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Abstract

In the era of exponential data growth, the organization and labeling of data play
crucial roles. Unsupervised cluster analysis can be utilized to initially group the raw,
unlabeled data obtained from a large dataset. This thesis explores the impact of vari-
ous clustering algorithms, K-Means, DBSCAN, and Gaussian Mixture Models, on the
performance of a supervised classification model, specifically AlexNet. The primary
objective of the study is to evaluate the classification results on a subset of Places365
dataset after applying different clustering algorithms during the preprocessing phase.

Through a series of experiments, we demonstrate that the choice of clustering
algorithm significantly influences the performance of the classification model.

Thesis Supervisor: Martin Lukac
Title: Associate Professor
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Chapter 1

Introduction

Machine Learning algorithms have demonstrated impressive performances in different

scenarios, image classification, text and speech recognition, and autonomous driving,

to name a few [1, 2, 3]. However, these algorithms require large amounts of labeled

data in order to train the model and achieve higher accuracy. That data requires

time-consuming and expensive processes such as collecting and labeling. Therefore,

in recent years, autonomously generated datasets are getting more attention because

of their properties of being collected and/or labeled without human intervention [4, 5].

Datasets are referred to as autonomously generated when they are collected and/or

labeled by autonomous agents, for example, robots or sensors. With the rise of

smart devices and the Internet of Things, the data created autonomously has been

growing at an exponential rate [6]. This type of datasets have their advantages over

traditionally labeled datasets, which includes the ability of being collected and sorted

faster and more efficiently. In such a scenario, clustering algorithms play a crucial

role in partitioning unlabeled data.

Clustering data is a common method for preliminary data examination, employed

across numerous fields, such as data mining, machine learning, pattern identification,

and information retrieval [7, 8, 9]. Clustering is an active area of research, and there

are numerous algorithms and techniques available for discovering clusters [10, 11, 12,

13]. Clustering algorithms can generally be categorized into several groups based on

their methodologies of how they group data points [8, 14]. This study will be focused
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on the following types and algorithms, which will be discussed in the subsequent

sections along with particular algorithms:

1. Similarity-based: K-Means

2. Density-based: DBSCAN

3. Model-based: Gaussian Mixture Model

The primary objective of this thesis is to investigate the influence of three distinct

clustering techniques on the performance and outcomes of a classification model ap-

plied to an autonomously generated dataset. Specifically, this study will analyze the

classification results of the widely-used Convolutional Neural Network (CNN) model,

AlexNet, after employing various clustering algorithms.

To achieve this objective, the following aspects will be covered in this thesis:

2. Related works will provide a brief overview of clustering and classification

techniques used in this project.

3. Methodology will describe methods used in this thesis for training and vali-

dation phases, including the dataset used, the clustering and classification al-

gorithms, and the performance metrics used to evaluate the results.

4. Experimental results will present the findings of experiments.

5. In the last section, the study will draw Conclusions based on the experimental

findings.

This thesis aims to contribute its exploration to the growing body of knowledge

on the use of machine learning techniques for autonomously generated datasets. By

evaluation of the classification performance of the AlexNet model following the appli-

cation of three distinct clustering techniques on an autonomously generated dataset,

this thesis hopes to provide valuable insights for the future works.
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Chapter 2

Related works

2.1 Clustering Algorithms

Clustering is a fundamental task in data mining and machine learning that involves

grouping data [14]. It is an unsupervised learning method that involves identifying

a finite number of categories, known as clusters, to describe a set of data [15]. Clus-

tering is typically used when the categories are unknown beforehand [15]. Clustering

algorithms are used to identify patterns and structures in datasets and are applied

in a wide range of fields such as image processing, bioinformatics, social network

analysis, and more.

2.1.1 Similarity-Based Clustering

To form clusters, a similarity measure is established between data items and items

with similar attributes are grouped together [16]. The process of grouping data into

clusters is based on the principle of increasing the similarity within a cluster and

decreasing the similarity between clusters [16].

K-Means

K-means is arguably the most prevalent clustering technique in metric spaces and

especially among similarity-based algorithms. Similarity-based clustering algorithms
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aim to divide a set of data into k clusters in a way that the distributions maximize or

minimize a certain criterion function [17]. Every group is characterized by the central

point of that particular cluster [14].

Generally, the algorithm’s process is started by choosing k cluster centers arbi-

trarily [16]. After that, k-means subsequently reassigns all data points to their closest

centroids and recalculates the centers of the newly formed clusters [16]. This iterative

repositioning persists until the objective function reaches convergence. The most fre-

quently employed criterion is the minimization of square error, which is the sum of the

squared Euclidean distances between data points and their nearest cluster centroids.

2.1.2 Density-Based Clustering

DBSCAN

Another one of the widely used clustering algorithms is DBSCAN. The Density-

based spatial clustering of applications with noise (DBSCAN) is the algorithm based

on the idea of density-based clustering, which is suitable for datasets with complex

structures, noise, and irregular shapes [18].

Density-based clustering methods are used to group objects into clusters based

on their local density rather than their proximity to each other [18]. These methods

identify clusters as dense areas separated by low-density regions. They can tolerate

noisy data and identify clusters that are not necessarily convex in shape. However,

like hierarchical and partitioning methods, density-based techniques struggle to work

effectively in high-dimensional spaces because the number of features is usually lim-

ited, which makes clustering more difficult.

Many clustering algorithms have been developed in recent decades, but most of

them have limitations when it comes to discovering clusters in large spatial databases

with noise. In this context, Ester et al. proposed the DBSCAN algorithm, which

has proven to be an effective and efficient clustering method [19]. The DBSCAN

algorithm works by identifying core points and then expanding clusters around them

based on density connectivity [20]. The algorithm has two parameters, the radius
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of the neighborhood around each point and the minimum number of points required

to form a cluster. The algorithm has been widely used in various fields, including

environmental monitoring, bioinformatics, and image processing.

2.1.3 Model-Based Clustering

Model-based clustering is a grouping technique that assumes data is generated from

an underlying statistical model [8]. These algorithms are flexible and can adapt to

different cluster shapes and sizes, providing a probabilistic interpretation of cluster

assignments [8].

Gaussian Mixture Models

Gaussian Mixture Models (GMM) are a versatile and powerful clustering technique

based on probabilistic modeling [8]. GMMs have gained popularity in various fields,

such as image processing, pattern recognition, and bioinformatics, due to their ability

to capture complex data distributions and model clusters with different shapes, sizes,

and orientations. GMMs assume that the underlying data distribution is a mixture

of multiple Gaussian distributions. Each Gaussian component represents a cluster,

characterized by a mean vector and a covariance matrix that define its center, shape,

and orientation. In contrast to similarity-based clustering algorithms, the main goal

of model-based algorithms is to estimate the model’s parameters to best represent the

data’s structure [8]. So, parameter estimation in GMMs involves finding the optimal

values for the means, covariances, and weights of the Gaussian components. The

Expectation-Maximization (EM) algorithm is the most common method used for this

purpose. The EM algorithm is an iterative process that alternates between two steps:

the expectation (E) step, where the posterior probabilities of cluster membership

are calculated, and the maximization (M) step, where the means, covariances, and

weights are updated based on these probabilities. The algorithm converges to a local

maximum of the data likelihood.
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2.2 Image Classification

Image classification is a fundamental problem in computer vision, where the goal is

to categorize images into predefined classes based on their content [21]. Traditional

methods, such as handcrafted feature extraction and machine learning classifiers (e.g.,

Support Vector Machines), were limited in their ability to handle complex visual

patterns and scale to large datasets [22]. The advent of deep learning and CNNs has

dramatically improved the performance of image classification tasks [22].

CNNs are a class of deep learning models specifically designed for image process-

ing and recognition tasks [21]. They consist of alternating convolutional and pooling

layers that learn hierarchical feature representations from the input data, followed

by fully connected layers for classification. At the end of XX century, the convolu-

tional neural network called LeNet was developed and gained a recognition for its

successful application in handwritten digit recognition [23]. The last version of this

network, known as LeNet-5, was specifically designed for the task of classifying hand-

written digits into 10 distinct classes [24]. LeNet-5 utilized a compact architecture

that processed images with dimensions of 32 × 32 pixels. The architecture of LeNet-

5 consisted of two convolutional layers, each incorporating 6 and 16 filters of size 5

× 5, respectively [24]. Following each convolutional layer, an average pooling layer

was applied, and the hyperbolic tangent was employed throughout the network as

the activation function. Additionally, LeNet-5 featured three fully connected dense

layers, comprising 120, 84, and 10 units, respectively. LeNet-5 achieved an impressive

accuracy rate of approximately 99% when evaluated on a separate test dataset. CNNs

have been shown to achieve state-of-the-art performance on various image classifica-

tion benchmarks, outperforming traditional methods by a significant margin [22].

2.2.1 Alexnet

In 2012, the first CNN used at the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) was able to obtain a great success by achieving higher results than the

competitors with the top-5 accuracy of 84.7%. This CNN is well-known as AlexNet
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was proposed by Krizhevsky, Sutskever, and Hinton [22]. It is a deep CNN architec-

ture that marked a turning point in the field of image classification by demonstrating

the potential of deep learning for image recognition tasks. AlexNet consists of eight

layers, including five convolutional layers, three fully connected layers, and a final

softmax layer for classification. The convolutional layers consist of 3, 96, 256 and 384

filters of size 11x11, 5x5 and 3x3 [22]. This makes the AlexNet a relatively lightweight

CNN model compared to more recent models such as VGG and ResNet with 16 layers

or more. Key innovations in AlexNet include the use of rectified linear units (ReLU)

as activation functions, dropout for regularization, and data augmentation to improve

generalization [22].

AlexNet has proven to be effective in learning discriminative features from images

[22, 25]. Its deep architecture allows for hierarchical feature extraction, capturing

both low-level and high-level visual representations [22]. Following its success in the

ILSVRC, AlexNet became a foundational architecture for numerous image classifica-

tion tasks and spurred further research in deep learning for computer vision. AlexNet

has been applied in various domains, such as medical image analysis [25], remote

sensing [26], and object detection [27]. The architecture has also inspired the devel-

opment of more advanced CNN models, such as VGG [28], Inception [29], and ResNet

[30].

Over the years, the CNN architecture demonstrated extremely well its capabilities

for the image classification. Specifically, AlexNet is a model that was studied exten-

sively and is widely used in research. Additionally, by being a good balance between

light and heavy CNN models, the AlexNet makes a well-suited choice as a base eval-

uation model for better generalization and reproducibility. Clustering algorithms can

benefit from feature representations learned by the CNN, by utilizing the pretrained

AlexNet as a feature extractor.
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Chapter 3

Methodology

3.1 Dataset

In this thesis, a diverse image collection dataset, namely the Places, was chosen to

facilitate the investigation and evaluation of various algorithms [31]. The specific

choice of the dataset is not crucial for the research objectives and findings; rather,

it serves as a representative sample to explore the algorithms and methodologies

employed in the study.

Places is a large-scale image dataset and there are different variations of the

dataset depending on the size of it. For this project, all of the experiments have

been done using the images from the Places365-Standard version. The Places365-

Standard is a subset of the Places dataset with over 1.8 million images for training

[31]. It additionally has 36,500 images for the validation set and similarly 328,500 for

the test set [31]. All of the images from the dataset are of good-quality and colored

with a resolution of 256x256 pixels [31]. Some of the examples from the dataset could

be seen in Figure 3-1. The images were collected from different sources, such as Flickr

and Google Image Search [31].

The Places dataset is commonly used in the machine learning field. Its diverse

collection makes it well-suited for training and evaluating deep learning models for

scene recognition and other computer vision tasks as it additionally comes with anno-

tations for the images. The annotations for them were done using a crowd-sourcing
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Figure 3-1: Image examples from the Places365 dataset

approach [31]. It has been used in various research studies and competitions, such as

the Places Challenge, which is a competition for scene recognition algorithms [31].

For the scale of the project, 145,000 images were randomly selected and down-

loaded from the dataset. 80% of it was allocated to the training phases and 10%

each for the validation and test phases. Places 365 dataset images undergo a process

of random cropping. This is illustrated in the first and second sections of Figure

3-2. For each image, four non-overlapping samples with a resolution of 40x40 pixels

are extracted and included in the training set. This random cropping process is also

applied to the validation and test sets.

Figure 3-2: The Experimental Structure of the first and second phase.
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It is important to mention that the four randomly selected sub-regions of an image

always belong to the same dataset partition (training, validation, or test) to ensure

consistency and prevent data leakage between these partitions.

3.2 Experimental Structure

The experiments for this project consist of two main parts, clustering and classifica-

tion.

3.2.1 Clustering

After partitioning the images into smaller pieces, clustering methods are used for the

preparation of new datasets, described by the third part of Figure 3-2. During this

step, three clustering algorithms have been implemented for grouping up the images

into N clusters. For this purpose, the feature values of the images have been used.

The feature extraction have been performed using the AlexNet.

The AlexNet was imported with the pre-trained weights on the ImageNet dataset

[22] [32]. During the experiments, the images have been passed into the model without

crop or size transformations. The features have been extracted after each activation

layer of the convolutional layers, meaning after performing ReLu on Conv1-Conv5.

The feature extraction produced a dataframe that contains 1152 low level features

per image. After the features have been extracted, they are used in the clustering

algorithms mentioned in the Section 2.1.

Next are clustering algorithms’ specific parameters that were used during the

experiments for this project.

K-Means

K-Means algorithm was implemented using the scikit-learn library [33]. The algorithm

was tested using two different values of K, 4 and 10. The "k-means++" was chosen

as initialization method because it speeds up the conversion. This method decides

initial cluster centroids using sampling based on an empirical probability distribution
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of the points’ contribution to the overall inertia [33]. The n_init parameter was set

to 4, so the algorithm would run multiple times with different variations of centroid

seeds.

DBSCAN

Differentiating factor of DBSCAN is that during the initialization of the clustering

method, the value of epsilon (eps) is used rather than the number of clusters. The

epsilon is used as a maximum value for two points to be considered neighbours.

Therefore, to find the optimal value of eps, the elbow method is used.

GMM

The implementation of GMM from the scikit-learn library was used. Similarly to the

K-means clustering, the algorithm was tested using two values of clusters, 4 and 10,

and "k-means++" as initialization method.

It is important to mention that during the feature extraction and clustering stages,

the image sets are combined. However, after the clustering process is completed, the

images are separated into their respective clusters and original partitions (training,

validation, and test sets). This ensures that the integrity of the dataset divisions is

maintained for subsequent analysis and evaluation.

3.2.2 Classification

Before the last phase of the experiments, data transformation is performed to ensure

that the input data is in the appropriate format for the CNN model. It was done

using the PyTorch library [32]. The transformations applied include resizing, normal-

ization, and data augmentation techniques, which enhance the model’s generalization

capabilities and reduce the risk of overfitting.

The newly generated data after the clustering and transformation is fed into the

classification model, namely AlexNet. For the experiment purposes, the last layer of

the model is modified from the initial 1000 classes [22] to the values of N used in this
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project. The modified representation of the model is shown in the Figure 3-3.

Figure 3-3: The AlexNet architecture for N classes.

Additionally, to get the classification result from the model, the layer of LogSoft-

max with the dimension equal to one have been added to the end. During the training

of the model, the epoch was set to 50 with a batch size of 32. The Adam optimizer

was used with the learning rate of 0.001 [34]. Despite there being dropout layers in

the AlexNet model to avoid overfitting [22], additional measure was implemented to

avoid that behaviour. In the case when the loss value does not change on the vali-

dation set for 10 consecutive epochs, the training is interrupted and the last state of

the model with the best performance is saved.

3.2.3 Performance Evaluation

To compare the performance of the mentioned model, two widely used evaluation

metrics for classification tasks are employed: classification accuracy and Negative

Log-Likelihood Loss (NLLLoss).

3.2.4 Accuracy

Accuracy measures the proportion of correctly classified images out of the total num-

ber of images. In this study, the clustering algorithm assigned label was considered

as "true" label and the model assigned as "predicted" label. It is a general measure

of overall classification performance. It will be evaluated during different phases of

the classification and for the each class during the test phase.
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Negative Log Likelihood Loss

Negative Log-Likelihood Loss (NLLLoss) is an evaluation metric commonly used in

the context of classification problems, especially in the field of deep learning. It mea-

sures the dissimilarity between the predicted probability distribution of class labels

and the true distribution. In the case of the NLLLoss, a lower score indicates better

performance of a model.

NLLLoss = − 1

𝑁

𝑁∑︁
𝑖=1

log(𝑝(𝑦𝑖)) (3.1)

In this formula, N represents the number of samples in the dataset, 𝑦𝑖 is the true

class label for the i -th sample, and 𝑝(𝑦𝑖) is the predicted probability for that class.

In the evaluation of classifiers, various metrics are employed to assess their per-

formance and effectiveness. These metrics provide quantitative measures that aid in

understanding how well the classifier performs on a given task. Commonly used met-

rics include accuracy, precision, recall, F1 score, etc. Among various functions used

for classifiers, the NLLLoss has its own advantage when applied to image classification

tasks.

By minimizing the negative log-likelihood (equivalent to maximizing the likeli-

hood of the observed data), NLLLoss helps estimate the parameters that best fit the

training data, leading to models that capture the underlying patterns and generate

predictions that align with the observed data.

NLLLoss is suitable for probabilistic models that assign probabilities to various

outcomes like CNN. It is commonly applied in tasks like classification, where the

objective is to estimate the probability distribution across different classes. Through

the optimization of NLLLoss, the model is incentivized to assign higher probabilities

to the correct classes and lower probabilities to the incorrect ones. This characteristic

makes NLLLoss a good option for classifiers based on the softmax function.
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3.3 Setup

3.3.1 Hardware

All of results mentioned in this paper were obtained during the same "run". Meaning

that the clustering algorithms and classification model were prepared and executed

on the same machine and hardware. The GPU used in this project is Nvidia RTX

3060.

3.3.2 Software and Data

The described clustering and classification techniques were implemented using Python.

The clustering algorithms were imported from the Scikit-Learn library [33], while the

AlexNet classification model was downloaded, implemented and modified using the

PyTorch library [32].

To guarantee a fair comparison across all three methods, they were each assessed

using the same dataset instance. This means that the same distribution of data

was used for evaluating the performance of each method, ensuring a consistent and

unbiased evaluation process.
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Chapter 4

Experimental results

4.1 Clustering

4.1.1 K-Means

Table 4.1 displays the distribution of images across clusters following the application

of the K-means clustering algorithm to a dataset with the specified number of clusters

set to four. The notable observation here is the relatively balanced allocation of images

among the clusters, as no single group appears to be heavily dominant.

Cluster number Percentage of images
per cluster

Cluster 0 28.78%
Cluster 1 21.29%
Cluster 2 32.28%
Cluster 3 17.65%

Table 4.1: Image distribution per cluster. K-Means for 4 clusters

For a better understanding of K-Means clustering results, 10 randomly selected

images per cluster have been demonstrated in Figure 4-1. By looking at it, we can

form some hypothesises on the "themes" of each cluster. Cluster 1 appears to be

characterized by straight line patterns, while Cluster 3 predominantly features leaves,

trees, and rounded edges, suggesting a unifying theme of "wavy" lines. Cluster 2

seems to follow a pattern of single blended or blurry color. In contrast to the other
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three clusters, Cluster 0 displays a diverse array of images, including building walls,

leaves, mountains, and desks, making it challenging to pinpoint a specific theme.

Figure 4-1: 10 example images after K-Means on partitions (4 clusters).

Table 4.2 shows the distribution of images across ten classes following the exe-

cution of the K-means clustering algorithm, similar to the previous results. In this

scenario, there is a more significant variation in the percentage of images assigned to

each cluster.

Cluster number Percentage of images
per cluster

Cluster 0 25.35%
Cluster 1 16.29%
Cluster 2 28.06%
Cluster 3 30.30%
Cluster 4 6.24%
Cluster 5 14.51%
Cluster 6 6.27%
Cluster 7 9.89%
Cluster 8 13.68%
Cluster 9 9.17%

Table 4.2: Image distribution per cluster. K-Means for 10 clusters

Figure 4-2 presents various images from 10 clusters after applying K-Means clus-

tering. We can spot some notable patterns upon closer inspection. Firstly, Cluster 0

seems to concentrate on straight lines, akin to Cluster 1 in Figure 4-1. Cluster 3 likely

follows the single-color pattern observed in Cluster 2 of the previous figure. Although
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Cluster 5 shares considerable similarities with Cluster 3, it contains distinct examples

that feature lines, such as road lanes. While Cluster 8 includes images with grass,

Cluster 9 can be considered the "plants" cluster, as it predominantly showcases grass,

trees, leaves, and other plant-related elements.

Figure 4-2: 10 example images after K-Means on partitions (10 clusters).

4.1.2 DBSCAN

The plot shown in the Figure 4-3 was obtained by using the NearestNeighbors method

from scikit-learn library [33]. By utilizing the elbow method implemented in the

KneeLocator Python library, an eps value of 13.68 was calculated.

31



Figure 4-3: Elbow point.

Table 4.3 displays the distribution of images across the three primary clusters

identified by the DBSCAN algorithm. Additionally, DBSCAN includes an additional,

unique cluster for data that has not been grouped into any specific cluster, which is la-

beled as noisy or "-1". Upon examining the data distribution, it becomes evident that

the algorithm has categorized a significant portion of images into a single category.

Cluster number Percentage of images
per cluster

Cluster -1 11.8%
Cluster 0 78%
Cluster 1 6.1%
Cluster 2 4.1%

Table 4.3: Image distribution per cluster. DBSCAN with eps=13.68
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Figure 4-4: 10 example images after DBSCAN on partitions (4 clusters).

Figure 4-4 presents a visualization of 10 randomly selected images from each clus-

ter, enabling a deeper investigation of the underlying patterns. Cluster 0, which is the

largest cluster, may have aggregated images featuring various background elements,

such as sky, grass, or seats. Cluster 1 shares similarities with Cluster 0 but seems

to predominantly focus on uniformly single-colored, blurry images. Lastly, Cluster 2

primarily consists of images containing distinct objects, such as building tips, brake

disks, planes, and steel bars.

4.1.3 GMM

Table 4.4 illustrates the allocation of images among clusters. In this case, number of

components was set to four. It is another case of relatively balanced distribution.

Cluster number Percentage of images
per cluster

Cluster 0 25.35%
Cluster 1 16.29%
Cluster 2 28.06%
Cluster 3 30.3%

Table 4.4: Image distribution per cluster. GMM for 4 clusters

Similar to the previous clustering algorithms, Figure 4-5 displays discernible vi-

sual patterns among the Gaussian Mixture Model (GMM) clustering results. Cluster

3 predominantly consists of single-colored, blurry images. Cluster 2 seems to con-

centrate on prominent lines, as evidenced by the human head shape (1), chandelier
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with its background (3), and bridge (4), among others. Cluster 0 exhibits some re-

semblance to Cluster 2 concerning "lines"; however, the patterns are not distinctive

enough for clear identification.

Figure 4-5: 10 example images after GMM on partitions (4 clusters).

Similarly to K-means clustering results, Table 4.5 also shows the allocation of

images with number of components set to ten. Larger variance can be seen here, too.

Cluster number Percentage of images
per cluster

Cluster 0 25.35%
Cluster 1 16.29%
Cluster 2 28.06%
Cluster 3 30.30%
Cluster 4 6.24%
Cluster 5 14.51%
Cluster 6 6.27%
Cluster 7 9.89%
Cluster 8 13.68%
Cluster 9 9.17%

Table 4.5: Image distribution per cluster. GMM for 10 clusters

The examples demonstrated in the Figure 4-6 allow us to see some patterns among

the clusters. Firstly, Cluster 5 comprises single-colored blended images, representing

the most prevalent cluster type in this project. Cluster 8 shares similarities with

Cluster 5 but predominantly includes images containing some form of object. Cluster

0 features images associated with nature, lakes, and coastal buildings. Therefore, a

hypothesis can be made that it groups images with the colors and shapes prevelent
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in the nature. Cluster 1, on the other hand, likely consists of images emphasizing

dividing lines or significant changes in feature values.

Figure 4-6: 10 example images after GMM on partitions (10 clusters).

4.2 Classification

In this section, multiple experiments were performed to explore the results of the

classification model after the application of clustering algorithms. The paper will

present three images from the dataset as an example for better understanding of the

process. These images shown in the Figure 4-7, were chosen at random, two from

training and one from test set.
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Figure 4-7: Example images from the dataset. #1 and #2 from train, #3 from test.

4.2.1 K-Means

Table 4.6 presents the accuracy and loss values during various phases of the experi-

ments. In this instance, the AlexNet model was trained on a dataset generated using

K-Means clustering, with k-values of four and ten.

Number of Training Training Valid Valid Test Test
clusters loss Acc loss Acc loss Acc

4 0.57 77.1% 0.495 79.52% 0.537 78.29%
10 1.102 67.3% 1.054 66.4% 1.209 66.2%

Table 4.6: Classification Results. Loss and Accuracy for K-Means during training,
validation and test phases.

The top image in Figure 4-8 presents a selection of results from the K-means clus-

tering algorithm. In the second image, we observe a discernible pattern in Cluster 3,

represented by the red color, as it groups together images containing leaves. How-

ever, in the first image, the cluster also incorporates a photo predominantly featuring a

woman’s hair. Therefore, it is plausible that Cluster 3 encompasses images with wavy

lines, as evidenced by the presence of another image in the second example, which

similarly showcases a woman’s hair. Moving to the dark magenta colored Cluster 1,

it appears to have fewer distinct similarities between elements. Based on the first

and second images, it seems to group photos containing straight lines and potentially

darker shades. In contrast, Cluster 2, represented by lime-colored outlines, presents

three accurate predictions out of three. Following the patterns observed in the other

two clusters, Cluster 2 may include uncertain shapes such as clouds or predominantly
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feature blue/sky colors. Nevertheless, due to its presence solely in the third image,

there are fewer examples available to confirm this hypothesis with certainty.

Figure 4-8: Example images after K-Means (top) and after AlexNet on K-Means
clusters (bottom).

The bottom image in the Figure 4-8 showcases the same images but after using

AlexNet for classifying partitions into classes. For these examples, we can see that

it did mostly correct. However it classified leaves on the second and building on the

third image incorrectly.

4.2.2 DBSCAN

Number of Training Training Valid Valid Test Test
clusters loss Acc loss Acc loss Acc

4 0.17 79.1% 0.25 77.2% 0.22 76.2%

Table 4.7: Classification Results. Loss and Accuracy for DBSCAN during training,
validation and test phases.

The classification results presented in Table 4.7 demonstrate relatively high per-

formance, with a classification accuracy of 76.2% on the test dataset.

37



We can see from the examples in the Figure 4-9 that the clustering algorithm and

the model mostly grouped partitions into a single class. The model classified the two

"magenta" colored images from the left picture into different clusters.

Figure 4-9: Example images after DBSCAN (top) and after AlexNet on DBSCAN
clusters (bottom).

4.2.3 GMM

Table 4.8 displays the accuracy and loss values observed throughout different stages

of the experiments. In this particular case, the AlexNet model was trained on a

dataset created using Gaussian Mixture Model (GMM) clustering, with the number

of components set to four and ten.

Number of Training Training Valid Valid Test Test
clusters loss Acc loss Acc loss Acc

4 0.70 72.4% 0.636 74.37% 0.621 74.87%
10 0.801 68.2% 0.962 67.9% 0.920 66.8%

Table 4.8: Classification Results. Loss and Accuracy for GMM during training, vali-
dation and test phases.
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The model demonstrated classification accuracies of 74.87% and 66.8% on the test

dataset for the respective configurations.

Figure 4-10: Example images after GMM (top) and after AlexNet on GMM clusters
(bottom).

The first part of the Figure 4-10 illustrates that the Gaussian Mixture Models

algorithm made distinct decisions compared to other clustering techniques. In the

third image, the algorithm incorrectly clustered one of the sky images. Nevertheless,

it successfully differentiated the building in the third image from other images within

the "Dark Magenta" cluster. Furthermore, the algorithm preserved consistency with

Cluster 2’s "wavy and hair" pattern by incorporating the sample from the upper

portion of the second image into the cluster.

This can be contrasted with the second part of Figure 4-10. The clusters are

depicted in the left and middle images identically to their counterparts. Therefore,

given this results and from Table 4.8, there is high probability of that the model

was able to learn some patterns of clusters, and especially of lime and dark magenta

colored groups. Nevertheless, the model managed to accurately predict only one out
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of the four partitions for the right image. Upon closer inspection, it was able to

separate the buildings from the rest, yet into the wrong cluster. The model classified

three sky images into three different clusters.

4.3 Results comparison

Clustering Algorithm 4 classes 10 classes
Acc NLLLoss Acc NLLLoss

K-Means 78.29% 0.537 66.2% 1.209
DBSCAN 76.2% 0.22 - -

GMM 74.87% 0.621 66.8% 0.920

Table 4.9: Classification Results. Accuracy and NLLLoss score for three algorithms
during the test phase.

Table 4.9 shows the accuracy of the models for N classes when evaluated during a

test phase with corresponding clustering algorithm. For the K-Means with 4 classes,

the model identified the majority of the patterns and performed well with the NLL-

Loss score of 0.537 and the accuracy of 78.29%. The AlexNet demonstrated similar

results for the GMM 4-class case with 0.621 score for NLLLoss and 74.87% for the

accuracy. This similarity pattern repeats also for the 10 class case. We can see that in

some of the example Figures (4-8, 4-10) the substantial amount of the colored boxes

match. When it comes to DBSCAN, the model demonstrated a commendable level

of accuracy and NLLLoss score on average.

Class number K-Means DBSCAN* GMM
0 65.11% 92.7% 64.64%
1 82.82% 1.1% 55.28%
2 89.38% 0.3% 82.85%

3 (-1*) 73.99% 59.1% 86.78%

Table 4.10: Classification Results. Accuracy by class for three algorithms during the
test phase.

However, by looking at Table 4.10, it is essential to acknowledge the enormous

variance in accuracy observed when evaluating the accuracy for the individual classes.

For instance, when evaluating the Class 0, the model achieved an accuracy of 92.7%
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while for the Class 2, the accuracy is a mere 0.3%. The most plausible explanation for

this discrepancy is the inability of the model to learn effectively due to the substan-

tial imbalance in class sizes within the dataset, mentioned in Table 4.3. While, the

other two cases showcases a relatively balanced accuracies across the classes. It was

anticipated that Class 0 for K-Means and Class 1 for GMM would show the lowest

results. It is because they are the clusters which contained a diverse collection of

images we struggled to assign a specific theme.
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Chapter 5

Conclusion

In conclusion, this thesis examined the influence of various clustering algorithms—K-

Means, DBSCAN, and Gaussian Mixture Models—on the performance of a supervised

classification model, specifically AlexNet. The main goal of this study was to assess

the learning insights of AlexNet model in the instance when the labeled data is created

through the usage of different clustering methods on a randomly generated dataset.

Through a series of experiments, we found that the choice of clustering algo-

rithm has a substantial impact on the classification model’s performance. The models

trained on datasets created ater the application of Gaussian Mixture Models and K-

Means, demonstrated considerably high classification accuracy, while DBSCAN case

yielded poorer outcomes due to inadequate clustering of the images. Both, GMM

and K-Means, had visually distinguishable patterns in most of their clusters. These

findings underscore the importance of selecting the most suitable clustering algorithm

for the specific dataset and classification task in question.

For future research, it would be valuable to investigate other clustering algorithms

and their effects on various classification models. Additionally, examining the use of

ensemble methods that combine the strengths of multiple clustering algorithms could

lead to further enhancements in classification accuracy. Finally, exploring the impact

of feature extraction and dimensionality reduction techniques on the performance of

clustering algorithms would contribute to a more nuanced understanding.
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