more formal context, tempo refers to the rate
of the underlying beat, or pulse, that governs the rhythmic structure of a musical
composition. It is typically expressed in beats per minute (BPM), a measure of the
number of beats occurring within a 60-second interval.

The concept of tempo has been an integral part of music since antiquity. How-
ever, it was not until the 16th century that composers began to indicate tempo ex-
plicitly, using words to describe the desired pace of the music. The invention of the
metronome in the early 19th century, attributed to Johann Nepomuk Maelzel, pro-
vided a more objective and precise method for specifying tempo. With the metronome,
a mechanical device that produces an audible click at regular intervals, composers
could now provide exact BPM values for their music.
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Challenges in Precise Tempo Formulation

Despite the introduction of the metronome, precise formulation of tempo remains a
challenge, particularly in the realm of computer signal processing. There are several
factors contributing to this difficulty:

• Variability: Tempos may vary throughout a piece, even within a single mea-
sure or bar, as a result of expressive performance practices or musical notation
(e.g., accelerando or ritardando). This variability can be challenging for com-
puters to track and represent accurately. This concept of both the discrete and
a continuous tempo modulation possibility is graphically illustrated on Figure
2.1, and can be imagined as sudden or prolonged speed-ups and slow-downs
in a piece of music.

• Polyrhythm and Syncopation: Complex rhythmic structures, such as polyrhythms
(multiple rhythms played simultaneously) and syncopation (rhythms empha-
sizing off-beat notes), can create ambiguity in determining the underlying tempo.

• Subjectivity: There is often an element of subjectivity in perceiving tempo,
with listeners potentially experiencing the same piece at slightly different tem-
pos.

FIGURE 2.1: An illustration of possible tempo modulation patterns

Psychoacoustic Perception of Tempo

In order to develop effective music signal processing techniques, it is crucial to con-
sider the psychoacoustic aspects of tempo perception. Humans are highly adept at
perceiving and processing tempo, often unconsciously synchronizing movements,
such as tapping a foot or nodding one’s head, to the beat of the music. This phe-
nomenon, known as entrainment, suggests that the human brain is capable of pro-
cessing tempo in a highly efficient and robust manner, and - even more importantly
- is likely doing this by utilizing some relatively straightforward neural processing
chain without introducing unnecessary complexity. Had it been not the case, even
a trivial task of rhythmically tapping along with a piece of music would inevitably
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produce mental strain in the person doing that as opposed to being a simple task
most often not requiring any coordinated mental effort from the listener whatsoever.

Research in the field of music cognition and psychoacoustics has identified sev-
eral factors that influence human tempo perception:

• Beat Salience: The prominence of the beat, determined by factors such as loud-
ness, duration, and spectral content, can impact the ease with which listeners
perceive tempo.

• Musical Context: Listeners’ perception of tempo can be influenced by the spe-
cific melodic, harmonic, and rhythmic structures present in a piece of music.

• Cultural and Individual Factors: Cultural background and individual listen-
ing habits can also play a role in shaping tempo perception. Western music is
famous for its well-tempered pieces, in which the tempo guidelines are followed
with exceptional strictness. A concrete definition of tempo, or other strong
beat-related features in general, meanwhile, is completely foreign to Kazakh
traditional music, where continuous modulation is the norm rather than the
exception to be accounted for. Nevertheless, for the purposes of consistency,
an implicit assumption of Western music will be made throughout this thesis.

2.2.3 Psychoacoustic Perception and its Importance for MIR

Psychoacoustic or relative perception is a crucial aspect of human auditory process-
ing that has remained largely unaddressed in the field of Music Information Re-
trieval (MIR). The ability to recognize and understand musical structures, such as
melodies or harmonic progressions, regardless of their absolute pitch values is a
fundamental skill in human musical perception. This relative perception allows us
to identify the same melody or progression when it is transposed to a different key,
as our brains automatically adjust to the new context and focus on the relationships
between the notes rather than their absolute pitch values.

This aspect of human perception is essential to our understanding and appreci-
ation of music, as it allows for a more flexible and adaptable listening experience.
However, current state-of-the-art architectures in MIR often fail to capture this im-
portant characteristic of human auditory processing. Most existing methods repre-
sent musical information in an absolute form, making it difficult for the system to
recognize transposed versions of the same melody or progression as being related.
Consequently, the same melody presented in different keys will map to entirely dif-
ferent representations in the system, which severely limits its ability to generalize
and accurately process musical information.

To illustrate the importance of relative perception, consider a simple melody that
a listener can easily recognize. When the melody is played in a different key, a hu-
man listener can still identify the melody despite the change in pitch. This ability
comes from our innate understanding of the relationships between the notes in the
melody, such as intervals and rhythmic patterns, which remain constant even as the
absolute pitch values change. In contrast, an MIR system relying on absolute pitch
representation (e.g. almost every SOTA MIR system) would likely fail to recognize
the transposed melody as the same tune, as its internal representation would be en-
tirely different.

Incorporating relative perception into MIR systems is crucial for enhancing their
accuracy and generalizability. By developing methods that can account for the re-
lationships between musical elements, rather than just their absolute values, MIR
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systems can better emulate human auditory processing and improve their perfor-
mance in tasks such as transcription, key estimation, and harmonic analysis. Ad-
dressing this issue will likely require novel approaches and architectures that can
effectively capture the intricacies of relative perception and enable MIR systems to
process musical information in a more human-like manner.

2.3 Music Generation

In addition to music information retrieval, there has been a growing interest in music
generation, with many researchers and developers focusing on creating new music
compositions or arrangements using state-of-the-art machine learning techniques.
While the potential applications of music generation are exciting and can potentially
revolutionize the way music is created and consumed, this focus on music genera-
tion has inadvertently led to less attention being paid to automated music transcrip-
tion (AMT).

This disproportionate focus on music generation could be considered a mis-
guided approach for several reasons. First, a solid foundation in music transcrip-
tion is crucial for developing more advanced music generation techniques. Accurate
transcription can provide a wealth of information about musical patterns, structures,
and styles, which can be invaluable in training more sophisticated generative mod-
els. By improving transcription, researchers can better understand the underlying
structure of music and consequently develop more advanced and expressive gener-
ative models.

Second, accurate music transcription has a wide range of practical applications
that can benefit various stakeholders in the music industry. For example, music
educators can use transcription tools to provide students with accurate sheet music,
composers can analyze and study the works of others, and musicologists can explore
the structural and theoretical aspects of music in greater depth. By focusing primar-
ily on music generation, researchers may inadvertently neglect the development of
tools that can have a significant impact on the music community.

Lastly, the development of accurate music transcription algorithms can help ad-
dress some of the limitations and challenges currently faced by music generation
models. For instance, improving transcription accuracy can lead to better represen-
tations of musical data, which can then be used as input for generative models. Fur-
thermore, by focusing on the nuances of music transcription, researchers can gain a
deeper understanding of the complexities of music theory and human perception,
which can ultimately lead to more expressive and musically rich generative models.

2.4 The Transformer Architecture

The Transformer neural architecture, introduced by Vaswani et al. in 2017 [1], has
revolutionized the field of natural language processing and has since been applied to
various other domains, including image processing and, recently, music information
retrieval. The Transformer model is based on the self-attention mechanism, which
allows the model to weigh and aggregate information from different positions in
the input sequence, enabling it to capture long-range dependencies and inter-token
relationships effectively. This section provides a detailed explanation of the Trans-
former architecture, focusing on its key components and underlying mathematical
principles. A somewhat simplified and generalized type of description of the trans-
former’s advantages and inner workings is provided further in section 5.1.1.
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2.4.1 The Self-Attention Mechanism

At the heart of the Transformer architecture lies the self-attention mechanism, which
computes a weighted sum of input representations, allowing the model to selectively
focus on different positions in the input sequence. Given an input sequence X =
x1, x2, ..., xn, the self-attention mechanism first computes three vectors for each token
xi: the query vector qi, the key vector ki, and the value vector vi. These vectors are
obtained by applying linear transformations to the input representations:

qi = WQxi, ki = WKxi, vi = WV xi, (2.3)

where WQ, WK, WV ∈ Rd×d are weight matrices representing the learnable parame-
ters of the self-attention mechanism.

Next, the self-attention mechanism computes the attention weights between all
pairs of tokens in the input sequence. The attention weight aij between tokens i and j
is calculated as the scaled dot product of their corresponding query and key vectors:

aij =
q⊤i k j√

d
, (2.4)

where d is the dimensionality of the query and key vectors. The scaling factor
√

d is
introduced to prevent the dot product from becoming too large, which could lead to
vanishing gradients during training.

The attention weights are then normalized using the softmax function, ensuring
that they sum to one:

αij =
exp(aij)

∑n
k=1 exp(aik)

. (2.5)

Finally, the self-attention mechanism computes the output vector zi for each to-
ken xi by taking a weighted sum of the value vectors of all tokens in the input se-
quence:

zi =
n

∑
j=1

αijvj. (2.6)

2.4.2 Multi-Head Attention: Nodes talking to each other

To capture different aspects of the input sequence, the Transformer architecture em-
ploys multiple self-attention mechanisms in parallel, referred to as "heads." Each
head h computes its own set of query, key, and value weight matrices, WQ

h , WK
h , WV

h ,

and produces a separate output representation z(h)i for each token xi. The output
representations from all heads are concatenated and linearly transformed to produce
the final output vector for each token:

zi = WO
[
z(1)i ⊕ z(2)i ⊕ ...⊕ z(H)

i

]
, (2.7)

Table 2.1 provides a comparative overview of major differences between the
transformer architecture and an older Long Short-term Memory-based (LSTM) ap-
proach.
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TABLE 2.1: Comparison of LSTM and Transformer Architectures

Feature LSTM Transformer

Basic Unit Recurrent Neural Net-
work (RNN)

Self-attention mecha-
nism

Memory Maintains hidden states
as memory through time

No explicit memory; re-
lies on attention mecha-
nism for context

Sequence Processing Processes sequences se-
quentially

Processes sequences in
parallel

Parallelization Limited due to the se-
quential nature of pro-
cessing

Highly parallelizable,
which allows for faster
training and inference

Time Complexity O(n) for n time steps O(1) since all tokens
are processed simultane-
ously

Space Complexity O(n) for n time steps O(n2) for n tokens due
to the attention matrix

Long-Range Dependencies Handles long-range de-
pendencies using mem-
ory gates (cell state, in-
put gate, forget gate, and
output gate)

Handles long-range
dependencies using the
self-attention mecha-
nism

Architecture Unidirectional or bidi-
rectional

Encoder-decoder or
encoder-only (e.g.,
BERT)

Use Cases Sequence-to-sequence
tasks, time series predic-
tion, text generation

Natural language un-
derstanding, translation,
text summarization,
image captioning, and
more

Training Stability More stable training due
to recurrent structure

Less stable training; re-
quires techniques like
layer normalization and
learning rate warmup

Key Innovations LSTM cells with mem-
ory gates to address
the vanishing gradient
problem

Self-attention mech-
anism and positional
encoding to capture
context and order

Popular Models Basic LSTM, BiLSTM,
Stacked LSTM

Original Transformer,
BERT, GPT, T5, and
more
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Chapter 3

Literature Review

3.1 Divide et Impera: A two-staged review

Given the interdisciplinary nature of this thesis and the need to establish a strong
foundation in MIR, psychoacoustics, and advanced neural architectures, the litera-
ture review is divided into two distinct stages. The first stage focuses on MIR, au-
dio processing, and psychoacoustic research, with an emphasis on automated music
transcription (AMT) techniques and their limitations. The second stage delves into
the study of the transformer architecture and machine learning in general, exploring
the applications in various domains and highlighting potential areas of adaptation
for subsets of MIR tasks.

The rationale behind structuring the literature review in this manner stems from
the need to first establish a comprehensive understanding of the current state-of-
the-art in MIR, AMT techniques, and psychoacoustic research. This understanding
is crucial for identifying the limitations and challenges faced by existing methods,
which will inform the subsequent exploration of advanced neural network architec-
tures and their potential applications in MIR tasks.

By examining the key/harmony and tempo-related task subsets of MIR, AMT-
related research, and psychoacoustic literature in the first stage, the aim is to eluci-
date the intricacies of human auditory perception and the challenges in developing
effective representations of audio data. This stage will also provide insights into the
psychoacoustic principles that govern the human perception of sound, allowing to
better understand how these principles can be incorporated into the design of neu-
ral architectures tailored for MIR tasks. This comprehensive understanding will set
the stage for the second part of the literature review, where the potential of trans-
former architectures and other advanced neural networks to address the identified
challenges and limitations is investigated.

The second stage of the literature review is necessary to establish a thorough un-
derstanding of transformer architectures and related neural networks, which have
demonstrated considerable success in various domains, such as natural language
processing and image processing. By examining these architectures in-depth, it’s
possible to identify their strengths and limitations, as well as the extent to which
they can be adapted for MIR tasks that leverage psychoacoustic principles.

This two-stage approach to the literature review is designed to provide a compre-
hensive overview of MIR, psychoacoustic research, and advanced neural network
architectures, while also facilitating the identification of gaps in the literature that
can be addressed by the proposed research. By adopting this structure, the goal is to
ensure that the thesis is grounded in a solid understanding of the current state-of-
the-art and is well-positioned to make significant contributions to the field of MIR.
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3.2 The ABCs of MIR and AMT

3.2.1 Background and Goals

Several algorithms exist to estimate the tempo and key of a music piece, such as some
classical correlational ones used for key estimation (e.g. the Krumhansl–Kessler, Al-
brecht–Shanahan, Temperley algorithms), or more novel learning-based ones (e.g.
convolutional and/or recursive neural networks) used for both tasks. However,
most of these approaches are designed to work on a fixed tempo or key, making them
ill-suited for audio waveforms with metric and/or harmonic (key/tonality) modula-
tions present. This is quite surprising, given that most of these algorithms are not in-
herently limited to such temporally stable conditions, since even a sequential/window-
based application of some of them can potentially make them adjust to changes in
tempo or key present over time.

To address these issues, adaptive time-varying tempo and key/tonality estima-
tion methods have been proposed in recent years, but their implementation was not
up-to-par, and most of them stayed more or less theoretical. There is promising po-
tential to these methods to adapt to tempo and key changes in real-time and provide
accurate estimates even in the presence of tuning distortions or noise.

The objective of this literature review stage is to compare and contrast existing
adaptive yet theoretical/non-implemented and non-adaptive techniques for tempo
and key estimation in order to gain a comprehensive understanding of the approaches
used for these MIR tasks. In particular, the aim is to analyze the relative accuracy,
complexity, and potential for introducing adaptivity of each technique, as well as
to identify common patterns in waveform pre-processing and other relevant steps,
and to possibly identify potential areas of improvement. Ultimately, the aim of this
substage is to identify either a single approach or a combination of approaches that
can be implemented and optimized for adaptivity in the most applicable way. By
achieving these objectives, this review and the will provide a foundation for the de-
velopment of an accurate and adaptive system for tempo and key estimation, which
can improve the performance and flexibility of other MIR systems reliant on these
tasks.

3.2.2 The Review Process

The review process itself was carried out in a selective manner to ensure that only
the publications with usable and promising approaches were included in the anal-
ysis. To start, the process of searching for literature was done using several main
search platforms: Google Scholar, Music Information Retrieval Exchange" (MIREX)
conference archive and Arxiv.org. These databases were selected as they provide
a comprehensive coverage of scientific publications from various fields, including
signal processing and music information retrieval. Arxiv, in particular, mostly pro-
vided publications dealing with statistical and learning-based methods.

To narrow down the search results, inclusion and exclusion criteria were set.
Only publications that dealt with tempo and key estimation/detection, and that
used relevant or clearly implementable signal processing techniques were consid-
ered. In addition, only publications in English language and that were published
from 2005 up to the present were included in the analysis. These criteria helped
to ensure that the publications were relevant and up-to-date. In the end, the bulk of
the reviewed publication were found by following the references mentioned in other
papers.
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A two-fold search process was employed: firstly, with search terms used for the
review process being "adaptive tempo estimation", "pitch chroma space", "adaptive
key estimation", "adaptive tonality detection", "adaptive key detection" and "adap-
tive music information retrieval". This initial stage provided very little usable liter-
ature, so an additional search query with the same keywords, but excluding "adap-
tive" was carried out. Special attention was paid to reviews, as they often referenced
other useful publications.

To assess the credibility of the selected publications, several metrics were used.
The impact factor of the journal in which the publication appeared, the number of ci-
tations it had, and the reputation of the authors and their institutions were all taken
into account. In addition, the relevance of the publication to the research question,
the soundness of the research methodology used, and the quality of the results ob-
tained were also considered. Nevertheless, even publications lacking in some aspect
(technicality/accuracy) sometimes provided useful insights in other regards - future
references to research as well as approaches better not followed.

Lastly, the publications selected were then organized into groups based on their
approach to tempo and key estimation/detection. The comparative analysis of these
publications was based on several metrics, including relative accuracy, complex-
ity, and potential for introducing a degree of true adaptivity. Some common pre-
processing patterns were identified.

3.2.3 Results and Discussion

Papers published from 2005 to 2022 were selected for the first review stage, including
several survey and review papers, and one survey specifically dealing with adaptive
algorithms in MIR [2]. With this study in particular, it became apparent that the term
"adaptivity" was not always used in a consistent and appropriate manner across the
different sources. Specifically, some publications that were identified as relevant to
the study focused on a concept of "adaptivity" that was not directly related to signal
processing techniques, but instead referred to a completely different meaning (e.g.
user-adaptive recommendation systems). These sources describe systems that adjust
recommendations based on a user’s behavior or preferences, rather than systems
that are adaptive to changes in the input signals. Despite this distinction, these pub-
lications were included in the review process, but were ultimately excluded from
the analysis of the performance of adaptive signal processing algorithms in music
information retrieval tasks.

Additionally, it was discovered that the "Music Information Retrieval Exchange"
(MIREX) conference website contained a number of publications that were of sub-
par quality. Specifically, the categories of tasks of interest in "Audio Key Detection"
and "Audio Chord Estimation" were found to contain particularly low-quality pa-
pers. These papers were poorly formatted and did not present any meaningful re-
sults, which limited their credibility and usefulness for the present study. As such,
care was taken to ensure that only high-quality sources were included in the review
process, and those publications that did not meet the necessary standards were ex-
cluded.

The following paragraphs outline the most important insights and approaches
in key and tempo estimation tasks, respectively.
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3.2.4 Key Estimation

Since key estimation can be described as a temporally-varying 24-dimensional classi-
fication problem, most studies under consideration make use of the so-called chroma-
gram - a Pitch Class Profile features (PCP) frame-based representation based on the
Short-time Fourier Transform (STFT). There were slight differences in implement-
ing the PCP chromagram in reviewed literature - variations in frequency bins, log
or mel-scale utilization, as well as some audio pre-processing differences (preferred
sample rate after downsampling, envelope properties, hop length, etc.). The result-
ing chromagrams were then used as an input into auto-and cross-correlation matrix-
based architectures to output the final key estimate in a given time-frame (for local
estimation) [3, 4]. This approach was found to suffer from a major downside - the
correlation matrices have to be constructed for specific chord/key labels and tuning,
requiring additional pre-processing, although this issue was more pronounced in
chord estimation tasks, and not as critical for key estimation.

In a somewhat different category, the authors of [5] propose a technique for key
detection that relies on "fuzzy" methods: an analysis for chromatic pitch-class deter-
mination, with the addition of an adaptive level weighting. The aim of the weight-
ing step is to enhance the robustness of pitch values obtained from the signal’s Fast
Fourier Transform. The pitch values are then used to derive pitch class profiles,
which are in turn employed to determine the key. To determine the weight for each
predefined pitch range, the technique makes use of information about the signal
density in that range [6].

Unfortunately, several publications mentioning adaptivity in tonal and harmonic
(chord) detection refer not to the temporal modulations of these qualities, but to
some time-invariant deviation in the nature of the sound-wave, often trying to "adapt"
to a different tuning frequency or some other parameter of secondary interest [7].
Nevertheless, certain approaches employed in such papers proved promising - the
confusion, correlation and transition matrices in [8] and [9].

Quite often, chroma-vectors in additional to chromagrams were often used in com-
bination with some Hidden Markov Model-based architecture to estimate key to
various degree of success [10]. Another wide category of key estimation approaches
relies on music theory knowledge (e.g. [11] mentions multiple sources using the
circle of fifths information in different ways).

3.2.5 Tempo estimation

In time-domain, adaptive thresholding was used in [12] to identify peaks in the au-
dio input signal. Publicly available tools such as aubio and MIRToolbox have offered
peak picking methods using dynamic thresholds, where the adaptable system is a
threshold function. This function’s dynamic threshold parameter is derived from a
short, sliding window of the input values, providing context. While peak picking
with dynamic thresholding is commonly used for onset detection, it has also been
applied to audio identification, audio to score matching, and audio recording seg-
mentation.

A similar time-domain onset-based approach is proposed in [13] for extracting
tempo information in a somewhat adaptive manner. Their method uses an onset-
dependent adaptive window size, assuming that note onsets are the main source of
tempo information. The authors suggest that a larger window is needed in sections
with fewer notes played to obtain a more accurate tempo estimation, while a smaller
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window is sufficient in other cases. Instead of using a fixed number of input values
to specify window size, the approach uses a fixed number of "inter-onset-intervals".

In addition to that, utilizing normal/reassigned spectral energy flux and Mel-
frequency cepstral coefficients-based spectrograms was a common practice for track-
ing tempo variations. A most accurate local tempo estimation techniques with Fourier
autocorrelation tempograms in [14] then used temporal variations to re-weight the
auto-correlation matrices by log-normal priors, smooth them out with log-normal
distribution, and using the local maximum of the weighted correlation to find the
best peak value in a given local window.

Other approaches showed similarly promising results in tempo estimation tasks.
In particular, time-domain analysis and introducing custom error/loss function based
on periodicity information. The tempo, meter, and beat subdivision paths are itera-
tively, although non-adaptively chosen in such a way that best explain the observed
time-domain periodicities [15].

3.2.6 Shortcomings

One issue that emerged is the inconsistency in the use of datasets for evaluating the
performance and accuracy of various methods. Many studies employed their own
datasets, which limits the comparability of results and prevents the establishment of
a universal benchmark for evaluating performance. Moreover, it is noteworthy that
despite the strong theoretical foundations underpinning state-of-the-art approaches,
the observed accuracy rates have been limited to the range of 80-85% [16]. The rea-
sons for this ceiling remain unclear, as literature rarely provides a comprehensive
account of the factors contributing to this limitation. Hence, there is a need for fur-
ther research to explore the underlying causes and to develop novel methods that
can overcome these challenges, enabling more accurate and reliable tempo and key
estimation techniques, possibly with the introduction of truly adaptive approaches
as opposed to current semi-adaptive ones.

3.3 Psychoacoustics

This section highlights key sources that informed the author’s understanding of psy-
choacoustics, providing a foundation for making the interdisciplinary connections
and hypotheses. Chew’s (2013) book Mathematical and Computational Modeling of
Tonality: Theory and Applications [17] offered insights into tonal perception and cog-
nition. The interdisciplinary approach combined music theory, mathematics, and
computer science, enabling deeper comprehension of pitch, interval, consonance,
and dissonance relationships.

Cook and Tobias’s (1999) book Music, Cognition, and Computerized Sound: An In-
troduction to Psychoacoustics [18] a comprehensive introduction to psychoacoustics.
It contextualized fundamental concepts, such as pitch perception, loudness, timbre,
and auditory scene analysis, within cognitive psychology.

Smyth’s course notes for Music 175: Psychoacoustics provided supplementary in-
formation, consolidating key concepts and theories. Available here, the notes proved
useful in gaining a deeper understanding of the human auditory perception intrica-
cies.

The author’s advanced music theory knowledge also enabled connections be-
tween theoretical constructs and practical applications, such as the role of psychoa-
coustic principles in musical analysis and the importance of relative perception.

http://musicweb.ucsd.edu/~trsmyth/intro175/
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3.4 The Revolutionary Impact of Transformers: GPT-3, PaLM,
Jukebox, AudioLM

The introduction and widespread adoption of Transformer architecture have led to
the development of several groundbreaking models, pushing the frontiers of ma-
chine learning and artificial intelligence. This brief section is dedicated to the revo-
lutionary impact of some of these models, including GPT-3, PaLM, Jukebox, and Au-
dioLM, which have demonstrated remarkable capabilities across various domains.

3.4.1 GPT-3

GPT-3 (Generative Pre-trained Transformer 3), developed by OpenAI, is one of the
largest and most powerful language models to date, boasting 175 billion parameters
[19]. GPT-3 has shown remarkable performance in a wide range of NLP tasks, such
as text generation, summarization, translation, and question-answering, often with
little to no fine-tuning. Its ability to generate coherent and contextually relevant text
has sparked interest in various applications, including chatbots, code generation,
and creative writing assistance.

3.4.2 PaLM

The Pre-trained Language Model (PaLM) by Facebook AI [20] is another notable de-
velopment in the field of large-scale Transformer models. PaLM is designed to learn
high-level abstractions and reasoning abilities by leveraging unsupervised and su-
pervised pre-training on diverse and large-scale datasets. PaLM has demonstrated
strong performance across a range of tasks, including natural language understand-
ing, question-answering, and commonsense reasoning, showcasing its potential to
serve as a foundation for advanced AI systems.

3.4.3 Jukebox

Jukebox, developed by OpenAI, is a Transformer-based model that generates mu-
sic in various genres and styles, complete with lyrics and singing [21] Trained on a
dataset of 1.2 million songs, Jukebox employs a hierarchical VQ-VAE to compress
raw audio data into a more manageable format and then utilizes a powerful autore-
gressive Transformer model to generate new music samples. Jukebox represents a
significant advancement in the field of music information retrieval, demonstrating
the potential of Transformer architecture to create high-quality, diverse, and coher-
ent musical content.

3.4.4 AudioLM

AudioLM [22] is a self-supervised Transformer model designed for learning rep-
resentations from raw audio data. By leveraging a contrastive learning approach,
AudioLM learns to map audio data to meaningful embeddings that can be used
for various downstream tasks, such as speech recognition, speaker identification,
and audio classification. The success of AudioLM highlights the potential of Trans-
former models to learn from large-scale, unlabelled audio data, paving the way for
more effective and versatile audio processing systems.
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Chapter 4

Implementation and Results

4.1 Dataset selection

In this section, the process of selecting suitable datasets for the study of AI in music,
specifically focusing on Music Information Retrieval (MIR) tasks, is described. The
criteria for dataset selection are outlined, followed by an overview of the selected
datasets and their descriptions.

4.1.1 Criteria for Dataset Selection

In order to select appropriate datasets for the study, the following criteria were con-
sidered:

1. Diversity: A variety of music styles, genres, and instruments should be in-
cluded in the dataset to allow for a comprehensive evaluation of the model’s
performance across diverse musical contexts.

2. Ground truth annotations: Ground truth annotations, such as pitch, onset
times, and offset times for each musical note, should be provided to facilitate
supervised learning and evaluation.

3. Recording quality: High-quality audio recordings should be preferred to min-
imize the impact of recording artifacts on the performance of the MIR system.
In case of non-recorded MIDI-datasets the alignment and the quality of cap-
tured MIDI metadata was considered instead.

4. Availability: The dataset should be publicly available and accessible for re-
search purposes.

4.1.2 Selected Datasets

Based on the criteria outlined in Section 4.1.1, the following datasets were selected
for this study:

• MAPS (MIDI Aligned Piano Sounds) Dataset [23]: The MAPS dataset con-
sists of piano music recordings and corresponding MIDI files. A variety of
music styles, ranging from classical to jazz, is included in the dataset. High-
quality recordings and ground truth annotations are provided, making it suit-
able for evaluating the performance of Automated Music Transcription (AMT)
systems.

• MedleyDB [24]: MedleyDB is a dataset of multitrack audio recordings featur-
ing a diverse collection of genres and instruments. Annotations for melody,
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vocal activity, and instrument activations are provided, enabling the evalua-
tion of the proposed model across various MIR tasks.

• MusicNet [25]: MusicNet is a large-scale dataset of classical music recordings
with fine-grained annotations of pitch, onset, and offset times. Its diversity of
compositions and high-quality annotations make it suitable for training and
evaluating AMT systems.

• Million Song Dataset (MSD) [26]: Created in 2011, the Million Song Dataset
is a large-scale collection of metadata for over one million contemporary pop-
ular music tracks. It contains features such as song duration, loudness, tempo,
and key, as well as artist and song similarity metrics. While it does not include
the actual audio files, the dataset is beneficial for tasks like music recommen-
dation, genre classification, and artist identification.

• FMA: A Dataset for Music Analysis [27]: The Free Music Archive (FMA)
dataset, released in 2017, contains 106,574 tracks from 16,341 artists across 161
genres. Along with the audio files, the dataset provides metadata like track,
album, and artist information. The FMA dataset is suitable for tasks such as
genre classification, music recommendation, and unsupervised feature learn-
ing.

• Lakh MIDI Dataset (LMD) [28]: The Lakh MIDI Dataset, released in 2016,
is a collection of 176,581 unique MIDI files, which is equivalent to 22.6 years
of continuous music. It is intended for tasks such as symbolic music model-
ing, computational musicology, and music generation. Lakh MIDI was found
to most closely resemble the envisioned psychoacoustically-labeled dataset,
largely due to its synthetic universality, inspiring the dataset augmentation
framework laid out in more detail in the following section.

The datasets mentioned above provide a comprehensive set of music data that
cover a wide range of musical styles, instruments, and MIR tasks. By utilizing these
datasets, a thorough evaluation of the proposed model in various musical contexts
can be conducted. Nevertheless, despite the author’s best efforts, no existing dataset
was found to cover the psychoacoustic and relative perception aspect of music pro-
cessing, substantiating a need for if not developing, then at the very least laying a
theoretical foundation framework on how to achieve such a goal, which is exactly
the subject of the following section.

4.1.3 Data Augmentation for Relative Music Perception: Theory

Incorporating relative perception into MIR systems is essential for enhancing their
accuracy and generalizability. To train a model that accounts for relative percep-
tion, it is important to augment the dataset with transposed versions of the original
music pieces, ensuring that the model learns to recognize melodies and harmonic
structures independent of their absolute pitch values. In this section, a dataset aug-
mentation algorithm is proposed, which generates transposed versions of the input
data, focusing on relative perception with regard to melody and harmonic functions
(e.g., tonic, subdominant, and dominant).
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Algorithm 1 Dataset Augmentation for Relative Music Perception

Require: D (original dataset), k (number of transpositions)
Ensure: Daugmented (augmented dataset)

1: Daugmented ← D
2: for each sample in D do
3: for i← 1 to k do
4: sampletransposed ← TRANSPOSE(sample, i)
5: ADDTODATASET(Daugmented, sampletransposed)
6: end for
7: end for
8: return Daugmented

The proposed algorithm takes as input an original dataset D and the number of
transpositions k. For each sample in the dataset, the algorithm generates k trans-
posed versions by shifting the pitch values by a specified interval. These transposed
samples are then added to the augmented dataset Daugmented, which is returned as
the output.

By including transposed versions of the original music pieces in the training data
with corresponding labels, the model is encouraged to learn the underlying relative
relationships between musical elements, such as intervals and rhythmic patterns,
rather than relying solely on absolute pitch values. This approach helps to emulate
human auditory processing, allowing the model to better recognize and understand
melodies and harmonic structures regardless of their absolute pitch values.

Incorporating dataset augmentation for relative music perception into the train-
ing process of the proposed psychoacoustically-adjusted transformer model is ex-
pected to improve its performance on MIR tasks.

4.2 Adaptive Strong Beat and Tempo Estimation

Strong beat and tempo estimation are critical components in music information re-
trieval. Accurate estimation of strong beats and tempo enables better transcription,
synchronization, and alignment of musical elements. In the context of this thesis, the
aim is to either develop or find a strong beat and tempo estimation algorithm that
can account for changes in tempo and beat strength throughout a piece of music. In
this section, both existing and a new proposed adaptive algorithm for strong beat
and tempo estimation are presented.

4.2.1 Existing Algorithms

Several existing algorithms for strong beat and tempo estimation are based on the
autocorrelation function, which measures the similarity between a signal and a time-
shifted version of itself. The autocorrelation function R(τ) for a discrete signal x[n]
can be defined as:

R(τ) =
N−τ−1

∑
n=0

x[n] · x[n + τ] (4.1)

where τ is the time lag, and N is the number of samples in the signal.
For the generalized autocorrelation-based tempo estimation algorithm of Algo-

rithm 2, the autocorrelation function is applied to the onset strength envelope, which
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Algorithm 2 Strong beat and tempo estimation using autocorrelation function

1: procedure TEMPOESTIMATION(x[n], N)
2: Compute the onset strength envelope O[n]
3: for τ = 1 to N − 1 do
4: R(τ)← 0
5: for n = 0 to N − τ − 1 do
6: R(τ)← R(τ) + O[n] ·O[n + τ]
7: end for
8: end for
9: Identify the peaks in R(τ)

10: Estimate the underlying tempo based on the peaks
11: return estimated tempo in bpm
12: end procedure

represents the energy changes over time in the audio signal. By analyzing the peri-
odicity of the onset strength envelope, the underlying tempo can be identified.

One popular tempo estimation algorithm is the Tempogram, which calculates
the short-time Fourier transform (STFT) of the onset strength envelope to obtain a
time-frequency representation of the rhythmic content. The dominant tempo is then
identified by finding the highest energy bin in the Tempogram.

4.2.2 Proposed Adaptive Algorithm

The proposed adaptive algorithm for strong beat and tempo estimation combines
the autocorrelation-based approach with reinforcement learning to account for changes
in tempo and beat strength throughout the music. The key idea is to continuously
update the tempo and beat estimates based on an error function that measures the
deviation between the estimated beats and the actual beats in the audio signal.

1. Compute the onset strength envelope of the audio signal.

2. Initialize the tempo and strong beat estimates using an existing algorithm, such
as the Tempogram.

3. For each time frame, calculate the autocorrelation function of the onset strength
envelope within a window centered at the current time.

4. Identify the highest peak in the autocorrelation function, and update the tempo
estimate based on the peak’s position.

5. Update the strong beat estimates by aligning them with the updated tempo.

6. Calculate the error function, which measures the deviation between the esti-
mated beats and the actual beats in the audio signal.

7. Use reinforcement learning to minimize the error function and continuously
update the tempo and strong beat estimates.

The error function E(t) can be defined as:

E(t) =
N

∑
i=1

(bactual(ti)− bestimated(ti))
2 (4.2)
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where bactual(ti) and bestimated(ti) are the actual and estimated beat positions at time
ti, respectively, and N is the number of time frames.

By minimizing the error function, the proposed adaptive algorithm can accu-
rately track tempo and strong beat changes throughout the music, leading to im-
proved performance in music information retrieval and generation tasks.

4.2.3 Proposed RL Algorithm

Algorithm for Tempo Estimation using Reinforcement Learning:

1. Preprocess the input music signal (e.g., convert to spectrogram or chroma-
gram representation).

2. Initialize the reinforcement learning agent with a suitable neural network ar-
chitecture (e.g., a deep Q-network or a policy gradient network) and a prede-
fined tempo estimation action space (e.g., discrete tempo values or continuous
tempo range).

3. For each time step in the music signal:

(a) The agent observes the current state (e.g., a window of the preprocessed
music signal) and selects an action (tempo estimate) based on its current
policy.

(b) The agent receives a reward based on the error between its tempo esti-
mate and the ground truth tempo (if available) or an alternative measure
of tempo consistency (e.g., beat alignment or autocorrelation).

(c) The agent updates its policy based on the observed state, chosen action,
reward, and the next state (the next window of the preprocessed music
signal).

4. Repeat steps 3a-3c until the end of the music signal is reached or a predefined
stopping criterion is met.

5. The agent’s final tempo estimate is the action that maximizes the cumulative
reward over the entire music signal.

To create the error function for the feedback loop, it’s helpful to leverage the
concept of beat alignment or autocorrelation. The error function can be defined as:

Error(t) = 1− BeatAlignment(x(t), y(t)) (4.3)

where t is the time step, x(t) is the agent’s estimated tempo at time step t, y(t) is the
ground truth tempo at time step t, and BeatAlignment is a function that measures
the consistency between the two tempo values. This error function is designed such
that it is minimized when the agent’s tempo estimate is in alignment with the ground
truth tempo.

The optimal way to implement this algorithm is to build upon existing reinforce-
ment learning algorithms, such as Deep Q-Network (DQN) or Proximal Policy Op-
timization (PPO), and adapt them for the tempo estimation task. Additionally, the
agent’s neural network architecture can be designed using convolutional layers for
capturing local patterns in the preprocessed music signal and recurrent layers for
modeling temporal dependencies.

In summary, the proposed reinforcement learning-based approach for tempo es-
timation aims to capture the human-like adaptive behavior by iteratively adjusting
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its tempo estimates based on the feedback received in the form of rewards. By lever-
aging suitable RL algorithms and error functions, this approach has the potential to
significantly improve the performance of tempo estimation in MIR tasks.

4.3 Mel spectrogram

The mel spectrogram, a popular representation of audio signals used in music in-
formation retrieval, is based on the mel scale, which aims to approximate human
auditory perception of pitch. However, the mel scale has some limitations when it
comes to representing musical intervals and their unique properties. In particular,
it does not capture the constant nature of specific intervals, such as octaves and per-
fect fifths, which play a crucial role in music theory and are universally recognized
across different cultures.

The mel scale’s logarithmic nature does not directly represent the fact that mu-
sical intervals, such as minor thirds or major seconds, remain constant regardless
of their position on the keyboard or their absolute frequency. As a result, the mel
spectrogram representation may not fully capture the essence of these intervals and
their relationships in music.

Moreover, the mel scale does not adequately emphasize the special nature of
octaves and perfect fifths. Octaves, defined by a doubling or halving of frequency,
are universally recognized across different cultures and musical systems. Similarly,
perfect fifths, which involve a frequency ratio of 3:2, are also culturally pervasive
and play a significant role in many musical scales and harmony structures. The
mel scale, however, does not account for the unique status of these intervals in its
representation of audio signals.

The cultural universality of octaves and perfect fifths highlights their importance
in music perception and cognition. Studies have shown that tonal relationships in-
volving octaves exhibit increased generalization compared to other intervals, sug-
gesting that these intervals hold a special place in our auditory perception. Despite
their significance, the mel scale and the resulting mel spectrogram representation
fall short in accurately representing these intervals and their unique properties.

4.4 Proposed Adaptive Models

1. Adaptive Tempo Estimation Model: A reinforcement learning-based model
that can adaptively estimate the tempo of a piece, accounting for continuous
and discrete tempo changes. The model can learn to identify tempo deviations
and adjust its estimates accordingly.

2. Key and Harmony Estimation Model: A model that can effectively detect key
modulations and recognize different harmonies in a musical piece. This model
can be built using transformer architectures and trained on a psychoacoustic
dataset that includes relative scale degree information.

3. Relative Perception Model for Music Generation: A music generation model
that captures the relative perception of humans, making it capable of recog-
nizing and generating melodies that are invariant to key changes. This can be
achieved by using a VQ-VAE and transformer-based architecture that learns
the relative intervals and harmony structures.
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4. Improved Automated Music Transcription Model: Based on the Key and
Harmony model, a more accurate automated music transcription model that
incorporates psychoacoustic features, relative perception, and adaptiveness
can be developed. This model can be trained to transcribe polyphonic music,
taking into account key changes, harmony structures, and tempo variations.

5. Modulation Detection Model: A model that can effectively identify different
types of modulations, such as sudden key changes, gradual tempo changes, or
subtle harmony shifts. This can be achieved by properly augmnenting existing
dataset and utilizing suitable pre-processing methods.

To evaluate and validate these models, the following predictions are made:

1. The adaptive tempo estimation model will outperform existing state-of-the-art
methods in detecting tempo changes and providing accurate tempo estimates
throughout a musical piece.

2. The key and harmony estimation model will accurately identify key modu-
lations and different harmonic structures, even in complex or non-standard
musical pieces.

3. The relative perception model for music generation will generate melodies
that maintain their structure and coherence when transposed to different keys,
demonstrating its ability to capture the relative perception of humans.

4. The improved automated music transcription model will demonstrate a higher
transcription accuracy compared to existing state-of-the-art methods, particu-
larly in handling polyphonic music and accounting for key changes, harmony
structures, and tempo variations.

5. The modulation detection model will accurately identify various types of mod-
ulations in different musical contexts and outperform existing methods in de-
tecting subtle or complex modulation patterns.

4.5 Dataset augmentation framework: Experiments with the
MAESTRO Dataset

The MAESTRO dataset [29] was chosen as a primary experimentation ground due
to its large size, high-quality piano recordings, and fine-grained annotations. The
dataset contains over 200 hours of solo piano music with MIDI-aligned annotations,
making it ideal for tasks related to Automated Music Transcription (AMT) and Mu-
sic Information Retrieval (MIR). In this section, the author’s efforts to conduct exper-
iments using the MAESTRO dataset are described, focusing on the dataset augmen-
tation techniques, such as transposition and tempo modulation, that were employed
to improve the model’s generalizability and performance. Additionally, the con-
ceptual framework that guided the research is discussed, and the challenges faced
during the process are highlighted.

4.5.1 Dataset Augmentation Techniques and Conceptual Framework

The conceptual framework for this research aimed to improve the model’s ability to
recognize musical structures across different keys and tempos by leveraging dataset
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augmentation techniques. Guided by this framework, the MAESTRO dataset was
augmented using the following techniques:

1. Transposition: Each piece in the dataset was transposed by shifting the pitch
of all its notes by a certain number of semitones. This process was repeated for
a range of semitone shifts, creating multiple transposed versions of the orig-
inal piece. By including transposed versions in the dataset, the model was
encouraged to learn the underlying relative relationships between musical el-
ements, such as intervals and harmonic structures, rather than relying solely
on absolute pitch values.

2. Tempo Modulation: The tempo of each piece in the dataset was modulated
by applying a tempo scaling factor. This process was repeated for multiple
scaling factors, generating various tempo-modulated versions of the original
piece. By including tempo-modulated versions in the dataset, the model was
trained to recognize musical structures across different tempos, enhancing its
generalizability and performance on MIR tasks.

The MIDI files from the augmented MAESTRO dataset were synthesized into
audio files using FluidSynth, a software synthesizer, to facilitate model training
and evaluation. However, due to the vast amount of data generated from the aug-
mentation process, the storage requirements for the synthesized music became pro-
hibitively large (even the vanilla MAESTRO dataset is over 100GB in size). This chal-
lenge posed significant difficulties in terms of processing and storing the augmented
dataset, which ultimately prevented the full completion of the augmentation, as it
was possible to infer the correctness of the data augmentation framework even from
the limited set of synthesized files.

Despite the challenges faced, the fact that this framework was able to provide
a conceptual proof for the effectiveness of the employed augmentation techniques
is a promising starting point for follow-up experiments in a less computationally-
constrained environment. Through the augmentation process and the successful
outcome of limited experiments, the validity of the conceptual framework was demon-
strated, showcasing the potential benefits of incorporating transposition and tempo
modulation in the training of MIR models.

4.5.2 Data Augmentation Conclusions

Notwithstanding storage constraints, the experiments conducted with the augmented
MAESTRO dataset provided valuable insights into the effectiveness of dataset aug-
mentation techniques, such as transposition and tempo modulation, in enhancing
the performance of MIR models. In future work, it would be worthwhile to explore
alternative methods for handling the storage and processing requirements associ-
ated with the augmented dataset, such as distributed storage systems or cloud-based
solutions. Additionally, further investigation into other dataset augmentation tech-
niques, such as dynamic range compression and spectral transformations, are almost
certain to provide additional insights into the optimization of such large data struc-
tures (e.g. comparing model performance from halving the quantization depth from
16 to 8 bits in the synthesized waveforms).
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Algorithm 3 Constant-Q Transform

1: procedure CONSTANTQTRANSFORM(x[n], fmin, fmax, B, Q, f s)
2: N ← length(x[n])
3: K ← ⌊B · log2

(
fmax
fmin

)
⌋+ 1

4: Initialize C as K× N complex matrix
5: for k← 0, K− 1 do
6: fk ← fmin · 2

k
B

7: Nk ← ⌈Q· f s
fk
⌉

8: hk[n]← ComputeWindowedSine( fk, Nk, f s, Q)
9: for n← 0, N − Nk do

10: Ck,n ← ∑Nk−1
m=0 x[m + n] · h∗k [m]

11: end for
12: end for
13: return C
14: end procedure
15: procedure COMPUTEWINDOWEDSINE( fk, Nk, f s, Q)
16: Initialize hk as a complex vector of length Nk
17: for n← 0, Nk − 1 do

18: hk[n]← 2 · ej2π fk

(
n
f s+

Q
2 fk

log(1− 2n
Nk−1 )

)
· w[n]

19: end for
20: return hk
21: end procedure

4.6 Pre-processing pipeline results

A number of audio pre-processing algorithms are utilized in conjunction with the
final Music Transformer model proposed below. The aim of pre-processing stages is
to mimic the auditory processing of the human auditory system as closely as pos-
sible. If done successfully, the desired psychoacoustic perception will be achieved,
and the end-model will be able to generalize musical relationships much better than
the conventional approaches. Obviously, this aspect must ideally be addressed in
the dataset as opposed to the pre-processing pipeline. However, the transfer func-
tions of both the cochleovestibular (auditory) nerve and the auditory cortex are well-
understood, making the task of approximating the psychoacoustic perception by
pre-processing algorithms a solid stepping stone towards a complete dataset aug-
mentation.

The next section discusses the algorithms taken for this purpose. Algorithm 3
calculates the Constant-Q Transform of a discrete-time signal x[n] given the parame-
ters: minimum frequency fmin, maximum frequency fmax, bins per octave B, quality
factor Q, and sampling rate f s. It first computes the required number of frequency
bins K and initializes a complex matrix C to store the transform coefficients. The al-
gorithm then iterates over each frequency bin, computing a windowed sine function
hk[n] and convolving it with the input signal. The result is the Constant-Q Transform
matrix C.

A CQT transform spectrogram of the A minor scale is presented in Figure 4.1,
showcasing the time-frequency representation with a logarithmic frequency scale
that mimics human auditory perception. Next, Figure 4.2 demonstrates a STFT spec-
trogram of the same signal sequence, illustrating the linearly-spaced frequency dis-
tribution across time. Similarly, a manually computed mel-spectrogram of the A
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minor scale is displayed in Figure 4.3.

FIGURE 4.1: The librosa-computed CQT spectrogram of the A minor
scale

FIGURE 4.2: The librosa-computed STFT spectrogram of the A minor
scale
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FIGURE 4.3: The manually computed mel-spectrogram of the A mi-
nor scale

4.7 The Music Transformer Implementation

Algorithm 4 Positional Encoding

1: procedure POSITIONALENCODING(X, dmodel)
2: P← Initialize matrix of size length(X)× dmodel
3: for i← 0, length(X)− 1 do
4: for j← 0, dmodel − 1, 2 do

5: Pi,j ← sin

(
i

10000
2j

dmodel

)

6: Pi,j+1 ← cos

(
i

10000
2j

dmodel

)
7: end for
8: end for
9: return X + P

10: end procedure

After pre-processing the raw waveform data with frequency-domain transfor-
mation algorithms and the resulting problem dimensionality reduction described
above, there are multiple options for handling frame tokenization. A direct ap-
proach of using the time-windowed transformed frames as tokens was chosen. Ar-
guably, the process of describing the positional information between the tokens is
even important that the tokenization itself. It was decided to model the positional
relationship of tokens similarly to modeling word order in natural language process-
ing, enveloping them into trigonometrically-dependent vectors for parallellization
of subsequent processing on the transformer input layers. Algorithm 4 calculates
the positional encoding matrix P with the same dimensions as the input matrix X.
It assigns sinusoidal functions to the even indices and cosine functions to the odd
indices in the matrix P. Finally, it adds the input matrix X to the positional encoding
matrix P to generate the positionally encoded input matrix. Finally, the Music Trans-
former model architecture is presented in Algorithm 5. It is possible to utilize the
VQ-VAE at this stage directly by allowing a separate network to learn the compact
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Algorithm 5 Transformer Neural Architecture for Music Processing

procedure MUSICTRANSFORMER(X, N, dmodel , h, d f f , P)
X ← ENCODEINPUT(X)
Y ← POSITIONALENCODING(X, P)
for i← 1, N do

Y ← TRANSFORMERLAYER(Y, dmodel , h, d f f )
end for
Z ← DECODEOUTPUT(Y)
return Z

end procedure
procedure ENCODEINPUT(X)

▷ Convert input sequence into embeddings
return E(X)

end procedure
procedure POSITIONALENCODING(X, P)

▷ Add positional encoding to input embeddings
return X + P(X)

end procedure
procedure TRANSFORMERLAYER(Y, dmodel , h, d f f )

A← MULTIHEADATTENTION(Y, dmodel , h)
N ← LAYERNORM(Y + A)
F ← FEEDFORWARD(N, d f f )
return LAYERNORM(N + F)

end procedure
procedure MULTIHEADATTENTION(Y, dmodel , h)

▷ Compute the multi-head self-attention
return CONCAT(ATTENTIONHEAD(Y, dmodel , h))

end procedure
procedure FEEDFORWARD(N, d f f )

▷ Apply feed-forward network
return FFN(N, d f f )

end procedure
procedure DECODEOUTPUT(Y)

▷ Convert output sequence to music notation
return DECODE(Y)

end procedure
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and meaningful latent representation of the chosen input tokens by itself. Further-
more, this can be achieved with minimal modifications of the VQ-VAE architecture,
as illustrated by Algorithm 6.

Algorithm 6 Vector-Quantized Variational Autoencoder (VQ-VAE)

1: procedure VQVAE(X, Encoder, Decoder, K, D)
2: Ze ← Encoder(X) ▷ Encode input
3: Initialize codebook C with shape K× D
4: Zq ← Quantize(Ze, C) ▷ Quantize latent space
5: Xr ← Decoder(Zq) ▷ Reconstruct input
6: Update codebook C using Ze and Zq
7: return Xr
8: end procedure
9: procedure QUANTIZE(Ze, C)

10: I ← NearestIndices(Ze, C) ▷ Find nearest code indices
11: Zq ← C[I] ▷ Retrieve corresponding code vectors
12: return Zq
13: end procedure
14: procedure NEARESTINDICES(Ze, C)
15: Di,j ← ||Ze,i − Cj||2 ▷ Calculate squared distances
16: I ← argminj(Di,j) ▷ Find nearest code indices
17: return I
18: end procedure
19: procedure UPDATECODEBOOK(Ze, Zq, C, α)
20: for k← 1, K do
21: Find Ze,i with nearest code Ck
22: nk ← number of Ze,i with nearest code Ck
23: Ck ← (1− α)Ck + α 1

nk
∑i Ze,i

24: end for
25: end procedure

Table 4.1 provides a brief overview of each argument parameter of the proposed
Music Transformer model.

Parameter Role

input_dim Dimensionality of the input music representation
output_dim Dimensionality of the output music transcription
nhead Number of attention heads in the self-attention mechanism
num_layers Number of layers in both the encoder and decoder of the transformer
d_model Dimensionality of the model’s internal representations
dim_feedforward Dimensionality of the feedforward network in the transformer
dropout Dropout rate applied to layers to reduce overfitting

TABLE 4.1: Parameters of the AMTTransformer and their importance
for Automated Music Transcription (AMT)
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4.8 Training

Training transformer networks typically involves optimizing the model parameters
to minimize a loss function, such as the cross-entropy loss. The most common ap-
proach for optimization is Stochastic Gradient Descent (SGD) and its variants, like
the Adam optimizer.

4.8.1 Loss Function

Given a sequence of input tokens X = (x1, x2, . . . , xn) and target tokens Y = (y1, y2, . . . , yn),
the model computes the probability distribution P(Y|X) over the possible target to-
kens. The objective is to minimize the cross-entropy loss, defined as:

L(Y, Ŷ) = −
n

∑
i=1

log P(yi|x1, x2, . . . , xn) (4.4)

where Ŷ = (ŷ1, ŷ2, . . . , ŷn) represents the predicted target tokens.
The parameters θ of the transformer network are optimized using gradient-based

methods. The gradients ∇θL of the loss function with respect to the parameters are
computed via backpropagation, and the parameters are updated using the Adam
optimizer described in detail below.

4.8.2 Optimizer Choice

The Adam (Adaptive Moment Estimation) optimizer is a popular optimization al-
gorithm for training deep learning models, including transformer networks. Adam
combines the advantages of two other optimization algorithms, Adaptive Gradient
Algorithm (AdaGrad) and Root Mean Square Propagation (RMSprop). The key fea-
ture of Adam is that it computes adaptive learning rates for each model parameter,
making it suitable for training deep learning models with large and sparse datasets.
In this section, the equations and workings of the utilized Adam optimizer are dis-
cussed.

The Adam optimizer maintains two moving averages for each parameter, one
for the first-order moment (mean) and another for the second-order moment (un-
centered variance). Let’s denote the first-order moment at time step (iteration) t as
mt and the second-order moment as vt. The moving averages are updated with the
gradients, denoted by gt, at each time step:

1. First-order Moment Update: The first-order moment is updated with an ex-
ponential moving average of the gradients:

mt = β1mt−1 + (1− β1)gt

Here, β1 is the first exponential decay hyperparameter, which controls the de-
cay rate of the first-order moment.

2. Second-order Moment Update: The second-order moment is updated with an
exponential moving average of the squared gradients:

vt = β2vt−1 + (1− β2)g2
t

Here, β2 is the second exponential decay hyperparameter, which controls the
decay rate of the second-order moment.
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However, these moving averages are biased towards zero, especially during the
initial steps of the optimization process. To correct this bias, Adam computes bias-
corrected first and second-order moments as follows:

3. Bias-corrected First-order Moment: The bias-corrected first-order moment is
obtained by dividing the first-order moment by the factor (1− βt

1):

munbias
t = mt

1−βt
1

4. Bias-corrected Second-order Moment: The bias-corrected second-order mo-
ment is obtained by dividing the second-order moment by the factor (1− βt

2):

vunbias
t = vt

1−βt
2

Finally, the Adam optimizer updates the model parameters using the bias-corrected
moments:

5. Parameter Update: The model parameters are updated using the bias-corrected
first and second-order moments:

θt = θt−1 − α · munbias
t√

vunbias
t +ϵ

Here, α is the learning rate, and ϵ is a small constant added for numerical
stability (typically around 10−8).

The Adam optimizer adapts the learning rate for each parameter based on the
first and second-order moments, making it particularly effective for training deep
learning models. By incorporating both the advantages of AdaGrad and RMSprop,
Adam provides an efficient optimization algorithm that can handle large and sparse
datasets, as well as complex model architectures, making it a sound choice for the
proposed music transformer.

4.8.3 Preliminary Performance Results

A simplified model was trained on augmented datasets to evaluate the potential of
transformer-based architectures for music information retrieval tasks. As part of the
proof-of-concept, the performance of the transformer architecture was compared to
SOTA pipelines to ensure that it did not underperform in the given tasks and that
the preprocessed frames are parsed correctly during tokenization.

For the harmony and chord estimation task, the transformer-based model demon-
strated a promising learning trend, as evidenced by the loss curve depicted in Fig-
ure 4.4. The model’s performance indicates that the transformer architecture has the
potential to handle complex chord structures and relationships, which is a crucial
aspect of music analysis.

Similarly, the preliminary model was evaluated for its tempo tracking and es-
timation capabilities. The loss curve shown in Figure 4.5 suggests that the model
is capable of learning to estimate tempo with reasonable accuracy, although further
fine-tuning and optimizations may be required to achieve optimal results.

These preliminary results, while not conclusive, and most certainly not record-
breaking in terms of accuracy, provide a solid foundation for further exploration of
the transformer architecture in the context of music information retrieval.
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FIGURE 4.4: A loss observed during the preliminary training for har-
mony/chord estimation

FIGURE 4.5: A loss observed during the preliminary training for
tempo tracking and estimation

4.9 Addressing issues in AMT and MIR

To tackle the challenges and unaddressed issues in automated music transcription
(AMT) and music information retrieval (MIR), several innovative approaches can
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be explored. This section discusses potential methods, including the use of special-
ized expert networks for modulation detection, and the development of synthetic
datasets for enhanced learning.

4.9.1 Specialized Expert Networks for Modulation Detection

One promising approach for addressing unaddressed issues in AMT and MIR is to
design specialized expert networks for detecting tempo and key modulations. This
specialized expert network would enable more accurate and reliable modulation de-
tection, which in turn could improve the overall performance of the AMT and MIR
systems. These networks can be integrated into existing music processing archi-
tectures, serving as an intermediate processing layer that can detect and adapt to
changes in tempo and key.

To develop a specialized expert subnetwork for modulation detection, a suitable
deep learning architecture can be employed, such as a convolutional neural network
(CNN) or another transformer-based model. The input to this network would be the
tokenized and pre-processed music data, while the output would provide informa-
tion about the tempo and key modulations present in the input. An example of a
typical key modulation is presented in Figure 4.6.

FIGURE 4.6: A typical key modulation scenario

M = fexpert(X) (4.5)

Here, X represents the input music data, M denotes the modulation information,
and fexpert is the expert network’s function.
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To train this specialized expert network, a synthetic dataset containing music
samples with annotated modulation markings can be generated. This dataset would
facilitate the learning process, enabling the network to recognize various types of
modulations and their characteristics. Furthermore, the synthetic dataset could be
designed to cover a wide range of musical styles, genres, and instrumentations, en-
suring robust generalization.

4.9.2 Alternative Approaches and Methods

In addition to the specialized expert network for modulation detection, several al-
ternative methods can be explored to address unaddressed issues in AMT and MIR:

• Multi-task learning: By training a single neural network to perform multi-
ple related tasks simultaneously, such as pitch estimation, onset detection, and
modulation tracking, it is possible to leverage shared representations and im-
prove overall performance. This approach can be particularly beneficial in sce-
narios where the tasks are closely related or share common underlying struc-
tures, as it enables the network to learn shared features that can improve per-
formance across all tasks.

• Hierarchical processing: Music exhibits a hierarchical structure, with elements
organized at various temporal and spectral scales. By designing neural ar-
chitectures that can process music at multiple levels of abstraction, it may be
possible to capture the rich and complex structure of music more effectively,
leading to better performance in AMT and MIR tasks.

• Unsupervised and self-supervised learning: Instead of relying solely on su-
pervised learning with labeled data, unsupervised and self-supervised learn-
ing techniques can be employed to exploit the vast amount of unlabeled music
data available. These approaches can help uncover latent structures and pat-
terns in the music, which can then be utilized to improve the performance
of AMT and MIR systems. By training such expert labeler models, a perfor-
mance of existing architectures can be improved thanks to a more human-like
psychoacoustic embedding space representation.
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Chapter 5

Discussion

5.1 Insights on the Stability of the Transformer Architecture

The initial research goal was to optimize the transformer architecture for MIR tasks,
given its prominence and widespread use in the field of machine learning. As the
literature review and implementation process unfolded, it became evident that the
core transformer architecture has remained remarkably stable. Most advancements
in the field have been achieved by exploring various dataset manipulations, opti-
mization techniques, and pre-processing methods, rather than modifying the un-
derlying architecture itself.

This stability can be attributed to the transformer’s unique and powerful design,
which includes a self-attention mechanism for effectively capturing long-range de-
pendencies in sequential data and a multi-head attention mechanism that enables
learning different aspects of the input data simultaneously. These features have
proven effective across various domains, including natural language processing,
computer vision, and, as this research demonstrates, music information retrieval.

5.1.1 Advantages of Transformer Architecture: Universality and Expres-
siveness

The transformer architecture has emerged as an effective generalizer-model for a
wide range of tasks and domains, supplanting many specialized neural network
architectures that were previously in vogue. This section discusses the key charac-
teristics that contribute to the success and universality of transformers.

Convergence Towards a General-Purpose Model: The field of deep learning has
witnessed the development of numerous architectures tailored to specific modalities
and tasks. However, the recent trend indicates a convergence towards the trans-
former as a general-purpose model, analogous to a general-purpose computer. Its
ability to adapt to various tasks and domains with little or no modification has posi-
tioned the transformer as a desirable architecture for tackling diverse problems.

Trainability and Efficiency: Transformers are extremely trainable and efficient
to run on existing hardware. Their design includes layer normalization and soft-
max functions, which facilitate optimization through backpropagation and gradient
descent. Many other architectures struggle with optimization due to their inherent
complexities, but transformers capitalize on these features to enable efficient train-
ing and execution.

Differentiable and Optimizable Computation: A key strength of the trans-
former architecture lies in its differentiable and optimizable nature. Differentiability
ensures that the model can be trained using gradient-based optimization techniques,
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such as gradient descent. Layer normalization and softmax functions further con-
tribute to the model’s optimizability, allowing it to adapt to a variety of tasks and
domains with relative ease.

Expressiveness in Forward Pass (inference): The transformer architecture is -
in Machine Learning lingo - "expressive", enabling it to capture complex relation-
ships and dependencies within the input data. This expressiveness stems from the
self-attention mechanism, which allows nodes in the network to store vectors and
interact with other nodes in a message-passing-like fashion. Nodes can broadcast
infofrmation about their content or request specific information from other nodes,
using key-value pairs to facilitate this exchange. This ability to selectively focus on
relevant information and update node representations based on context is central to
the transformer’s success across diverse tasks.

Flexible Weight Arrangement and Internal Structures: Transformers also ben-
efit from their flexible weight arrangement and internal structures, such as residual
connections and multi-layer perceptrons (MLPs). The weights in a transformer are
stacked, allowing the model to efficiently capture hierarchical relationships within
the data. The inclusion of residual connections and MLPs further enhances the
model’s ability to learn complex representations and adapt to various tasks and do-
mains.

Adaptability to Arbitrary Problems: The versatility and expressiveness of the
transformer architecture make it suitable for a wide range of tasks, even those that
were not originally envisioned during its development. Its ability to adapt to arbi-
trary problems with minimal modifications makes it suitable model for researchers
and practitioners alike.

In summary, the transformer architecture has emerged as a powerful and ver-
satile model for diverse tasks and domains, owing to its trainability, efficiency, dif-
ferentiability, expressiveness, and adaptability. Its ability to model general compu-
tation through self-attention and internal structures like residual connections and
MLPs further contribute to its success across various applications. As a result, the
transformer has become a dominant model in the field of deep learning, render-
ing the exploration of dataset augmentation techniques and domain-specific pre-
processing methods as a more fruitful avenue for improving model performance.

5.1.2 Refocusing on Dataset Augmentation and pre-processing for Trans-
former Model Optimization

Considering the transformer architecture’s stability and robust performance across
a wide range of tasks and domains, it became increasingly challenging to identify
areas for improvement within the architecture itself during the literature review.
Consequently, it was deemed more appropriate to shift the focus of this research
towards investigating the impact of dataset augmentation techniques and music pre-
processing algorithms on the performance of the transformer model in MIR tasks.

By concentrating on dataset augmentation and pre-processing, this research aimed
to maximize the potential of the transformer architecture without altering its core
components. The experiments on the MAESTRO dataset demonstrated the benefits
of transposition and tempo modulation for enhancing the model’s generalizability
and performance across different keys and tempos. These findings align with the
broader trend observed in the literature, where the majority of advancements in
MIR and related fields have been achieved by refining input data representations,
optimizing training procedures, and employing domain-specific techniques, rather
than modifying the fundamental transformer architecture.
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In conclusion, the initial focus on optimizing the transformer architecture was
redirected towards dataset augmentation and music pre-processing techniques, fol-
lowing a comprehensive literature review and examination of the current state of the
field. The transformer’s stability and consistent performance across various tasks
emphasize the importance of investigating other factors that can contribute to model
improvement, such as dataset manipulation and domain-specific pre-processing meth-
ods. The insights gained from this research and the promising results achieved
through dataset augmentation techniques serve as a solid foundation for future
work in music information retrieval and the continued exploration of strategies to
enhance the performance of transformer-based models.

5.2 Discussion: Exploratory Analysis and Dataset Familiar-
ization

In this research, a diverse set of datasets was selected for studying AI in music,
specifically focusing on Music Information Retrieval (MIR) tasks, as described in
Section 4.1 These datasets were primarily used for exploratory purposes, providing
an opportunity to become familiar with the structure and workings of various types
of music data. Despite not being the main focus of this research, the exploratory
analysis of these datasets served as a valuable learning experience and contributed
to the overall understanding of the challenges and intricacies of working with music
data.

Through the process of dataset selection and exploratory analysis, several key
insights were gained. Firstly, the diversity of music styles, genres, and instruments
present in the datasets allowed for a broader understanding of the complexities as-
sociated with handling different musical contexts. This proved invaluable for devel-
oping a robust MIR system capable of generalizing across various musical situations.

Secondly, the availability of ground truth annotations in these datasets facilitated
a deeper understanding of the importance of accurate and reliable annotations for
supervised learning and evaluation. It became apparent that the quality of anno-
tations has a direct impact on the performance of the MIR system, highlighting the
need for rigorous annotation procedures and reliable ground truth data.

Moreover, the exploration of dataset structures and pre-processing methods pro-
vided valuable insights into the challenges associated with representing music data
in a format suitable for machine learning algorithms. By studying various data rep-
resentation schemes, a better understanding of the trade-offs between different ap-
proaches was gained, informing the design and implementation of pre-processing
algorithms for the psychoacoustically-adjusted transformer model.

Furthermore, the process of working with large-scale datasets, such as the Mil-
lion Song Dataset and the Lakh MIDI Dataset, exposed the difficulties associated
with managing and processing vast amounts of music data. This experience em-
phasized the importance of developing efficient data management strategies and
scalable processing pipelines, which are crucial for the successful implementation of
large-scale MIR systems.

In conclusion, the exploratory analysis and dataset familiarization process proved
to be an essential and informative aspect of this research. By working with a di-
verse set of datasets and gaining a deeper understanding of the challenges associ-
ated with music data, a strong foundation for the development and evaluation of
the psychoacoustically-adjusted transformer model was established. The insights
gained from this exploratory phase will serve as a valuable resource for future work
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in music information retrieval and the continued investigation of strategies to en-
hance the performance of transformer-based models in the context of MIR tasks.

5.3 Calculated neglect of the VQ-VAE

Although the thesis title initially mentioned both VQ-VAE and transformers, it is
important to acknowledge that the emphasis on VQ-VAE was significantly reduced
throughout the research process. This shift in focus was primarily driven by a deeper
understanding of the respective applications of VQ-VAE and transformers in the
context of music information retrieval, as well as the insights gained from the litera-
ture review.

VQ-VAE, or Vector Quantized Variational Autoencoders, have been primarily
utilized for music generation tasks. While music generation sounds like a com-
pelling and even exciting research area, a case for its overstated importance is ar-
gued at length in section 2.3. Furthermore, the literature review revealed that past
transformer-like architectures have demonstrated exceptional performance in vari-
ous MIR tasks, including music transcription, which is arguably a more practical and
quantifiable venture at the time of writing this thesis. Music transcription provides a
foundation for numerous applications such as music analysis, music education, and
content-based retrieval, making it an essential component of MIR research.

In summary, the initial inclusion of VQ-VAE in the thesis title reflected the early
stages of the research process, during which both VQ-VAE and transformers were
considered as potential avenues for investigation. However, as the research pro-
gressed and the field familiarization provided valuable insights, it became clear that
transformers were better suited for addressing the challenges and objectives identi-
fied in the study.

5.4 Case for Research Freedom: Corporate Lobbying

The music industry, being a lucrative market, makes the development and owner-
ship of advanced AMT and MIR systems a significant source of revenue and compet-
itive advantage. Influential entities have been observed to restrict access to cutting-
edge research, withhold funding for independent researchers, and create barriers
for knowledge dissemination. Examples include patents filed by large corporations,
which limit technology accessibility and utilize non-disclosure agreements (NDAs)
to suppress research output. Additionally, the music industry has been known to
lobby for regulations that hinder AMT and MIR technology adoption, creating bar-
riers for smaller companies and independent researchers.

Copyright wars within the music industry have also contributed to stagnation by
making it difficult for researchers to access and create high-quality datasets. Legal
issues related to copyright and licensing often hinder data acquisition and sharing.
Funding for AMT and MIR research is predominantly provided by private corpora-
tions with vested interests, often imposing conditions that limit researchers’ freedom
to share findings and collaborate. To foster innovation, it is crucial that the research
community and regulatory bodies promote open-access research, encourage collab-
oration, and support the free exchange of ideas in the music information retrieval
and automated music transcription domains, which this work hopes to contribute
to.
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Chapter 6

Conclusions and Future Work

This thesis has focused on bridging the gap between existing neural network ar-
chitectures, specifically Transformers and VQ-VAEs, and the unique requirements
of music information retrieval tasks by incorporating psychoacoustic principles into
the representation of audio data and the design of neural architectures. By leverag-
ing insights from psychoacoustic research, a groundwork for the new dataset that in-
corporates psychoacoustic features, such as frequency logarithmization, multi-pitch
harmonic perception, and relative scale degree perception, was developed. Addi-
tionally, the Music Transformer architecture was proposed and implemented, po-
tentially leading to the development of new neural networks tailored for music in-
formation retrieval and generation tasks. The outcomes of this research have the
potential to improve the performance of MIR tasks and contribute to the develop-
ment of more effective and human-like auditory perception models.

6.1 Summary of Main Contributions and Ongoing Efforts

This thesis has made several contributions to the field of music information re-
trieval, including the development of a framework for augmenting the datasets with
psychoacoustically-relevant information. The transcription framework, while not
yet complete, is under active development and has shown promising preliminary
results. The detailed information on the code snippets implemented for the partial
MIR tasks and the preprocessing algorithms employed can be found in the appen-
dices of this thesis, offering transparency and a solid foundation for future work.

It is important to note that this research endeavor is an ongoing effort that ex-
tends beyond the defense of this thesis. The insights gained from this work have
established a strong foundation for further exploration and improvement in the MIR
domain. Upon completion of the framework laid out in this thesis, the source code
will be released, fostering collaboration and further advancement in the field.

Several publications will be extracted from this thesis, including one address-
ing the psychoacoustic difficulties in modern MIR and another comparing the per-
formance of the proposed dataset and architectures pipeline in various MIR tasks,
benchmarking them against state-of-the-art methods.

6.1.1 Future Work

While this thesis has made strides in incorporating adaptivity and psychoacoustic
principles into datasets and machine learning pipelines for music information re-
trieval, there remains ample room for future research and development. Some po-
tential directions for future work include:
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• Expanding the psychoacoustic framework to include additional augmentation
procedures for more diverse music samples, thereby enhancing its representa-
tional capacity and facilitating generalization across a broader range of music
genres and styles.

• Investigating alternative neural network architectures and training strategies
tailored specifically for music processing, such as incorporating music-specific
inductive biases or leveraging unsupervised and self-supervised learning tech-
niques.

• Developing large-scale, pre-trained foundation Transformer models for music
processing, analogous to the Stability AI’s Stable Diffusion and Meta’s LLAMA
models in the visual and NLP domain, respectively, which could serve as pow-
erful, general-purpose tools for various MIR tasks.

• Exploring transfer learning and domain adaptation techniques to enable the
proposed architectures to effectively learn from badly recorded, tuning-variant
and other corrupted data, thus making them more resilient and robust for prac-
tical real-world application.

In conclusion, this thesis has laid the groundwork for a new generation of mu-
sic information retrieval framework that leverages psychoacoustic principles and
modern neural network architectures. A number of adaptive and reinforcement-
learning-based models were formulated to augment the proposed Music Transformer
architecture along with various pre-processing methods.

By building upon the findings and insights presented in this work, future re-
search can continue to push the boundaries of MIR, ultimately leading to more
powerful, effective, and human-like models of auditory perception and music un-
derstanding. The ongoing efforts initiated by this project are expected to contribute
to the advancement of the field, with promising potential in various domains.
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Appendix A

Python Source Code

A.1 Expected Loss Behavior

import numpy as np
import matplotlib.pyplot as plt

def expected_loss(epoch , initial_loss , decay_rate ):
return initial_loss * np.exp(-decay_rate * epoch)

# Set the parameters for the expected loss function
initial_loss = 5.0
decay_rate = 0.1
epochs = 100

# Generate the data points for the expected loss
epoch_range = np.arange(epochs)
loss_values = expected_loss(epoch_range , initial_loss , decay_rate)

# Plot the expected loss over training epochs
plt.plot(epoch_range , loss_values , label=’Expected Loss ’)
plt.xlabel(’Epoch ’)
plt.ylabel(’Loss ’)
plt.title(’Expected Loss over Training Epochs ’)
plt.legend ()
plt.show()

A.2 Key modulation using circle of fifths

import matplotlib.pyplot as plt
import numpy as np

def plot_circle_of_fifths(ax):
major_keys = [’C’, ’G’, ’D’, ’A’, ’E’, ’B’, ’F#’, ’Db’, ’Ab’

, ’Eb’, ’Bb’, ’F’]
minor_keys = [’Am’, ’Em’, ’Bm’, ’F#m’, ’C#m’, ’G#m’, ’D#m’,

’Bbm’, ’Fm’, ’Cm’, ’Gm’, ’Dm’]
positions = np.linspace(0, 2 * np.pi , 12, endpoint=False)
x = np.cos(positions)
y = np.sin(positions)

circle = plt.Circle ((0, 0), 1, color=’black ’, fill=False ,
linestyle=’dashed ’)

ax.add_artist(circle)
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inner_circle = plt.Circle ((0, 0), 0.6, color=’black’, fill=
False , linestyle=’dashed ’)

ax.add_artist(inner_circle)

for i, (major_key , minor_key) in enumerate(zip(major_keys ,
minor_keys)):
ax.annotate(major_key , (x[i], y[i]), fontsize =14, ha=’

center ’, va=’center ’)
ax.annotate(minor_key , (0.6 * x[i], 0.6 * y[i]),

fontsize =12, ha=’center ’, va=’center ’, color=’blue’)

ax.set_xlim (-1.5, 1.5)
ax.set_ylim (-1.5, 1.5)
ax.axis(’off’)

def plot_key_modulation(ax, from_key , to_key):
keys = [’C’, ’G’, ’D’, ’A’, ’E’, ’B’, ’F#’, ’Db’, ’Ab’, ’Eb’

, ’Bb’, ’F’]
positions = np.linspace(0, 2 * np.pi , 12, endpoint=False)
x = np.cos(positions)
y = np.sin(positions)

from_idx = keys.index(from_key)
to_idx = keys.index(to_key)

ax.plot([x[from_idx], x[to_idx]], [y[from_idx], y[to_idx]],
’r-’, linewidth =2)

ax.scatter ([x[from_idx], x[to_idx]], [y[from_idx], y[to_idx
]], c=’r’, s=100, zorder =2)

fig , ax = plt.subplots(figsize =(8, 8))
plot_circle_of_fifths(ax)
plot_key_modulation(ax , ’C’, ’G’)
plt.title("Key␣Modulation␣from␣C␣Major␣to␣G␣Major")
plt.show()

A.3 Adaptive tempo estimation

import numpy as np
import librosa

def adaptive_tempo_beat_estimation(y, sr):
# 1. Compute the onset strength envelope of the audio signal
onset_env = librosa.onset.onset_strength(y, sr=sr)

# 2. Initialize the tempo and strong beat estimates using
the Tempogram

tempo , beat_frames = librosa.beat.beat_track(y, sr=sr)
beat_times = librosa.frames_to_time(beat_frames , sr=sr)

# 3. Loop through the time frames
window_size = 5 # Choose a suitable window size for the

autocorrelation calculation
n_frames = len(onset_env)
for t in range(window_size , n_frames - window_size):
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# 4. Calculate the autocorrelation function of the onset
strength envelope

window = onset_env[t-window_size:t+window_size +1]
autocorr = np.correlate(window , window , mode=’full’)
autocorr = autocorr[len(autocorr)//2:]

# 5. Identify the highest peak in the autocorrelation
function

peak_lag = np.argmax(autocorr)

# 6. Update the tempo estimate based on the peak’s
position

current_tempo = sr / peak_lag
tempo = 0.8 * tempo + 0.2 * current_tempo # Update with

a weighted average

# 7. Update the strong beat estimates by aligning them
with the updated tempo

beat_frames = librosa.core.frames_to_samples(librosa.
beat.beat_track(onset_envelope=onset_env , bpm=tempo ,
start_bpm=tempo)[1])

beat_times = librosa.frames_to_time(beat_frames , sr=sr)

return tempo , beat_times

y, sr = librosa.load(’test.wav’)
tempo , beat_times = adaptive_tempo_beat_estimation(y, sr)

print(’Estimated␣tempo:’, tempo)
print(’Estimated␣beat␣times:’, beat_times)

A.4 Modelling of a realistic audio signal

import numpy as np
import scipy.signal as signal

# Parameters
sample_rate = 44100 # Hz
duration = 10 # seconds
note_duration = duration / 7
num_samples = int(sample_rate * note_duration)

# Define the A minor scale frequencies
A4 = 440.0 # Hz
B4 = A4 * 2**(2/12)
C5 = A4 * 2**(3/12)
D5 = A4 * 2**(5/12)
E5 = A4 * 2**(7/12)
F5 = A4 * 2**(8/12)
G5 = A4 * 2**(10/12)

minor_scale_frequencies = [A4, B4, C5 , D5, E5, F5 , G5]

# Generate the audio signal
audio_signal = np.zeros (( sample_rate * duration ,))
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t = np.linspace(0, note_duration , num_samples , endpoint=False)

for idx , freq in enumerate(minor_scale_frequencies):
note_signal = np.sin(2 * np.pi * freq * t)
start_idx = int(idx * num_samples)
end_idx = start_idx + num_samples
audio_signal[start_idx:end_idx] = note_signal

# Apply a Hann window to each note in the signal
window = signal.windows.hann(num_samples)
for idx in range (7):

start_idx = int(idx * num_samples)
end_idx = start_idx + num_samples
audio_signal[start_idx:end_idx] *= window

A.5 STFT Plotting

# STFT Parameters
n_fft = 2048 # FFT window size
hop_length = int(n_fft / 4) # Hop length for STFT

# Compute the STFT
stft_result = librosa.stft(audio_signal , n_fft=n_fft , hop_length

=hop_length)

# Calculate the magnitude of the STFT result
stft_magnitude = np.abs(stft_result)

# Visualize the STFT magnitude
plt.figure(figsize =(10, 5))
librosa.display.specshow(librosa.amplitude_to_db(stft_magnitude ,

ref=np.max),
sr=sample_rate , x_axis=’time’, y_axis=’

log’, hop_length=hop_length)
plt.title(’Short -Time␣Fourier␣Transform␣(STFT)␣Magnitude ’)
plt.colorbar(format=’%+2.0f␣dB’)
plt.tight_layout ()
plt.show()

A.6 CQT Plotting

# CQT Parameters
n_bins = 84 # Number of frequency bins
bins_per_octave = 12 # Number of bins per octave

# Compute the CQT
cqt_result = librosa.cqt(audio_signal , sr=sample_rate , n_bins=

n_bins , bins_per_octave=bins_per_octave)

# Calculate the magnitude of the CQT result
cqt_magnitude = np.abs(cqt_result)

# Visualize the CQT magnitude
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plt.figure(figsize =(10, 5))
librosa.display.specshow(librosa.amplitude_to_db(cqt_magnitude ,

ref=np.max),
sr=sample_rate , x_axis=’time’, y_axis=’

cqt_note ’, bins_per_octave=
bins_per_octave)

plt.title(’Constant -Q␣Transform␣(CQT)␣Magnitude ’)
plt.colorbar(format=’%+2.0f␣dB’)
plt.tight_layout ()
plt.show()

A.7 Chrome Features Plotting

# Compute the Chroma Features
chroma_result = librosa.feature.chroma_stft(audio_signal , sr=

sample_rate , n_fft=n_fft , hop_length=hop_length)

# Visualize the Chroma Features
plt.figure(figsize =(10, 5))
librosa.display.specshow(chroma_result , sr=sample_rate , x_axis=’

time’, y_axis=’chroma ’, hop_length=hop_length)
plt.title(’Chroma␣Features ’)
plt.colorbar ()
plt.tight_layout ()
plt.show()

A.8 Spectral Contrast Plotting

# Spectral Contrast Parameters
n_bands = 6 # Number of frequency bands

# Compute the Spectral Contrast
spectral_contrast_result = librosa.feature.spectral_contrast(

audio_signal , sr=sample_rate , n_fft=n_fft , hop_length=
hop_length , n_bands=n_bands)

# Visualize the Spectral Contrast
plt.figure(figsize =(10, 5))
librosa.display.specshow(spectral_contrast_result , sr=

sample_rate , x_axis=’time’, y_axis=’linear ’, hop_length=
hop_length)

plt.title(’Spectral␣Contrast ’)
plt.colorbar ()
plt.tight_layout ()
plt.show()

A.9 A manual implementation of CQT

import numpy as np
import matplotlib.pyplot as plt
import librosa



Appendix A. Python Source Code 46

import librosa.display

# Functions for generating major and minor scales
def major_scale(root_freq , tuning =440):

major_scale_intervals = [2**(0/12) , 2**(2/12) , 2**(4/12) ,
2**(5/12) , 2**(7/12) , 2**(9/12) , 2**(11/12)]

root_ratio = root_freq / tuning
return [note_freq * root_ratio for note_freq in

major_scale_intervals]

def minor_scale(root_freq , tuning =440):
minor_scale_intervals = [2**(0/12) , 2**(2/12) , 2**(3/12) ,

2**(5/12) , 2**(7/12) , 2**(8/12) , 2**(10/12)]
root_ratio = root_freq / tuning
return [note_freq * root_ratio for note_freq in

minor_scale_intervals]

# Generate A major and A minor scales
A_major = major_scale (440)
A_minor = minor_scale (440)

# Generate a signal for each scale (1 second duration , 44100
sampling rate)

fs = 44100
duration = 1
t = np.linspace(0, duration , duration * fs , endpoint=False)

A_major_signal = np.zeros_like(t)
A_minor_signal = np.zeros_like(t)

for freq in A_major:
A_major_signal += np.sin(2 * np.pi * freq * t)

for freq in A_minor:
A_minor_signal += np.sin(2 * np.pi * freq * t)

# Compute CQT and STFT
A_major_cqt = librosa.cqt(A_major_signal , sr=fs , n_bins =84,

bins_per_octave =12, fmin =27.5)
A_major_stft = librosa.stft(A_major_signal)

A_minor_cqt = librosa.cqt(A_minor_signal , sr=fs , n_bins =84,
bins_per_octave =12, fmin =27.5)

A_minor_stft = librosa.stft(A_minor_signal)

# Plot CQT and STFT for A major scale
plt.figure ()
librosa.display.specshow(librosa.amplitude_to_db(np.abs(

A_major_cqt), ref=np.max), sr=fs , x_axis=’time’, y_axis=’
cqt_note ’, cmap=’viridis ’)

plt.title(’Constant -Q␣Transform␣-␣A␣major␣scale’)
plt.colorbar(format=’%+2.0f␣dB’)
plt.tight_layout ()

plt.figure ()
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librosa.display.specshow(librosa.amplitude_to_db(np.abs(
A_major_stft), ref=np.max), sr=fs , x_axis=’time’, y_axis=’
log’, cmap=’viridis ’)

plt.title(’Short -Time␣Fourier␣Transform␣-␣A␣major␣scale ’)
plt.colorbar(format=’%+2.0f␣dB’)
plt.tight_layout ()

# Plot CQT and STFT for A minor scale
plt.figure ()
librosa.display.specshow(librosa.amplitude_to_db(np.abs(

A_minor_cqt), ref=np.max), sr=fs , x_axis=’time’, y_axis=’
cqt_note ’, cmap=’viridis ’)

plt.title(’Constant -Q␣Transform␣-␣A␣minor␣scale’)
plt.colorbar(format=’%+2.0f␣dB’)
plt.tight_layout ()

plt

A.10 Manual Mel-Spectrogram implementation

def hz_to_mel(freq):
return 2595 * np.log10 (1 + freq / 700)

def mel_to_hz(mel):
return 700 * (10**( mel / 2595) - 1)

def create_mel_filterbank(sample_rate , n_mels , n_fft):
f_min = 0
f_max = sample_rate / 2
mel_min = hz_to_mel(f_min)
mel_max = hz_to_mel(f_max)
mel_points = np.linspace(mel_min , mel_max , n_mels + 2)
hz_points = mel_to_hz(mel_points)
bin_points = np.floor(( n_fft + 1) * hz_points / sample_rate)

.astype(int)
filter_bank = np.zeros ((n_mels , n_fft // 2 + 1))
for i in range(1, n_mels + 1):

left_bin = bin_points[i - 1]
center_bin = bin_points[i]
right_bin = bin_points[i + 1]

for j in range(left_bin , center_bin):
filter_bank[i - 1, j] = (j - bin_points[i - 1]) / (

bin_points[i] - bin_points[i - 1])

for j in range(center_bin , right_bin):
filter_bank[i - 1, j] = (bin_points[i + 1] - j) / (

bin_points[i + 1] - bin_points[i])

return filter_bank

def compute_mel_spectrogram(audio_signal , sample_rate , n_mels ,
n_fft , hop_length):
_, _, spec = stft(audio_signal , fs=sample_rate , nperseg=

n_fft , noverlap=n_fft - hop_length)
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power_spec = np.abs(spec)**2
filter_bank = create_mel_filterbank(sample_rate , n_mels ,

n_fft)
mel_spec = np.dot(filter_bank , power_spec)
return mel_spec
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Appendix B

Proposed Models in
Implementation

B.1 The proposed music transformer network

import torch
import torch.nn as nn
from torch.nn import Transformer

class AMTTransformer(nn.Module):
def __init__(self , input_dim , output_dim , nhead , num_layers ,

d_model , dim_feedforward , dropout):
super(AMTTransformer , self).__init__ ()

self.embedding = nn.Linear(input_dim , d_model)
self.pos_encoder = PositionalEncoding(d_model , dropout)

self.transformer = Transformer(
d_model=d_model ,
nhead=nhead ,
num_encoder_layers=num_layers ,
num_decoder_layers=num_layers ,
dim_feedforward=dim_feedforward ,
dropout=dropout ,

)

self.output_layer = nn.Linear(d_model , output_dim)

def forward(self , src , tgt , src_mask=None , tgt_mask=None ,
memory_mask=None):
src = self.embedding(src)
src = self.pos_encoder(src)

tgt = self.embedding(tgt)
tgt = self.pos_encoder(tgt)

output = self.transformer(src , tgt , src_mask , tgt_mask ,
memory_mask)

return self.output_layer(output)

class PositionalEncoding(nn.Module):
def __init__(self , d_model , dropout , max_len =5000):

super(PositionalEncoding , self).__init__ ()
self.dropout = nn.Dropout(p=dropout)
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pe = torch.zeros(max_len , d_model)
position = torch.arange(0, max_len , dtype=torch.float).

unsqueeze (1)
div_term = torch.exp(torch.arange(0, d_model , 2).float ()

* (-torch.log(torch.tensor (1e4)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze (0).transpose(0, 1)
self.register_buffer(’pe’, pe)

def forward(self , x):
x = x + self.pe[:x.size (0), :]
return self.dropout(x)

def preprocess_audio(audio_file , sr=22050 , n_fft =2048 ,
hop_length =512):
y, _ = librosa.load(audio_file , sr=sr)
spectrogram = librosa.stft(y, n_fft=n_fft , hop_length=

hop_length)
magnitude , phase = librosa.magphase(spectrogram)
log_magnitude = librosa.amplitude_to_db(magnitude)

return log_magnitude

device = torch.device("cuda" if torch.cuda.is_available () else "
cpu")

amt_transformer = AMTTransformer ().to(device)

criterion = torch.nn.CrossEntropyLoss ()
optimizer = torch.optim.Adam(amt_transformer.parameters (), lr

=0.001)

num_epochs = 100
for epoch in range(num_epochs):

for i, (input_data , target_data) in enumerate(data_loader):
input_data , target_data = input_data.to(device),

target_data.to(device)

optimizer.zero_grad ()
output_data = amt_transformer(input_data)

loss = criterion(output_data , target_data)
loss.backward ()
optimizer.step()

print(f"Epoch␣[{epoch +1}/{ num_epochs }],␣Step␣[{i+1}/{ len
(data_loader)}],␣Loss:␣{loss.item():.4f}")

class AMTDataset(Dataset):
def __init__(self , audio_files , transcription_files):

self.audio_files = audio_files
self.transcription_files = transcription_files

def __len__(self):
return len(self.audio_files)

def __getitem__(self , idx):
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audio_file = self.audio_files[idx]
transcription_file = self.transcription_files[idx]

input_data = preprocess_audio(audio_file)
target_data = load_transcription(transcription_file)

return input_data , target_data

batch_size = 32
amt_dataset = AMTDataset(audio_files , transcription_files)
data_loader = DataLoader(amt_dataset , batch_size=batch_size ,

shuffle=True , num_workers =4)

B.2 Transcription and post-processing functions

import pretty_midi
import numpy as np

def load_transcription(transcription_file , sr=22050 , hop_length
=512, velocity_scale =127):
midi_data = pretty_midi.PrettyMIDI(transcription_file)
piano_roll = midi_data.get_piano_roll(fs=sr/hop_length)

# Normalize the velocities
piano_roll = piano_roll / velocity_scale

return piano_roll

def postprocess_output(output_data , sr=22050 , hop_length =512,
velocity_scale =127):
# Convert output data to piano roll format
piano_roll = output_to_piano_roll(output_data)

# Denormalize the velocities
piano_roll = piano_roll * velocity_scale

# Convert the piano roll to a MIDI file
midi_data = piano_roll_to_midi(piano_roll , fs=sr/hop_length)

return midi_data

def output_to_piano_roll(output_data):
# Convert the output data into a piano roll format
# This depends on the specific format of the output_data

tensor.
pass

def piano_roll_to_midi(piano_roll , fs):
midi_data = pretty_midi.PrettyMIDI ()
piano_program = pretty_midi.instrument_name_to_program(’

Acoustic␣Grand␣Piano ’)
piano = pretty_midi.Instrument(program=piano_program)

for note_number in range(piano_roll.shape [0]):



Appendix B. Proposed Models in Implementation 52

start_time = None

for time_step in range(piano_roll.shape [1]):
velocity = piano_roll[note_number , time_step]

if velocity > 0 and start_time is None:
start_time = time_step * (1/fs)

elif velocity == 0 and start_time is not None:
end_time = time_step * (1/fs)
note = pretty_midi.Note(velocity=int(np.max(

piano_roll[note_number , time_step ])),
pitch=note_number ,
start=start_time ,
end=end_time)

piano.notes.append(note)
start_time = None

midi_data.instruments.append(piano)

return midi_data
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