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Abstract: This study has demonstrated, for the first time, the potential application of coatings to
protect bricks or architectures against detrimental atmospheric effects via a self-cleaning approach.
In this research, a facile fabrication method was developed to produce amorphous SiO2 particles
and their hierarchical structures via applying trimethylchlorosilane (TMCS). They were fully char-
acterized by various surface analytic tools, including a goniometer, SEM, AFM, zeta sizer, and a
spectroscopic technique (FTIR), and then applied as super hydrophobic coatings on glass and sand.
The characterization results revealed that the SiO2 particles are amorphous, quasi-spherical particles
with an average diameter of 250–300 nm, and the hierarchical structures in the film were assembled
from building blocks of SiO2 and TMCS. The wettability of the films can be controlled by changing
the pH of the SiO2/TCMS dispersion. A super hydrophobic surface with a water contact angle of
165◦ ± 1◦ was achieved at the isoelectric point of the films. The obtained translucent super hydropho-
bic SiO2/TMCS coatings show good self-cleaning performances for glass and sand as construction
materials. This study indicated that the superhydrophobic coatings may have potential applications
in the protection of buildings and construction architectures in the future.

Keywords: superhydrophobic surfaces; SiO2/TMCS coatings; self-cleaning; construction materials

1. Introduction

In recent times, pollutants from climate and environmental change are causing serious
damage to the outdoor surfaces of buildings. These contaminants not only bring damage
to the surface, but also remain on the surface of the building [1–5]. If these surfaces are
not cleaned over time, they will depreciate the wear resistance of the building and affect
the quality of the surface. Cleaning the exterior of a building is not only expensive, but
also a very perilous practice. Developing multifunctional super hydrophobic materials
is attractive to many researchers, since they hold surface self-cleaning and protection
properties, and reduce costs. It is well known that superhydrophobic materials have
excellent self-cleaning properties [6–12], and their practical applications include their use as
waterproof, anti-fouling, anti-corrosion [13] and anti-rust materials [14,15]. Among them,
corrosion resistance is one of the unique properties of superhydrophobic materials [16,17].
Furthermore, water contact angle (WCA) and roll-off angle (SA) are the two main important
parameters used to characterize their superhydrophobic property [18]. A superhydrophobic
surface possesses low surface energy and comprises a hierarchical rough structure [19].
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As both WCA and SA are greater than 150◦ and less than 10◦, respectively, they become
ideal candidates for the self-cleaning application. Therefore, both a high static WCA
and a low SA are major requirements for self-cleaning materials [18,20–22]. On the self-
cleaning superhydrophobic surface, water droplets can easily roll and simultaneously carry
away dust/dirt attached to the surface. Moreover, superhydrophobic materials have been
developed from various materials, such as carbon nano-structures [22–24], silica-based
nano-composites [25–28], fluorinated silanes [29–31], siloxane polymers [32–34] and two-
dimensional (2D) transition metal dichalcogenides [35]. Significant efforts have been made
in developing self-cleaning superhydrophobic surfaces [19].

However, protection of concrete is still a challenging task in the structural engineering
field, since the desired coating is not only substrate-dependent, but also the cost has to be
taken into consideration. The synthesis process of some organic particles is complex, time-
consuming, harsh and costly, and can only be prepared in the laboratory [36]. In addition,
to produce the self-cleaning hydrophobic coating, some superhydrophobic coatings need
further baking and heating treatment after coating on the substrate surface [37,38].

Thus, the development of silica-based coatings is interesting to study since they
are cost effective, easy processable materials and they have unique properties, such as
excellent chemical inertness, high thermal resistance, strong mechanical strength, and
tunable optical properties.

In this study, for the first time, we reported a facile fabrication method of a silica-based
superhydrophobic coating system on glass and sand substrates using trimethylcholorsilane-
modified SiO2 nanoparticles and tested self-cleaning construction materials. The experi-
mental results showed that the as-prepared superhydrophobic SiO2/trimethylchlorosilane
(TMCS) coating had a contact angle up to 165◦, with a roll-off angle of less than 10◦ and
demonstrated self-cleaning properties.

2. Materials and Methods
2.1. Materials

Tetraethoxysilane (TEOS, 98%), ethanol (96% purity), trimethylchlorosilane (TMCS,
99%), ammonium hydroxide solution (28% NH3 in H2O, 99.99%), and DI water were used
in all the experiments. All the chemicals were purchased from Sigma Aldrich (St. Louis,
MO, USA) and were used without further purification.

2.2. Synthesis of SiO2 Nanoparticles

As in a typical synthesis process, 30 mL of ethanol was mixed with 10 mL of DI water.
Later on, 2 mL of TEOS was added drop-wise. The obtained solution was heated at 30 ◦C
and vigorously stirred (700 rpm) for 5 min. Then, a different amount of 0.5 M NH4OH
(depending on the pH level) was added and left to react for 1 h to form white turbid silica
solution. A schematic illustration of the process is shown in Figure 1.
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2.3. Preparation of Superhydrophobic Surfaces

An amount of 25 mL of as-prepared silica solution and 5 mL of TMCS in a volume
ratio of 5:1 were stirred at 700 rpm for 5 h to form the colloidal dispersion. The initial pH of
the dispersion was 2.8 and different pH levels were achieved using 0.5 M NH4OH. The
dispersion with a pH range from 2 to 12 was used for the coating and the contact angles
were measured for each pH level after spraying. The hydrophobic colloidal dispersion
was sprayed onto substrates with a household sprayer. After coating, the substrates were
dried under ambient conditions for 1 h, and then heated at 150 ◦C for 1h with an increase
of 1 ◦C/min in order to remove the residual solvent.

2.4. Characterization

A zeta sizer (Malvern Zetasizer Nano ZS, Worcestershire, UK) was applied to measure
the zeta (ζ) potential of the colloidal particles. The formation of silica particles and their
modification were investigated in powder form using an FT-IR spectrometer (ANicolet
iS10, Thermo Scientific, Waltham, MA, USA). Contact angles (OCA) of water droplets on
the glass and sand were measured by a goniometer (Dataphysics OCA 15Pro, Filderstadt,
Germany). Scanning electron microscopy (SEM) (Zeiss Auriga Crossbeam 540, Carl Zeiss,
Oberkochen, Germany) and X-ray diffraction (XRD, SmartLab, Rigaku, Tokyo, Japan) were
utilized to investigate the morphology and crystal structure of nano-SiO2 and functionalized
SiO2/TMCS.

3. Results and Discussion

In this study, to develop a superhydrophobic self-cleaning coating for the exterior
of buildings or construction, silica-based particle systems were proposed based on the
following advantages: (1) abundance on earth; (2) cost-effectiveness; (3) easily processed;
and (4) similar nature to buildings. For this purpose, hydrophobic-silica particle coatings
were developed to test their self-cleaning performance on glass and sand.

3.1. Fabrication of Superhydrophobic SiO2/TMCS Coating

Pure SiO2 NPs were synthesized by hydrolysis of TEOS in the presence of ammonia
aqua solution using the Stober method [34], and then TMCS was introduced onto the
surface of silica particles. Superhydrophobic properties were achieved by substitution of
hydroxyl groups on the surface of the SiO2 NPs with methyl groups from TMCS (Figure 2).
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Figure 2. Process of formation of superhydrophobic SiO2/TMCS coating.

The zeta potential, which depends on the surface charge, is important for the stability
of nanoparticles in suspension. When the pH decreases, the particles tend to form ag-
glomerates due to the absence of electrostatic stabilization of the nanoparticles that keeps
them apart. As a result, silica nanoparticles functionalized with TMCS dispersion showed
some precipitates. When the pH is at about 9, it reaches the isoelectrical point, where the
negative and positive charges are equal on the surface of the silica particles. As the pH
value increases from 9, the Z potential becomes more and more positive, indicating the
increase in positive charge on the particle surface. As a result, the repulsion forces overcome
the attractive forces between the nanoparticles and result in electrostatic stabilization [39].
In addition, the isoelectric point (IEP) of the as-synthesized bare silica NPs was found at
pH = 2–3 (Figure 3a). This might be a feature of the condensation reaction of the silicic
acids (Si(OH)4). As the pH increases from 3, the negative charges increase, the repulsion
forces between nanoparticles also increase and suspension tends to stabilize [40].
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Figure 3. Isoelectric point (a) and FTIR (b) of SiO2 NPs and SiO2/TMCS film.

As shown in Figure 3b, broad absorption bands at 3400 cm−1 and 1620 cm−1 corre-
sponded to the –OH groups adsorbed at the SiO2 surface in the FTIR spectrum. The broad
absorption bands at around 3400 cm−1 and 1600cm−1 corresponded to the –OH groups
adsorbed at the SiO2 surface, which disappeared after applying TMCS on the surface of
SiO2 and after annealing (Figure 3b, red line). The absorption peaks at around 1099 cm−1

were assigned to the Si–O–Si asymmetric stretching and bending vibrations. Likewise,
the characteristic peaks at 2972 cm−1 and at 1392 cm−1 were assigned to C–H of the CH3
antisymmetric stretching vibration to the symmetric vibration and in-plane vibration of
the –CH3 group, respectively. It indicated the presence of CH3 (hydrophobic functional
group) on the surface of SiO2 particles. Moreover, the peak at 765 cm−1 that corresponded
to the symmetric stretching vibration of the Si–CH3 group showed the hydrophobic modifi-
cation of the silica particles. The reaction between SiO2 particles and TMCS was completed
through the formation of the Si–O–Si bonds.

3.2. Investigation of Surface Morphology of SiO2/TMCS Coating

The morphology of the bare SiO2 NPs and the SiO2 modified with TMCS coating
onto glass was examined by SEM and AFM techniques. According to the SEM images
(Figure 4a), bare SiO2 NPs had a spherical monodisperse uniform shape and were 15–20 nm
in size, and also had an amorphous structure with a wide peak at 2θ = 22.5◦ (Figure 4c).
However, after the SiO2 particles were modified by TMCS (Figure 4b,d), the surface of
the materials became rough. Moreover, SiO2 modified with TMCS particles formed a
uniformly distributed film on the glass substrate, with sizes ranging from 100 to 300 nm
and exhibited a rough surface covered by the low surface free energy of methyl groups
(Si–CH3) at 765cm−1, as confirmed by FTIR (Figure 3b).
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Particles of different sizes and shapes in the system resulted in the rough surface of
the coatings, which is beneficial for the formation of the superhydrophobic properties. The
rough surface structure is a crucial parameter to create superhydrophobic properties [41–44].

3.3. Contact Angle (OCA) Study

The wettability of glass and sand coated with SiO2/TMCS was studied by using a
goniometer (an OSA-15EC instrument). Figure 5 shows the contact angles of water droplets
on the SiO2 modified with TMCS superhydrophobic materials after being applied to the
surface of glass and sand. Glass surfaces (Figure 5a,b) treated with SiO2/TMCS slurry
produced a superhydrophobic effect with a contact angle above 150◦. The reason for the
superhydrophobic coatings is the formation of the rough surface at IEP due to the van der
Waals attraction.
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Figure 6 shows the effect of the pH of the SiO2/TMCS dispersion on the contact angle.
The wettability of coated glass was increased with the increasing pH of SiO2, reaching a
superhydrophobic state with a contact angle of 152◦ at pH = 7, 159◦ at pH = 8, and 165◦ at
pH = 9. This increase in contact angle can be explained by an increase in surface roughness,
due to the formation of a network of silica particles via Vander Waals attraction at the IEP
point. However, after pH = 9, the contact angle sharply decreased, reaching 129◦. The
diagram shows that, despite the influence of the pH of SiO2/TMCS dispersion, all samples
showed a hydrophobic state.
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3.4. Self-Cleaning Study of Construction Materials  

Figure 6. Dependence of contact angle on pH of SiO2/TMCS.

The high contact angle of hydrophobized sand (151◦) and glass (165◦) confirmed the
formation of superhydrophobic coatings (Figure 7). To evaluate the anti-icing properties
of the SiO2/TMCS coating, surface-coated brick and concrete were placed in a freezer
at −30◦C, then water was dropped over them. The water contact angle was 135◦. An
image of the experiment is given in the Supporting Information (Figures S1 and S2). It
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can be observed from the image that the SiO2/TMCS coating can be applied in extreme
cold temperatures for the purpose of coating building materials. Fluidity testing of the
SiO2/TMCS coating on the brick can also be observed in the video in the supporting
information. It can be observed that hydrophobic surfaces do not easily become wet in contact
with water. The phenomenon is due to unbalanced molecular forces at the water/solids
interface, which causes surface tension. Low surface energy resists wetting [45,46].
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3.4. Self-Cleaning Study of Construction Materials

Self-cleaning is a crucial property of superhydrophobic materials for practical applica-
tions. A series of experiments were conducted to demonstrate the self-cleaning properties
of the coated glass. The experiments were executed following two methods, as shown in
Figure 8. In the first experiment, blue color water droplets (contaminated water) were rolled
from glass substrates, and the result showed no remains of tailings (Figure 8a,b). In the
second experiment, dust from the sands was applied as dirt onto a superhydrophobic glass
substrate for visualization of the self-cleaning process. Then, the process was observed to
determine the capability of water droplets to remove the dust particles (Figure 8c,d).
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Figure 8. Optical images of the sliding water droplets (a,b) on the superhydrophobic surface and
self-cleaning behavior of the superhydrophobic glass surfaces (c,d).

These results indicate that the coated glass substrates have good self-cleaning capabil-
ities because the dyed water and dust did not remain on the coated glass slide after the
removal of dirt by rolling water droplets. SiO2 modified with TMCS coatings possesses
superhydrophobic properties due to the surface roughness by creating the hierarchical
rough structure and low surface free energy of methyl groups. These properties could
maintain the water droplets in the ‘solid–vapor–liquid phase’ through forming a high-
water contact angle (90◦ < θ < 150◦) and a low-water roll-off angle (10◦). Consequently,
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the two mentioned characteristics of the as-prepared superhydrophobic glass caused the
water droplets to easily roll off over the modified surface without moistening the surface,
meaning that contaminants will be easier to remove.

4. Conclusions

Bare SiO2 nanoparticles and SiO2 modified with TMCS nanocomposites were success-
fully synthesized, characterized and used as self-cleaning coatings. The results showed
that nano-sized SiO2 particles had spherical, monodisperse and uniform shapes. XRD
analysis of SiO2 indicates a wide peak located approximately at 2θ = 22.5◦, which suggests
an amorphous structure. The SEM results indicate that, after SiO2 particles were modified
with TMCS, the surface of the coatings became rough. It was found that the coatings demon-
strated excellent superhydrophobic and self-cleaning properties. The highest contact angle
was recorded as 165◦ at pH = 9. The proposed coatings may have potential applications in
the protection of buildings and constructions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12101422/s1, Figure S1: Optical images of the wetting
states of water droplets on the brick at 30 ◦C; Figure S2: Optical images of the wetting states of water
droplets on the concrete at 30 ◦C; Figure S3: Fluidity test on the concrete; Figure S4: Self-cleaning test
on the concrete.
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