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Abstract: In this review, the current state of materials science and the device physics of semitrans-
parent organic solar cells is summarized. Relevant synthetic strategies to narrow the band gap of
organic semiconducting molecules are outlined, and recent developments in the polymer donor
and near-infrared absorbing acceptor materials are discussed. Next, an overview of transparent
electrodes is given, including oxides, multi-stacks, thin metal, and solution processed electrodes,
as well as considerations that are unique to ST-OPVs. The remainder of this review focuses on the
device engineering of ST-OPVs. The figures of merit and the theoretical limitations of ST-OPVs are
covered, as well as strategies to improve the light utilization efficiency. Lastly, the importance of
creating an in-depth understanding of the device physics of ST-OPVs is emphasized and the existing
works that answer fundamental questions about the inherent changes in the optoelectronic processes
in transparent devices are presented in a condensed way. This last part outlines the changes that are
unique for devices with increased transparency and the resulting implications, serving as a point of
reference for the systematic development of next-generation ST-OPVs.

Keywords: organic photovoltaics; semitransparency; organic semiconductors; device engineering;
device physics

1. Introduction

Organic photovoltaics have emerged as a technology that reshapes the energy land-
scape. Their versatility and flexibility in design has moved them to the forefront of in-
tegrated energy harvesting solutions [1–3]. Besides offering mechanical flexibility and
being lightweight, their solution-processability allows for low cost and high-throughput
deposition methods [4–9]. However, the property that sets them most clearly apart is their
optical tunability [10–13]. Bulk-heterojunction solar cells (BHJ) comprise a photoactive layer
donor–acceptor blend based on polymeric and molecular components that can be chemi-
cally finetuned to absorb in the desired spectral region. With efficient photon-harvesting
outside of the visible region of the spectrum, (semi-)transparent absorbers can generate elec-
tricity from the ultraviolet or infrared part of the spectrum. In combination with transparent
electrode materials, they can be integrated into windows for net-zero-energy buildings and
greenhouses or into windows of vehicles or displays [1,14–18].

To date, the predicted performance limitations of ST-OPVs exceed the currently re-
ported efficiencies by far, in contrast to opaque OPVs, which underwent great PCE boosts
in the past few years, now reaching PCEs of over 18% thanks to new material design,
optimized processing and advanced interfacial engineering [19–23].

In this review, we will cover the material design principles for donors and acceptors
for ST-OPVs, with focus on near IR-absorbing molecules, discuss transparent electrode
materials and focus on the existing understanding of photoelectronic processes in ST-OPVs
and the aspects that set them apart from their opaque counterparts.
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2. Materials
2.1. Narrow Band Gap Polymer Donors

Although a manifold of highly efficient polymer donors exists in the field of OPVs,
only a selection of them satisfies the optical requirements for semi-transparent OPVs.
The most prominent strategy to achieve transparency is the band gap-narrowing of the
p-type semiconducting polymers to achieve absorption in the near-IR. The conjugated
chain of delocalized electrons in OPV polymer donors features a series of overlapping pz
orbitals with sp2 or sp hybridization. When considering a conjugated system, the most
intuitive way to narrow the band gap is the extension of the conjugation lengths that
leads to the formation of continuous bands (Figure 1) [24–26]. For example, Liu et al.’s
work on medium-sized chromophores demonstrates bandgap narrowing of the extended
chromophores compared to their small molecule counterparts while maintaining good
molecular orientation in the films, similar to that of polymeric materials [27]. Synthetic
strategies that aim for high planarity and reduced rotational disorder are based on the
concept of extending the conjugation lengths [28]. However, this approach reaches its
limits quickly for extended polymer chains and little or no effect on the band gap may
be observed as the effective conjugation lengths remain unchanged for such extended
chains [29]. Therefore, other approaches are required.

Figure 1. (A) Examples of aromatic and quinoid forms of polythiophene and polyisothiophene (left)
and poly(isothianaphthene), stabilized by the benzene ring resonance energy upon formation of the
quinoidal form. (B) Energy diagram of donor and acceptor moieties and hybrid orbitals of D-A type
molecule/polymer.

The conjugated system can be represented by two resonance structures, the aromatic
and the quinoidal form [7,28,30–32]. One of the main synthetic strategies to narrow the
band gap of donor polymers is to stabilize the quinoidal form, such as by fusing a second
ring to the polymer backbone that provides aromatic resonance stabilization energy upon
formation of the quinoid form, as shown in Figure 1A. For example, the aromatic poly-
mer polythiophene transforms to quinoidal poly(isothiophene), which is stabilized by a
Benzene ring [28,32,33]. Although the aromatic form of this polymer has a band gap of
Eg∼2 eV, band gaps as low as 0.5–1 eV have been reported for mixed aromatic-quinoidal
polymer [33–35]. The fraction of the quinoidal form in such mixed polymers is directly
correlated with the bond length alternation (BLA), which is defined as the average of the dif-
ference in length between the adjacent carbon–carbon bonds in a polyene chain and directly
correlated with the band gap. With increasing quinoid contribution, the carbon−carbon
single bonds between two adjacent rings adopt more double bond character and both the
BLA and the band gap decrease [28–30]. For example, Takimiya et al., synthesized PB-
DTD4T with a band gap of 0.8 eV, and Salleo and Andersson et al. showed polymers based
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on thiadiazoloquinoxaline with a bandgaps <0.7 eV [36,37]. A recent in-depth overview of
quinoid polymers for OPVs can be found elsewhere [38].

Another prominent design strategy that dominates synthetic efforts are donor–
acceptor (DA) type polymers, consisting of alternating electron-rich and electron-poor
motives [31,32,39–43]. The interaction of the donor’s highest occupied molecular orbital
(HOMO) with the acceptors’ HOMO leads to the formation of two hybrid orbitals of
non-degenerate energy, thus one level being energetically lower than the HOMOs of the
isolated moieties, as described by MO theory [44,45]. The same applies to the hybridization
of the LUMOs of D and A, resulting in band gap narrowing, as schematically shown in
Figure 1B. In addition, the alternation of electron-donating and withdrawing D and A
units facilitates the formation of the quinoidal structure via the push–pulling effect and
decreases the BLA, therefore, overlapping with the first mentioned design concept. Lastly,
intermolecular interaction and substituent effects exist, such as the introduction of electron-
withdrawing groups to lower the LUMO energy [28]. Commonly used motives include
the electron-rich D moieties thieno [3,4-b]thiophene (BDT), cyclopentadithiophene (CPDT)
and dithieno [3,2-b:2′,3′-d]pyran (DTP), and the electron-poor A units diketopyrrolopy-
rrole (DPP), thienopyrzine (TP), benzothiadiazole (BT), and isoindigo (II) [28,30,46,47].
The synthetic strategies for narrow bandgap donor polymers are detailed further in the
literature [29–31,38,48].

2.2. Narrow Band Gap Non-Fullerene Acceptors

To achieve highly transparent bulk-heterojunction photoactive layers and devices, a
visibly transparent donor must be combined with an equally transparent acceptor molecule.
Not only do the optical properties have to be matched with the donor, but a beneficial energy
level alignment is necessary as well. Energetic offsets (HOMOD−HOMOA, ∆EHOMO)
should be minimized to reduce energetic losses Eloss, but need to be sufficiently high
to guarantee efficient exciton dissociation at the interfaces of donor and acceptor rich
domains [12,49–52]. State-of-the art non-fullerene acceptors (NFAs) are highly tunable on
the molecular level, resulting in control over energy levels and optical properties, as well as
morphological features, fulfilling the above-mentioned criteria with ease, in contrast to early
generation fullerene acceptors. Current NFAs make use of established design concepts of
earlier generation NFAs, such as (out-of-plane) side-chain engineering to control solubility
and to prevent excessive aggregation behavior, and fused ring backbones to enhance π-π-
stacking [53]. Vast progress in the reduction of the Eloss has been reported in the past years;
while in 2018 Eloss <0.5 eV was considered low, now ultra-low losses of Eloss = 0.15 eV have
been reported [13,54].

Similar to polymer donors, the alternation of donor and acceptor units (ADA type
NFAs) was introduced in 2015 by Zhang et al. with the synthesis of ITIC, opening a
platform for band gap engineering [55]. An efficient strategy to narrow the band gap in
ADA type NFAs is to increase the electron-donating strength of the D core unit, for example
by introducing carbon–oxygen-bridged (CO-bridged) latter type units. The oxygen atoms
provide electron density and introduce planarity, which results in an extended π-conjugated
system, narrowing the band gap further [56–58]. The introduction of π -bridges in A–π–D–
π–A-type NFAs, is based on the same concept. Recent examples include the p-IO series
by Lee et al. with band gaps between 1.34 eV and 1.20 eV, which can yield PCEs of up
to 13.1% [59]. To date, the ultra-narrow band gap NFA COTIC-4F, a A-D′-D-D′-A type
NFA that was reported in 2018 by Lee et al. remains the acceptor with the narrowest
band gap reported [12]. Newer Y6 derivatives, so called A-DA′D-A NFAs, contain an
electron-deficient core in the ladder-type fused rings and move towards equally narrow
band gaps. Li et al. found in 2020 that when replacing the benzothiadiazole unit of Y6
with a benzotriazole unit, the electron-accepting ability of the triazole is reduced compared
with that of the thiadiazole-based unit, leading to a narrower band gap of 1.38 eV instead
of 1.40 Ev [21]. Hetero atom substitution with Se- or N-induced redshifted absorption by
about 20 nm and 40 nm, respectively, extended it beyond 950 nm [13,60]. Lastly, insertion
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of a double bond between the central core and the end groups to extend the conjugation
lengths leads to a narrow optical band gap of 1.21 eV, as shown in 2021 by Jia et al [61]. The
recent progress in Y-series acceptors promises the realization of novel NFAs with equally
low or even lower band gaps in the future.

Figure 2A shows the achieved PCEs in dependence on the reported HOMO–LUMO
gap of the used donor in combination with various acceptors and electrodes, Figure 2B
depicts the same data for narrow NFAs. It is evident, that a large variety of NFA with
band gaps Eg < 1.4 eV were synthesized in the years from 2017 until now. For donor
polymers, we considered molecules with Eg < 1.6 eV. Although more donor examples
with ultra-narrow band gaps of 1.0–1.2 eV exists, the achieved PCEs are limited. This
explains why the vast majority of narrow band gap NFA reports rely on well-studied
donor polymers, such as PTB7-Th, P3HT, PBDB-TF and PM6. Therefore, we conclude that
currently narrow band gap polymers are performance-limiting components and suggest
further exploration of high-performance narrow band gap polymer donor materials. A
range of polymer donors and acceptors, sorted by their reported HOMO–LUMO gap, are
shown in Figure 2C,D, respectively.

Figure 2. Cont.
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Figure 2. (A) PCE of OPVs in dependance on the band gap of the donor materials. (B) PCE of OPVs
in dependance on the band gap of the acceptor materials. (C) Energy levels of donors, sorted by
ascending band gap and labeled consistently with abbreviation in original publication. (D) Energy
levels of acceptors, sorted by ascending band gap and labeled consistently with abbreviation in
original publication.

3. Transparent Electrodes

Semitransparent solar cells require both front and back electrical contacts to be trans-
parent in a wide UV–VIS–NIR spectral range while realizing an efficient collection of
photo-generated charge carriers. Back transparent electrodes should be selected with the
material features of organic semiconductors in mind. The sensitive nature of organic
semiconductors restricts the deposition techniques of back electrodes onto active bulk-
heterojunction layers. In particular, highly energetic magnetron sputtering may damage
organic active layers even through very thin inorganic electron or hole transport layers [62].

Indium–Tin–Oxide (ITO) is the most common transparent conductive electrode ma-
terial and typically used as front electrode material for ST-OPVs. Despite its widespread
application, ITO electrodes have several disadvantages, which make the application of this
material unfavorable for ST-OPVs. Drawbacks include the high price of indium and the
possible degradation effects induced by diffusion of indium atoms. Another drawback
of ITO electrodes is the relatively high absorption in the NIR region, the spectral region
that is critically important for ST-OPVs that are based on IR-absorbing narrow band gap
bulk-heterojunction active layers.

A cheaper alternative for ITO is fluorine-doped tin-oxide (FTO). FTO coatings offer
a similar transparency with slightly lower electrical conductivity for a noticeably lower
price than their ITO counterparts [63]. Moreover, the difference in the work functions of
ITO (4.7 eV) and FTO (4.4 eV) typically does not influence the device performance due
to the presence of electron (ZnO) or hole transport layers (PEDOT:PSS) for inverted or
conventional device architectures, respectively.

Aydin et al. have shown that the relatively low transmittance of ITO in the NIR
spectral region can be improved by the zirconium doping of indium oxide In2O3 [64].
Zr-doped indium oxide (IZRO) films possess low sheet resistance and exhibit high infrared
transparency resulting in just 5% parasitic absorption of solar light in a wide spectral range
from 250–2500 nm. These features make IZRO an excellentcandidate for the front electrodes
of narrow band gap ST-OPVs.
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MoOx(40 nm)/Au(10 nm)/MoOx(40 nm) electrodes were proposed as another al-
ternative front electrode with higher transparency and even lower sheet resistance that
can replace ITO [65].Electrodes comprising thin metal layers are also common back elec-
trode candidates. The use of thin metal electrodes, such as 10 nm to 15 nm Ag, Au, or
Al, often on top of an interlayer, such as MoOx, is one option for semitransparent back
electrodes [18,66–68]. Simple processing and low cost are benefits of such electrodes. Thin-
ner films generally exhibit higher resistivity because of electron scattering at the surface
and grain boundaries, therefore, conductivity and transparency need to be balanced [67].
It is worth mentioning that for ultra-thin metal electrodes the change in the thickness-
dependent electrical and optical properties of the metals need to be considered, the latter
limiting the predictability of optical simulations, such as those carried out with Lumerical
or transfer-matrix simulations. Additionally, the deposition technique and the film nucle-
ation can impact the properties of the film, therefore, optical simulations should be carried
out with much care and the optical simulation results should be interpreted with these
considerations in mind. For example, the refractive index of Ag-thin films with thicknesses
below 20nm shows significant thickness dependence and plasmonic effects. Plasmonic
effects are specifically relevant for gold films [69–75].

In multi-layer oxide/metal/oxide electrodes, such as ZnO/Ag/IZO, GZO/Ag/GZO,
ITO/Au/ITO, and MoO3/Ag/MoO3, the oxide layers increase the transmittance due to
lower reflection at both metal interfaces and offer low resistance [76]. Grown via low-
temperature reactive plasma deposition (RPD), the damaging effects can be minimized, as
proposed by Zhang et al., that come with other oxide deposition methods, such as thermal
evaporation, atomic layer deposition (ALD), and magnetron sputtering [76].

Transparent conductive back electrodes, based on solution-processed metal
nanowires [77,78], transferred doped graphene [4,79], conducting polymers [80], or their
hybrids [81–86] are currently promising in the field of organic semitransparent photo-
voltaics, offering mild processing conditions that are compatible with the organic active
layer materials. These electrodes exhibit very high transmittance within a wide spectral
range and suitably low sheet resistance [87–89]. Specifically, Ag nanowires are considered a
favorable option due to their low sheet resistance, high optical transparency and mechanical
flexibility, and solution processability that allows various processing methods, including
printing methods or spray-coating. The remaining challenges are the high roughness of Ag
nanowires, and agglomeration problems [80].

A general consideration about electrode requirements for semitransparent solar cells
arises from the fact that ST-OPVs still generate lower photocurrents due to the utilization
of only a fraction of the solar spectrum. Schopp et. al. have shown that strict requirements
for the low series resistance of opaque solar cells become milder for their semitransparent
counterparts [90]. Therefore, even untreated nanostructured electrodes with relatively high
sheet resistance can be successfully implemented in semitransparent organic solar cells and
a wider range of transparent electrode materials can be considered that are not suitable for
opaque high-performance OPVs with high Jsc values.

4. Device Engineering
4.1. Evaluation of ST-OPVs: Figures of Merit

The average visible transmittance (AVT), also called average photopic transmittance
(APT) or visible light transmittance (VLT), can be calculated from the spectral intensity
distribution of the AM1.5 spectrum I(λ) and the photopic spectral response of the human
eye V(λ), both shown in Figure 3A. The photopic response describes how the wavelength-
dependent sensitivity of the eye under well-lit conditions ranges from about 370–740 nm,
and peaks at 555 nm [91,92]. It is governed by the photosensitivity of three different types
of photoreceptor cells, called cones, that sense red, green, and blue light.

AVT = APT = VLT =

∫
I(λ) · T(λ) · V(λ) dλ∫

T(λ) · V(λ) dλ
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Figure 3. (A) Photopic response V(λ) of the human eye (left axis) and solar irradiance of the AM1.5
spectrum (red, right axis). (B) Theoretical PCE limit of ST-OPV single-junctions in dependence on
the band gap for different AVTs, illustrating the required shift to narrower band gaps for more
transparent OPVs. (C) Relationship of the AVT and the PCE of ST-OPVs reported in the literature.

Another commonly reported figure of merit for ST-OPVs is the light utilization effi-
ciency LUE. The LUE is the product of the PCE and the AVT.

LUE = AVT · PCE

Taking into account both PCE and AVT, a direct comparison of LUE values can
hold viable information in contrast to the direct comparison of the AVT values without
knowledge of the PCE [93,94]. Another relevant factor for ST-OPVs is the color rendering
index (CRI), ranging from 0 to 100. For most applications, high color neutrality is necessary,
which means objects illuminated by light that has passed through an ST-OPV should appear
to be of the same color as when illuminated by natural outdoor lighting [7,94]. As the
standard reference for such conditions, the energy flux of the AM1.5 illumination is used in
the field of ST-OPVs. High color neutrality is achieved by flat transmission spectra in the
visible range and is not correlated with the AVT value. Details on the calculation can be
found in the literature [94–96].

4.2. Theoretical Performance Limits of ST-OPVs

Before the development of narrow-band gap OPV materials, efforts were focused on
ST-OPVs with thin active layers. Increased light absorption and photogeneration competed
with the transparency, and thus low performances or low AVTs were reported [97]. With the
development of narrow band gap materials, active layers with high photogeneration and
high visible transparency have become reality due to efficient absorption in the IR-region
of the spectrum. In fact, most of the solar energy is distributed in the IR region, resulting in
higher theoretical performances for OPVs that exclusively absorb IR radiation compared to
OPVs absorbing exclusively in the visible range [98]. The theoretical Shockley–Queisser
(SQ) limit for visibly fully transparent OPVs is an impressive 20.6% when both UV and IR
photons are harvested [99]. In this case, a narrow band gap of 1.12 eV is required and any
deviations from this ideal band gap value lower the theoretical PCE limit, as can be seen in
Figure 3B [93,99].

4.3. Current Performance and Strategies to Increase LUE

Most reported ST-OPVs have AVTs < 50% and PCEs in the wide range from 2–15%, as
shown in Figure 3C. To date, only a few examples exist in the literature that demonstrate
OPVs with AVTs exceeding 60%, and none of these show PCEs above 5%. Applications
that require lower AVTs include gray privacy glass for automobile applications, with AVTs
of only 18%, or tinted glass used in residential architecture to reduce solar heating, often
having AVTs of 50–60% [100]. The most common applications, however, require higher
AVTs of about 55%–90%; for example, regular monolithic glass windows that typically
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transmit >90% of the light. A higher illuminance of indoor spaces not only saves energy
due to reduced artificial lighting needs, but also plays a crucial role in the physical and
mental wellbeing, productivity, and health of individuals [101]. Meeting the requirements
for a high AVT remains, therefore, the main bottleneck for a widespread application of
integrated ST-OPVs [53,97,100,102–104].

Several strategies exist to increase the LUE by either improving the AVT or the PCE
without compromising the other. The PCE for example can be improved by incorporating
a near-infrared distributed Bragg reflector (DBR), consisting of thin alternating layers of
two materials with distinctly different refractive indices, such as TiO2 and SiO2 or LiF and
MoO3 [97,105]. The DBR allows the reflection of the IR back into the active layer to increase
photon harvesting and the PCE. Li et al. placed a DBR behind a thin film Ag back electrode
and demonstrated a concomitant reduction in the AVT upon the use of a DBR due to an
observed shift of the device’s transmission maximum to the response maximum of the
human eye (555 nm) [106]. Similarly, aperiodic thin film coatings for ST-OPVs can help to
achieve high neutral transmittance and an increased PCE by flattening the transmission
spectrum and reflecting near IR photons [107].

Similarly, optical management layers can be deposited on top of the electrodes to
increase the transparency of the device stack. Xie et al. reported highly transparent OPVs by
fabricating a MoO3/Ag/MoO3 back electrode. Guided by optical simulations, an optimal
capping layer thickness of 35 nm was found optimal to improve the AVT from 52% to 61.5%
(PCE decreased from 4.2% to 3.5%) by increasing the transparency in the visible range from
500 nm to 800 nm, compared to the same device structure without the additional MoOx
layer [108]. Li et al. recently reported ST-OPVs based on Glass/ITO/PEDOT:PSS/active
layer/PFN-Br/Ag(13 nm) with and without a 50 nm thick high refractive index TeO2
capping layer. The addition of the anti-reflective TeO2 led to increased AVT from 30% to
50% while the PCE was only slightly reduced from 9.8% to 8.4% [109].

Li et al. successfully combined the above-mentioned strategies by using optical
outcoupling and antireflection layers and a DBR to create a complex multi-layer device
stack that enhances the transparency and increases cell absorption by enhancing IR back-
reflection [110]. Their ternary cells comprising PCE10 and the two NFAs TT-FIC and BT-CIC
reach an LUE of 3.56 ± 0.11%, a PCE of 8.0 ± 0.2%, and an APT of 44.2 ± 1.4%. The LUE is
doubled, compared to ST-OPVs without the additional layers [110].

Beyond the engineering of the device stack and the incorporation of additional layers,
the active layer transparency can be enhanced mainly by two approaches. First, a simple
reduction in the active layer thickness can boost the AVT, however, typically at the high
expense of a significantly reduced PCE. The exact impact of such a reduction, however, de-
pends on the generation rate profile in the active layer. Typically, charge carrier generation
rates are much higher near the front electrode–active layer interface and peak within the
first few nanometers of the active layer.

Second, the dilute donor approach has been employed by several groups to improve
as a platform for increasing the AVT while maintaining a high PCE due to increased
IR absorption by a narrow band gap acceptor compound and reduced absorption by
a donor compound that absorbs (partially) in the visible range [80,111–113]. In 2021,
Yao et al. studied PM6:Y6 OPVs with reduced donor content and found an efficiency of
over 10% in dilute donor solar cells with only 10 wt% PM6, thanks to efficient charge
generation, electron and hole transport, slow charge recombination, and field-insensitive
extraction [111]. Previously, Hu et al. reported cells with reduced relative donor content in
2019, improving the AVT of semitransparent ternary PTB7-Th:BDTThIT-4F:IECO-4F OPVs
by decreasing the PTB7-Th content in active layers/increasing the near-IR NFA IEICO-4F
content [114]. Similarly, Hu et al. reported ternary blends with an active layer AVT of 50.1%,
leading to ST-OPVs with 20.2% and a PCE of 13.02% when employing D18-Cl:Y6-1O:Y6 in a
0.7:0.8:0.8 wt/wt ratio [111]. Xu et al. reported a PCE of 12.91% and an AVT of 22.49% with
an excellent blend film AVT of over 50%, using the wide-band gap donor polymer D18 in
combination with the near-IR absorbing N3 acceptor in 2021 in a dilute donor 0.7:1.6, wt/wt
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ratio [115]. Highly diluted polymer donor chains may not form a percolating network for
charge extraction, in contrast to the common morphological picture for BHJ solar cells.
Theoretical and experimental work aims to explain successful photocurrent generation
in such highly diluted donor (fullerene) OPVs with isolated donor molecules by a hole
back-transfer mechanism that is dependent on the HOMO–HOMO offset between donor
and acceptor [113,116,117].

5. Device Physics in Narrow Band Gap ST-OPVs

The understanding of the optoelectronic processes in NFA-based OPVs has been
crucial to guide the development of next-generation OPVs. However, only a few works
exist that address the inherent changes in the optoelectronic processes that are concomitant
with increased transparency. As discussed in the above section on theoretical limitations,
even fully transparent OPVs can absorb light in the UV or IR region to reach high theoretical
PCEs of >20%. However, to date, the existing systems exhibit much lower performances
due to lower absorption compared to their opaque counterparts, meaning that fewer
charge carriers are photogenerated in the active layers of ST-OPVs compared to high-
performance state-of-the-art OPVs. This reduction in the generation rate can originate
from low absorption coefficients of the active layer compounds in the visible range and
is enhanced when thin active layers are employed and when the back-electrode reflection
is purposefully minimized to reach higher AVTs. As Schopp et al. have derived, this
reduction in the generation rate and short-circuit current can be counteracted to a small
degree by increases in the extraction efficiency with the AVT [90].

5.1. Changes in Active Layer-Importance of Bulk Recombination and Shunt Leakage

Concomitant with the reduced photogeneration is a reduced Jsc and Voc. However,
more complex changes are inherent to more transparent devices than the mere reduction in
the performance parameters. Based on a narrow band gap model BHJ active layers with
systematically varied transparency in the visible range, Schopp et al. were able to show
inherent changes in the recombination dynamics upon increased transparency [90]. Charge
carriers can recombine from band-to-band (bimolecular recombination), or via traps. The
latter can be subdivided into bulk trap-assisted recombination and surface trap-assisted
recombination contributions arising from the active layer interfaces [118–123].

Their modeling work shows that with increased AVT the importance of bulk-trap
assisted recombination increases. This is seen from increased Voc-lnI slopes and further
confirmed by an increased relative recombination contribution via bulk traps [90]. In
contrast, the relative bimolecular recombination contributions were shown to be slightly
reduced and surface trap-assisted recombination decreased significantly upon increasing
the AVT of the active layer materials when maintaining all other material and device
parameters constant. Figure 4A illustrates these changes in the recombination rates and
Figure 4B shows the change in their relative contribution with increased AVT. Schopp
et al.’s findings highlight that high-purity and morphologically optimized active layers
with low trap density are required for ST-OPVs based on near-IR materials [90].

However, when comparing two hypothetical wide and narrow band gap systems with
the same charge carrier densities, the effect of bulk trap-assisted recombination will be
less detrimental in the narrow band gap OPV, as Brus et al. have shown that the relative
contribution of the trap-assisted recombination in organic BHJ active layers increases with
their effective band gap [124]. This is caused by a lower probability of forming deep
defect/impurity energy levels and more favorable band-to-band transitions in narrow band
gap semiconductors.

Besides bulk trap-assisted recombination, leakage pathways in the active layer can be
an additional loss contribution, which can lead to decreased Voc. Schopp et al. pointed out
that transparent devices are more sensitive to shunt-leakage, which emphasizes the need
for high-quality active layers even more.
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Figure 4. (A) Recombination rates in dependence on the AVT of the device stack and (B) the relative
recombination contributions of the different recombination channels.

5.2. Changes in the Interfacial Processes in Narrow Band Gap OPVs

Non-ohmic contacts, poor interfacial optimization, and mechanical bending can give
rise to high series resistance and reduced Jsc. With an increase in transparency, Schopp
et al. have demonstrated that the negative effect of the series resistance is less relevant
than in opaque devices. Therefore, a wider range of transparent electrodes and flexible
device architectures can be considered a suitable choice for ST-OPVs [90]. Another aspect
to consider for narrow band gap near-IR absorbing ST-OPV blends is the shifted absorption
and its implications for the back electrode material choice. Thin metal films, a common
electrode option, vary in their optical properties and their ability to reflect in the near-IR
region. Schopp et al. have demonstrated, that the ideal electrode choice depends on the
absorber band gap and the thickness of the active layer. Many opaque systems rely on Ag
electrodes, whereas a change to Au electrodes for thin narrow-band gap active layers can
boost the performance [125].

6. Conclusions

In this review, we have given an overview of the current ST-OPV landscape. Various
strategies to improve the AVT of ST-OPVs are outlined, addressing the photoactive blend,
as well as the whole device stack. Synthetic strategies, such as quinoid stabilization or
D:A alteration, are discussed and a wide range of narrow bandgap donor and acceptor
molecules are presented, illustrating a need for new narrow bandgap donor materials.
Moreover, semitransparent electrode materials are reviewed, including common choices,
such as nanowires, thin metal electrodes, or multi-layer structures, alongside engineering
approaches to improve the AVT while maintaining high PCEs.

A comparison of current PCEs with theoretical limitations demonstrated that while
the donor–acceptor material and electrode design is progressing rapidly, the discrepancy
between the current performances and the theoretical limitations remains large. To narrow
the current gap, fundamental device physics considerations should be taken into account to
guide the design of ST-OPVs. For example, high-purity and morphologically optimized ac-
tive layers with low trap density are required due to the increased importance of bulk traps
in ST-OPVs. Further research aiming to create a better understanding of the requirements
for ST-OPVs and how they differ from traditional opaque devices in the photoelectronic
processes, as well as applied research promoting the material development specifically on
the donor side, are expected to move the field forward quickly.
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