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Zusammenfassung

Die Modellierung von Inelastizität unter finiten Deformationen beinhaltet häufig eine Inkom-
pressibilitätsbeschränkung für die inelastischen Dehnungen, welche sich aus physikalischen
Überlegungen ergibt. In der Regel wird diese Bedingung durch die Verwendung der Ex-
ponentialabbildung als geometrischer Integrator für die Evolutionsgleichungen exakt erfüllt.
In dieser Dissertation wird jedoch ein neuer geometrischer Integrator für die Unimodular-
itätsbeschränkung entwickelt und analysiert. Er baut auf der Arbeit von Hurtado et al. aus
dem Jahr 2014 auf, wo dieses Projektionsschema für die Kristallplastizität eingeführt wurde.
Um dieses Projektionsschema in einem Finite-Elemente-Kontext effizient nutzen zu können,
müssen jedoch zusätzliche numerische Probleme überwunden werden.
Die vorliegende Arbeit soll dazu beitragen und bestehende Arbeiten für Formgedächtnislegierun-
gen erweitern. Sie ist ein Zusammenschluss von drei Publikationen des Autors und seiner
Mitautoren, die sich auf die Modellierung von Materialien mit einer Inkompressibilitäts-
beschränkung konzentrieren. Das übergeordnete Ziel ist es, ein effizientes Modell für For-
mgedächtnislegierungen zur Simulation von kooperativen bistabilen Formgedächtnis-Nano-
aktuatoren zu implementieren.
Diese Arbeit beginnt mit einer kurzen Einführung, die einen Einblick in den Stand der Tech-
nik bei der Modellierung der Inkompressibilität sowie der Modellierung von Formgedächt-
nislegierungen im Allgemeinen, einschließlich der zugrunde liegenden Physik, gibt.
Anschließend werden im ersten Artikel mehrere neue numerische Erweiterungen des Modells
von Hurtado et al. aus dem Jahr 2014 vorgestellt. Im Einzelnen werden numerische Probleme
mit Singularitäten aufgrund eines unterbestimmten Gleichungssystems und nicht verfügbarer
Ableitungen gelöst. Außerdem wird eine neue Methode zur Approximation der Logarithmus-
funktion für Tensoren verwendet, um die Genauigkeit der Zeitintegration zu verbessern. Eine
weitere Besonderheit dieses Modells ist die Symmetrie der algorithmischen Tangente, die sich
aus der Implementierung des Modells in das Rahmenkonzept der generalisierten Standard-
materialien ergibt.
Der zweite Artikel verwendet den in der ersten Veröffentlichung entwickelten geometrischen
Integrator, um das Modell für Formgedächtnislegierungen mit kleinen Deformationen von
Sedlák et al. aus dem Jahr 2012 auf den Fall großer Dehnungen zu erweitern. Das Modell
wird wieder im generalisierten Standardmaterialien Rahmenkonzept formuliert, welches er-
weitert wurde, um eine konsistente Berücksichtigung einer thermomechanischen Kopplung zu
ermöglichen. Dadurch ist das Modell in der Lage, den Formgedächtniseffekt sowie die Supere-
lastizität in Abhängigkeit von der Temperatur über die Optimierung des globalen Potenzials
zu beschreiben, das zusätzlich zur Ableitung von Fließkriterien, Randbedingungstermen sowie
Evolutionsgleichungen der internen Variablen verwendet wird. Ein weiterer wichtiger Beitrag
ist die Verwendung der logarithmischen Dehnung im Dissipationspotential, die sicherstellt,
dass inelastische Dehnungen bei der Rückwärtstransformation verschwinden.
Die letzte Veröffentlichung befasst sich mit den Herausforderungen bei der Herstellung von
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bistabilen Formgedächtnis-Nanoaktuatoren auf der Grundlage von Dünnschichttechnologie.
In mehreren Experimenten werden verschiedene Wärmebehandlungen auf funktionale Ermü-
dungseigenschaften, Umwandlungstemperaturen, elektrischen Widerstand und Spannungs-
Dehnungs-Verhalten bei unterschiedlichen Temperaturen untersucht. Darüber hinaus werden
die im dritten Artikel ermittelten Materialparameter in Kombination mit dem im zweiten
Artikel entwickelten Modell verwendet, um die angestrebten bistabilen Aktoren aus For-
mgedächtnislegierungen zu simulieren.
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Abstract

Modeling finite deformation inelasticity often involves an incompressibility constraint on the
inelastic stretches, which arises from physical considerations. Regularly, this constraint is
fulfilled by use of the exponential map as a geometric integrator for the evolution equations.
However, in this dissertation, a new geometric integrator for the unimodularity constraint
is developed and analyzed. It builds on the work of Hurtado et al. from 2014, where this
projection scheme was introduced for crystal plasticity. However, to make use of this projec-
tion scheme efficiently in a finite element context, additional numerical problems have to be
overcome.
The work at hand aims to contribute to this aim and extend existing works for shape memory
alloys. It comprises of three publications of the author and his co-authors concentrating on
the modeling of materials with an incompressibility constraint. The overall goal is to imple-
ment an efficient shape memory alloy model for the simulation of cooperative bistable shape
memory nanoactuators.
This thesis begins with a short introduction, which yields insight into the state of the art in
modeling incompressibility as well as shape memory alloy modeling in general, including the
underlying physics.
Subsequently, the first article introduces several new numerical enhancements to the model
of Hurtado et al. from 2014. In detail, numerical problems involving singularities due to
an underdetermined equation system and ill-defined derivatives are resolved. Furthermore,
a new way to approximate the logarithm function for tensors is used to improve the time
integration accuracy. A further characteristic of this model is the symmetry of the algorith-
mic tangent, which arises from the implementation of the model in the generalized standard
materials framework.
The second article adopts the geometric integrator developed in the first publication to ex-
tend the small strain shape memory alloy model by Sedlák et al. from 2012 to the finite strain
case. The model is again formulated in the generalized standard materials framework, which
was extended to include thermomechanical coupling consistently. It is capable to describe the
shape memory effect as well as superelasticity depending on the temperature via optimizing
the global potential, which additionally is used to derive yield criteria, boundary condition
terms as well as evolution equations of the internal variables. Another key contribution is the
use of the logarithmic strain in the dissipation potential, which ensures that inelastic strains
vanish upon backward transformation.
The final publication deals with the challenges in manufacturing bistable shape memory
nanoactuators based on thin film technology. Several experiments are used to evaluate various
heat treatments for functional fatigue characteristics, transformation temperatures, electrical
resistance and stress-strain behavior for varying temperatures. Additionally, the in the third
article obtained material parameters are used in the model developed in the second article
to simulate the striven for bistable shape memory alloy actuators.
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CHAPTER 1

Introduction

1.1 Motivation

In the past decades, the development of computers and simulation tools enabled engineers of
all branches to design better, more efficient products. For example, in civil engineering, the
introduction of the finite element method (FEM) enabled the prediction of complex systems
by solving differential equations which were not manageable before. This facilitated leaner,
cost-effective designs as well as increased performance under heavy loads, such as earthquakes
and wind loads in tall structures. Likewise, in mechanical engineering, the use of simulations
to predict many relevant features like functionality, energy requirement or safety reduces the
development cost, time as well as use of costly materials and energy. Therefore, simulations
and computer aided design gained more and more share of the product design process to a
point where FEM simulations are now mandatory in many engineering branches.
Subsequently, the FEM played a role during the onset of the so-called fourth industrial
revolution, where now not only the final product, but rather the entire production process is
controlled and modeled. Here, digital twins, which are the virtual counterpart to the physical
product, are simulated over the entire production process and sometimes even the entire
lifecycle of the product. Firstly, this allows for a very powerful optimization of the production
process, which makes use of the entire data sampled on a specific work piece. Secondly, this
enables manufacturers to have very customizable products without the additional cost of
having to use several production lines or equipment for each and every product. In short, an
integrated simulation into the production and design process is very desirable, as it improves
the production quality while decreasing costs.
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However, to maximize the benefit of simulations, one needs models, which can describe
the entire history of the system under consideration fast, accurately and robustly. This
dissertation is concerned with developing a material model for shape memory alloys under
large deformations. Here, to accurately model the underlying physics, it is important to
exactly satisfy the volumetric incompressibility constraint for inelastic deformations.

1.2 State of the art

Modeling materials with incompressibility constraint has a long history, and over the years,
several important concepts and algorithms were established and since then adopted by many
authors. To further motivate the research presented in this dissertation, the following sections
provide an overview over the modeling of inelastic incompressibility as well as shape memory
alloy modeling in general.

1.2.1 Modeling the incompressibility constraint for plasticity

In many metals, one often assumes that the inelastic deformations are incompressible. In
the case of elasto-plasticity, this is deduced from the observation that the inelastic deforma-
tions arise from dislocations moving through the crystal lattice. Therefore, only changing the
positions of these dislocations should not yield volumetric inelastic strains. When modeling
inelasticity in metals (e.g. elasto-plasticity or the shape memory effect), one often splits the
deformation in an elastic and an inelastic part. In the case of geometrically linear theories,
this split of the strain ε = εe + εp is done additively into an elastic, unconstrained strain εe

and a deviatoric plastic strain εp, which is straight-forward and yields reasonable results
for rather small deformations (see, e.g., Wriggers [146]). Here, the constraint restricts the
plastic strains to be purely deviatoric, i.e., the plastic strain tr(εp) = 0 is without trace.
This constraint is easily satisfied, as restricting the plastic strain rate ε̇p to be deviatoric
automatically yields deviatoric plastic strains εp.
However, when modeling large strains and rotations, the more complex geometrically nonlin-
ear theory is preferred, since it is more accurate in this case (see, e.g., Fish and Shek [25]).
Here, mainly two different approaches have been applied, which both, when applied to in-
finitesimal strains and rotations, fall back to the aforementioned geometrically linear theory.
One approach (see, e.g., Nemat-Nasser [86]), is to additively split the rate of deforma-
tion d = de + dp into an elastic part de and a plastic contribution dp. The advantage
of this approach is its simplicity, as the extension of the models originating in the infinites-
imal strain regime can easily be extended to this geometrically nonlinear theory. However,
it is only exact when applying it to small elastic strains, which is a major drawback of this
approach.
The other mainly employed approach goes back to the works of Eckart [18], Kröner [57] and
Lee [61], which makes use of a multiplicative split of the deformation gradient F = F eF p.
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This approach has two major advantages over the additive decomposition. First, applying the
multiplicative split yields accurate results in the case of finite elastic strains. Additionally,
when combining this approach with a Helmholtz free energy density formulation which as-
sumes an additive split of contributing energies, one can calculate the stresses in dependence
on the elastic deformation only, which is computationally attractive. Then again, formulating
models employing the multiplicative split is not as straight-forward as formulating models
employing the additive split. Specifically, extending a model from the geometrically linear
theory to the multiplicative split often requires careful modeling choices.
In this multiplicative split kinematic setting, constraining the plastic deformation to be vol-
ume preserving involves prescribing the plastic part of the deformation gradient to be uni-
modular, i.e., the determinant of the plastic part of the deformation gradient det(F p) must
be one. Therefore, the left Cauchy-Green tensor Cp = F pTF p is constrained to be unimodu-
lar as well. In contrast to the infinitesimal strain theory, where one can prescribe the plastic
strain rate to be deviatoric in order to retain a deviatoric plastic strain, it is far more complex
to satisfy the volume constraint for the finite deformation theory. This problem was, to the
best of the author’s knowledge, acknowledged first in the work of Nagtegaal et al. [85].
To solve this open question, many different attempts have been made to satisfy the uni-
modularity constraint for finite deformations. In general, they can be divided into two sets
of algorithms: general integration schemes, which preserve the constraint approximately,
and geometric integrators, which exactly preserve the volumetric constraint when integrating
evolution equations. A good overview over geometrical integrators and why this is of high
importance for solving differential equations with constraints is given in, e.g., Hairer [35], and
for the case of multiplicative plasticity in Shutov and Kreißig [117].
Many publications working with geometric integrators make use of the exponential map for
tensors. For example1, [2, 15, 22, 79, 96, 120, 139] are early papers which consider the expo-
nential map from various perspectives to satisfy the unimodularity constraint. Additionally,
it has to be noted that many geometrical integrators do not keep the symmetry of the system,
i.e., the symmetry of the symmetric internal variables, per se. This was addressed in Dettmer
and Reese [16], where an exponential map algorithm, which in fact keeps the symmetry of
the system, was developed. In Vladimirov et al. [133] as well as Reese and Christ [101], this
enhancement of the exponential map was developed further for modeling springback in von
Mises plasticity and shape memory alloys, respectively. Overall, the exponential map is a
very elegant solution to the theoretical problem in keeping the volumetric constraint exactly
satisfied.
However, many of the aforementioned authors also recognize the difficulties related to the ap-
plication of this approach. The main problem lies in applying this scheme in a finite element
analysis, which is the aim of many developed schemes. Here, one has to solve and linearize

1In the following, some publications consider multi-surface plasticity, and others von Mises plasticity. How-
ever, here we are mainly interested in the approaches to satisfy the unimodularity constraint, which are
often applicable to both cases.
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the solution of an eigenvalue problem and in every iteration in each integration point, which
is numerically elaborate. Additionally, the implementation is not clear cut, but complex (see,
e.g., Moler and van Loan [81] and Ortiz et al. [89]). Therefore, there has been research into
methods that circumvent the classical exponential mapping approach.
For instance, Miehe [77] proposed an algorithmic post-processing update, which exploits the
Neo-Hookean elastic stress response, and is thus able to project the solution back onto the
unimodular manifold. Other promising attempts included Lagrange multipliers or penalty
methods to satisfy the volume constraint. For example, the work of Lührs et al. [68] makes
use of an additional incompatible configuration, which is modeled by an additional indepen-
dent variable. This independent variable is then enforced to be equal to the compatible field
by a Lagrange multiplier formulation.
Another class of approaches is based on a projection ansatz, which is adapted from hyper-
elasticity (see, e.g., Flory and Volkenstein [26] and Simo et al. [121]). Here, an algorithm,
which projects any tensor back onto the unimodular manifold, is used to intrinsically satisfy
the incompressibility constraint. For plasticity, this approach was adopted by Helm [40],
where the projection is combined with an Euler-backward integration for von Mises plasticity
with kinematic hardening. This approach was later improved numerically and compared to
the exponential map in Shutov and Kreißig [116] (see also Shutov and Kreißig [117] for an
error analysis of this approach). A seemingly independently developed approach for multi-
surface plasticity is constructed in Hurtado et al. [43], where it is shown that this approach
vastly increases the numerical performance in comparison to the exponential map. Finally,
Shutov [115] proposed a closed form solution for this approach, which again increases the
efficiency and reliability of this projection ansatz.
The approach adopted in this dissertation makes use of a similar projection ansatz. How-
ever, it is embedded into the framework of generalized standard materials (see, e.g., Halphen
and Nguyen [36], Hackl [34] and Miehe [78]), which yields several advantages. Firstly, by
including the projection into the potential, one gains more control over the potential when
compared to the exponential mapping approaches. Secondly, by including a time-discrete
potential that considers kinematic hardening, the formulation is easier to analyze and work
with. This, for example, yields an improvement to the kinematic hardening energy adopted
in Chapter 2. Thirdly, having a potential formulation, which itself contains the constraints,
makes it such that solutions minimizing this potential automatically satisfy the constraints.
Therefore, minimizing this potential is conceptually easier than solving the original problem
with the corresponding set of constraints.

1.2.2 Shape memory alloy modeling

Since the discovery of shape memory alloys, the number of research articles on them have
been drastically increasing over decades [91]. This large interest is mainly driven by the two
unique effects of shape memory alloys, namely the shape memory effect and superelasticity.
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Fig. 1.1: Schematic stress-strain-temperature diagram showcasing the shape memory effect.

In general, the material’s current temperature dictates which of these phenomena may oc-
cur. They are briefly summarized in the following section, after which an overview over the
modeling of shape memory alloys is given.

Operating principles in shape memory alloys

The shape memory effect as well as superelasticity arise from the characteristic first order
phase transformation between the monoclinic B19′ martensite and face-centered cubic B2
austenite, which in contrast to, e.g., steel, can not only be caused by thermal, but also by
mechanical loads in both directions. The experimental works by Otsuka and Waymann [93]
as well as Otsuka and Ren [92] give a detailed overview over the topic of shape memory alloys
in general, whereas the works of Zarinejad et al. [155], Karaca et al. [47], Karaca et al. [48]
and Saghaian et al. [106] experimentally cover the shape memory alloy NiTiHf, which is the
high temperature shape memory alloy modeled in this dissertation.
The aforementioned shape memory effect occurs when twinned martensite is loaded, which
at sufficiently high loads starts to detwin into the preferentially-oriented phase (see Fig. 1.1).
This detwinning process is assumed to be volume preserving, since reorienting the martensite
variants should not change the volume that the martensite occupies.
After fully detwinning the martensite, it behaves elastic again. Then again, like in plastic
materials, an inelastic strain remains upon unloading. However, when heating the shape
memory alloy over the starting temperature of austenite transformation As and finally over
the finish temperature of reverse transformation Af , the shape memory alloy (SMA) trans-
forms back to austenite and thus loses it’s inelastic strain. Upon cooling the SMA to the
martensite transformation finish temperature Mf , twinned martensite is formed again, which
returns the material to its initial state.
Hereby, the maximum recoverable strain is a very important feature, which differs for dif-
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Fig. 1.2: Schematic stress-strain diagram showcasing superelasticity.

ferent alloys and compositions. The maximum recoverable strain for NiTi is about 10 %,
which is due to its biocompatibility, resistance against corrosion, comparably good functional
fatigue characteristics as well as ductility and stiffness [21, 91, 105] the most prominent shape
memory alloy. In contrast, Sehitoglu et al. [111] show that the maximum recoverable strain
in NiTiHf is almost 20 %. However, this comes at the cost of wider hysteresis (i.e., a larger
difference in temperature is required to activate the shape memory effect), lower ductility at
room temperature as well as worse cyclic stability (see, e.g., Noebe et al. [87] and Kockar et
al. [52]).
The second commonly utilized effect in shape memory alloys is superelasticity. Here, the
shape memory alloy is initially unloaded and in its austenite phase (see Fig. 1.2). After
surpassing the elastic stage in the beginning, the material is increasingly transformed into
detwinned martensite. This formation of favorable martensite variants allows to accom-
modate the prescribed deformation. In analogy to the behavior in the shape memory effect
regime, after fully transforming the austenite into detwinned martensite, another elastic path
occurs. Subsequently, when unloading before damage or plastic deformations occur, initially
the material behaves elastic again. However, after the elastic unloading, a load driven phase
transformation initiates, which transforms the detwinned martensite into its austenitic par-
ent phase again. This reverts the strains accommodated by the first phase transformation.
Finally, when the reverse transformation is finished, a final elastic unloading returns the ma-
terial back into its initial state.
It has to be noted that both explanations of the effects and schematics are idealized and the
underlying behavior is more complex. For example, many shape memory alloys transform
into an additional, intermediate phase. For instance, NiTi has an intermediate rhombohe-
dral crystal structure (see, e.g., Šittner et al. [122]), while NiTiHf exhibits an additional
orthorhombic phase (see, e.g., Shen et al. [112]). While this is the case, due to their compa-
rably small effect on the materials behavior, they are often neglected in many shape memory
alloy models.
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Overview of shape memory alloy modeling

While the effects leading to the shape memory alloy’s unique behavior are well understood,
the thermomechanical modeling of superelasticity as well as the shape memory effect is still
an active and developing field of research. This originates in the severe nonlinearity of the
shape memory alloy under complex thermomechanical loading, which is challenging to model
accurately while staying computationally efficient. Due to the increasing number of applica-
tions, nowadays there exist many models that are tailored to a specific use case, where only
a subset of the effects occurring in shape memory alloys are captured. For reviews on recent
shape memory alloy models, the interested reader is referred to the works of Lester et al. [64]
and Cisse et al. [14].
In general, the existing models for shape memory alloys can be roughly categorized into three
classes of models: The first class comprises models based on statistical thermodynamics,
which find the phase equilibrium by minimizing a three-well potential (see, e.g., Achenbach
and Müller [1], Seelecke and Müller [110] or Govindjee et al. [32]). These models consider
the microstructure of the material, which usually makes for great accuracy. However, it is
therefore also challenging to use them in large scale structural simulations.
The second class is represented by the models based on micromechanics, which take into
account the underlying mechanisms in single crystals. This category of models may then be
extended to polycrystals via a utilization of homogenization schemes to obtain models for
larger systems (see, among many, Patoor et al. [95], Lagoudas et al. [58], Frost et al. [28]
and Stupkiewicz et al. [124]). Again, due to considering the underlying crystallographic phe-
nomena, this class of models can describe the multitude of effects in shape memory alloys
accurately, but also often comes with a high computational cost.
The last class of models, which is used in many structural simulations, is the class of phe-
nomenological models. Since these models usually inherit only macroscopic parameters, the
parameters can be obtained through comparatively simple experiments. In general, they can
again be split into models considering the geometrically linear theory and models considering
a geometrically nonlinear theory.
For small stretches and rotations, geometrically linear models are advantageous, since they
usually have a lower computational cost, which arises from their lower geometrical complex-
ity (see, e.g., the models in Auricchio et al. [7], Auricchio et al. [6] or Sedlák et al. [109]).
However, when the stretches and rotations become large, a geometrically nonlinear theory
is, due to it’s better accuracy, favorable (see, e.g., the models in Qidwai and Lagoudas [98],
Müller and Bruhns [84], Reese and Christ [101] or Wang et al. [137]).
Lately, the modeling of functional fatigue, i.e., the loss in magnitude of the shape memory ef-
fect, shifting transformation stresses and temperatures as well as induced permanent strains,
has gained a lot of attention in many publications. This allows for better model accuracy in
cyclic loading and severe deformations. Many authors consider transformation induced plas-
ticity (for a physical point of view, see Chowdhury and Sehitoglu [13]) as a key contribution
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to the material’s functional fatigue, which is then introduced into their models (see, among
many, Hartl et al. [39], Xu et al. [148], Scalet et al. [108], Zhang et al. [157] and Woodworth
et al. [145]).
Additionally, many of these models consider temperature as an additional field. However,
to the best of the authors knowledge, there exists no model which considers finite strains, a
thermomechanical coupling as well as thermal expansion and the volume change when under-
going phase transformation, which happens in some shape memory alloys (see, e.g., Potapov
et al. [97]). However, all of these features are necessary when aiming to model the actuator
concept published by Arivanandhan et al. [4]. This motivated the work on the shape memory
alloy model shown and applied in Articles 2 and 3.

1.3 Outline of the dissertation

The present cumulative dissertation consists of three peer-reviewed journal articles and is
structured as follows:

1.3.1 Publication 1

Chapter 2 is concerned with the development of a new projection scheme which accurately
preserves the inelastic incompressibility. To investigate the details of this approach, it is
implemented for plasticity instead of shape memory alloy models since plastic behavior is
numerically and conceptually easier to model than the shape memory alloys complex be-
havior. In detail, a projection ansatz similar to the ones used by, e.g., Helm [40], Shutov
and Kreißig [116] and Hurtado et al. [43], is embedded into the framework of generalized
standard materials. Numerical singularities and problems are analyzed and resolved via ad-
ditional contributions to the potentials. Furthermore, the symmetry of internal variables is
intrinsically exactly preserved. Another key contribution is a new approach to approximate
the tensor logarithm function, which employs the tensor invariants as additional variables to
obtain better convergence with regard to the time step width. Additionally, the algorithmic
tangent is derived analytically, which enables the efficient employment of the model into finite
element schemes. Finally, the model is compared to results from the literature for isotropic
and kinematic hardening.

1.3.2 Publication 2

Chapter 3 extends the small strain shape memory alloy model by Sedlák et al. [109] to the
finite strain case using the projection ansatz developed in Chapter 2. This allows for a
better prediction of shape memory alloys with high transformation strains. A key feature
of this approach is, that it covers the shape memory effect as well as superelastic behavior
depending on the temperature. Moreover, the model is enhanced to include thermal strains
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due to phase transformation, which can occur in NiTiHf. Additionally, an ansatz for a mixed
thermo-mechanical potential similar to Yang et al. [149] is presented to include the thermal
problem into the generalized standard material formulation. Another essential contribution is
the incorporation of a logarithmic strain, which ensures the disappearance of inelastic strains
upon reverse transformation in the discretized form of the dissipation potential. Moreover,
algorithmic considerations to resolve numerical instabilities as well as an active set search
algorithm is presented, which increases the efficiency of the model. Finally, the model is
applied to different boundary value problems.

1.3.3 Publication 3

Chapter 4 showcases a shape memory alloy actuator concept for bidirectional micro actuation.
Here, special emphasis is on the analysis of thin film shape memory alloy properties on SiO2

as well as Si substrates. Several experiments including X-ray diffraction, cantilever deflection
measurements, electrical resistance measurements as well as tensile tests and scanning elec-
tron microscopy are conducted to show the influence of film thickness onto the shape memory
alloy’s key properties. Additionally, thermal fatigue tests show the fatigue characteristics,
which are then optimized by varying the annealing process. Furthermore, the aforementioned
experiments are used to identify the material parameters for the model presented in Chap-
ter 3, which is extended for the hardening-like behavior found in shape memory alloy thin
films. Moreover, this model is used to show the path towards novel bistable, bidirectional co-
operative shape memory alloy micro- and nanoactuators by investigating favorable material
and geometry parameters.

Finally, a conclusion and outlook into possible future extensions and open questions is
given.
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CHAPTER 2

Article 1: Numerical strategies for variational updates in large strain
inelasticity with incompressibility constraint

This article was published as:
Sielenkämper, M. , Dittmann, J. and Wulfinghoff, S. [2022], ’Numerical strategies for vari-
ational updates in large strain inelasticity with incompressibility constraint’, International
Journal for Numerical Methods in Engineering 123(1), 245-267.

Own contributions to the following article:

• planning (large fraction)

• implementation of algorithm (large fraction)

• numerical simulations (large fraction)

• writing of the manuscript (large fraction)

• interpretation of the results (large fraction)

https://orcid.org/0000-0002-5884-1588
https://orcid.org/0000-0001-5519-0647
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Abstract

In finite deformation inelasticity, one often has to deal with the incompressibility constraint.
In the past, this was dealt with using, e.g., an exponential mapping approach, which yields
exact volume preservation in plastic deformations. In this work however, the special-linear
update approach by Hurtado et al. [43], which utilizes a projection method to fulfill the in-
compressibility constraint is used. The model is applied to isotropic plasticity by a novel
approximation of the logarithm and treats kinematic hardening without losing the symmetry
of the internal variables. The model results are compared to models utilizing an exponential
mapping approach in numerical experiments.

Keywords: inelasticity, finite deformation plasticity, kinematic hardening, projection method,
incompressibility constraint

2.1 Introduction

Nowadays, when modeling finite deformation plasticity or other inelastic deformations, the
multiplicative split of the deformation gradient, i.e., F = F eF p, introduced by Eckhart [18],
Köner [57] and Lee [61] is widely accepted. Using this approach, one often has to deal
with the incompressibility constraint, which is motivated by the observation that plastic
deformations occur due to dislocation glide. In recent time, many finite deformation plasticity
algorithms use an exponential mapping approach (see, e.g., [16, 76, 133, 139]) to cope with
the incompressibility constraint. The advantage of using the exponential map approach is
the intrinsic exact fulfillment of the incompressibility constraint. Moreover, the formulation
is very neat and compact. However, it is not always obvious how to preserve the symmetry
of the involved variables (see Dettmer and Reese [16]). Further, the exponential map comes
with the disadvantage of having to perform a spectral decomposition, which is numerically
elaborate. Additionally, while manageable, the linearization of the exponential map is not
always straightforward (see, e.g., Ortiz et al. [89]). In this paper, the special-linear update
by Hurtado et al. [43], which is an alternative to the exponential mapping approach is used.
It also exactly satisfies the incompressibility constraint. For the kinematic hardening model,
there are mainly two different types found in the literature. Some models are of the Chaboche-
type, which makes use of evolution equations for the update of the back stress (see, e.g., [128,
151]). The other family of models makes use of a further multiplicative split of the plastic
deformation gradient F p into an energetic and a dissipative part (see Lion [67] and Dettmer
and Reese [16]), which is an extension of the Frederick-Armstrong model [5]. For the model
presented in this paper, the latter is used.
This paper is structured as follows. First, the theory and numerical treatment of the model
are discussed in Section 2.2. Here, the time-discrete counterpart for the isotropic hardening
potential is given as well. In Section 2.3, results for the isotropic hardening model are shown.
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Next, the model is extended for the incorporation of kinematic hardening in Section 2.4, where
the results for kinematic hardening are also presented. Finally, a summary and outlook is
given in Section 2.5.

2.2 Modeling of finite deformation plasticity

2.2.1 Kinematics

The finite deformation of a body can be described by using the gradient of deformation
x(X, t)

F = Grad (x) , (2.1)

which relates line elements of a body in the reference configuration to the current configura-
tion. Then, one often defines

J = det(F ), (2.2)

which describes the volumetric part of the deformation. In finite deformation plasticity, one
often splits F multiplicatively, i.e.,

F = F eF p, (2.3)

where F e is the elastic part and F p is the plastic part of the deformation gradient (see
Kröner [57] and Lee [61]). To incorporate kinematic hardening, the additional multiplicative
split of F p, employed by Lion [67] as well as Dettmer and Reese [16], is introduced as

F p = F peF pd, det(F p) = 1, det(F pe) = det(F pd) = 1, (2.4)

where F pe is the energetic and F pd the dissipative part of F p. Note that F pe as well as F pd

have to be both unimodular. Further, one commonly introduces the elastic left Cauchy-Green
tensor be and the plastic right Cauchy-Green tensor Cp as

be = F eF eT = F Cp−1F T,

Cp = F pTF p.
(2.5)

Likewise, kinematic quantities for the dissipative and energetic parts are introduced as

Cpd = F pdTF pd,

bpe = F peF peT = F pCpd−1F pT.
(2.6)

Moreover, one defines the plastic ’velocity gradient’ Lp as

Lp = Ḟ pF p−1, (2.7)
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where •̇ denotes a derivative with respect to time. Correspondingly, one defines the symmetric
part of the plastic velocity gradient:

Dp = sym(Lp) = 1
2F p−TĊpF p−1. (2.8)

2.2.2 Casting finite deformation plasticity into the generalized standard materials
framework

To ensure thermodynamic consistency, the model is cast into the generalized standard ma-
terials (GSM) framework, which was first introduced by Halphen and Nguyen [36]. The
Clausius-Duhem inequality for isothermal processes reads

D = τ : d− ψ̇ ≥ 0, (2.9)

where D is the dissipation density, d is the symmetric velocity gradient with respect to the
current configuration and the Kirchhoff stress τ is defined as τ = F SF T = Jσ. Here, S

is the second Piola-Kirchhoff stress tensor and σ is the Cauchy stress tensor. Additionally,
ψ is the Helmholtz free energy density, which is introduced as the sum of all energy storage
functions and reads for this work

ψ = ψe(be) + ψh(α),+ψk(bpe), (2.10)

where ψe(be) is the elastic energy density, ψh the stored isotropic hardening energy density due
to isotropic hardening and ψk(bpe) the stored hardening energy due to kinematic hardening.
Further, α is an isotropic internal hardening variable. For the elastic energy density, a Neo-
Hookean elastic energy, which is only dependent on be, in the form of

ψe(be) = λ

4
(
Je2 − 1− 2 ln(Je)

)
+ µ

2
(
Ibe − 3− 2 ln(Je)

)
(2.11)

is chosen. Here, λ and µ are the Lamé parameters and Ibe is the first invariant of be. For ψh,
different choices, depending on the material that is to be modeled, can be made. However,
we assume ψh to be an increasing function, i.e.,

∂ψh
∂α
≥ 0. (2.12)

The kinematic hardening energy is assumed to be only dependent on Ibpe , the first invariant
of bpe, and reads

ψk(bpe) = µp

2 Ibpe ,

Ibpe = tr(bpe) = Cp : Cpd−1.
(2.13)
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Further, to complete the requirements for the GSM-framework, the dissipation potential
ϕ(Dp, α̇) is defined in similar fashion to Han and Reddy. [38] as

ϕ(Dp, α̇) =


√

2
3σy0∥Dp∥ tr(Dp) = 0 ∧ α̇ ≥

√
2
3∥D

p∥

∞ else.
(2.14)

Here, σy0 is the initial yield stress. Note that the if-else construct ensures that tr(Dp) = 0 is
always true when minimizing the potential, and therefore guarantees volume preserving plas-
tic deformations. Additionally, it ensures that the normalization condition α̇ ≥

√
2/3∥Dp∥

always holds. To obtain the yield criterion as well as the evolution of the internal variables,
the dual potential ϕ∗(Σ, q) is introduced as

ϕ∗(Σ, q) = sup
Dp,α̇

(
Σ : Dp + qα̇− ϕ(Dp, α̇)

)
(2.15)

= sup
Dp=Dp′

α̇≥
√

2
3 ∥Dp∥

(Σ : Dp + qα̇−
√

2
3σy0∥Dp∥), (2.16)

utilizing a Legendre-Fenchel transformation. Here, Σ and q are the dual variables to Dp

and α̇, respectively. For q ≤ 0, obviously

α̇ =
√

2
3∥D

p∥ (2.17)

always holds. Additionally, replacing Σ by its deviator Σ′ drops the constraint Dp = Dp′,
as follows

ϕ∗(Σ, q ≤ 0) = sup
Dp

α̇≥
√

2
3∥Dp∥

(
Σ′ : Dp −

√
2
3(σy0 − q)∥Dp∥

)

= sup
γ≥0

sup
N

∥N∥=1

(
γΣ′ : N −

√
2
3(σy0 − q)γ

)

= sup
γ≥0

γ
( ∥∥Σ′∥∥−√2

3(σy0 − q)
)

= sup
γ≥0

γf(Σ, q ≤ 0),

(2.18)

where it was used that the supremum in N is achieved for N ∥ Σ′, i.e.,

Dp = γ
Σ′

∥Σ′∥
, (2.19)

corresponding to the normality rule. Here, f is the yield criterion, which reads

f = ∥Σ′∥ −
√

2
3(σy0 − q). (2.20)
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Now, ϕ∗(σ, q ≤ 0) can be given in terms of f as

ϕ∗(σ, q ≤ 0) =

0 f ≤ 0

∞ f > 0.
(2.21)

Further, since ϕ and ϕ∗ are convex, utilizing a Legendre-Fenchel transformation again, we
obtain

ϕ(Dp, α̇) = sup
Σ,q≤0

(
σ : Dp + qα̇− ϕ∗(Σ, q)

)
= sup

Σ,q≤0
(σ : Dp + qα̇− sup

Σ,q≤0
γf).

(2.22)

For f > 0, the term − sup γf in Eq. (2.22) equals negative infinity. This definitely is not
a solution of the first supremum problem in Eq. (2.22). Now, utilizing these findings, the
Karush-Kuhn-Tucker conditions follow as

γ ≥ 0, f ≤ 0, γf = 0. (2.23)

With the dissipation potential ϕ and the free energy density ψ at hand, one now can formulate
the rate potential as

π = ∂ψ

∂F
: Ḟ + ∂ψ

∂Cp : Ċp + ∂ψ

∂α
α̇+ ϕ(Dp, α̇), (2.24)

where Cp and α̇ are the internal variables. Here, it can easily verified that the second term
of Eq. (2.24) can be reformulated to

∂ψ

∂Cp : Ċp = 2F p ∂ψ

∂Cp F pT︸ ︷︷ ︸
=:−Σeff

: Dp. (2.25)

Minimizing the rate potential from Eq. (2.24) in the internal variables while using the defi-
nition of Σeff , one realizes that the minimization of π naturally involves the definition of the
dual dissipation potential ϕ∗:

inf
Dp,α̇

π = ∂ψ

∂F
: Ḟ − sup

Dp,α̇

(
Σeff : Dp −∂ψ

∂α︸ ︷︷ ︸
=:qh≤0

α̇− ϕ(Dp, α̇)
)

= ∂ψ

∂F
: Ḟ − ϕ∗(Σeff , qh),

(2.26)
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where qh ≤ 0 follows from Eq. (2.12) and we assumed that f(Σeff , qh) ≤ 0. From Equa-
tions (2.17), (2.19) and (2.26) it follows that

Dp = γ
Σeff′

∥Σeff′∥
, α̇ =

√
2
3∥D

p∥ =
√

2
3γ. (2.27)

Additionally, note that
Σeff = Σe −Σb, (2.28)

with the elastic Mandel stress tensor Σe = CeSe. Further, the elastic Second-Piola Kirchhoff
stress Se and the Mandel back stress Σb are defined as

Se = 2∂ψe
∂Ce , Σb = 2bpe ∂ψk

∂bpe . (2.29)

With these definitions, one ends up with the yield criterion (compare with Equations (2.20)
and (2.26)):

f = ∥(Σe −Σb)′∥ −
√

2
3(σy0 − q) ≤ 0. (2.30)

For Dpd, the Frederick-Armstrong hardening model assumes

Dpd = γ
b

a
Σb′, (2.31)

where a and b are material constants. The incorporation of kinematic hardening will be
treated in Section 2.4.

2.2.3 Time discretization of the rate potential for isotropic hardening

This section only focuses of the handling of isotropic hardening, since the incorporation of
kinematic hardening into the algorithmic counterpart of π needs some additional careful
treatment, and is therefore done in Section 2.4. To solve the problem equations numerically,
the time has to be discretized into time steps. This is done in a conventional manner, which
is described in Appendix 2.6.
A possible transformation of the dissipation potential from Eq. (2.14) into the algorithmic
counterpart ϕ∆ reads

ϕ∆(Cp, α) =


1
2

√
2
3σy0∥cp − I∥ det(cp) = 1; ∆α ≥

√
2
3

1
2 ∥c

p − I∥

∞ else,
(2.32)

where cp can be interpreted as the incremental counterpart of Cp, which is defined as

cp = Up−1
n CpUp−1

n . (2.33)
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Here, Up is the right plastic stretch tensor of the polar decomposition
F p = RpUp, i.e., Up =

√
Cp. The choice of using 1/2 ln(cp) in the dissipation potential was

introduced by Ortiz and Stainier [90] and (cp − I)/2 may be thought of as a linear approx-
imation of the logarithm. For a unimodular cp and ∆t → 0, the algorithmic approximation
becomes

lim
∆t→0

1
∆tϕ∆ =

√
2
3σy0∥

1
2Up−1ĊpUp−1∥

=
√

2
3σy0

∥∥∥∥1
2F p−TĊ

p
F p−1

∥∥∥∥
=
√

2
3σy0∥Dp∥,

(2.34)

which is obviously in line with Equations (2.64) and (2.14). Now, having obtained a consistent
approximation for ϕ, one defines the algorithmic approximation π∆ of π (compare Eq. (2.24)),
which reads

π∆ = ψ − ψn + ϕ∆. (2.35)

Further, the updates of internal variables may be obtained by solving the minimization prob-
lem

inf
Cp

,α

det(Cp)=1

= π(F ,Cp, α). (2.36)

Similarly to the time-continuous case, the assumption of qh ≥ 0 (Eq. (2.12)) implies that the
minimum is achieved for

∆α =
√

2
3 1/2 ∥cp − I∥ , (2.37)

which we can directly insert in Eq. (2.36). Thus, we write for simplicity

inf
Cp

det(Cp)=1

π(F ,Cp). (2.38)

2.2.4 Treatment of the incompressibility constraint

In the sequel, the focus is on the minimization problems with incompressibility constraint,
i.e.,

inf
Cp

det(Cp)=1

π∆(F ,Cp), (2.39)

where we now employ the special-linear update from Hurtado et al. [43].
In order to obtain a constraint-free minimization problem, which is way easier to handle
numerically, the unconstrained tensor Ĉp is introduced via the nonlinear projection

Cp(Ĉp) = (det(Ĉp))− 1
3 Ĉp. (2.40)
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Ĉp

dV

det(Ĉp)−
1
3I

Cp = det(Ĉp)−
1
3 Ĉp

Fig. 2.1: Volume dV in the reference configuration is stretched by Ĉp, followed by a volu-
metric stretch det(Ĉp)− 1

3 I, summarized by Cp.

This projection is depicted in Fig. 2.1, where one can see that the unconstrained tensor Ĉp

may change the shape and volume of the body. However, the term det(Ĉp)− 1
3 I scales back

any volumetric stretches that where included in Ĉp. Therefore, this projection intrinsically
ensures the unimodularity of Cp and allows to reformulate the minimization problem in
Eq. (2.39) to

inf
Ĉ

p
π∆(F ,Cp(Ĉp)). (2.41)

Obviously, the constraint on Cp is gone. Unfortunately, the degree-1-homogeneous potential
ϕ∆ is not differentiable at cp = I, which makes the numerical solution difficult. For that
reason, a further reparametrization of ĉp = Up−1

n ĈpUp−1
n (compare Eq. (2.33)) is proposed

as

cp = Up−1
n CpUp−1

n = ÎIIp− 1
3 ĉp (2.42)

ĉp = I + 2∆γNp → Ĉp (2.42)= Cp
n + 2∆γUp

nNpUp
n (2.43)

where Np is a symmetric tensor with ∥Np∥ = 1. Employing this reparametrization into
Eq. (2.32)1 yields

ϕ∆ = 1
2

√
2
3σy0∥cp(ĉp)− I∥

= 1
2

√
2
3σy0∥ ÎII

p− 1
3 (I + 2∆γNp)− I∥.

(2.44)

Inserting the reparametrization from Eq. (2.42) into Eq. (2.41) results in the minimization
problem

inf
∆γ≥0,Np

∥Np∥=1

π∆
(
F ,Cp(Up−1

n (I + 2∆γNp)Up−1
n

))
. (2.45)
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In order to eliminate the constraint ∥Np∥ = 1, one final reparametrization of Np is introduced
as

Np = Up−1
n Ñ sUp−1

n
∥Up−1

n Ñ sUp−1
n ∥

, (2.46)

where Ñ s is a symmetric but otherwise unconstrained tensor. Obviously, ∥Np∥ = 1 now
intrinsically holds. Therefore, inserting this reparametrization into the minimization problem
from Eq. (2.45) drops the constraint and yields

inf
∆γ≥0,Ñ s

π∆
(
F ,Cp

(
∆γ, Ñ s

))
. (2.47)

Now, the minimization in Eq. (2.47) can be accomplished by solving the nonlinear equation
set

∂π∆
∂z

= 0

⇒ ∂π∆
∂∆γ = 0, ∂π∆

∂Ñ s = 0
(2.48)

with a Newton-scheme. Here, z = (∆γ, Ñ s) is the set of parametrized internal variables.
The entire first and second derivatives employed in the Newton-scheme are summarized in
Appendix 2.8 and 2.9.
As the observant reader might have already seen, the system matrix ∂2π∆

∂z2 is singular. This is
due to the minimization problem being independent of det(Ĉp) as well as

∥∥∥Ñ s
∥∥∥. For det(Ĉp),

this is depicted in Fig. 2.2, where two different Ĉp
i with different determinants both yield the

same tensor Cp. Therefore, the minimization problem as it stands is not uniquely solvable.
In addition, the algorithmic yield criterion is derived in Appendix 2.7.

2.2.5 Elimination of singularities

To eliminate the aforementioned singularities introduced through det(Ĉp) and ∥Np∥, the
regularization potential πR is introduced as

πR = 1
2A
(
( ÎIIp − 1)2 + (∥Up−1

n Ñ sUp−1
n ∥ − 1)2), (2.49)

where A is an arbitrary numerical constant. This energy can be interpreted as a spring
attached to det(Ĉp) and ∥Np∥, pulling on both to be equal to 1. Since π∆ is otherwise free
of det(Ĉp) and ∥Np∥, adding this term to π∆ ensures that in the converged solution state
det(Ĉp) = 1 as well as ∥Np∥ = 1 are exactly satisfied. Therefore, it is emphasized that the
constant A has no influence on the solution for {Cp, α}, since πR = 0 holds in the converged
state.
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Ĉp
1

Ĉp
2

dV

det(Ĉp
1)

− 1
3I

det(Ĉp
2)

− 1
3I

Cp = det(Ĉp
1)

− 1
3 Ĉp

1 = det(Ĉp
2)

− 1
3 Ĉp

2

Fig. 2.2: Volume dV in the reference configuration is stretched by either det(Ĉp
1) or

det(Ĉp
2), followed by a volumetric stretch det(Ĉp

1)− 1
3 I and det(Ĉp

2)− 1
3 I, respec-

tively. However, both yield the same Cp.

2.2.6 Improving the approximation of the logarithm

The approximation used in Eq. (2.32) is only first-order accurate. A higher accuracy can be
achieved using the logarithm (see Subsection 2.2.3). This is depicted in Fig. 2.3, where the
approximation of the logarithm is compared to the logarithm itself for the first two eigenvalues
of ∆cp. Here, ∆cp is calculated as

∆cp = cp − I. (2.50)

Furthermore, the third eigenvalue is also accounted for using the constraint det(cp) = 1:

→ (1 + λ1)(1 + λ2)(1 + λ3) = 1→ λ3 = 1
(1 + λ1)(1 + λ2) − 1. (2.51)

As one can see, the approximation is very close to the logarithm when ∆cp is small. How-
ever, as the eigenvalues of ∆cp get larger, which correspond to larger load-steps, the error
drastically increases. Therefore, the approximation of the logarithm is improved using the
first two invariants of ∆cp. For the improved approximation of the dissipation potential we
use the ansatz

ϕ∆ =
√

2
3σy0

(
∥1

2(cp − I)∥+ a1I∆cp + a2II ∆cp
)
, (2.52)

where a1 and a2 are constants. In the context of this work, they are optimized by a least-
squares algorithm, minimizing the difference to the logarithmic approximation, as a1 = 3.0
and a2 = 3.1. For the least-squares algorithm, 21x21 equidistant support points over the
range of λ1 ∈ [−0.25, 0.25] and λ2 ∈ [−0.25, 0.25] are used. Further, I∆cp and II ∆cp are
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the first and second invariants of ∆cp, respectively. Here it is important to note, that this
modification is time consistent, i.e., ϕ∆ → 0 for ∆t → 0. The improved approximation
is compared to the old approximation and the logarithm in Fig. 2.4 for the eigenvalues of
∆cp. Clearly the improved approximation is closer to the natural logarithm, even for larger
eigenvalues of ∆cp. Therefore, the improved approximation enables better results for larger
time steps. This is shown in Subsection 2.3.3, where the results for the initial approximation
are compared to the ones of the improved approximation.

2.2.7 Initial guesses for ∆γ and Ñ s

In this work, a Newton-scheme is chosen to minimize the discretized potential. Therefore,
good initial guesses for the unknowns are required to ensure that a solution can be found.
For the initial guess of ∆γ, the choice of ∆γ0 = 0 proves to be advantageous. Then, one can
solve

Np
0 = arg inf

Np

∥Np∥=1

lim
∆γ→0

π∆ (2.53)

to obtain a good initial guess for Ñ s (compare Eq. (2.45)). This leads to

Np
0 = Σeff′

tr Cp
n∥∥∥Σeff′

tr Cp
n

∥∥∥ , (2.54)

where Σeff′
tr is the trial value of Σeff′ (see Eq. (2.28)), defined as

Σeff′
tr = F etrT

τ trF etr−1 −Σb′
n . (2.55)
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Here, τ tr is the Kirchhoff stress evaluated with the trial value betr = F etrT
F etr, where

F etr = F F p−1
n . With the initial guesses defined, the ingredients for the solution of the

minimization problem are altogether.

2.2.8 Solving the local and global system of equations

The local minimization scheme is embedded in the global minimization problem, where one
minimizes

Π∆ =
∫

Ω0

π∆ dΩ−
∫

∂Ω0t

t̂ · u dS. (2.56)

Here, t̂ is the traction vector acting on the surface ∂Ω0t ⊂ ∂Ω0 of the reference configuration
Ω0 and u is the displacement vector. Additionally, body forces are neglected for simplic-
ity. To minimize this global problem, the consistent tangent is required, which is given in
Appendix 2.10. Additionally, the Newton scheme solving the local minimization problem is
summarized in Algorithm 1.

Algorithm 1 Newton scheme solving the equation set in Eq. (2.48).
Compute trial variables F etr,τ tr

Compute yield criterion f
if f tr ≥ 0 then

τ = τ tr,Cp = Cp
n,α = αn

Compute algorithmic tangent Calgo

else
while

∥∥∥∂π∆
∂z

∥∥∥ ≥ tolNwtn do
Compute Np, Ĉp, Cp, be, ∆α, τ , Cpd

Compute Residual ∂π∆
∂z and system matrix∂2π∆

∂z2

Solve ∂2π∆
∂z2 ∆z = −∂π∆

∂z for ∆z
end while
Compute algorithmic tangent Calgo

end if

2.3 Numerical results for isotropic hardening

In this section, the presented model is tested for convergence with respect to step size ∆t
and compared to results from Simo [120].

2.3.1 Gauss point evaluations

To investigate the model implementation and convergence of the occurring stresses with
regard to step size ∆t, Gauss point evaluations are conducted. Therefore, the response of the
material for a single Gauss-point in case of cyclic uniaxial tension and compression as well as
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Fig. 2.5: Stress σ11 over strain ln(V )11 in a
tensile test for different numbers of
time steps.
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Fig. 2.6: Stress σ12 over strain ln(V )12 in a
simple shear test for different num-
bers of time steps.

simple shear was investigated. The deformation was prescribed by incrementally increasing
and decreasing F while preserving the volume of the Gauss-point. Figures 2.5 and 2.6 show
the comparison of stresses for different amounts of equidistant load steps for uniaxial tension
and simple shear, respectively. Due to the lack of an analytical solution, the solutions can
only be compared to a converged solution with many load steps. As one can see, the error in
comparison to the converged solution obtained is very small. For tension and compression,
even for only 50 steps, σ11 deviates by less than 0.5%. Here, it is noted that the largest
difference lies in the elastic regime and only stems from the fact that the second evaluation is
already far in the plastic regime. Further, for simple shear the error in the final shear stress
is less than 1% for only 50 steps. Having evaluated the robustness and convergence behavior
of the model, now a 3D problem is investigated.

2.3.2 3D necking of a circular bar

To validate the model results in 3D, the necking of a circular bar proposed by Simo [120] is
compared to this model results.
A circular bar with radius r0 = 6.413mm of length l = 53.334mm is subjected to a displace-
ment controlled pure tension test using simple support boundary conditions. To prevent
bifurcation, the cross-section is reduced in the middle of the bar, as described in [120]. Due
to the the obvious symmetries, only one eighth of the bar is analyzed, which is shown in
Fig. 2.7. This boundary value problem as well as the additional 3D-Problem in Section 2.4
are solved using the finite element analysis program FEAP [127]. For this problem, the
isotropic hardening energy ψh is chosen to be of the Voce-type as

∂ψh
∂α

= Hα+ (σy0 − σy)(1− exp−βα), (2.57)
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Fig. 2.7: Mesh of the circular bar
with 960 Q1/P0 elements
used in simulation.

1.7

0.1

α
[−

]

Fig. 2.8: Distribution of the equiv-
alent plastic strain α over
the deformed bar after
loading.
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Tab. 2.1: Material parameters for necking of a circular bar.
κ [MPa] µ [MPa] σy [MPa] σy∞ [MPa] β H [MPa]
164210 80193.8 450 715 16.93 129.24

Tab. 2.2: Numerical parameters for necking of a circu-
lar bar.

tolNwtn [-] A [MPa] a1 [MPa] a2 [MPa]
10−8 104 3.0 3.1

like in Simo [120]. Likewise, the elastic and isotropic hardening material parameters were
chosen accordingly, which are given in Table 2.1. Further, the numerical parameters are
aggregated in Table 2.2. Here, tolNwtn is the tolerance of the local Newton scheme presented
in Algorithm 1. The deformed bar is shown in Fig 2.8. Now, the influence of the number of
equidistant time steps is evaluated. The necking displacement is plotted against the elonga-
tion for a varying number of time steps in Fig. 2.9. Clearly, the final necking displacement
converges to a value of roughly 3.8mm.

2.3.3 Comparison of the approximations of the logarithm

In this section, the results of the original first-order approximation of ϕ∆ (Eq. (2.32)) and its
improved counterpart (Eq. (2.52)), introduced in Section 2.2.6, are compared. To illustrate
the difference in the convergence behavior, the same problem as in the previous section is run
again with the approximation omitting the invariants. The results are shown in Fig. 2.10.
While the results, in comparison to the ones in the previous section, clearly converge to-
wards the same displacement, the results for smaller numbers of time steps clearly improved.
Therefore it can be concluded that the improved approximation utilizing the invariances im-
proved the model results by a large margin for not fully converged results with regard to time
steps.

2.4 Incorporation of kinematic hardening

2.4.1 Expanding the potential for kinematic hardening

To expand the time discrete counterpart π∆ for kinematic hardening, ψk is replaced by it’s
algorithmic counterpart ψ̃k, which is defined as

ψ̃k = µp∆Cp : Cpd−1
n+ 1

2
. (2.58)

Here, in comparison to ψk from Eq. (2.13), ∆Cp is used instead of Cp, because using Cp

leads to ψ̃k being not consistent with the time-continuous case. Additionally, it turned out
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of time steps using the log-
arithm approximation without
the invariants.

that using the midpoint evaluation

Cpd−1
n+ 1

2
= 1

2
(
Cpd−1

n + Cpd−1
)

(2.59)

instead of Cpd−1 leads to more accurate results. Further, in line with Eq. (2.40), Cpd is
reparametrized to be unimodular:

Cpd =
(
det(Ĉpd)

)− 1
3 Ĉpd. (2.60)

Then again, since we assume a Frederick-Armstrong hardening law, Ĉpd is defined depending
on the plastic multiplier γ as

Ĉpd = Cpd
n + 2∆γ b

c
Σb

n
′
. (2.61)

Incorporating ψ̃k into the discretized potential π∆ yields

π∆ = ψe + ψh + ψ̃k − (ψen + ψhn + ψ̃kn) + ϕ∆. (2.62)

In the following subsection, this potential is minimized with respect to ∆γ and Ñ s, again.

2.4.2 Results for kinematic hardening

To validate the results of the kinematic hardening extension, the model results were compared
to the results in Vladimirov et al. [133]. Therefore, the material parameters in Table 2.3
are adapted, which also partially originate from Lührs et al. [68]. Likewise, the isotropic
hardening energy adopted from Vladimirov et al. [133] is of Voce-type and reads

ψh = Q

(
α+ exp−βα

β

)
. (2.63)
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Tab. 2.3: Parameters for kinematic hardening from Lührs et al. [68] and Vladimirov et
al. [133].

µ [MPa] λ [MPa] σy [MPa] Q [MPa] β µp [MPa] c [MPa] b

80000 119999.67 300 400 2.5 950 1900 8.5
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Fig. 2.11: Stress σ11 over strain ln(V )11 in
a tensile test for different num-
bers of time steps in comparison
to Vladimirov et al. [133].
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Fig. 2.12: Stress σ12 over strain ln(V )12 in
a simple shear test for different
numbers of time steps.

First, the stress-strain Gauss-point computations in tension-compression as well as simple
shear are shown in Figures 2.11 and 2.12. Again, as in the isotropic hardening section, one
can clearly see the results converging for an increasing number of time steps per load cycle.
Further, since there is not an analytical solution, the results are compared to the results from
Vladimirov et al. [133]. Here, one can see, that the error introduced by only using 50 time
steps is very small in both tests. Additionally, the Bauschinger effect, which changes the
yield stress depending on the direction of load, is clearly visible in both tests. Further, the
results for the shear test compare well with Vladimirov et al. [133].
Next, the 3D finite element example from Vladimirov et al. [133] was used to validate the
results of the model. A cube with a side length of 1mm is loaded by a combined tensile
and shear loading. At the bottom of the cube, a boundary condition holds all degrees of
freedom, while on the top a displacement boundary condition is prescribed in two steps for
the displacements u1 and u2 as

Step 1: u1 = 1mm, u2 = 0.5mm,

Step 2: u1 = −1mm, u2 = 0.5mm.

The cube is discretized by 4 different regular meshes with 8, 64, 512, 1728 and 4096 Q1P0
elements. Due to the obvious symmetries, only one quarter of the cube has to be modeled.
The cube is shown in an almost undeformed state, after load step 1 and after load step 2
in Figure 2.13. Obviously, these large deformations are uncharacteristic for a metal cube.
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Fig. 2.13: Deformed cube from left to right: Almost undeformed, after load step 1 and after
load step 2.
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However, as stated in Vladimirov et al. [133], it serves well as a test showing the model’s
capabilities in the finite strain regime. The convergence of the stresses in the middle of the
cube after load step 1 with regard to the amount of time steps is shown in Figure 2.14. Here,
the finest discretization with 4096 finite elements is used. Clearly, one can see the stresses
quickly converging towards 962 N/mm2 for the finer meshes. Only for the mesh with just 8
elements the results are deviating far from the converged solution.
Next, the convergence of the stresses in the middle of the cube after load step 1 of the
cube with regard to the cube discretization is investigated. Therefore, the variously fine
discretized meshes are all loaded in 1000 steps. The resulting stresses are shown in Figure 2.15.
Again, the values converge for decreasing time steps. However, in contrast to Vladimirov et
al. [133], the results converge strictly from above towards their final value. Overall, while
being quite satisfying, the time convergence behavior of this model is not as good as that of
the exponential mapping approach.
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2.5 Summary and outlook

In this paper, a numerical approach for the solution of large deformation elastoplasticity
is presented. In contrast to many recent works, it does not use the exponential map to
fulfill the incompressibility constraint. The model is formulated in the generalized standard
materials framework to ensure thermodynamic consistency. Further, the model was extended
to kinematic hardening in Section 2.4. The model’s capability of producing reasonable results
in both isotropic and kinematic hardening is shown through numerical experiments. The
time convergence behavior for isotropic hardening was improved using an ansatz involving
the invariants of cp. This improvement is enabled by having the possibility for a flexible
modification of the time discretized potentials, which opens the door for further improvements
like the control of the convexity of the potential or potential-based line search algorithms.
In the future, it should be investigated how to improve the accuracy for large time steps
for kinematic hardening. In this case, the proposed model is still clearly inferior to the
exponential map. However, it comes with the advantage of inherently having symmetric
internal variables for kinematic hardening without any modifications to the approach. This
is not the case for the exponential map, where it proved to be a tedious task, as can be
seen from the publication history on that topic (e.g., Dettmer and Reese [16], Vladimirov et
al. [133]). For these reasons, it remains very interesting to also employ this model in more
complicated inelastic models, e.g., shape memory alloys, where the usage of the exponential
map may also be involved.
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Appendix

2.6 Appendix A: Consistency of the dissipation potential

To solve the boundary value problem, one wants to find an algorithmic counterpart to ϕ, which
is ϕ∆, where the rate-type quantities Dp and α̇ are expressed in terms of the increments of
the internal variables in a time step from tn to tn+1. The algorithmic approximation of ϕ
must be consistent, i.e.,

ϕ = lim
∆t→0

1
∆tϕ∆. (2.64)

2.7 Appendix B: Algorithmic yield criterion

In order to decide whether a time step is elastic or plastic, we consider the trial state
π∆(F ,Cp

n). Then, we apply an infinitesimal increment

dCp = dγUp
nNpUp

n ( dγ ≥ 0) (2.65)

and test if
π∆(F ,Cp

n + dCp) < π∆(F ,Cp
n). (2.66)

If this is true for any deviatoric direction Np, the step is plastic, otherwise it is elastic.
Equation (2.66) is equivalent to f ≤ 0, i.e., it is sufficient to check the usual yield criterion.
The proof is in analogy to the time-continuous case.

2.8 Appendix C: First derivatives of π∆

To minimize the discretized potential, one needs the first and second derivatives of the dis-
cretized potential with respect to the internal variables. To obtain a more compact notation,
N s is introduced as

N s = Cp
nNp. (2.67)

Additionally, Is is the 4th order identity on symmetric matrices. Further, the total yield
stress σy is given by

σy = σy0 + ∂ψh
∂α

. (2.68)

Furthermore, the symmetrizing box product is defined via

A
s
□ B : C = Asym(C)B. (2.69)
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The first derivatives of the discretized potential w.r.t. the internal variables are given by

dπ∆ =τ : dd

+
(
∂(ψe + ψ̃k)

∂Ĉp : 2N s + ∂ψ̃k

∂Ĉpd : 2 b
a

Σb′
n Cpd

n + σy
∂∆α
∂∆γ + ∂πR

∂ ÎIIp
ÎIIpĈp−1 : 2N s

)
︸ ︷︷ ︸

∂π∆
∂∆γ

d∆γ

+
(
P⊤

N s :

:=A︷ ︸︸ ︷(
2∆γ ∂(ψe + ψ̃k)

∂Ĉp + σy
∂∆α
∂N s + 2∆γ ∂πR

∂ ÎIIp
ÎIIpĈp−1

)
+ ∂πR

∂Ñ s

)
︸ ︷︷ ︸

∂π∆
∂Ñ

s

: dÑ s.

(2.70)

Here, the projector PN s is defined as

PN s= ∂N s

∂Ñ s = 1∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥
(
Is −N s ⊗Cp−1

n N sCp−1
n

)
. (2.71)

Likewise, the projectors Pp and Ppd are defined as

Pp = ∂Cp

∂Ĉp = ÎIIp− 1
3
(
Is − 1

3Ĉp ⊗ Ĉp−1
)
, (2.72)

Ppd = ∂Cpd

∂Ĉpd = ÎIIpd− 1
3
(
Is − 1

3Ĉpd ⊗ Ĉpd−1
)
. (2.73)

The other occurring derivatives are given as

∂(ψe + ψ̃k)
∂Ĉp = P⊤

p :
(
−Cp−1F T∂ψe

∂be F Cp−1 + µp

2
(
Cpd−1

n + Cpd−1
) )

(2.74)

∂ψe
∂be =

(
λ

4 (det(be)− 1)− µ

2

)
be−1 + µ

2 I (2.75)

∂ψ̃k

∂Ĉpd = −P⊤
pd : 1

2µ
pCpd−1∆CpCpd−1 (2.76)

MCp := ∂ (∥∆cp∥+ a1 I∆cp + a2 II∆cp)
∂Cp

= Cp−1
n ∆CpCp−1

n∥∥∥Up−1
n ∆CpUp−1

n

∥∥∥
+ a1Cp−1

n + a2
(
(∆Cp : Cp−1

n )Cp−1
n −Cp−1

n ∆CpCp−1
n

)
(2.77)

∂∆α
∂∆γ =

√
2
3

1
2MCp : Pp : 2N s (2.78)

∂πR

∂ ÎIIp
= A( ÎIIp − 1) (2.79)

∂∆α
∂N s =

√
2
32∆γP⊤

p : 1
2MCp (2.80)
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∂πR

∂Ñ s = A(
∥∥∥Up−1

n Ñ sUp−1
n

∥∥∥− 1)

 Cp−1
n Ñ sCp−1

n∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥
 (2.81)

2.9 Appendix D: Second derivatives of π∆

The second derivatives of the discretized potential w.r.t. the internal variables are given
by

∂2π∆

∂∆γ2 =2N s : ∂
2(ψe + ψ̃k)
∂Ĉp2 : 2N s + 2N s : ∂

2πR

∂Ĉp2 : 2N s

+ (2 b
a

Σb′
n Cpd

n ) : ∂2ψ̃k

∂Ĉpd2 : (2 b
a

Σb′
n Cpd

n ) + σy
∂2∆α
∂∆γ2

+ 2 · 2N s : ∂2ψ̃k

∂Ĉp∂Ĉpd : (2 b
a

Σb′
n Cpd

n ) + ∂2ψh
∂α2

(
∂∆α
∂∆γ

)2

(2.82)

∂2π∆

∂∆γ∂Ñ s =P⊤
N s :

(
2∂(ψe + ψ̃k)

∂Ĉp + 2∆γ ∂
2(ψe + ψ̃k)
∂Ĉp2 : 2N s

+ σy
∂2∆α

∂∆γ∂N s + 2 ∂πR

∂Ĉp + 2∆γ ∂
2πR

∂Ĉp2 : 2N s

+ 2∆γ ∂2ψ̃k

∂Ĉp∂Ĉpd : (2 b
a

Σb′
n Cpd

n ) + ∂2ψh
∂α2

∂∆α
∂N s

∂∆α
∂∆γ

)
,

(2.83)

∂2π∆

∂Ñ s2 = DN s(A) + ∂2πR

∂Ñ s2

+ P⊤
N s :

(
(2∆γ)2∂

2(ψe + ψ̃k)
∂Ĉp2 + ∂2ψh

∂α2
∂∆α
∂N s ⊗

∂∆α
∂N s

+ σy
∂2∆α
∂N s2 + (2∆γ)2 ∂

2πr

∂Ĉp2

)
: PN s.

(2.84)

Here, DN s is defined via

d(P⊤
N s : B) = DN s(B) : dÑ s + P⊤

N s : dB (2.85)

and reads

DN s(B) = − 1∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥3

(
f(B)⊗Cp−1

n Ñ sCp−1
n

+ Cp−1
n Ñ sCp−1

n ⊗ f(B)

− 1∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥2 (Ñ s : B)Cp−1
n Ñ sCp−1

n ⊗Cp−1
n Ñ sCp−1

n

+ (Ñ s : B)Cp−1
n

s
□ Cp−1

n

)
.

(2.86)
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where B is an arbitrary second order tensor and f(B) is defined as

f(B) = B − 1∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥2 (Ñ s : B)Cp−1
n Ñ sCp−1

n . (2.87)

Likewise, one can define Di and Dpd via

d(P⊤
p : B) = Di(B) : dĈp + P⊤

p : dB (2.88)

⇒ Di(B) = −1
3 ÎIIp− 1

3

((
B − 1

3(Ĉp : B)Ĉp−1
)
⊗ Ĉp−1

+ Ĉp−1 ⊗
(

B − 1
3(Ĉp : B)Ĉp−1

)

− (Ĉp : B)
(

Ĉp−1 s
□ Ĉp−1 − 1

3Ĉp−1 ⊗ Ĉp−1
)) (2.89)

d(P⊤
pd : B) = Dpd(B) : dĈpd + P⊤

pd : dB (2.90)

⇒ Dpd(B) = . . . . (2.91)

Here, Dpd is worked out in analogy to Di, which means just the indexes are changing. The
remaining occurring derivatives are given as

∂2(ψe + ψ̃k)
∂Ĉp2 = Di

(
∂(ψe + ψ̃k)

∂Cp

)
+ P⊤

p : ∂
2ψe

∂Cp2 : Pp (2.92)

∂2ψe

∂Cp2 = Cp−1F T s
□ F Cp−1 : ∂

2ψe

∂be2 : Cp−1F T s
□ F Cp−1

−Cp−1 s
□

∂ψe
∂Cp −

∂ψe
∂Cp

s
□ Cp−1

(2.93)

∂2ψ̃k

∂Ĉpd2 = Dpd

(
∂ψ̃k

∂Cpd

)

+ P⊤
pd :

(
Cpd−1 s

□
∂ψ̃k

∂Cpd + ∂ψ̃k

∂Cpd
s
□ Cpd−1

)
: Ppd

(2.94)

∂2ψ̃k

∂Ĉp∂Ĉpd = −µ
p

2 P
⊤
p :

(
Cpd−1 s

□ Cpd−1
)

: Ppd (2.95)

∂2πR

∂Ĉp2 =
(
∂2πR

∂ ÎIIp2 ÎIIp + ∂πR

∂ ÎIIp

)
ÎIIpĈp−1 ⊗ Ĉp−1 − ∂πR

∂ ÎIIp
ÎIIpĈp−1 s

□ Ĉp−1 (2.96)

∂2∆α
∂∆γ2 =

√
2
32N s :

(
Di(

1
2MCp) + P⊤

p : 1
2
∂MCp

∂Cp : Pp

)
: 2N s (2.97)
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∂2∆α
∂∆γ∂Ñ s =

√
2
32P⊤

N s : P⊤
p : 1

2MCp

+ 2∆γP⊤
N s :

(
Di(

1
2MCp) + P⊤

p : 1
2
∂MCp

∂Cp : Pp

)
: 2N s

(2.98)

∂2∆α
∂Ñ s2 =

√
2
32∆γDN s

(
P⊤

p : 1
2MCp

)
+ (2∆γ)2P⊤

N s :
(
Di

(1
2MCp

)
+ P⊤

p : 1
2
∂MCp

∂Cp : Pp

)
PN s

(2.99)

∂2πR

∂Ñ s2 = A

(
Cp−1

n
s
□ Cp−1

n

1− 1∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥


+ 1∥∥∥Up−1
n Ñ sUp−1

n

∥∥∥Cp−1
n N sCp−1

n ⊗Cp−1
n N sCp−1

n

) (2.100)

∂MCp

∂Cp = 1∥∥∥Up−1
n ∆CpUp−1

n

∥∥∥
(

Cp−1
n

s
□ Cp−1

n −MCp⊗MCp

)

+ a2

(
Cp−1

n ⊗Cp−1
n −Cp−1

n
s
□ Cp−1

n

) (2.101)

2.10 Appendix E: Consistent tangent

When solving boundary value problems using the finite element method, we make use of the
consistent tangent operator Calgo. This is derived in this model as follows. We start with the
virtual work of the internal forces ∫

V0

τ : dδ dV, (2.102)

where dδ is defined as

dδ = sym(
δF︷ ︸︸ ︷

Grad (δu) F −1︸ ︷︷ ︸
lδ

). (2.103)

Now, calculating the differential, we get∫
V0

d(τ : dδ) dV. (2.104)

Further, expressing the differential in terms of S and F , we get

d(τ : dδ) = d(τ : lδ) = d(F S) : δF , (2.105)
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where the symmetry of τ was exploited. Now, the differential is calculated to be

d(F S) : δF = ( dF S) : δF

= ( dF F −1F SF T(δF F −1)T) : I + (F dSF T) : lδ

= (l dτ lδ) : I + (Calgo : d d) : lδ.

(2.106)

Here, the first term is the so-called geometric tangent and the second term arises from the
elastic and inelastic contributions to the materials stiffness. Additionally, l d and d d are
defined in analogy to lδ and dδ. Further, Calgo : d d can be split into the elastic and inelastic
part:

Calgo : d d =
(

F
s
□ F T : ∂S

∂E
: F T s

□ F

)
: d d + ∂(F SF T)

∂z
: ∂z

∂E
: dE

= ce : d d + ∂τ

∂z

∂z

∂E
: F Td dF .

(2.107)

Now, to evaluate ∂z/∂E, we have a look at the local newton scheme, where

∂π∆
∂z

= 0 (2.108)

must hold in the converged state. Therefore, calculating the differential of Eq. (2.108), we
obtain

0 = d(∂π∆
∂z

)

= ∂2π∆
∂z2 dz + ∂2π∆

∂z∂E
: dE = 0

= ∂2π∆
∂z2 dz +

(
∂S

∂z

)T
: dE = 0.

(2.109)

Now, rearranging Eq. (2.109), we get

dz = −
(
∂2π∆
∂z2

)−1
∂2π∆
∂z∂E

: dE

= − ∂z

∂E
: dE

= −
(
∂2π∆
∂z2

)−1 (
∂S

∂z

)T
: F T s

□ F : d d

= −
(
∂2π∆
∂z2

)−1 (
∂τ

∂z

)T
: d d.

(2.110)
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Inserting the relation for ∂z/∂E into Eq. (2.107), we finally obtain the algorithmic tan-
gent:

Calgo = ce − ∂τ

∂z

(
∂2π∆
∂z2

)−1 (
∂τ

∂z

)T
. (2.111)

Here, the term ∂τ/∂z is calculated via

∂τ

∂z
=

 ∂τ
∂∆γ
∂τ
∂Ñ

s

 , (2.112)

where the occurring derivatives of τ are given by

∂τ

∂∆γ = 2 ∂τ

∂Ĉp : N s, (2.113)

∂τ

∂Ñ s = 2∆γ ∂τ

∂Ĉp : P⊤
N s , (2.114)

∂τ

∂Ĉp = −2
(

I
s
□
∂ψe
∂be + ∂ψe

∂be
s
□ I +

(
I

s
□ be + be s

□ I

)
: ∂

2ψe

∂be2

)
: F

s
□ F T : Cp−1 s

□ Cp−1 : Pp.

(2.115)
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Abstract

This work presents a thermomechanical finite strain shape memory alloy model that utilizes
a projection method to deal with the incompressibility constraint on inelastic strains. Due
to its finite strain formulation, it is able to accurately predict the behavior of shape memory
alloys with high transformation strains. The key feature of this model is the thermomechan-
ical modeling of the shape memory effect and superelastic behavior by optimizing a global,
incremental mixed thermomechanical potential, the variation of which yields the linear mo-
mentum balance, the energy balance, the evolution equations of the internal variables as well
as boundary conditions of Neumann- and Robin-type. The proposed thermal strain model al-
lows to properly capture transformation induced volume changes, which occur in some shape
memory alloys. A finite strain dissipation potential is formulated, which incorporates the
disappearance of inelastic strains upon austenite transformation. This important property is
consistently transferred to the time-discrete potential using a logarithmic stain formulation.
Yield and transformation criteria are derived from the dual dissipation potential. The im-
plementation based on an active set search and the algorithmically consistent linearization
are discussed in detail. The model is applied in three-dimensional simulations of a bistable
actuator design to explore its capabilities.

Keywords: shape memory alloys, constitutive modeling, thermomechanical coupling, pro-
jection method, finite element method

3.1 Introduction

Since the discovery of their unique properties, shape memory alloys are used in many med-
ical and engineering fields in various applications. Their frequent appearance stems from
their unique features, like the shape memory effect and superelasticity. Both effects emerge
from the characteristic first order phase transition from the austenite to the martensite state
and vice versa. While the occurring crystallographic effects involving the detwinning of the
martensite phase, which enables the shape memory effect, are well understood, the thermo-
mechanical modeling of the occurring effects is not straightforward. In recent times, there
has been a high effort to improve shape memory alloy models and to obtain fitting models
for specific use cases (see, for reviews, Section 4 of Lester et al. [64] or Cisse et al. [14]). They
can be roughly categorized into three classes: models based on statistical thermodynamics,
models founded in micromechanics and phenomenological models.
The models based on statistical thermodynamics rely on finding the phase equilibrium through
a minimization of a three well potential energy (e.g., Seelecke and Müller [110] or Govindjee
et al. [32]). Since these models yield results that also consider the microstructure of the
materials, they come mostly with a computational cost which is too high for large, structural
simulations. Additionally, gathering required micromechanical material parameters is some-
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times an elaborate task.
On the other hand, models based on micromechanics usually consider the mechanics of shape
memory alloy (SMA) single-crystals. Many models are then extended into the regime of
polycrystal modeling by usage of homogenization techniques (e.g., see Patoor et al. [95] and
Lagoudas et al. [58] or the more recent models by Mirzaeifar et al. [80] and Yu et al. [152]).
While these models consider the deep, underlying phenomena of shape memory alloys, this
advantage again comes with a high computational cost. This makes it really challenging to
use these models in large structural simulations of shape memory alloy actuators.
The third group of models is the class of phenomenological models. Usually, they come with
the advantage of only having macroscopic material parameters, which mostly are obtained
through tensile tests at different temperatures. In recent years, due to the plethora of shape
memory alloys effects and applications, many new shape memory alloy models were pub-
lished, which try to include more and more physical phenomenons. They can be divided into
two subgroups: models which include a geometrically linear theory (see, e.g., Auricchio et
al. [7], Auricchio et al. [6] and Sedlák et al. [109]), and models which include a geometrically
nonlinear theory.
The two main ways to include a geometric nonlinearity in the shape memory alloy model is to
either employ a multiplicative split of the deformation gradient going back to [18, 57, 61] or
to make use of an additive split (see Nemat-Nasser [86]) of the rate of deformation, which are
both well known from plasticity. While models based on the additive split are computation-
ally enticing, they only allow for small strains, while still capturing large rotations well (see,
e.g., Qidwai and Lagoudas [98], Müller and Bruhns [84] or Zhang and Baxevanis [156]). On
the other hand, models employing a multiplicative split are computationally more elaborate,
but can represent finite stretches well (see, e.g., Reese and Christ [101], Arghavani et al. [3]
or Wang et al. [137]). Additionally, there exist many new models considering geometric non-
linearities, which are limited to superelasticity (see, e.g., Bellini et al. [9], Wang et al. [136]
and Rezaee-Hajidehi et al. [103]). Furthermore, some models also consider transformation
induced plasticity (see, e.g., Hartl et al. [39], Xu et al. [148] and it’s extension to partial phase
transformations by Scalet et al. [108]).
Many of these models capture thermomechanics, martensite reorientation and detwinning as
well as superelasticity at different temperatures or allow for different elastic properties of
the materials while being numerically efficient and robust. However, when trying to model
bistable shape memory actuators (see the actuator design in Arivanandhan [4]), one needs
a numerically robust, fully thermomechanically coupled finite strain model that also mod-
els thermal expansion and volumetric effects during phase transition (see, e.g., Potapov et
al. [97]). To our knowledge, there is no model in the literature fulfilling all of the aforemen-
tioned requirements, which led to the model described in this paper. For example, the model
of Wang et al. [137] considers a thermomechanically coupled finite strain theory which is
capable of modeling the shape memory effect as well as superelasticity, neglecting volumetric
effects due to transformation as well as different expansion coefficients of the SMA phases.
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The model at hand falls into the aforementioned category of phenomenological models. It
is embedded into the generalized standard materials framework developed by Halphen and
Nguyen [36], which was extended to thermomechanics by Yang et al. [149] and which allows
to ensure thermodynamic consistency. The energies as well as the dissipation potential can
be seen as an extension of Sedlák et al. [109] to the finite strain case. Because the satisfaction
of the incompressibility of inelastic strains for finite strains is not as straightforward as for
the small strain case, a projection method developed for plasticity is incorporated into the
model (see Hurtado et al. [43] and Sielenkämper et al. [118]). Further, due to the character of
the energies used in this model, special numerical treatment is necessary to solve the model
equations using a Newton scheme. Since our aim is to model microactuators in which the R-
Phase is not present, it is not incorporated into the model. Additionally, tension-compression
anisotropy, which is an important effect in many shape memory alloys (for experimental pub-
lications see, e.g., Gall et al. [30] or Wang and Zhu [135], and for modeling approaches see,
e.g., Zaki et al. [153] or Sedlák et al. [109]), is not included in the model.
In the past, numerous advancements to current microelectromechanical systems (MEMS)
based on electrostatics, magnetism and electrothermal principals have been made. For ex-
ample, Hoffmann et al. [41] proposed a microactuator based on electrothermal activation
making use of bimetal effects. This, however, comes with the downside of low actuation
frequencies and a high power consumption. Han et al. [37] proposed an electrostatic actuator
based micro-switch for photonics. Devices based on electrostatics usually can be actuated
with high frequencies and are adaptable to many applications. Devices using optomechanics
were developed by, e.g., Eichenfield et al. [19], which come with a rather small tuning range,
but allow for a very high operation speed [17]. Despite their unique advantages, current
MEMS devices are challenging to use in downsized applications, where a high work output
combined with a high power efficiency and bistability is crucial. The microactuator modeled
in this paper is based on a concept published by Winzek et al. [140], which utilizes a high
temperature shape memory alloy with a large thermal hysteresis. This concept may over-
come the aforementioned weaknesses of other actuation principles, as shape memory alloys
usually have a large work output density and favorable downscaling capabilities (see, e.g.,
Kohl [53]). Additionally, downscaling this design is expected to drastically increase the pos-
sible actuation frequency in comparison to other, electrothermally activated actuators due to
the decreasing masses and increasing thermal gradients. One further key aspect is, that the
proposed actuator design requires no power in the stable states.

The paper is structured as follows: First, the energies as well as the dissipation potential is
derived. Then, in Section 3.3, numerical strategies necessary to solve the model equations
are discussed. The numerical results are subsequently shown in Section 3.4 before a summary
and outlook concludes the paper in Section 3.5.

Notation
Throughout this paper, a direct tensor notation is preferred. Scalars and scalar valued
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functions are typeset by light-face italic characters, e.g., a or A. First and second-order
tensors and tensor-valued functions are represented by bold-face italic letters, e.g., a or A.
Further, blackboard bold-faced letters are used to denote fourth-order tensors, e.g., c or C.
Additionally, the transpose of a second-order tensor is designated by AT, while the major
transpose of a fourth-order tensor is given by CT. The symmetric and deviatoric part of
a second-order tensor A are denoted by sym(A) = 1

2(A + AT) and A′ = A − 1
3tr(A)I,

respectively. Here, I is the second-order identity tensor and tr(A) denotes the trace of A. A
double contraction of two tensors A and B is denoted by A : B, while the dyadic product
is denoted by a ⊗ b. A determinant of a tensor A is either designated by det(A) or by A’s
third invariant IIIA.

3.2 Modeling of shape memory alloys

3.2.1 Kinematics

The deformation gradient F maps a line element from the reference configuration of a body
with Volume V0 into the current configuration of a body with Volume V and is defined
as

F = Grad (x(X, t)) , (3.1)

where Grad (•) refers to the gradient with respect to the reference configuration while X

and x are the position vectors of a material point in the reference and current configuration,
respectively. We consider a multiplicative split of the deformation gradient in the form (see
Wang et al. [137])

F = F eF iF θ, (3.2)

where F e is the elastic, F i the isochoric part of the deformation due to transformation1 and
F θ the part which describes the volume change due to thermal expansion and transformation2

of the deformation gradient. This is fairly similar to the multiplicative split in plasticity going
back to the works of Eckart [18], Kröner [57] and Lee [61]. Further, we define the determinant
Jθ = Jθ(θ, ξ) = det(F θ) to be a function of the absolute temperature θ and the martensite
volume fraction ξ ∈ [0, 1]. Since the thermal deformation is assumed to be volumetric, we
can express F θ in terms of Jθ as

F θ = (Jθ)
1
3 I. (3.3)

As is commonly done and will be useful later, we define the elastic and inelastic left Cauchy-
Green tensors as

be = F eF eT, bi = F iF iT. (3.4)

1for brevity, F i is called the inelastic part of the deformation gradient throughout this paper.
2for brevity, F θ is called the thermal part of the deformation gradient throughout this paper.
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Likewise, we define the inelastic right Cauchy-Green tensor and the inelastic Green-Lagrange
strain

C i = F iTF i, Ei = 1
2(C i − I). (3.5)

Motivated by the observation that the shape-memory effect is caused by an almost3 volume
preserving transformation of the crystal lattice, we assume C i to be volume preserving.
Therefore, because det(F i) = 1 has to hold, the determinant of the deformation gradient is
given by

J = det(F ) = JθJe, (3.6)

with Je = det(F e). Additionally, we define the velocity gradient l and its symmetric part d

as
l = Ḟ F −1, d = sym(l). (3.7)

Finally, we define the inelastic ’velocity gradient’ Li and its symmetric part Di in analogy to
l and d by

Li = Ḟ iF i−1, Di = sym(Li). (3.8)

3.2.2 (Im-)Balance equations

Momentum balances

The quasistatic linear momentum balance for a body with volume V in the current configu-
ration is given by

div (σ) + ρb = 0 in V, (3.9)

where b is the body force and ρ is the mass density. Further, Cauchy’s lemma t = σn as
well as the angular momentum balance σ = σT are assumed to hold.

Energy balance

Next, the balance of the energies is given by

u̇ = τ : d− Jdiv (q) + w, (3.10)

where u is the internal energy density per unit reference volume, τ denotes the Kirchhoff
stress tensor, q is the heat flux vector in the current configuration and w represents the
energy source term. Further, the divergence of the heat flux vector Q = JF −1q with respect
to the reference configuration is then given by Jdiv (q) = Div (Q).

3Actually, for some shape memory alloys, there exists a difference in density between the martensite and
austenite phase. For NiTiHf, see the article by Potapov et al. [97] and for modeling approaches for this
effect in NiTi the work of Qidwai and Lagoudas [98]. We also model this phenomenon in Section 3.2.3.
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Clausius-Planck inequality

To be thermodynamically consistent, the Clausius-Planck inequality

D = τ : d + θṡ− u̇ ≥ 0, (3.11)

where D is the mechanical dissipation density per unit reference volume and s is the entropy
density per unit reference volume, has to be fulfilled at any time. Further, the Helmholtz
free energy, which is defined by ψ = u− θs, is introduced. We assume ψ to be a function of
the deformation gradient F , the absolute temperature θ and the internal variables ξ and C i,
i.e., ψ = ψ(F ,C i, ξ, θ). Furthermore, we make the common assumption that

D
∣∣∣
Ci,ξ

= 0, (3.12)

i.e., there is no energy dissipation when the internal variables are virtually fixed. As Eq. (3.12)
must hold for arbitrary processes, one can show the following standard results

τ = ∂ψ

∂F
F T, s = −∂ψ

∂θ
. (3.13)

Now, it is easy to show that
D = Σi : Di + qξ̇ ≥ 0 (3.14)

with shorthand notations for the effective Mandel stress with respect to the intermediate con-
figuration Σi = −2F i

(
∂ψ/∂C i

)
F iT and the thermodynamic force q = −∂ψ/∂ξ associated

with the martensite volume fraction ξ.

3.2.3 Helmholtz free energy

The Helmholtz free energy density ψ for this model is assumed to be a sum of elastic, chemical
and hardening-like contributions in the form

ψ = ψe(be, ξ) + ψc(ξ, θ) + ψh(C i, ξ). (3.15)

Elastic energy

The elastic energy ψe is assumed to be isotropic and to follow a modified Neo-Hookean
formulation:

ψe(be, ξ) = λ(ξ)
4 (Je2 − 1− 2 ln Je) + µ(ξ)

2 (tr(be)− 3− 2 ln Je) . (3.16)
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Here, λ(ξ) and µ(ξ) are the Lamé parameters in dependence of the martensite volume fraction
ξ. Further, we use a Reuss-like mixture rule to estimate the elastic constants, i.e.,

µ(ξ) =
(
ξ

µM
+ 1− ξ

µA

)−1
, λ(ξ) =

(
ξ

λM
+ 1− ξ

λA

)−1
. (3.17)

Here, and subsequently, the indices •A and •M refer to the austenite and martensite phase,
respectively. Manipulating Eq. (3.13), one can show that the ordinary form

τ = 2be∂ψe
∂be (3.18)

holds for elastic isotropy. Using Eqns. (3.14) and (3.18), one can show that

Σi = −2F i ∂ψ

∂C i F
iT = Σe − 2F i ∂ψh

∂C i F
iT︸ ︷︷ ︸

:=Σh

(3.19)

where Σe = CeF e−1τF e−T is the Mandel stress with respect to the intermediate, elastically
unloaded configuration, which is symmetric due to the assumption of elastic isotropy.

Chemical energy

For the chemical energy, we assume a standard relationship (see, e.g., Lexcellent et al. [65]
or Panico and Brinson [94]):

ψc =
(
uA

0 − θsA
0

)
︸ ︷︷ ︸

ψA
0

−ξ
(
∆uAM − θ∆sAM

)
︸ ︷︷ ︸

∆ψAM

+c
(
θ − θ0 − θ ln θ

θ0

)

= uA
0 − θsA

0 + ξ (θ − θ0) ∆sAM + c

(
θ − θ0 − θ ln θ

θ0

) (3.20)

where c is the specific heat capacity and ∆sAM is the difference in specific entropy of the
austenite and martensite phase: ∆sAM = sA

0 − sM
0 . Here, c is assumed constant (compare

[109]). In Eq. (3.20), we made use of the definition of the equilibrium temperature of austen-
ite and martensite, which is θ0 = ∆uAM/∆sAM. Further, we assume for the equilibrium
temperature As > θ0 > Ms, where As is the temperature where the reverse transformation
starts and Ms is the starting temperature of the forward transformation.

Hardening energy

Since the inelastic strains vanish as ξ → 0, the inelastic strains Ei are assumed to satisfy
the relation Ei = ξEt (see Otsuka and Ren [92]), where Et is a measure for the effective
transformation strain. Now, the hardening-like energy adapted from Sedlák et al. [109] for
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finite strains is assumed to be given by

ψh = kEintξ

〈
Et〉2

1−
〈
Et〉4 , 〈

Et〉 =
√

2
3

∥∥Et∥∥
k

. (3.21)

In here, k is the maximum transformation strain, Eint is a hardening related parameter and〈
Et〉 is a modified von Mises equivalent strain. Obviously, ψh → ∞ for

〈
Et〉 → 1. This is

desired, since it captures the martensite becoming fully detwinned, which is assumed to cost
additional energy.

Thermal strains

Modeling thermal strains of multi-phase materials requires attention and special treatment.
In this work, the determinant of the thermal part of the deformation gradient is connected
to the coefficients of thermal expansion (CTEs) by

Jθ =
(
1 + εθ(ξ, θ)

)3
, εθ = ξαM (θ − θrefM) + (1− ξ)αA (θ − θrefA) . (3.22)

Here, εθ(ξ, θ) is the thermal strain. Additionally, αM and αA are the CTEs of the martensite
and austenite phase, respectively. Further, θrefM and θrefA are the reference temperatures for
austenite and martensite. Here, we want to note that it is necessary to distinguish the two
in order to properly represent the transformation-induced volume change which is present in
some shape memory alloys (see below).

Example:
We assume a one-dimensional SMA rod with only one reference temperature. Further, we
simplify the SMA model by assuming that martensite and austenite transformation occur
at the distinct temperatures θM and θA, and not at temperature ranges (see Fig. 3.1). The
thermal strains are then given by εθ = αAM(θ− θref), with αAM = ξαM + (1− ξ)αA. Further-
more, we assume that we know the shape of our rod at the thermal annealing temperature
θref (see Fig. 3.1). During forward transformation, the jump of εθ at θM can be analytically
calculated and is given by

∆εθ = (θref − θM)(αA − αM). (3.23)

Here, we can not only see that this jump is dependent on the reference temperature, but that
it can be positive or negative, depending on the reference temperature θref being larger or
smaller than the forward transformation temperature θM.

Using two reference temperatures θrefM and θrefA, we can not only circumvent this prob-
lem, but also model the magnitude of this jump in compliance with, e.g., the experimental
results of Potapov et al. [97], where they calculated the jump ∆V in volume from the lattice
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αM

0

θ

αA

εθ

θM θA θref

Fig. 3.1: Thermal strains when only considering one reference temperature θref .

parameters for Ni49.8Ti35.2Hf15 to be 0.47 %. However, we want to emphasize that this effect
does not play a significant role in many other shape memory alloys.

3.2.4 Dissipation potential

The dissipative behavior of the shape memory alloy is assumed to be governed by the dissi-
pation potential

ϕ(ξ̇,Di, ξ) =


ϕM, if ξ̇ ≥ 0 ∧ tr(Di) = 0

ϕA, if ξ̇ < 0 ∧ tr(Di) = 0

∞, else.

(3.24)

Here, depending on the direction of transformation, either ϕM or ϕA are used as the ac-
tive dissipation potential. As is commonly done for plasticity, the dissipation is assumed to
be infinite if tr(Di) ̸= 0, which guarantees volume-preserving inelastic deformations (com-
pare Rockafellar [104]). Additionally, we define the dissipation potential for an increasing
martensite volume fraction as

ϕM = ξ̇∆sAM((θ0 −Ms) + ξ(Ms −Mf)
)︸ ︷︷ ︸

=:QM(ξ)

+
√

2
3σ

reo
∥∥∥Di

∥∥∥ , (3.25)

where Mf is the finish temperature of forward transformation and σreo is the reorientation
stress. Likewise, the dissipation potential when going to a higher austenite volume fraction
is defined as

ϕA = ξ̇∆sAM((θ0 −Af) + ξ(Af −As)
)︸ ︷︷ ︸

=:QA(ξ)

+
√

2
3σ

reo
(∥∥∥∥∥ ξ̇ξεi

∥∥∥∥∥+
∥∥∥∥∥Di − ξ̇

ξ
εi
∥∥∥∥∥
)
. (3.26)

Here, Af is the finish temperature of reverse transformation and εi = 1
2 ln bi. The significance

of using the logarithmic inelastic strain εi as a strain measure for the dissipation is explained
below. The dissipation potential represents a geometrically nonlinear generalization of the
small strain potential proposed in Sedlák et al. [109], which is based on the works of Bernardini
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and Pence [10], Panico and Brinson [94] and Moumni et al. [83].

3.2.5 Transformation / yield criteria and inelastic evolution equations

It is assumed that the evolution of C i and ξ follow from the minimization problem

inf
Di,ξ̇

ψ̇ + ϕ, (3.27)

which is equivalent to the Legendre-Fenchel transformed problem (compare Equations (3.14),(3.19))

sup
Di,ξ̇

(
Σe −Σh

)
: Di + qξ̇ − ϕ(ξ̇,Di, ξ) =: ϕ∗(Σi, q, ξ), (3.28)

where ϕ∗ is the dual dissipation potential of ϕ:

ϕ∗(Σi, q, ξ) = sup
Di,ξ̇

tr(Di)=0

Σi : Di + qξ̇ −

ϕM, if ξ̇ ≥ 0

ϕA, if ξ̇ < 0.
(3.29)

Due to the minimization in Eq. (3.27), there is a tendency that for ξ̇ < 0 we get Di−(ξ̇/ξ)εi =
0 as a result of the last term in Eq. (3.26). In that case bi → I as ξ → 0 in time (for a proof,
see Appendix 3.6), i.e., for vanishing martensite content, the inelastic strain vanishes, which
is a physical necessity. With the reparametrization Dt = Di − (ξ̇/ξ)εi (compare Eq. (3.26))
we find

ϕ∗(Σi, q, ξ)

= sup



sup
Di,ξ̇≥0

tr(Di)=0

Σi : Di −
√

2
3σ

reo
∥∥∥Di

∥∥∥+
(
q −QM(ξ)

)
ξ̇

sup
Dt,ξ̇<0

tr(Dt)=0

Σi : Dt −
√

2
3σ

reo ∥∥Dt∥∥+
(1
ξΣi : εi + q −QA(ξ) +

√
2
3σ

reo ∥εi∥
ξ

)
ξ̇,

(3.30)

where QM and QA are defined in Eqns. (3.25) and (3.26) and capture the transformation
hysteresis due to temperature change. Further reparametrizing Di/t = λN with λ ≥ 0 and
the obvious solution

N = Σi′∥∥∥Σi′
∥∥∥ , (3.31)

it follows that

ϕ∗(Σi, q, ξ) = sup


sup

λ≥0,ξ̇≥0
λf(Σi) + ξ̇gM(q)

sup
λ≥0,ξ̇<0

λf(Σi) + ξ̇gA(q,Σi).
=

0, if f ≤ 0 ∧ gM ≤ 0 ∧ gA ≥ 0

∞, else

(3.32)
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Thus, we find the following transformation and yield criteria in the classical Karush-Kuhn-
Tucker form as well as evolution equations:

f(Σi) =
∥∥∥Σi′

∥∥∥−√2
3σ

reo ≤ 0; λf = 0; λ ≥ 0; Di = λ
∂f

∂Σi

gM(q) = q −QM(ξ) ≤ 0; ⟨ξ̇⟩gM = 0; ξ̇ > 0 possible if gM = 0

gA(q,Σi) = 1
ξ

Σi : εi + q −QA(ξ) +
√

2
3
σreo

ξ

∥∥∥εi
∥∥∥ ≥ 0; ⟨ξ̇⟩−gA = 0; ξ̇ < 0 possible if gA = 0

(3.33)
with the Macauley bracket ⟨•⟩ = (• + | • |)/2 and its modified form ⟨•⟩− = (• − | • |)/2. It
is then straightforward to prove thermodynamic consistency (see Eq. (3.14)). The ’0’-branch
in Eq. (3.32) implies that (see Eq. (3.28))

D = Σi : Di + qξ̇ = ϕ. (3.34)

Thus, we find with Eqns. (3.4) and (3.10) the following alternative form of the energy bal-
ance:

θṡ = ϕ−Div (Q) + w. (3.35)

3.2.6 Rate potential

To simplify the discussion, we start by the isothermal case, i.e., in a first step, the temperature
θ is considered to be a given parameter. The rate potential and its time discretized form
read

π = ψ̇ + ϕ ≃ 1
∆t

(
ψ(F ,C i, ξ, θ)− ψn + ϕ∆

)
. (3.36)

Here, ψn refers to the Helmholtz free energy at the previous time, ∆t is the time step from
tn to tn+1

4 and ϕ∆ is the time discretized version of the dissipation potential multiplied by
∆t, defined by

ϕ∆ =

σ
reo∆α+Q(C i

n, ξn+ 1
2
, sg (∆ξ))∆ξ if IIIi = 1

∞, else,
(3.37)

with sg (•) referring to the sign function and ∆ξ = ξ − ξn. Additionally, IIIi is the third
invariant of C i, i.e.,

IIIi = det(C i). (3.38)

4For brevity and simplicity, we dropped the index n + 1 whenever we deemed it to be not helpful for the
presentation.
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The constraint IIIi = 1 in Eq. (3.37) is consistent with the requirement tr(Di) = 0 (see
Eq. (3.24)). Additionally, we compute the effective inelastic strain increment ∆α as

∆α =
√

2
3

∥∥∥∥1
2U i−1

n ∆rC
iU i−1

n

∥∥∥∥ =:
√

2
3

∥∥∥∥1
2∆rC

i
∥∥∥∥

U i−1
n

(3.39)

where the inelastic right stretch is U i =
√

C i, ∆rC
i = C i −C i

r and the shorthand notation
∥•∥U i−1

n
=
∥∥∥U i−1

n •U i−1
n

∥∥∥ is used. Further, we define C i
r as

C i
r =

(
C i
n

)1+
〈

∆ξ
ξn

〉
− . (3.40)

Now, for ξ going to zero in any given step, i.e., ξ = ξn+∆ξ = 0⇔ ∆ξ = −ξn → C i
r =

(
C i
n

)0 =
I, C i

r goes back to unity again. Thus, the time discrete potential (3.37) based on the definition
(3.40) of C i

r is the key to ensure that the inelastic strain consistently disappears during the
transformation from martensite to austenite. Further, the function Q(C i

n, ξn+ 1
2
, sg (∆ξ)) is

given by

Q(C i
n, ξn+ 1

2
, sg (∆ξ)) =

∆sAM((θ0 −Ms) + ξn+ 1
2
(Ms −Mf)

)
, if ∆ξ ≥ 0

∆sAM((θ0 −Af) + ξn+ 1
2
(Af −As)

)
−
√

2
3
σreo

ξn

∥∥εi
n

∥∥ , if ∆ξ < 0,
(3.41)

where ξn+ 1
2

= (ξ + ξn)/2 is the midpoint evaluation of ξ, which is employed to obtain a
reasonable transformation when the material is not stressed (see Frost et al. [27] for a similar
concept). Moreover, we used C i

n and ξn for the reverse transformation in Eq. (3.41) to
circumvent the eigenvalue problem as well as its linearization in every local Newton iteration.
In this way, it suffices to solve the eigenvalue problem once per time step.
Using some further shorthand notations for constant terms in Q, we obtain

ϕ∆ = σreo∆α

+



QM0︷ ︸︸ ︷
∆sAM((θ0 −Ms) + ξn(Ms −Mf)

)
∆ξ + 1

2

HM︷ ︸︸ ︷
∆sAM(Ms −Mf) ∆ξ2, ∆ξ ≥ 0

QA0︷ ︸︸ ︷(
∆sAM((θ0 −Af) + ξn(Af −As)

)
−
√

2
3
σreo

ξn

∥∥∥εi
n

∥∥∥ )∆ξ + 1
2

HA︷ ︸︸ ︷
∆sAM(Af −As) ∆ξ2, ∆ξ < 0

= σreo∆α+

Q
M0∆ξ + 1

2H
M(∆ξ)2, if ∆ξ ≥ 0

QA0∆ξ + 1
2H

A(∆ξ)2, if ∆ξ < 0

= σreo∆α+Q(sg (∆ξ))∆ξ + 1
2H(sg (∆ξ))(∆ξ)2,

(3.42)
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where H and Q summarize HM, HA, QM0 and QA0, respectively. Further, det(C i
r) =

det(C i
n) = 1 clearly holds when looking at the definition of C i

r in Eq. (3.40). Addition-
ally, the consistency of ϕ∆ with the time-continuous theory is trivially proven except for ∆α.
Therefore, we have a look at the approximation of a1+x at x≪ 1:

a1+x |x|≪1
≈ a+ xa ln a (3.43)

as ln ax ≈ ax − 1. Hence, we can approximate C i
r as

C i
r

|∆ξ|≪1
≈ C i

n + C i
n ln(C i

n)
〈∆ξ
ξn

〉
−
. (3.44)

We can use this result for computation of the time-discrete derivative of α:

∆α
∆t ≈

√
2
3

∥∥∥∥∥1
2U i−1

n

1
∆t∆C iU i−1

n − 1
2 ln(C i

n)
〈 ∆ξ

∆tξn

〉
−

∥∥∥∥∥
=
√

2
3

∥∥∥∥∥1
2F i−T

n

1
∆t∆C iF i−1

n − 1
2ξn

ln (bi
n)
〈∆ξ

∆t

〉
−

∥∥∥∥∥ .
(3.45)

Therefore, with the time step width going to zero, we obtain

∆t→ 0⇒
√

2
3

∥∥∥∥∥Di − ξ̇

2ξ ln (bi)
∥∥∥∥∥ = α̇, (3.46)

which is consistent with the time-continuous Eq. (3.26). Furthermore, since IIIi = det(C i) =
1, we get for the time derivative of IIIi:

˙IIIi = ˙IIIiC i−1 : Ċ i = 2IIIitr(Di) = 0. (3.47)

Hence, since ϕ∆ is time-continuous, we can use the discretized potential to solve for C i and
ξ:

(C i, ξ) = arg inf
Ci,ξ

(ψ − ψn + ϕ∆︸ ︷︷ ︸
π∆

) = arg inf
Ci,ξ

π∆(F ,C i, ξ, θ). (3.48)

3.3 Numerical strategies

The potential π∆, as we formulated it in Eq. (3.48) carries two major numerical difficulties.
First, C i is constrained to be volume preserving, i.e., det(C i) = 1, which is very important
to be exactly satisfied to comply with physics and not accumulate errors. Secondly, π∆ is not
differentiable at ∆rC

i = 0. The strategies employed to overcome these and other numerical
difficulties as well as general numerical approaches are presented in this section.
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3.3.1 Inelastic volume preservation

To deal with the constraint in C i, we employ a strategy using a projection of C i into the space
of unimodular tensors, which was introduced by Hurtado et al. [43] for crystal plasticity. Our
approach here closely follows the approach presented in Sielenkämper et al. [118].
First, we express C i in terms of the unconstrained inelastic auxiliary right Cauchy-Green
tensor Ĉ i:

C i = ÎIIi−
1
3 Ĉ i, ÎIIi = det(Ĉ i). (3.49)

Thus, det(C i) = 1 is automatically satisfied. This idea is borrowed from various formulations
in hyperelasticity, where similar approaches are used to decouple volumetric and deviatoric
deformations (see, e.g., Flory and Volkenstein [26] or Simo et al. [121]). Now, we replace C i

by C i(Ĉ i) in the minimization problem in Eq. (3.48):

(C i, ξ) = arg inf
Ĉ

i
,ξ

π∆(F ,C i(Ĉ i), ξ, θ). (3.50)

However, while this removes the constraint from the minimization problem, π∆ is now invari-
ant with respect to changes of ÎIIi, and is therefore not uniquely solvable. For this reason, we
add the regularization energy

ψr = A

2 ( ÎIIi −B)2 (3.51)

to π∆. We want to emphasize that this has no effect on the solution. This is due to the
fact that ÎIIi = B is exactly satisfied after converging to a solution, since ψr is the only term
in π∆ that is dependent on ÎIIi. Therefore, ψr is zero at any solution of the minimization
problem. Further, the constants A and B can be chosen arbitrarily. They do not have to
be chosen particularly large. In this paper, we chose B = 1, but any other positive value
could be chosen and would lead to the exact same results. In this special case, C i = Ĉ i is
exactly satisfied once the solution algorithm is converged. However, we want to note that
this equality does not hold in the not yet converged state.
The following tensor, which is used in the residuals and stiffness terms later, is also known
from hyperelastic models:

Pi
(
Ĉ i
)

= ÎIIi−
1
3
(
Is − 1

3Ĉ i ⊗ Ĉ
i−1
)

= ∂C i

∂Ĉ i , (3.52)

where Is is the fourth order identity on symmetric second order tensors.

3.3.2 Differentiability at ∆rC
i = 0

The ansatz C i = ÎIIi−
1
3 Ĉ i renders the solution C i a priori volume preserving, but it does

not solve the lack of differentiability of ϕ∆ for C i = C i
r. However, this is achieved by the
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following reparametrization:

Ĉ i(∆γ, Ñ s) = C i
r + 2∆γ Ñ s∥∥∥Ñ s

∥∥∥
U i−1
n

, ∆γ ≥ 0 (3.53)

where Ñ s is an unconstrained, symmetric 2nd-order tensor. The final unconstrained mini-
mization problem now reads

(∆γ, Ñ s, ξ) = arg min
∆γ>0,Ñ s

,ξ
π∆(F ,C i, (Ĉ i(∆γ, Ñ s)), ξ, θ). (3.54)

It is easy to show that π∆ is invariant with respect to
∥∥∥Ñ s

∥∥∥
U i−1
n

. In order to render the
solution unique, we further modify ψr:

ψr = A

2

(
( ÎIIi − 1)2 +

(∥∥∥Ñ s
∥∥∥

U i−1
n

− 1
)2
)

+ ϵ

2(Ñ s − Ñ s,tr)2 (3.55)

where the choice of A, with the same argument as in Subsection 3.3.1, still has no effect on
the solution. Additionally, the last term with a very small and constant ϵ is explained in
Subsection 3.3.5. Now, the minimization problem from Eq. (3.54) is computed by solving the
stationary conditions:

∂π∆
∂∆γ = 0, ∂π∆

∂Ñ
s = 0, ∂π∆

∂ξ
= 0, (3.56)

where in general only a subset of these three equations is involved, depending on the ’active’
variables. The active set of variables is determined by the activation or yield criteria presented
in the sequel (see Subsections 3.3.3 and 3.3.10).

3.3.3 Algorithmic yield criterion

In a given time step, C i will only change (i.e., C i ̸= C i
n ⇔ ∆γ > 0), if this decreases

(minimizes) the potential. In order to decide whether the couple (∆γ, Ñ s) is activated for a
given state (F ,C i

r, ξ, θ), we evaluate the algorithmic yield condition

f := − ∂

∂∆γ inf
Ñ

s
π∆(F ,C i(Ĉ i(∆γ, Ñ s)), ξ, θ)

∣∣∣∣
∆γ→0

. (3.57)

If f > 0, ∆γ is activated, i.e., (∆γ, Ñ s) are put into the active set. Otherwise, ∆γ = 0
minimizes π∆, which corresponds to the case where f ≤ 0. If (∆γ, Ñ s) are part of the active
set, the related equations and concerning residuals are: ∂π∆/∂∆γ != 0 and ∂π∆/∂Ñ s != 0.
For a given F , ξ and θ, we obtain the explicit form of f by variation of π: ∆γ = 0 if
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π∆(F ,C i, ξ, θ) is minimized by C i = C i
r. In other words, ∆γ = 0 is minimizer of π∆ if

δπ∆ ≥ 0 ∀δC i = ∂C i

∂Ĉ i : (2δγN s)︸ ︷︷ ︸
δĈ

i

, (3.58)

with shorthand notation
N s = Ñ s/

∥∥∥Ñ s
∥∥∥

U i−1
n

(3.59)

for an arbitrary Ñ s ̸= 0 and δγ ≥ 0. Further, taking a closer look at the variation of π∆, we
obtain (compare Appendix 3.7)

δπ∆ = ∂ψ

∂C i

∣∣∣
Ci=Ci

r
: Pi(C i

r) : (2δγN s) +
√

2
3σ

reoδγ
∥∥∥U i−1

n N sU i−1
n

∥∥∥︸ ︷︷ ︸
=1

. (3.60)

Using the definition of the unimodular projector in Eq. (3.52), we obtain

δπ∆
(3.52)=

( (
2 ∂ψ
∂C i

∣∣∣
Ci=Ci

r
− 1

3

(
C i

r : 2 ∂ψ
∂C i

∣∣∣
Ci=Ci

r

)
C i−1

r

)
︸ ︷︷ ︸

=:DEV
Ci

r

(
2 ∂ψ

∂Ci

∣∣
Ci=Ci

r

)
=U i−1

r

(
2U i

r
∂ψ

∂Ci

∣∣∣
Ci=Ci

r
U i

r

)′

U i−1
r

: N s +
√

2
3σ

reo
)
δγ. (3.61)

With the definitions of N s in Eq. (3.59) and DEVCi
r
(•) in Eq. (3.61) as well as making use

of the fact that U i−1
n and C i−1

r are coaxial, we can simplify Eq. (3.60) to

δπ∆ =

(U i
nDEVCi

r

(
2 ∂ψ
∂C i

∣∣∣
Ci=Ci

r

)
U i
n

)
: U i−1

n Ñ sU i−1
n∥∥∥U i−1

n Ñ sU i−1
n

∥∥∥ +
√

2
3σ

reo

 δγ. (3.62)

Now, since inequality (3.58) must hold for arbitrary symmetric Ñ s, we get

δπ∆ ≥ −
(∥∥∥∥DEVCi

r

(
2 ∂ψ
∂C i

∣∣∣
Ci=Ci

r

)∥∥∥∥
U i
n

−
√

2
3σ

reo
)
δγ ≥ 0 ∀δγ ≥ 0. (3.63)

Thus, the algorithmic yield criterion reads

f =
∥∥∥∥DEVCi

r

(
2 ∂ψ
∂C i

∣∣∣
Ci=Ci

r

)∥∥∥∥
U i
n

−
√

2
3σ

reo ≤ 0. (3.64)

However, note that for ξ = 0, and thus C i
r = C i

n, we have a simplified yield criterion

f =
∥∥∥∥∥Ri

n

(
2U i

n

∂ψ

∂C i

∣∣∣
Ci=Ci

n

U i
n

)′
RiT
n

∥∥∥∥∥−
√

2
3σ

reo

(3.19)=
∥∥∥∥(Σe,tr −Σh,tr

)′
∥∥∥∥−√2

3σ
reo,

(3.65)
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where the superscript ’tr’ denotes the trial state and Ri = F iU i−1. This result again shows
the consistency with the time-continuous theory (see Eq. (3.33)).

3.3.4 Algorithmic transformation criteria

In analogy to Subsection 3.3.3, the activation criteria for forward (’M’, ∆ξ ≥ 0) and reverse
(’A’, ∆ξ < 0) transformations read

gM = − ∂

∂ξ
π∆
∣∣∣
∆ξ→0+

, gA = − ∂

∂ξ
π∆
∣∣∣
∆ξ→0−

, (3.66)

where 0+ and 0− denote the right- and left-hand limit (recall that sg (ξ) is an argument of
Q in Eq. (3.41)).

3.3.5 Initial guess for Ñ s

In general, the direction of inelastic flow Ñ s is determined by the minimization of π∆ through
a Newton scheme, which requires a reasonable initial guess when ∆γ is activated. Coinciden-
tally, an analytical solution for ∆γ → 0 exists for Ñ s:

Ñ s,tr =
C i
nDEVCi

r

(
−2 ∂ψ

∂C i

∣∣∣
Ci=Ci

r

)
C i
n∥∥∥∥DEVCi

r

(
−2 ∂ψ

∂C i

∣∣∣
Ci=Ci

r

)∥∥∥∥
U i
n

. (3.67)

The proof is given in Appendix 3.7.
It is noted that for ∆γ = 0, it follows that C i = C i

r, which is independent of Ñ s. That
means that any choice of Ñ s minimizes π∆, i.e., there is no unique solution. For very small
∆γ, the sensitivity of π∆ with respect to Ñ s is also small, which can lead to a bad condition
of the nonlinear equation system, which needs to be solved to minimize π∆. To stabilize the
solution process, the last term in Eq. (3.55) is added to π, since for ∆γ → 0 it is known that
Ñ s = Ñ s,tr minimizes π∆. In theory, ϵ can be chosen arbitrarily small, in practice a finite
value is necessary due to the limited numerical accuracy. Thus, the last term in Eq. (3.55) is
used to ’guide’ the algorithm towards the right solution when it is no longer able to find it
by itself.

3.3.6 Computing derivatives of ∆α for ∆γ → 0

The derivatives of ∆α are numerically tough to obtain for ∆γ → 0, due to an almost zero
denominator of M̃Ci (see Eq. (3.112) and preceding equations). To overcome this issue, we
derived the derivatives of ∆γ with respect to ξ, Ñ s and ∆γ separately for ∆γ → 0, which
are then numerically feasible to obtain. However, this seems to be a rather theoretical as
we never observed the case that ∆γ was too close to zero to obtain the derivatives using
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Fig. 3.3: Penalty function penalizing non-
physical states.

the usual way shown in Appendix 3.8. Therefore, and for brevity, we do not discuss them
here.

3.3.7 Regularization of ψh

Numerically, ψh is challenging, since with
〈
Et〉→ 1, ψh and ∂ψh/∂

〈
Et〉 go to infinity. This is

very demanding, because values of
〈
Et〉 ≥ 1 can occur during the iterative solution process of

the Newton scheme, leading to a loss of convergence. The term (compare to Eq. (3.21))

φ(
〈
Et〉) =

〈
Et〉2

1−
〈
Et〉4 (3.68)

is illustrated in Fig. 3.2 in black. To stabilize the solution process, we partially replace the
function φ by a linear approximation in the region where

〈
Et〉 > c, where c is close to

1 (see Fig. 3.2 in green). This regularization approach is adopted from crystal plasticity,
were it successfully improved the numerical treatment of the power law in Wulfinghoff and
Böhlke [147]. In order to prevent the solution

〈
Et〉 from taking nonphysical solutions beyond

1, we add a penalty-type energy as illustrated in Fig. 3.3. We penalize all states (
〈
Ei〉, ξ)

(see Fig. 3.3) below the dashed half-line starting at ξ0 by the energy

ψp =


1
2Hpl

2
F ξ < ⟨Ei⟩

c + ξ0

0 else
(3.69)

where lF is the minimum distance of the point
(〈

Ei〉, ξ) from the half-line and Hp is a large
penalty parameter.
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3.3.8 Viscosity of the martensite volume fraction ξ

To further improve the numerical robustness, we added an artificial viscosity-like term for the
martensite volume fraction. Since it is a dissipative term, we add this term to the discretized
dissipation potential:

ϕ∆η = 1
2∆tηξ∆ξ

2, (3.70)

where ηξ is a small, positive constant.

3.3.9 Thermomechanical coupling

Like the displacements, the temperature is an unknown for our model. Both fields are coupled
through the thermomechanical energy and through the dissipative terms, which lead to a
heating of the material. Additionally, the temperature changes the material behavior and
leads to thermal strains. Both fields are coupled using a potential-based monolithic approach
similar to the one presented in Yang et al. [149]. Further, we assume Fourier’s heat conduction
law with heat conductivity κ. The thermomechanic quasistatic time-discrete potential then
reads:

π∆ = ψ − (un − θsn) + θ

θn
ϕ∆ −

∆t
2θn

κ ∥Grad (θ)∥2 + ∆t θ
θ2
n

κ ∥Grad (θn)∥2 , (3.71)

where we neglect the influence of body forces. The integral form Π∆ of the local potential
π∆ is then given by

Π∆ =
∫
V0

π∆ dV −
∫

∂V0t

¯̂t · u dS −
∫
V0Q

∆t
θn
Q̄θ dS +

∫
V0

∆t
θn
θw dV, (3.72)

where w denotes the heat source and ¯̂t as well as Q̄ denote prescribed tractions and normal
heat flux at the Neumann-type boundaries ∂V0t and ∂V0Q, respectively. Now, the classical
weak form of the linear momentum balance is obtained by variation of Eq. (3.71) with respect
to u:

δuΠ∆ =
∫
V0

τ : dδ dV −
∫

∂V0t

¯̂t · δu dS != 0, (3.73)

with dδ = sym(Grad (δu) F −1). Likewise, we obtain the weak form of the energy balance by
variation of Eq. (3.71) with respect to θ:

δθΠ∆ =
∫
V0

((
∂ψ

∂θ
+ sn + 1

θn
ϕ∆

)
δθ − κ∆t

θn
Grad (θ) ·Grad (δθ) + ∆tδθ

θ2
n

κ ∥Grad (θn)∥2

+ ∆t
θn
w

)
δθ dV −

∫
V0Q

∆t
θn
Q̄δθ dS != 0.

(3.74)



3 Article 2: A thermomechanical finite strain shape memory alloy model and its
application to bistable actuators

57

Subsequently, we find u, θ, ξ,C i by finding the solution to the saddle point problem

(u, θ, ξ,C i) = arg inf
u∈κu

sup
θ∈κθ

inf
z

Π∆, (3.75)

where κu = {u : u = ū on ∂V0u} is the set of admissible displacements satisfying the Dirichlet
boundary conditions imposed on the boundary ∂V0u and κθ = {θ : θ = θ̄ on ∂V0θ} is the
set of admissible temperatures satisfying the Dirichlet boundary conditions imposed on the
boundary ∂V0θ. Additionally, z is the vector of internal variables, i.e., z = (ξ,C i).
Manipulating Eq. (3.74) using the definition s = −∂ψ/∂θ as well as applying Gauss theorem,
we obtain

δθΠ∆ =
∫
V0

(
−∆s+ 1

θn
ϕ∆ + κ∆t

θn
Div (Grad (θ))− κ∆t

θ2
n

Grad (θ) ·Grad (θn) + ∆t
θn
w

+ κ∆t
θ2
n

∥Grad (θn)∥2
)
δθ dV +

∫
∂V0Q

−∆tκGrad (θ) ·N
θn

δθ dS −
∫

∂V0Q

∆t
θn
Q̄δθ dS = 0,

(3.76)

where N is the external normal on the boundary ∂V0 in the reference configuration. To show
consistency with the time-continuous theory, we take a look at the integrand over the volume
integral in Eq. (3.76). By multiplying with θn/∆t, we get

θn
∆s
∆t = 1

∆tϕ∆ −Div (−κGrad (θ)) + w + κ

θn
Grad (θn) · (Grad (θn)−Grad (θ)). (3.77)

Here, we want to note that this requires κ to be independent of the temperature θ. However,
one possibility is to consider κ = κ(θn), which could circumvent this limitation.
Now, for ∆t→ 0, we get (also see Eq. (3.35))

θṡ = ϕ−Div (−κGrad (θ)) + w. (3.78)

Hence, we arrived at the energy balance (Eq. (3.35)) with Fourier’s law Q = −κGrad (θ),
which proves the consistency with the time-continuous theory. Further, the surface inte-
grals in Eq. (3.76) imply the Neumann boundary condition Q̄ = −κGrad (θ) ·N on ∂V0Q.
Alternatively, one can include Robin-type boundary conditions into the model by replacing
the integrand ∆tQ̄θ/θn in Eq. (3.72) by 1/2∆th(θ − θs)2/θn, where h is the heat convection
coefficient and θs is the temperature of the surrounding medium. In that case, the variation
of Π∆ yields the boundary condition −κGrad (θ) ·N = h(θ − θs) on ∂V0Q.

3.3.10 Active set search

When solving the set of Equations (3.56), one has to decide which variables will evolve using
the activation criteria given in Eqns. (3.64) and (3.66). They will then be put into the



3 Article 2: A thermomechanical finite strain shape memory alloy model and its
application to bistable actuators

58

active array of variables A. If then, at a later state, an activation criterion is inactive, the
variable is taken from A again. This is done using the active set search algorithm outlined in
Algorithm 2. The algorithm is structured as follows: First, if A = ∅ or no variable from A

Algorithm 2 Active set algorithm solving the minimization problem in Eq. (3.56).
loop
j ← j + 1
if no rescaling done in last step or Aj = ∅ then

determine Aj+1 (see Algorithm 3)
end if
if Aj+1 = Aj then

compute ca, ∂π∆
∂θ , ∂2π∆

∂θ2 , ∂τ
∂θ Eqns. (3.166), (3.172), (3.173)

save history variables
exit

end if
ξ⋆0 = ξj , ∆γ⋆0 = ∆γj , Ñ s⋆

0 = Ñ sj

loop
k ← k + 1
get ∂π∆

∂Aj+1 , ∂2π∆
∂Aj+12 based on ξ⋆k+1,∆γ⋆k+1 and Ñ s⋆

k+1 Eqns. (3.87), (3.120)-(3.125)
if k > maxIter or

∥∥∂π∆/∂Aj+1∥∥ < tolNwtn then
exit

else
calculate ∆ξ⋆k+1, ∆∆γ⋆k+1, ∆Ñ s⋆

k+1 if in Aj+1

if ξj + ∆ξ⋆k+1 < 0 then
rescale ∆ξ⋆k+1, ∆∆γ⋆k+1 and ∆Ñ s⋆

k+1 s.t. ξ⋆k+1 = ξhard
min

end if
update ξ⋆k+1 = ξ⋆k + ∆ξ⋆k+1, ∆γ⋆k+1 = ∆γ⋆k + ∆∆γ⋆k+1, Ñ s⋆

k+1 = Ñ s⋆
k + ∆Ñ s⋆

k+1
according to Aj+1

end if
end loop
if ∆ξ⋆k+1 goes in dir. not matching gA/gM then

rescale ∆ξ⋆k+1, ∆∆γ⋆k+1 and ∆Ñ s⋆
k+1

xiJustDeactivated ← true
else

xiJustDeactivated ← false
end if
ξj+1 = ξj + ∆ξ⋆k+1, ∆γj+1 = ∆γj + ∆∆γ⋆k+1 and Ñ sj+1 = Ñ sj + ∆Ñ s⋆

k+1
end loop

was rescaled (see the end of this subsection for an explanation of rescaling) during the last
iteration, we need to evaluate the activation criteria. With them at hand, we determine our
new set Aj+1. The details for determining which variable to activate are given in Algorithm 3.
Subsequently, we check if the active set changed from the last iteration. If this is not the case,
the solution from the last iteration is confirmed as solution of the equation system. In that
case, we compute the algorithmic tangent (see Appendix 3.10 for details), save the history
variables and exit the material routine. Otherwise, we solve the minimization problem for
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Algorithm 3 Algorithm deciding the priority when updating A.
compute f Eq. (3.65)
if ξ /∈ Aj then

compute gA and gM Eq. (3.66)
end if
if Aj = ∅ then

if gA < 0 and not xiJustDeactivated then
add ξ to Aj+1

else if gM > 0 and not xiJustDeactivated then
add ξ to Aj+1

else if f > 0 then
add ∆γ to Aj+1

end if
else if ξ ∈ Aj and ∆γ /∈ Aj then

if f > 0 then
add ∆γ to Aj+1

compute new Ñ s,tr Eq. (3.67)
end if

else if ∆γ ∈ Aj and ξ /∈ Aj and not xiJustDeactivated then
if gA < 0 then

add ξ to Aj+1

else if gM > 0 then
add ξ to Aj+1

end if
end if
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the current active set Aj+1. This is done using a Newton scheme. First, we compute our
residual and stiffness concerning active set Aj+1, i.e., only derivatives with respect to the
active set are computed. If the maximum iterations are exceeded or the norm of the residual
is lower than the tolerance, we exit the loop. Otherwise, we check if updating ξj+1 would
result in a negative ξ when applying the Newton step. If this is the case, we rescale, i.e.,
multiply the increments by a scalar such that ξ⋆k+1 is set to ξhard

min , which is 5 × 10−5 in this
work. Subsequently, we compute ∆ξ⋆k+1, ∆∆γ⋆j+1 and ∆Ñ s⋆

j+1. In fact, we do not update
ξj+1, ∆γj+1 or Ñ sj+1 yet. We update them only after exiting the Newton scheme and being
sure that ξ incremented in a direction matching gA and gM, which were calculated before the
Newton loop. If, due to a bad starting solution, this is not the case, we rescale the Newton
step such that ξj+1 = ξn. If this happens, we make sure that in the next iteration of the
active set algorithm, we won’t activate ξ again.

3.4 Numerical results

In this section, the previously presented model is tested for different examples. First, to test
the model’s time convergence behavior and to show the superelastic as well as martensite
reorientation behavior at high and low temperatures, respectively, thermomechanical Gauss
point evaluations are conducted. Finally, a full actuator model is simulated. To cope with
the thin structures occurring in the actuator, the SMA model at hand is embedded into a
hexahedral element formulation with reduced integration and hourglass stabilization for the
displacement, while the heat conduction terms are fully integrated.

3.4.1 Gauss point evaluations

For the Gauss point evaluations, thermal expansion as well as the transformation induced vol-
ume change, which is discussed in Section 3.2.3, are neglected for simplicity. The simulations
are conducted using a reduced integration hexahedral element with hourglass stabilization,
which is embedded into the finite element program FEAP [127]. The material constants used
in the Gauss-point are given in Table 3.1. Here, it is noted that θrefA and θrefA are chosen
such that ∆V = 0.47% (see Eq. (3.23)), matching the findings reported in Potapov et al. [97].
The numerical parameters are summarized in Table 3.2. Figure 3.4 shows a tensile test at a
temperature of 270 ◦C for 49 and 40000 time steps. Clearly, convergence with regard to time
step width is not an issue, as both time step widths yield accurate results.
To demonstrate that the model results indeed do not depend on the numerical parameters,
we compare results for two different sets of numerical parameters in a tensile test. The first
set of numerical parameters is the one given in Table 3.2, which is used in the remainder of
this paper. The second set is defined in Table 3.3 just for this comparison. The results are
shown in Figure 3.5. Clearly, the numerical parameters do not have a noticeable effect on
the results.
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Tab. 3.1: Material parameters.
Elastic constants

λA [GPa] λM [GPa] µA [GPa] µM [GPa]
23.076 13.461 34.615 20.192

Dissipation potential parameters
θ0 [◦C] Ms [◦C] Mf [◦C] As [◦C] Af [◦C] σreo [MPa]

80 70 50 120 140 160
Chemical and hardening parameters

∆sAM [MPa
K ] Eint [MPa] k [-]

0.383 30 0.12
Thermal constants
αM [0× 10−6 1

K ] αA[0× 10−6 1
K ] c [ mJ

mm3 K ] κ [W
m ] θrefM [◦C] θrefA [◦C]

6.6 11.0 2.9 8.6 588.28 500.0

Tab. 3.2: Numerical parameter set 1 for simulation.
Numerical parameters:
c [-] Hp [MPa] A [MPa] B [-] ξ0 [-] ϵ [MPa] ηξ [MPa

s ]
0.99 108 105 1 10−4 10−4 0.01

Tab. 3.3: Numerical parameter set 2, only for comparison in
Fig. 3.5.

Numerical parameters:
c [-] Hp [MPa] A [MPa] B [-] ξ0 [-] ϵ [MPa] ηξ [MPa

s ]
0.98 107 106 1 10−3 10−3 10−3
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Fig. 3.4: Tensile test for 49 and 40000 time
steps. No error due to large load
steps is visible.
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Fig. 3.6: Tensile test at various temperatures.
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Fig. 3.7: Thermal cycling tests with different stresses (160 MPa, 300 MPa, 400 MPa and
500 MPa).

Next, we modeled tensile tests at 50 ◦C, 100 ◦C, 160 ◦C and 200 ◦C. The resulting stress-
strain curves are shown in Fig. 3.6. For low temperatures, i.e. 50 ◦C and 100 ◦C, the model
predicts a remaining martensite reorientation. On the other hand, for rather high tempera-
tures, the model captures superelastic material behavior when unloading. However, we want
to emphasize that these results do not consider any damage or plastic deformations which
might already occur.
Finally, the model captures the shape memory effect well. This is shown in Fig. 3.7, where
we applied different stresses (160 MPa, 300 MPa, 400 MPa and 500 MPa) and then started a
thermal cycle. For 160 MPa, one obtains only twinned martensite, i.e., Et = 0 in the context
of this work. Therefore, one only gets a small hysteresis due to the different elastic constants
of austenite and martensite. For the larger prestresses, the austenite is transformed into
detwinned martensite, i.e.,

〈
Et〉 ̸= 0. This leads to the typical shape memory effect.

3.4.2 Plate with a hole

In this example, we simulate a plate with a cylindrical hole (see Fig. 3.8), which is at first
loaded by a traction ¯̂t, then unloaded and subsequently heated, which lets it recover the initial
shape. The material and numerical parameters are unchanged from Subsection 3.4.1, except
the reference temperatures are now θrefA = 80 ◦C and θrefM = 87.66 ◦C. Due to the symmetry,
using appropriate symmetry conditions, only one-eighth of the entire plate is simulated.
During the loading by the traction, the temperature at the upper and lower end is held
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Fig. 3.8: Sketch of the plate with a hole
subjected to tension (dimen-
sions in mm).

Fig. 3.9: Mesh of the plate with a hole
with 2907 elements.

(a) Max. traction (t = 50 s).

(b) Traction removed (t = 100 s).

(c) After heating (t = 120 s).

Fig. 3.10: Temperature and martensite volume fraction at different loading stages (see text).

constant at the initial temperature of θ̄ = 80 ◦C (Ms < θ̄ < As). Additionally, in the initial
state, the plate is fully austenite. First, the traction ¯̂t is increased linearly to a maximum
of 330 MPa in longitudinal direction over the duration of 50 s. Subsequently, the traction ¯̂t
is decreased to zero over the duration of 50 s. Finally, the temperature at both ends of the
plate is increased to 200 ◦C over the course of 20 s.
The mesh used in the eighth of the plate consists of 2907 uniformly distributed elements and
is shown in Fig. 3.9. For the entire simulation, 293 time steps were required, taking a total
CPU-time of 2524 s.
At first, during the loading, almost the entire plate is transformed to martensite. The plate
at maximum traction is shown in Figure 3.10a. Here, the Exx strain at the edge of the hole
reaches roughly up to 18% (see Fig. 3.11). Additionally, the plate heats up slightly due to the
latent heat and mechanical dissipation (Fig. 3.10a). However, most of the heat is conducted
out of the plate at the temperature Dirichlet boundaries due to the small size of the plate
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Fig. 3.11: Strain Exx at max. traction (t =
50 s).
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Fig. 3.12: Temperature and displacement
at point A (see Fig. 3.8) over
time.

and the long simulated time5. Subsequently, after unloading, the plate does not transform
back, which is shown in Fig 3.10b. Finally, when increasing the temperature at both ends,
the martensite is transformed back to austenite, leading to a recovery of the initial shape
(see Fig. 3.10c). Further, Fig. 3.12 shows the temperature and displacement of point A (see
Fig. 3.8) over time. Here, the increase in slope of the displacement at roughly 15 s is the
point where we have a forward transformation in the vicinity of the hole. Then, the second
change in slope of the displacement at roughly 36 s is the rest of the plate starting to undergo
forward transformation. At 50 s, when releasing the traction, the displacements decrease.
Then again, due to thermal expansion, the displacement increases slightly after increasing
the temperature at the ends at 100 s. However, when the temperature reaches the backward
transformation temperatures, the material almost recovers the initial shape. The non-zero
displacement at t = 120 s stems from thermal expansion and the ∆V effect.
Overall, the examples have been chosen such that the stresses in the vicinity of the hole reach
unphysical values, at which a real material is expected to show irrecoverable strains or even
fracture. Thus, this simulation rather serves as an example showing that the implementation
is able to find a solution, even under severe loads.

3.4.3 Finite element actuator model

In this section, we model a bistable shape memory microactuator using in the finite ele-
ment program FEAP [127]. The actuator concept was published by Winzek et al. [140] for
large structures and is built with three layers: a bottom layer of molybdenum, a middle
layer of NiTiHf and a top layer of polymethyl methacrylate (PMMA) (Winzek et al. [140]
used PMMA layers on both sides). For simplicity, a hexahedral element formulation with
reduced integration and hourglass stabilization for the displacements is used for all materials.
The material and numerical parameters for the shape memory alloy remain unchanged (see

5A separate simulation with "zero heat flux" boundary conditions led to a temperature increase of approxi-
mately 50 ◦C.
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Fig. 3.13: Schematic of
the interlaced
hysteresis of
the NiTiHf-
molybdenum
films and
the polymer.
Dashed line
for the poly-
mer stiffness,
solid line for
the SMA film
stress.
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Fig. 3.14: A bimorph with SMA and molybdenum (left)
in comparison to the bistable actuator with an
additional layer of PMMA (right). The tempera-
tures are indicated by different thermometer col-
orings.

Tables 1 and 2).

Actuating principle

The actuator works through interlacing of the large hysteresis of NiTiHf with the polymers
hysteresis. This is shown in Fig. 3.13. It is actuated by joule heating to specific temperatures
and cooling back to room temperature. Depending on the heat cycle, the martensite state
or austenite state is held in place by the polymer. This is understood best when looking at
the following example, which is depicted in Fig. 3.14, where we neglected the CTE of PMMA
for simplicity. Here, we compare a bimorph of SMA and molybdenum on the left to the
proposed actuator on the right. When heating from ambient temperature (blue, Fig. 3.14a)
to a temperature above Af (red), the glass transition temperature is reached, which drastically
decreases the stiffness of the PMMA. Subsequently, the SMA in the bimorph as well as the
bistable actuator reach reverse transformation temperatures, which makes them bend up
(Fig. 3.14b). Now, upon cooling, the actuator reaches θg, which ’freezes’ it’s current shape.
Thus, when subsequently reaching forward transformation temperatures, unlike the bimorph,
it will not revert into the original shape at room temperature (Fig. 3.14c). Now, we can
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Fig. 3.15: Zoom in into the layers of the actuator (molybdenum in red, NiTiHf in blue and
PMMA in orange).

heat the actuator to a temperature above θg but below As (orange in Fig. 3.14d) to soften
the polymer, which makes the actuator adopt the deformation of the bimorph. When now
cooling back to room temperature again, the actuator is in it’s initial stable state again and
the actuation cycle could be started again. The two stable states at room temperature are
given by Fig. 3.14c and e.
For the actuation behavior, it is important to have a homogeneous temperature profile in the
actuator. Therefore, a wing-shape actuator developed in Arivanandhan et al. [4] is used to
obtain rather homogeneous temperatures in the double beam cantilever. To rapidly optimize
the actuators properties, it turned out that building and modeling only the beam section
of the actuator is advantageous. Therefore, we simulated just the beam part with suitable
boundary conditions instead of simulating the entire wing structure including the attached
wafer material. This thin film actuator with a zoom into the layers is shown in Fig. 3.15, where
the Dirichlet boundary condition for the displacements and the Robin boundary condition
for the temperature are indicated as well.

Polymer and molybdenum model

Since the interest in modeling the actuator lies rather in the states at θ1 , θ2 and θ3, and
less in the states between them, we chose a very simple polymer model. It is governed
by a thermally coupled viscoelastic Maxwell model for finite strains (Young’s modulus and
Poisson’s ratio are 500 MPa and 0.4, respectively), where the viscosity is high (107 MPa s)
at low temperatures and low (1 MPa s) at high temperatures. Therefore, it has almost no
stiffness at high temperatures while it behaves almost elastically at low ones. Additionally,
the glass transition temperature is given by θg = 77 ◦C. The molybdenum is modeled with
a thermally coupled Neo-Hookean elastic model. For the molybdenum, Young’s modulus,
Poisson’s ratio, the thermal expansion coefficient as well as the reference temperature are
E = 65× 103 MPa, ν = 0.31, α = 5× 10−6 K and θref = 500 ◦C, respectively.
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Mesh convergence

The actuator considered is shown in Figure 3.15. It is clamped on the left side. It has a
length of 10mm, a width of 5mm. The layer thicknesses of the molybdenum and TiNiHf are
for this work 20µm and 10µm, respectively. The polymer layer thickness is 160µm for now,
before different layer thicknesses are compared in Section 3.4.3. For the initial conditions, we
assume zero displacements as well as a temperature of 500 ◦C, i.e., the temperature at which
the actuator is thermally annealed in a flat state. Furthermore, we assume the material to be
in its austenite state at t = 0, which directly implies that initially C i = I. Subsequently, it
is cooled down to room temperature at 20 ◦C, which bends the actuator due to the mismatch
in the coefficients of thermal expansions and difference in cell volume between the austenite
and martensite phase.
The heating cycle is realized through applying a heat source in the Mo and NiTiHf material.
The heat source magnitude is modeled by a sine function, which is cut off when below 0. It
is given by

wh = max(2250(sin (0.03t)− 0.6), 0) mW
mm3 , wl = max(0.65 · 2250(sin (0.03t)− 0.6), 0) mW

mm3 ,

for the higher and lower heat cycles, respectively.
At the top and at the bottom face of the actuator a Robin boundary condition is applied,
which cools the thin film to room temperature over time. Due to their small areas, the heat
transfer at the lateral faces is neglected. The surrounding air’s temperature is 20 ◦C while
the convective heat transfer coefficient is assumed to be 70 W

m2 K in accordance with Kohl et
al. [54].
For these thin structures, a sufficiently fine mesh is crucial to obtain converged results. There-
fore, we conducted convergence studies with regard to the necessary elements in each layer
and the amount of elements needed over the length and width of the actuator. First, it turned
out that due to the bending deformation of the thin film, it is sufficient to only use one ele-
ment over the width of the actuator. Then, the convergence with respect to the amount of
elements over the length is tested using four elements over the thickness for each material
layer. The results are shown in Fig. 3.16, where the stroke and temperature of the SMA at
the tip is plotted over time. Here, only the temperature for 20 elements over the length is
shown, since there was virtually no difference in temperature for the different discretizations.
Further, we concluded that using 20 elements over the length leads to an acceptable error in
stroke while the main features of the actuator are conveyed well. Additionally, roughly 160
time steps were used for one actuation cycle, e.g., from 0 s to 180 s in Fig. 3.16. Next, the
convergence with regards to the elements used over the depth for each material was studied.
The results are depicted in Figure 3.17. Here, for the number of elements over the SMA
thickness, one element is already enough to obtain results with an acceptable error. For the
molybdenum and polymer layer, one needs at least two elements to obtain converged results.
To illustrate the importance of modeling the ∆V effect, Fig. 3.18 shows the stroke and tem-
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Fig. 3.16: Stroke (left y-axis) and temperature (right y-axis, dashed in black) over time for
different amounts of elements over the length of the actuator.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  20  40  60  80  100 120 140 160
 0

 100

 200

S
tr

o
k
e
 [
m

m
]

T
 [

°
C

]

Time [s]

1 2 3 4 5 6 T

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  20  40  60  80  100 120 140 160
 0

 100

 200

S
tr

o
k
e
 [
m

m
]

T
 [

°
C

]

Time [s]

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  20  40  60  80  100 120 140 160
 0

 100

 200

S
tr

o
k
e
 [
m

m
]

T
 [

°
C

]

Time [s]

AfAfAf

MfMfMf

θgθgθg

Elements over SMA thickness Elements over Mo thickness Elements over PMMA thickness

Fig. 3.17: Stroke (left y-axis) and temperature (right y-axis, dashed in black) over time for
different amounts of elements over the thickness of each material layer.

perature over time for ∆V being 0 and 0.49%. Here, one can see that the volume change
contributes to large parts of the achieved stroke between the two stable states at room tem-
perature.

Influence of the polymer thickness

The polymer layer thickness plays a key role for this actuator design – if it is too thin, the high
temperature shape can not be held at room temperature by the polymer layer. On the other
hand, it should not be too thick, since body forces and manufacturing problems come up in
that case. Further, since the polymer insulates the actuator thermally to one side, thinner
polymer layers lead to the possibility of faster actuation cycles. Therefore, we tested several
polymer layer thicknesses, the results are shown in Fig. 3.19. First, at 1 (see Fig. 3.19), the
actuator is heated. At first, the larger CTE of the polymer makes the actuator bend down.
Then, when reaching θg, the polymer softens up and the actuator relaxes. Subsequently, at
2 , the actuator is cooled down to room temperature by the surrounding air. The polymer
hardens again and the device reaches stable configuration A at room temperature. Now,
when heating again, the actuator bends down due to the large CTE of the PMMA at 3 .
As soon as the temperature reaches θg, the polymer softens up. Afterwards, at 4 the shape
memory alloy reaches Af and the martensite is transformed back to austenite, which makes
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the actuator deflect up. Finally, when we remove the source at 5 , the polymer hardens
before Mf is reached. Thus, depending on the polymer thickness, the polymer may hold the
actuators shape or release some of it’s stroke. Finally, the actuator reaches it’s second stable
state B at room temperature, which is also it’s initial state.
For many actuator designs, one wants to maximize the achievable stroke while keeping the
device as small and power efficient as possible. Therefore, we try to maximize the difference
in stroke between states A and B . In turn, one must choose a sufficient polymer thickness,
such that the actuator does not release too much stroke at 5 . For example, 0.1 mm of PMMA
is not thick enough to hold the shape, while 0.3 mm holds the shape perfectly (see Fig. 3.19
at 5 ). Depending on the actuation frequency in mind and necessary achievable stroke, either
value in between might be a suitable choice.

3.5 Summary and outlook

In this paper, a new thermomechanical shape memory alloy model for finite strains is pre-
sented. It uses a projection method to fulfill the incompressibility constraint for the inelastic
stretches. Further, the model is realized in the generalized standard material formulation
being extended to thermomechanics. The optimization of the global, incremental mixed
thermomechanical potential by variation yields the mechanical balance principles as well as
the evolution equations of the internal variables and boundary condition integrals. The pre-
sented model employs a thermal strain formulation for the shape memory alloy which allows
to describe the transformation induced volume changes found in some shape memory al-
loys. Using a logarithmic strain formulation, a finite strain dissipation potential incorporates
vanishing inelastic strains upon austenite transformation in a manner consistent with the
time-continuous case. Additionally, yield and transformation criteria as well as the algorith-
mically consistent tangent for the coupled problem are given and discussed. Due to numerical
difficulties, a regularization of the hardening energy term is implemented.
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The numerical results show, that the model is capable of producing reasonable results in
tensile tests. The dependency on the temperature at which the tensile tests are carried out
is captured accurately. Furthermore, it enables the solution of thin film problems.
Using the model, we are now able to estimate viable layer thicknesses and device sizes as well
as fitting joule heating parameters. Additionally, it turned out that only applying polymer
to one side increases the maximum actuation frequency while also introducing more deflec-
tion between the stable states and requiring more power. Moreover, we found that the ∆V
effect as well as the thermal expansion of the SMA, due to the design being very sensitive
to volume changes, is fairly important for the actuators stroke and therefore needs to be
modeled accurately as well. Furthermore, the model results show that the bistability at room
temperature, which is enabled by the polymer locking in the deformation, is achievable for
the shown actuator concept.
In the future, it remains interesting to find ways of solving the model problem without any
penalty terms, which are not reasoned physically and are numerically challenging to deal
with. A possible solution to this problem could be to make use of the Fischer-Burmeister [24]
complementary function. In fact, this has been done in Auricchio et al. [6] for shape memory
alloys and in Brepols et al. [11] for damage-plasticity with great success. Furthermore, there is
still space for improvements to the algorithms convergence behavior which could increase the
speed of the proposed material model, especially under severe loading conditions. Addition-
ally, an inclusion of functional fatigue properties, e.g., a shifting of the TiNiHf transformation
temperatures over several transformation cycles into the model would enable to predict the
long-term behavior of the actuators.
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Appendix

3.6 Appendix A: Discussion of the dissipation potential ϕ∆

In this section, we have a close look at the term∥∥∥∥∥Di − ξ̇

ξ
εi
∥∥∥∥∥ =

∥∥∥∥∥Di − ξ̇

2ξ ln bi
∥∥∥∥∥ for ξ̇ ≤ 0 (3.79)

from Eq. (3.26). If this term is zero, then bi → I for ξ → 0.

Proof. Consider ξ(t) = ξ0
(
1− t

T

)
and Di = ξ̇

ξ0
εi

0 = − 1
2T ln (bi

0).
Then

bi(t) = exp(2tDi)bi
0 = exp

(
− t

T
ln(bi

0)bi
0

)
=
(
bi

0

)1− t
T → bi(T ) = I. (3.80)

While this only shows that bi goes to I for one special ξ(t), one could easily rescale the time
to obtain arbitrary ξ(t), for which bi → I with ξ → 0.

3.7 Appendix B: Proof of Ñ s,tr minimizing π∆ for ∆γ → 0

Proof. We are looking for Ñ s minimizing π∆ for ∆γ → 0:

δΠ = ∂ψ

∂C i

∣∣∣
Ci=Ci

r
: δC i = ∂ψ

∂C i

∣∣∣
Ci=Ci

r
: Pi : (2∆γδN s) != 0, (3.81)

where the variation is done exclusively with respect to Ñ s. Here, the dissipation potential
ϕ∆ is neglected because

δϕ∆ = δ

(√
2
3σ

reo
∥∥∥∥1

2∆rC
i
∥∥∥∥

U i−1
n

)
= 1

2δ
(√

2
3σ

reo
∥∥∥∥ ÎIIi−

1
3 (C i

r + 2∆γN s)−C i
r

∥∥∥∥
U i−1
n

)
.

(3.82)

Since π∆ is constructed such that it is minimized by ÎIIi = 1, we constrain Ñ s to be in the
subspace of symmetric 2nd-order tensors satisfying det(Ĉ i) = det(C i

r +2∆γN s) = 1 (i.e., we
only search this subspace for the minimizer). Hence, ÎIIi = 1 and

δϕ∆ = δ

√2
3σ

reo
∥∥∥U i−1N sU i−1

∥∥∥︸ ︷︷ ︸
1

δ∆γ

 , (3.83)
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which is independent of Ñ s.
With the definition of the tensor

PN s= ∂N s

∂Ñ s = 1∥∥∥Ñ s
∥∥∥

U i−1
n

(
Is −N s ⊗C i−1

n N sC i−1
n

)
(3.84)

Eq. (3.81) becomes

δπ = ∆γU i
n

(
P⊤

i (C i
r) :

(
2 ∂ψ
∂C i

)∣∣∣∣
C i=C i

r

)
U i
n : δ U i−1

n Ñ sU i−1
n∥∥∥U i−1

n Ñ sU i−1
n

∥∥∥︸ ︷︷ ︸
=:N i

!= 0. (3.85)

Since N i is normalized (i.e., its norm is one), the solution reads

N i (3.61)=
U i
nDEVCi

r

(
−2 ∂ψ

∂Ci

∣∣∣∣
Ci=Ci

r

)
U i
n∥∥∥∥∥DEVCi

r

(
−2 ∂ψ

∂Ci

∣∣∣∣
Ci=Ci

r

)∥∥∥∥∥
U i
n

, (3.86)

which leads to Ñ s,tr in Eq. (3.67).

3.8 Appendix C: First derivatives of π∆

To minimize the potential using the active set algorithm including the Newton scheme, we
need to obtain first and second order derivatives of the potential with respect to the set of
internal variables and temperature. The differential of the discretized potential with respect
to the internal variables (u and θ are fixed) is given by

dπ∆
(3.53),(3.59)= +

(
∂(ψe + ψh + ψr + ψp)

∂Ĉ i : ∂C i
r

∂∆ξ + σreo∂∆α
∂∆ξ + ∂(ψe + ψh + ψc + ψp)

∂∆ξ

+Q(ξn,∆ξ) +H(sg (∆ξ))∆ξ
)

d∆ξ

+
(
∂(ψe + ψh + ψr + ψp)

∂Ĉ i : (2N s) + σreo∂∆α
∂∆γ

)
d∆γ

+
(
P⊤

N s :
(

2∆γ ∂(ψe + ψh + ψr + ψp)
∂Ĉ i

)
+ σreo∂∆α

∂Ñ s + ∂ψr

∂Ñ s

)
dÑ s,

(3.87)

where, for simplicity, the factor θ/θn is neglected in front of σreo, Q and H. Here, the tensor
PN sis given by (see Eq. (3.59))

PN s= ∂N s

∂Ñ s = 1∥∥∥U i−1
n Ñ sU i−1

n

∥∥∥
(
Is −N s ⊗C i−1

n N sC i−1
n

)
. (3.88)
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Further, the derivative of C i
r with respect to ∆ξ is (see Eq. (3.40))

∂C i
r

∂∆ξ = H−(∆ξ)
ξn

ln(C i
n)C i

r, (3.89)

where H−(∆ξ) is the double negative Heaviside function: H−(∆ξ) = −H(−∆ξ). The re-
maining occurring derivatives are given by

∂(ψe + ψh + ψp)
∂Ĉ i
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(3.59),(3.55)= A

(∥∥∥Ñ s
∥∥∥

U i−1
n

− 1
)C i−1

n Ñ sC i−1
n∥∥∥Ñ s

∥∥∥
U i−1
n

 (3.104)

∂ψp

∂C i
(3.69)= ∂ψp

∂
〈
Et〉 :

∂
〈
Et〉

∂
〈
Ei〉 :

∂
〈
Ei〉
∂Ei : ∂Ei

∂C i (3.105)
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= 1
2

1
ξ

∂ψp
∂
〈
Et〉 :

∂
〈
Ei〉
∂Ei (3.106)

∂ψp
∂
〈
Et〉 =

HplF
ξ√
c2+1 ξ ≥ ξ0 − c

〈
Ei〉

Hpξ
2〈Et〉 else

(3.107)

∂ψp
∂ξ

=

HplF
⟨Et⟩−c√
c2+1 ξ ≥ ξ0 − c

〈
Ei〉

Hp(ξ − ξ0 + ξ
〈
Et〉2) else

(3.108)

∂∆α
∂∆ξ =

√
2
3

1
2M̃Ci : (Pi − Is) : ∂C i

r
∂∆ξ (3.109)

∂∆α
∂∆γ =

√
2
3M̃Ci : Pi : N s (3.110)

∂∆α
∂Ñ s =

√
2
3∆γP⊤

N s : P⊤
i : M̃Ci (3.111)

M̃Ci =
∂
∥∥∥∆rC

i
∥∥∥

U i−1
n

∂C i = C i−1
n ∆rC

iC i−1
n∥∥∥∆rC

i
∥∥∥

U i−1
n

(3.112)

(3.113)

Here, a1 is the slope of the linear approximation in Fig. 3.2 at
〈
Et〉 = ck and a0 is the value

of the function φ at that same point. Further, the terms related to ψp are set to zero if
ξ >

〈
Ei〉/c+ ξ0.

3.9 Appendix D: Second derivatives of π∆

The second derivatives of the potential π∆ are necessary to compute the algorithmic tangent.
They are briefly given in this appendix. First, we define the symmetrizing box product
as

A
s
□ B : C = Asym(C)B, (3.114)

where A and B are arbitrary second order tensors. Now, we compute the differential of the
PN soperator:

d(P⊤
N s : B) = DN s(B) : dÑ s + P⊤

N s : dB (3.115)

where B is an arbitrary symmetric second order tensor and

DN s(B) =− 1∥∥∥Ñ s
∥∥∥3

U i−1
n

(
f(B)⊗C i−1

n Ñ sC i−1
n + C i−1

n Ñ sC i−1
n ⊗ f(B)

− 1∥∥∥Ñ s
∥∥∥2

U i−1
n

(Ñ s : B)C i−1
n Ñ sC i−1

n ⊗C i−1
n Ñ sC i−1

n + (Ñ s : B)C i−1
n

s
□ C i−1

n

)
.

(3.116)
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Here, B is defined as

f(B) = B − 1∥∥∥Ñ s
∥∥∥2

U i−1
n

(Ñ s : B)C i−1
n Ñ sC i−1

n . (3.117)

Similarly, we define the derivative of Pi via

d(P⊤
i : B) = Di(B) : dĈ i + P⊤

i : dB, (3.118)

with

Di(B) =− 1
3 ÎIIi−

1
3

((
B − 1

3(Ĉ i : B)Ĉ i−1
)
⊗ Ĉ

i−1 + Ĉ
i−1 ⊗

(
B − 1

3(Ĉ i : B)Ĉ i−1
)

− (Ĉ i : B)
(

Ĉ
i−1 s

□ Ĉ
i−1 − 1

3Ĉ
i−1 ⊗ Ĉ

i−1
))

(3.119)

Subsequently, we find for the derivatives of π∆:

∂2π∆

∂∆ξ2 = ∂C i
r

∂∆ξ :
(
Di

(
∂(ψe + ψh + ψp)

∂C i

)
+ P⊤

i : ∂
2(ψe + ψh + ψp)

∂C i2
: Pi + ∂2ψr

∂Ĉ i2

)
: ∂C i

r
∂∆ξ

+ 2∂C i
r

∂∆ξ : P⊤
i : ∂

2(ψe + ψh + ψp)
∂∆ξ∂C i + ∂(ψe + ψh + ψp + ψr)

∂Ĉ i : ∂
2C i

r
∂∆ξ2 + σreo∂

2∆α
∂ξ2

+ ∂2(ψe + ψh + ψp)
∂∆ξ2 +H(sg (∆ξ))

(3.120)

∂2π∆

∂∆γ2 = 2N s :
(
Di

(
∂(ψe + ψh + ψp)

∂C i

)
+ P⊤

i : ∂
2(ψe + ψh + ψp)

∂C i2
: Pi + ∂2ψr

∂Ĉ i2

)
: 2N s

+ σreo∂
2∆α
∂∆γ2

(3.121)

∂2π∆

∂Ñ s2 = DN s

(
2∆γ ∂(ψe + ψh + ψr + ψp)

∂Ĉ i

)
+ σreo∂

2∆α
∂Ñ s2 + ∂2ψr

∂Ñ s2

+ P⊤
N s :

(
2∆γ

(
P⊤

i : ∂
2(ψe + ψh + ψp)

∂C i2
: Pi + ∂2ψr

∂Ĉ i2

)
2∆γ

)
: PN s

(3.122)

∂2π∆
∂∆ξ∂∆γ = 2N s :

(
P⊤

i : ∂
2(ψe + ψh + ψp)

∂C i2
: Pi + ∂2ψr

∂Ĉ i2

)
: ∂C i

r
∂∆ξ + σreo ∂

2∆α
∆ξ∆γ

+ 2N s : P⊤
i : ∂

2(ψe + ψh + ψp)
∂∆ξ∂C i

(3.123)
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∂2π∆

∂ξ∂Ñ s = P⊤
N s :

(
2∆γ

(
P⊤

i : ∂
2(ψe + ψh + ψp)

∂C i2
: Pi + ∂2ψr

∂Ĉ i2

)
: ∂C i

r
∂∆ξ

)
+ σreo ∂2∆α

∂∆ξ∂Ñ s

+ 2∆γP⊤
N s : P⊤

i : ∂
2(ψe + ψh + ψp)

∂ξ∂C i

(3.124)

∂2π∆

∂∆γ∂Ñ s = σreo ∂2∆α
∂∆γ∂Ñ s + P⊤

N s :
(

2∆γ
(
P⊤

i : ∂
2(ψe + ψh + ψp)

∂C i2
: Pi + ∂2ψr

∂Ĉ i2

)
: 2N s

+ 2
(
P⊤

i : ∂(ψe + ψh + ψp)
∂C i + ∂ψr

∂Ĉ i

))
(3.125)

Here, for the occurring derivatives we find:

∂2ψe

∂∆ξ2 = 1
4
∂2λ

∂ξ2 (det(be)− 1− 2 ln Je) + 1
2
∂2µ

∂ξ2 (tr(be)− 3− 2 ln Je) (3.126)

∂2λ

∂ξ2 = 2
(1− ξ
λA

+ ξ

λM

)−3 (−1
λA

+ 1
λM

)2
(3.127)

∂2µ

∂ξ2 = 2
(1− ξ
µA

+ ξ

µM

)−3 (−1
µA

+ 1
µM

)2
(3.128)

∂2ψe

∂C i2
= Be

i : ∂
2ψe

∂be2 : Be
i
⊤ −C i−1 s

□
∂ψe

∂C i −
∂ψe

∂C i
s
□ C i−1 (3.129)

Be
i =

(
C i−1F T) s

□
(
F C i−1) (3.130)

∂2ψe

∂be2 = λ(ξ)
4 Je2be−1 ⊗ be−1 −

(
λ(ξ)

4 (Je2 − 1)− µ

2

)
be−1 s

□ be−1 (3.131)

∂2ψe

∂ξ∂C i = −Be
i : ∂2ψe

∂ξ∂be (3.132)

∂2ψe
∂ξ∂be = 1

4
∂λ

∂ξ

((
Je − 1

Je

)
Jebe−1

)
+ 1

2
∂µ

∂ξ
(I − be−1) (3.133)

∂2C i
r

∂∆ξ2 = H−(ξ)
∆ξ2

n

C i
r ln2(C i

n) (3.134)

∂2ψr

∂Ĉ i2
=
(
∂2ψr

∂ ÎIIi2
ÎIIi + ∂ψr

∂ ÎIIi

)
ÎIIiĈ i−1 ⊗ Ĉ

i−1 − ∂ψr

∂ ÎIIi
ÎIIiĈ i−1 s

□ Ĉ
i−1 (3.135)

∂2ψr

∂Ñ s2 = A

C i−1
n

s
□ C i−1

n

1− 1∥∥∥Ñ s
∥∥∥

U i−1
n

+ 1∥∥∥Ñ s
∥∥∥

U i−1
n

C i−1
n N sC i−1

n ⊗C i−1
n N sC i−1

n


(3.136)

∂2ψh
∂ξ2 = 2 ∂2ψh

∂
〈
Et〉∂ξ ∂

〈
Et〉
∂ξ

+ ∂2ψh

∂
〈
Et〉2

(
∂
〈
Et〉
∂ξ

)2

+ ∂ψh
∂
〈
Et〉 ∂2〈Et〉

∂ξ2 (3.137)
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∂2ψh
∂
〈
Et〉∂ξ =

kE
int 2⟨Et⟩+2⟨Et⟩5

(1−⟨Et⟩4)2

〈
Et〉 ≤ c

kEinta1
〈
Et〉 > c

(3.138)

∂2ψh

∂
〈
Et〉2 =

kE
intξ 2+24⟨Et⟩4+6⟨Et⟩8

(1−⟨Et⟩4)3

〈
Et〉 ≤ c

0
〈
Et〉 > c

(3.139)

∂2〈Et〉
∂ξ2 =

2
〈
Ei〉
ξ3 (3.140)

∂2ψh

∂C i∂ξ
= 1

2ξ

(
∂2ψh

∂
〈
Et〉∂ξ − ∂2ψh

∂
〈
Et〉2

〈
Ei〉
ξ2 −

1
ξ

∂ψh
∂
〈
Et〉

)
∂
〈
Ei〉
∂Ei (3.141)

∂2ψh

∂C i2
= 1

4

(
∂2ψh

∂
〈
Et〉2 1

ξ2
∂
〈
Ei〉
∂Ei ⊗

∂
〈
Ei〉
∂Ei + ∂ψh

∂
〈
Et〉 1

ξ

∂2〈Ei〉
∂Ei2

)
(3.142)

∂2〈Ei〉
∂Ei2

=
√

2
3

1
k
∥∥∥Ei

∥∥∥
Is − Ei∥∥∥Ei

∥∥∥ ⊗ Ei∥∥∥Ei
∥∥∥
 (3.143)

∂2ψp
∂ξ2 =

Hp
(

⟨Et⟩−c√
1+c2

)2
ξ ≥ ξ0 − c

〈
Ei〉

Hp(1 +
〈
Et〉2) else

(3.144)

∂2ψp

∂C i2
= 1

4

(
∂2ψp

∂
〈
Et〉2 1

ξ2
∂
〈
Ei〉
∂Ei ⊗

∂
〈
Ei〉
∂Ei + ∂ψp

∂
〈
Et〉 1

ξ

∂2〈Ei〉
∂Ei2

)
(3.145)

∂2ψp

∂C i∂ξ
= 1

2ξ

(
∂2ψp

∂
〈
Et〉∂ξ − ∂2ψp

∂
〈
Et〉2

〈
Ei〉
ξ2 −

1
ξ

∂ψp
∂
〈
Et〉

)
∂
〈
Ei〉
∂Ei (3.146)

∂2ψp

∂
〈
Et〉2 =

Hp
(

ξ√
1+c2

)2
ξ ≥ ξ0 − c

〈
Ei〉

Hpξ
2 else

(3.147)

∂2ψp
∂ξ∂

〈
Et〉 =

Hp
(

⟨Et⟩−c√
1+c2

ξ√
1+c2 + lF

1√
1+c2

)
ξ ≥ ξ0 − c

〈
Ei〉

2Hpξ
〈
Et〉 else

(3.148)

∂2∆α
∂∆ξ2 =

√
2
3

(
∂C i

r
∂ξ

:
((
P⊤

i − Is
)

: 1
2
∂M̃Ci

∂C i : (Pi − Is) +Di(
1
2M̃Ci)

)
: ∂C i

r
∂ξ

+ 1
2M̃Ci : (Pi − Is) : ∂

2C i
r

∂ξ2

) (3.149)

∂2∆α
∂∆γ2 =

√
2
32N s :

(
Di

(1
2M̃Ci

)
+ 1

2P
⊤
i : ∂M̃Ci

∂C i : Pi

)
: 2N s (3.150)

∂2∆α
∂Ñ s2 =

√
2
3

(
2∆γDN s

(
P⊤

i : 1
2M̃Ci

)

+ (2∆γ)2P⊤
N s :

(
Di

(1
2M̃Ci

)
+ P⊤

i : 1
2
∂M̃Ci

∂C i : Pi

)
: PN s

) (3.151)
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∂2∆α
∂∆ξ∂∆γ =

√
2
32N s :

(
Di

(1
2M̃Ci

)
: ∂C i

r
∂ξ

+ P⊤
i : 1

2
∂M̃Ci

∂C i : (Pi − Is) : ∂C i
r

∂ξ

)
(3.152)

∂2∆α
∂∆ξ∂Ñ s =

√
2
32∆γP⊤

N s :
(
Di

(1
2M̃Ci

)
: ∂C i

r
∂ξ

+ P⊤
i : 1

2
∂M̃Ci

∂C i : (Pi − Is) : ∂C i
r

∂ξ

)
(3.153)

∂2∆α
∂∆γ∂Ñ s =

√
2
3

(
2P⊤

N s : P⊤
i : 1

2M̃Ci + 2∆γP⊤
N s :

(
Di

(1
2M̃Ci

)
+ P⊤

i : 1
2
∂M̃Ci

∂C i : Pi

)
: 2N s

)
(3.154)

∂M̃Ci

∂C i = 1∥∥∥Ñ s
∥∥∥

U i−1
n

(
C i−1
n

s
□ C i−1

n − M̃Ci ⊗ M̃Ci

)
(3.155)

3.10 Appendix E: Consistent tangent

When using the finite element method to solve boundary value problems, we make use of the
consistent tangent operator. To derive it with respect to d d from the potential, we start with
the virtual work of the internal forces ∫

V0

τ : dδ dV. (3.156)

Here, dδ is defined as
dδ = sym(Grad (δu) F −1︸ ︷︷ ︸

lδ

). (3.157)

Now, we need to calculate the differential of virtual work of the internal forces:∫
V0

d(τ : dδ) dV, (3.158)

where through using the symmetry of τ we can simplify to

d(τ : dδ) = d(τ : lδ) = d(F S) : δF . (3.159)

Now, the differential reads

d(F S) : δF = ( dF F −1F SF T(δF F −1)T) : I + (F dSF T) : lδ

= (l dτ lT
δ ) : I + (ca : d d) : dδ,

(3.160)

where the first term, i.e., l dτ lT
δ is related to the so-called geometric tangent and the second

term arises from the incremental material stiffness. Further, l d and d d are defined in analogy
to lδ and dδ. Here, we neglected, in a first step, the influence of perturbations dθ of the
temperature (for the full linearization, see below). Now, we can split ca into the elastic and
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inelastic parts:

ca : d d =
(

F
s
□ F T : ∂S

∂E
: F T s

□ F

)
: d d + ∂(F SF T)

∂A
: ∂A
∂E

: dE

= ce : d d + ∂τ

∂A
: ∂A
∂E

: F Td dF ,

(3.161)

where (with a small abuse of notation) A denotes the vector of active variables and may
contain ξ, ∆γ and Ñ s. Additionally, the elastic tangent ce is given by

ce = (λ(ξ)det(be))I ⊗ I + (2µ(ξ)− λ(ξ(det(be)− 1)))Is. (3.162)

Next, we need to obtain ∂A
∂E . Therefore, we take a look at the local Newton scheme,

where
∂π∆
∂A

= 0 (3.163)

holds in the converged state. Now, calculating the differential of Eq. (3.163), we obtain

0 = d(∂π∆
∂A

)

= ∂2π∆
∂A2 dA+ ∂2π∆

∂A∂E
: dE = 0

= ∂2π∆
∂A2 dA+

(
∂S

∂A

)T
: dE = 0.

(3.164)

Rearranging the result from Eq. (3.164) we obtain

dA = −
(
∂2π∆
∂A2

)−1
∂2π∆
∂A∂E

: dE

= −∂A
∂E

: dE

= −
(
∂2π∆
∂A2

)−1 (
∂S

∂A

)T
: F T s

□ F : d d

= −
(
∂2π∆
∂A2

)−1 (
∂τ

∂A

)T
: d d,

(3.165)

which we can insert into Eq. (3.161) to finally obtain the algorithmic tangent:

ca = ce − ∂τ

∂A

(
∂2π∆
∂A2

)−1 (
∂τ

∂A

)T
. (3.166)
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In here, the term ∂τ/∂A is computed as

∂τ

∂A
=


∂τ
∂ξ
∂τ
∂∆γ
∂τ
∂Ñ

s

 , (3.167)

with the additional derivatives

∂τ

∂ξ
= ∂τ

∂Ĉ i : ∂C i
r

∂ξ
+ 2be ∂

2ψe
∂be∂ξ

(3.168)

∂τ

∂∆γ = 2 ∂τ

∂Ĉ i : N s, (3.169)

∂τ

∂Ñ s = 2∆γ ∂τ

∂Ĉ i : PN s, (3.170)

∂τ

∂Ĉ i = −2
(

I
s
□
∂ψe
∂be + ∂ψe

∂be
s
□ I +

(
I

s
□ be + be s

□ I

)
: ∂

2ψe

∂be2

)
: F

s
□ F T : C i−1 s

□ C i−1 : Pi.

(3.171)

Additionally, the algorithmic consistent tangent with respect to θ as well as the mixed con-
tributions can be computed through linearizing the weak form in Eq. (3.74):∫
V0

d
(
∂π∆
∂θ

δθ − κ∆θ
θn

Grad (θ) ·Grad (δθ)
)

dV

=
∫
V0

δθ

− ∂2π∆
∂A∂θ

(
∂2π∆
∂A2

)−1
∂2π∆
∂A∂θ

− c

θ

 dθ + ∂τ

∂θ
: d d

−Grad (δθ)
(
κ∆t
θn

Grad ( dθ)
)

dV.

(3.172)

Here, the derivative ∂τ/∂θ is given by

∂τ

∂θ
= ∂τ

∂A

(
∂2π∆
∂A2

)−1
∂2π∆
∂A∂θ

, (3.173)

with

∂2π∆
∂A∂θ

=
(

∆sAM + σreo

θn

∂∆α
∂ξ

+ Q

θn
+ H∆ξ

θn
; σreo

θn

∂∆α
∂∆γ ; σreo

θn

(
∂∆α
∂Ñ s

)T)T

. (3.174)

Now, using standard formulations for the element ansatz functions N and it’s gradients B,
one can assemble the element stiffness matrix (see, e.g., Wriggers [146]).
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Abstract

The martensitic phase transformation in Ti40.4Ni48Hf11.6 shape memory alloys is leveraged
for bi-directional actuation with TiNiHf/SiO2/Si composites. The shape memory properties
of magnetron sputtered Ti40.4Ni48Hf11.6 films annealed at 635 ◦C – 5 min are influenced by
film thickness and the underlying substrate. Decreasing TiNiHf film thickness from 21 µm to
110 nm results in the reduction of all characteristic transformation temperatures until a criti-
cal thickness is reached. Particularly, Ti40.4Ni48Hf11.6 thin films as low as 220 nm show trans-
formations above room temperature when deposited on SiO2 buffer layer, which is of great in-
terest in nano-actuation. In comparison, 220 nm films on Si substrates are austenitic at room
temperature, and thus not suitable for actuation. Thermal fatigue tests on TiNiHf/SiO2/Si
bimorphs demonstrate better functional fatigue characteristics than freestanding films, with
an average reduction of 15 ◦C after 125 cycles, with temperature stabilization subsequently.
Experimental bi-directional actuation results are promising in the development of bistable
actuators within a PMMA/TiNiHf/Si trimorph composite, whereby the additional PMMA
layer undergoes a glass transition at 105 ◦C. With the aid of constitutive modeling, a route
is elaborated on how bistable actuation can be achieved at micro- to nanoscales by showing
favorable thickness combinations of PMMA/TiNiHf/Si composite.

Keywords: bimorph microactuator, NiTiHf, bistable actuator, shape memory alloy, thin
films.

4.1 Introduction

Next-generation of silicon (Si)-based nanophotonic and nanomechanical devices, such as op-
tical waveguide switches and routers in advanced communication technology, demand for
ultra-small (micro and nano) actuators allowing for large displacements compared to their
footprint size [20]. In particular, bi-directional and bistable actuators that could be directly
integrated onto Si chips are attractive for such applications [88]. Actuators based on sput-
tered thin-film NiTiX (X = Zr, Hf, Pd, Cu, Pt, Au) shape memory alloys (SMAs) have
the largest power-to-weight ratio among lightweight technologies. SMA actuators are known
to exhibit limited speed. However, heat transfer scales favorably with downscaling allow-
ing for an increase of actuation frequency. At the nanoscale, frequencies may reach the
kilohertz regime depending on the heat transfer rate and fraction of transforming SMA ma-
terial [62]. This investigation focuses on a route for design and fabrication of quasi-stationary
bi-directional and bistable switching devices with large stroke and force that could be scaled
down to nanometer dimensions, which may not be achieved by other technologies. Sputtered
TiNiHf SMAs are attractive for this investigation because they are low in cost, have large
transformation temperatures, and offer high work density among various SMAs [47, 49, 56].
SMA/Si bimorph nano-actuators have been fabricated using standard E-beam lithography,



4 Article 3: TiNiHf/SiO2/Si shape memory film composites for bidirectional
micro actuation

83

wet etching, and micro-machining with conventional plasma etching techniques (e.g. RIE,
IBE) [12, 59, 100, 140]. These bimorph actuators take advantage of the combined bimorph and
shape memory effect, which arises when SMAs are sputtered on a substrate with a different
coefficient of thermal expansion (CTE) [59, 100, 140]. In the case of this work, this is between
the substrate, silicon (αSi = 2.63×10−6 1

K [138]), and the two different crystallographic phases
of TiNiHf (cubic and monoclinic), which are dependent on atomic composition. For example,
for a TiNiHf20 alloy, austenite’s CTE is αA = 49 × 10−6 1

K and the isotropic polycrystalline
CTE value for martensite phase is calculated to be αM = 9.5 × 10−6 1

K [113, 114]. Another
advantage of TiNiHf/Si bimorph actuators is the prospect of developing bistable actuation by
adding a third layer of polymer with a glass transition temperature (Tg) that falls in between
the martensite and austenite phase transformation temperatures of the SMA [123, 126, 142].
Alternatively, bistable actuation can be achieved by adding an SMA with a narrow hysteresis
(e.g. TiNiCu) as the third layer [132, 140, 141].
Controlling actuation precisely with Ni-lean TiNiHf is challenging compared to other SMAs
like Ni-rich TiNiHf, NiTi, and TiNiCu, as they suffer from lower transformation strains [49],
have unstable transformation temperatures with thermal cycling [48], and have a low strength
against dislocation plasticity [50]. Furthermore, the large thermal hysteresis reflects poor
crystallographic compatibility between the martensite and austenite phases [23, 129], which
is known to lead to unwanted effects such as structural/functional fatigue, and a change
in volume during the phase transformation, known as the volume effect [114]. The larger
thermal hysteresis is detrimental to the lifetime and energy efficiency of TiNiHf devices [8].
These problems may be overcome by training TiNiHf SMAs [75, 82], aging Ni-rich NiTiHf
compositions [50, 70, 71, 129], or by designing TiNiHf-based layered bi-/multimorph com-
posites [69]. The functional and structural fatigue properties in TiNiHf can be controlled by
composition and microstructure (grain size, precipitate size, precipitate homogeneity), which
is dependent on annealing conditions [48, 56]. Even though Ni-lean TiNiHf alloys are claimed
to have poor functional stability, previously Bechtold et al. [8] showed that 20 µm-25 µm thick
Ni49.2Ti31.4Hf19.3 films can undergo a phase transformation for an average of 1.5×106 actuation
cycles when tested to a maximum critical stress of 300 MPa. However, when the maximum
critical stress was increased to 450 MPa, the number of cycles until failure was reduced to
an average of 65 K. Improved fatigue in these sputtered Ni-lean TiNiHf alloy samples could
be due to small grain size (∼ 100 nm) and finely dispersed small precipitates at the grain
boundaries [8]. Another advantage of Ni-lean TiNiHf alloys is that they can be heat treated
at moderate temperatures for a short amount of time to generate fine, homogeneous distri-
butions of coherent zone structures and Ti2Ni-type precipitates, which can strengthen the
lattice against slip [33, 56].
Film thickness effects on the transformation temperatures of TiNiHf/Si bimorphs must be
taken into account when designing TiNiHf actuators. This is specifically of interest for
bistable nano-actuators because the SMA transformation temperatures need to be coupled
to the transition temperatures of the third layer (e.g. polymer, additional SMA). Decreasing
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SMA film thickness from micro- to nanoscale is known to decrease the martensitic trans-
formation temperatures for several SMA systems [44, 55, 134]. Sputtered TiNiHf thin films
are also reported to have lower transformation temperatures compared to bulk material of
similar compositions, attributed possibly to be due to finer grain structures [33]. Several
studies explore the properties of bulk TiNiHf [72, 73, 74, 150], freestanding TiNiHf films [8],
TiNiHf films on Mo substrates [140, 144], and TiNiHf films on silicon substrates [33, 82, 107];
however, there are only a few studies that show the properties of sputtered TiNiHf films on
silicon oxide (SiO2) buffer layers on Si substrates [56].
In this work, thickness effects and functional fatigue characteristics are investigated in free-
standing TiNiHf films (21 µm - 5 µm) and films 5 µm down to 110 nm on Si substrates with
and without SiO2 buffer layers. The influence of film thickness on the transition temperatures
of TiNiHf/Si and TiNiHf/SiO2/Si bimorphs is compared, and limits for downscaling to a scale
usable for nanodevices are discussed. The possibilities of downscaling and tailoring the prop-
erties make TiNiHf a promising material in the development of bistable nano-actuators with
an additional PMMA layer to the bimorph. A thermomechanically coupled finite element
model is also implemented to guide the design of favorable thickness combinations of the
PMMA/TiNiHf/Si composite layers to achieve such bistable nano-actuators.

4.2 Methods and materials

4.2.1 Preparation of freestanding TiNiHf films

Structured freestanding amorphous Ti40.4Ni48Hf11.6 films were fabricated into dogbone ge-
ometries through a combination of UV-lithography, DC magnetron sputtering, and a wet
chemical etching process, as described in detail by Lima de Miranda et al. [66]. A Von Ar-
denne CS730S (Von Ardenne, Germany, base pressure < 3 × 107 mbar) cluster magnetron
sputtering device was used to sputter amorphous Ti40.4Ni48Hf11.6 films onto a pre-structured
substrate using a multilayer sputter deposition approach. A 4 in Ti42Ni43Hf15 target (Ing-
puls, Germany) was sputtered for 35 s (deposition layer thickness of ∼ 57 nm, pressure of
2.3 × 10−3 mbar, argon flow of 25 sccm, and power of 150 W). Next, an 8 in pure Ti target
was sputtered for 10 s (deposition layer thickness of ∼ 10 nm, pressure of 2.3 × 10−3 mbar,
argon flow of 25 sccm, power of 100 W). By repeating this multilayer deposition sequence,
amorphous freestanding Ti/TiNiHf films were sputtered with varying thickness (5 ± 0.5µm,
10± 1µm, and 21± 2µm). Due to the sputter yield, films are typically 10− 15% thinner at
the edge of a 4 in wafer compared to the center. Rapid thermal annealing (Createc Fischer
RTA-6 SY09, Germany) was used to crystallize the amorphous films and homogenize the
microstructure. Different RTA temperatures between 635 ◦C and 750 ◦C and times between
5 min and 60 min were tested before selecting on the final heat treatment for all samples of
635 ◦C - 5 min.
The nominal film composition was determined using a Helios NanoLab 600 scanning elec-
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tron microscopy (SEM) (FEI, Germany) equipped with an energy-dispersive X-ray spec-
troscopy (EDX) silicon drift detector (Oxford Instruments, UK). Qualitative analysis used
Ti49.60Ni50.40 binary standard; however, the error on all reported compositional data is around
± 0.5 at.%. EDX measurements were taken for sputtered amorphous TiNiHf film on a 100 mm
silicon substrate. The average film composition was determined to be Ti40.4Ni48Hf11.6 for all
samples. Slight compositional variations are expected to be sources of error in the following
experiments.

4.2.2 Preparation of TiNiHf/Si and TiNiHf/SiO2/Si bimorphs

TiNiHf/Si and TiNiHf/SiO2/Si bimorph structures were prepared using the same multi-
layer sputter approach described above onto chips with lateral dimensions of 20 mm×20 mm.
Amorphous Ti40.4Ni48Hf11.6 films of different thicknesses (5±0.5µm, 2±0.2µm, 0.88±0.08µm,
0.44±0.04µm, 0.22±0.02µm, and 0.11±0.01µm) were deposited and annealed on 525±20µm
(100) silicon substrates (Siegert Wafer, Germany) and 1.5 µm SiO2/525 ± 25µm (100) sili-
con substrates (MicroChemicals, Germany). TiNiHf films on SiO2/Si substrates are ∼ 10 %
thicker than the films on Si substrates because the SiO2/Si substrates were sputtered in the
direct center of the device, while the pure Si substrates were sputtered adjacent to the SiO2/Si
sample. TiNiHf films with two different thicknesses (2± 0.1µm and 0.88± 0.04µm) were also
sputtered onto 100 nm SiO2/300 ± 3µm (100) Si substrates (Si-mat silicon, Germany), pre-
structured into cantilevers (3.5 mm × 20 mm) for bi-directional actuation measurements. All
film composites were annealed via RTA at 635 ◦C - 5 min.

4.2.3 Tensile testing

The mechanical properties of TiNiHf films were determined using a high-temperature tensile
test on freestanding TiNiHf films. The dogbone geometry has been chosen with a width
and length of 500 µm and 4 mm, respectively. The tensile tests were conducted using a
displacement-controlled micro-tensile setup equipped with a load cell (KM26z-0.2 kN, ME
measuring systems) for force measurements and a digital camera (Pike 505, Allied Vision
Technology) to record images for measurement of corresponding strain values using non-
contact digital image correlation method. The cross-correlation of images with speckle pat-
terns is evaluated using MATLAB code.

4.2.4 Differential scanning calorimetry

Thermal analysis and thermal cycling on freestanding SMA films (thickness of 5 µm, 10 µm,
21 µm) were conducted on a DSC 204 F1 Phoenix (Netzsch, Germany) with a heating and
cooling rate of 10 ◦C

min . The transformation temperatures and latent heat of the SMA are
determined using the software Proteus 7.1.0 by the tangent method. Thermal hysteresis is
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calculated according to ∆T = (As +Af −Ms −Mf)/2, where As/Af correspond to austenite
start and finish temperatures and Ms/Mf correspond to martensite start and finish temper-
atures.

4.2.5 Electrical resistance measurements

Four-point resistance measurements were carried out inside a cryostat to determine the
temperature-dependent electrical resistance of TiNiHf films constrained by Si and SiO2/Si
substrates. Quasi-stationary conditions guaranteed that influence of temperature change is
negligible during measurement. For films of micrometer thickness, probes contacting the
film surface were used to connect to the setup, and for films of nanometer thickness, films
were connected by wire bonding. Phase transformations were determined by change in resis-
tance with temperature, and transformation temperatures were calculated using the tangent
method.

4.2.6 X-Ray Diffraction (XRD)

The martensitic crystal structures and transformation temperatures of TiNiHf films on Si
and SiO2/Si substrates were confirmed using temperature-dependent XRD with a SmartLab
9 kW diffractometer (Rigaku, Japan), CuKα radiation (λ = 1.5406 Å), and 2-D Hypix3000
detector operated in 1D mode. θ − 2θ scans in the range of 10 − 100 ◦C were conducted
with a step size of 0.02◦ and a scan speed of 20 ◦

min . A heating stage (AntonPaar DHS 1100,
Germany) and cooling stage (AntonPaar DCS 350, Germany) was used in the temperature
range between −100 ◦C and 130 ◦C.

4.2.7 Cantilever deflection measurements

Functional fatigue behavior in bi-directional actuators was characterized by measuring can-
tilever deflection as a function of temperature. The cantilever deflection measurement setup
contains a laser, a mirror for directing the laser onto the surface, a position-sensitive detector
(PSD) to detect deflection, a Peltier element for heating and cooling, and a thermocouple.
The actuator’s stroke, D, of a cantilever can be calculated using Equation (4.1):

D = ∆xl
4a (4.1)

where ∆x corresponds to laser dislocation on the PSD surface, l is length of the cantilever
beam, a is the distance between cantilever tip and PSD (a = 117 mm), and deflection is
measured as volts on the PSD (V) which is converted to displacement (mm) by using a factor
dx/dU = 0.794 mm

V . Each cantilever has a size of 3.5 mm × 20 mm, with a freestanding
cantilever length of 14 mm. The experiments were performed under vacuum (10×10−4 mbar)
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for each sample with a 10 ◦C
min heating/cooling rate within a temperature range of 30 ◦C -

170 ◦C.

4.2.8 Constitutive modeling

The model used to describe the SMA is in line with the model by Sedlák et al. [109], extended
to the finite strain case with inhomogeneous temperature fields. The model details regarding
numerical procedures are given in [119]. In contrast to other phenomenological finite strain
SMA models, it makes use of a projection method to satisfy the inelastic volume preservation
constraint [43, 118]. Further, we assume a multiplicative split of the deformation gradient in
the form of F = F eF iF θ, where F e is the elastic, F i the inelastic, and F θ the thermal part
of the deformation gradient F . Moreover, the volume fraction of martensite ξ ∈ [0, 1] and
the inelastic right Cauchy-Green tensor C i = F iTF i are used as the internal variables of the
model at hand. Additionally, the model is implemented into the framework of generalized
standard materials [36], which ensures thermodynamic consistency when carefully choosing
the potentials. This framework is then extended to non-constant temperatures θ using a
variational formulation [149].
Thus, the total potential is given by π = ψ̇ + ϕ, where ψ̇ is the rate of the Helmholtz free
energy density and ϕ is the dissipation potential. This potential is integrated into the system
and minimized to solve the energy balance as well as the linear momentum balance in the
bodies considered. We assume ψ to be the sum of an elastic, a chemical, and a hardening-type
energy. The elastic energy is given by

ψe = λ(ξ)
4 (Je2 − 1− 2 ln Je) + µ(ξ)

2 (tr(be)− 3− 2 ln Je) (4.2)

where λ(ξ) and µ(ξ) are the Lamé parameters determined by a Reuss-like rule of mixture
and Je is the determinant of F e. Further, the Kirchhoff stress τ is given by τ = 2be∂ψe/∂be,
where be = F eF eT is the elastic left Cauchy-Green tensor. For the chemical energy, we
assume a standard relationship [65, 94]:

ψc = uA
0 − θsA

0 + ξ (θ − θ0) ∆sAM + c

(
θ − θ0 − θ ln θ

θ0

)
(4.3)

with the volume-specific internal energy of the austenite phase uA
0 , the specific entropy of

the austenite phase sA
0 , the specific heat capacity c, the difference in specific entropy of the

austenite and martensite phase ∆sAM, the equilibrium temperature θ0, and the absolute
temperature θ. Since the inelastic strains vanish with ξ → 0, the inelastic strain Ei =
1
2(C i − I) is assumed to be given by Ei = ξEt, where Et is a measure for the effective
transformation strain in twinned regions. Additionally, the hardening-type energy is given
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by (compare to Sedlák et al. [109])

ψh = kEintξ

〈
Et〉2

1−
〈
Et〉4 +H

(
tr(C i)− 3

)
,
〈
Et〉 =

√
2
3

∥∥Et∥∥
k

(4.4)

where k is the maximum transformation strain and Eint and H are hardening parameters.
The thermal strains and jump in volume between martensite and austenite cells are modeled
by F θ = det(F θ) 1

3 I = (1 + εθ(ξ, θ))I with the thermal strain

εθ = ξαM (θ − θrefM) + (1− ξ)αA (θ − θrefA) (4.5)

where αA/M are the coefficients of thermal expansion and θrefA/M are the reference tempera-
tures of austenite and martensite. To model the inelastic behavior, we define the dissipation
potential, depending on the direction of the transformation, to be

ϕ(ξ̇,Di, ξ)

=


ξ̇∆sAM((θ0 −Ms) + ξ(Ms −Mf)) +

√
2
3σ

reo
∥∥∥Di

∥∥∥ ξ̇ ≥ 0 ∧ tr(Di) = 0

ξ̇∆sAM((θ0 −Af) + ξ(Af −As)) +
√

2
3σ

reo
(∥∥∥ ξ̇ξεi

∥∥∥+
∥∥∥Di − ξ̇

ξεi
∥∥∥) ξ̇ < 0 ∧ tr(Di) = 0

∞ else

(4.6)

where Di = sym(Ḟ iF i−1) is the symmetric part of the inelastic ’velocity gradient’, εi = 1
2 ln bi

with bi = F iF iT and σreo the stress at which reorientation occurs. Furthermore, the heat
conduction is assumed to follow Fourier’s law with thermal conductivity κ. After further
numerical treatment of the volume preservation constraint and differentiability problems
of the dissipation potential, we solve the problem using an active set algorithm, which is
embedded into the finite element analysis software FEAP [127]. The material parameters
employed are given in Table S1 (in the Supporting Information).

4.3 Results

4.3.1 Functional properties of freestanding TiNiHf films

Thermal fatigue evaluation

The characteristic martensitic phase transformation temperatures, austenite start (As), austen-
ite finish (Af), martensite start (Ms), martensite finish (Mf), and latent heat of transfor-
mation of forward (∆HAM) and reverse transformations (∆HAM) are determined by DSC.
Figure 4.1a) shows the first DSC cycle of 21 µm, 10 µm, and 5 µm thick freestanding films
depicting a reduction in all characteristic transformation temperatures, with decreasing film
thickness. The thermal transformation temperatures, latent heat, and thermal hysteresis
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Fig. 4.1: a) First DSC cycle showing Ni47.7Ti40.7Hf11.6 freestanding films annealed at 635 ◦C
- 5 min with decreasing film thickness from 21 µm to 5 µm. b) Change in character-
istic transformation temperatures in 5 µm freestanding sample in first 150 thermal
cycles.

Tab. 4.1: Thermal transformation properties of fabricated freestanding TiNiHf films, deter-
mined by DSC.

Cycle # Thickness/µm As/◦C Af/◦C ∆HMA/J
g Ms/◦C Mf/◦C ∆HAM/J

g ∆T/◦C
1 21 127.3 132.6 17.5 71.9 74.5 21.9 56.8
1 10 119.0 122.2 14.7 65.3 63.5 19.5 56.2
1 5 118.7 122.4 9.2 63.6 60.2 15.8 58.7
50 5 101.9 106.6 15.0 41.0 38.6 17.0 64.4
90 5 96.3 99.6 12.1 32.8 30.4 16.9 66.4
120 5 91.9 96.1 10.3 28.6 26.2 15.9 66.6
140 5 88.7 93.3 11.4 25.0 22.4 14.2 66.9

(∆T ) are given for all samples in Table 4.1. Only a minor influence on thermal hysteresis is
noticeable with a reduction in TiNiHf film thickness from 21 µm to 5 µm. However, the tran-
sition temperatures, latent heat of transformation, and thermal hysteresis width of TiNiHf
films can also be slightly increased by annealing the films at a higher temperature as shown
in our previous work [4].
Bi-directional and bistable SMA-based micro- and nano-actuators ideally should last for
thousands of actuation cycles with little functional fatigue. The wide thermal hysteresis of
∼ ∆T = 57 ◦C indicates poor crystallographic compatibility between the martensite and
austenite phase for the fabricated TiNiHf alloy [129]. Figure 4.1b) shows functional fatigue
of 5 µm thick film after 150 thermal cycles between 0 ◦C and 140 ◦C. A decrease in all char-
acteristic transformation temperatures can be seen where the largest change occurs within
the first ∼ 20 cycles. The As, Af , Ms, and Mf temperatures continue to steadily decrease
with every cycle without stabilization up to 150 cycles. A decrease in transition temperatures
with thermal cycling is expected in TiNi-based alloys due to the introduction of dislocations
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Fig. 4.2: Experimental and simulated stress-strain curve of the investigated 21 µm thick
TiNiHf freestanding films of dogbone geometry size of 500 µm× 4 mm (see inset).
The tests are performed at three different ambient temperatures of 120 ◦C, 135 ◦C,
and 155 ◦C with a strain rate of 1× 10−3 1

s .

that compensate for the crystallographic compatibility between the martensite and austen-
ite phases [129]. This fatigue behavior is observed in fabricated freestanding TiNiHf alloys
indicated by a slight increase in ∆T with every cycle. Decreasing film thickness and thermal
cycling lead to a significant reduction in the latent heat of both the forward and reverse
transformation (∆HAM, ∆HMA), which might be beneficial for SMA actuation [125].

Tensile testing

Figure 4.2 shows a comparison between experimental and simulated stress-strain character-
istics of 21 µm thick freestanding TiNiHf films annealed at 635 ◦C - 5 min, structured into a
dogbone geometry, at various temperatures in the phase transformation regime. The samples
are investigated at three different ambient temperatures of 120 ◦C, 135 ◦C, and 155 ◦C at
a constant strain rate of 1 × 10−3 1

s . Simulation results are fit to the experimental results
to obtain mechanical parameters such as elastic modulus, maximum transformation strain,
critical loading stress, and critical unloading stress values for the stress-induced martensitic
transformation.
At 120 ◦C, one-way shape memory behavior is obtained upon loading/unloading the samples
up to 3.5 % strain, indicating the material is in the martensite phase [130]. Reorientation of
the martensite variants (detwinning) is suggested to introduce the slip of dislocations. The
lack of a stress plateau in Ni-lean TiNiHf alloys is characterized by their low critical stress
for slipping [129], strong work hardening behavior, and continuous yielding [75]. The open
hysteresis loop with a residual strain of 2.4 % indicates the retained stress-induced marten-
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site that is known to form when loading an SMA at a temperature Ms < T < Af [130]. At
135 ◦C, the critical stress (σcrit) for phase transformation to martensite is about 430 MPa and
a maximum tested strain of 3.4 %. The open hysteresis loop with a residual strain of 1.8 %
indicates the sample is not fully transformed to the austenite phase by 135 ◦C. Upon loading
and unloading at 155 ◦C, the critical stress for martensitic transformation shifts to 490 MPa,
and the reverse transformation starts at 260 MPa. As a result, a superelastic behavior is
obtained with recoverable strain up to 2.6 %. The simulated model fit for the 135 ◦C tensile
test shows a certain discrepancy with experimental data. Upon unloading, the simulation
model overestimates the recoverable strain from 1.8 % to 0.95 %. However, the superelastic
and martensitic forward transformation behavior for all three test conditions is well described
by the simulation model. The small discrepancy could be due to microstructural and grain
size effects which currently are not captured by the model. This includes the hardening effect
that is responsible for the steep slope instead of a stress plateau for TiNiHf films.

4.3.2 Functional properties of TiNiHf/Si and TiNiHf/SiO2/Si bimorphs

Electrical resistance

The film thickness dependencies of the phase transformation properties of TiNiHf films on
Si and SiO2/Si substrates are investigated to understand their impact on bi-directional ac-
tuation performance. The transformation hysteresis curves are compared in Figure 4.3 for
all investigated thicknesses from 5 µm down to 0.11 µm on both substrates. Decreasing film
thickness leads to a significant increase in resistance with a similar thermal hysteresis width
until a critical film thickness is reached for very thin films.
Figure 4.4 summarizes the corresponding thickness dependence of transformation tempera-
tures and thermal hysteresis width ∆T of bimorph films. Data is not shown for the 0.11 µm
film on Si substrate as electrical resistance measurements revealed only a partial phase trans-
formation (Ms = −157.4 ◦C and Af = −23.4 ◦C) when cooling the sample from room temper-
ature to −160 ◦C. According to Figure 4.4, ∆T witnesses a dramatic increase when the film
thickness is below 0.44 µm for films on Si substrate and below 0.22 µm for films on SiO2/Si
substrate, which appear to be critical thicknesses on the corresponding substrates. When the
film thickness is below this critical value, the thermal hysteresis shifts to a lower temperature
range and the hysteresis width nearly doubles. In contrast, when the film thickness is larger
than the critical thickness, the thermal hysteresis width and transformation temperatures
show only minor variations.

Structural properties

TiNiHf is known to undergo a solid-to-solid phase transformation from a low-symmetry, low-
temperature, martensite phase (monoclinic, B19′) to a high-symmetry, high-temperature,
austenite phase (cubic, B2). The crystal structures of all TiNiHf films (between 110 nm and
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Fig. 4.3: Comparison of resistance-temperature curves of TiNiHf films of different thick-
nesses on a) Si and b) SiO2/Si substrates of 5 mm × 10 mm (see inset for the
schematic). Hysteresis width gets significantly larger when films are below critical
thickness, which are 0.44 µm for films on Si substrate and 0.22 µm for films on
SiO2/Si substrate.

Fig. 4.4: Transformation temperatures and calculated thermal hysteresis width ∆T of
TiNiHf films with different thicknesses on a) Si substrate and (b) SiO2/Si sub-
strate. Data is not shown for 0.1 µm-thin film on Si substrate, as transformation
hysteresis is not fully seen in the temperature range −160 ◦C to 200 ◦C. All films
were annealed at the same condition 635 ◦C - 5 min.
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Fig. 4.5: XRD results at 30 ◦C for 110 nm, 220 nm, and 440 nm TiNiHf films on a) Si sub-
strates and b) on 1.5 µm SiO2/Si substrates. Samples were 20 mm × 20 mm in
size.

5 µm) on Si and SiO2 substrates were evaluated at room temperature with XRD. Figure 4.5
shows XRD results at 30 ◦C for 110 nm, 220 nm, and 440 nm TiNiHf films on both Si and
1.5 µm SiO2/Si substrates. The preferred orientations of martensite and (110) austenite peaks
are labeled. Two dominant peaks arise for the martensite phase at 40◦ for the (002) B19′ phase
and 44◦ for the (020) B19′ phase. The dominant peaks for the austenite phase are located at
42◦ for the (110) B2 phase and 91◦ for the (220) B2 phase. The absence (or a weak signal)
of these two austenite peaks is the indication that the sample is in martensite phase at room
temperature. The large signal at 69◦ is the peak related to the (100) Si substrates. There
were a handful of unidentifiable secondary phase peaks for TiNiHf films on Si substrates that
were not observed for TiNiHf films on SiO2/Si substrates. The additional peaks could be due
to a (Ti,Hf)2Ni phase that occurs when using Ti-rich TiNi film compositions [56, 129]. For a
more precise study on the precipitate phases, additional TEM measurements are necessary,
which are out of scope for the current study.
To realize many applications, the main criterion for selecting the film and film compos-
ite for martensitic phase transformation has to be above room temperature transformation.
Figure 4.5a) shows that 110 nm and 220 nm TiNiHf films on Si substrates are in austenite
phase at room temperature. However, Figure 4.5b) for 220 nm films on SiO2/Si buffer layers,
XRD shows the SMA is composed of martensite B19′ phase with some residual austenite at
room temperature. XRD results indicate the minimum film thicknesses required to obtain a
transformation above room temperature are ∼ 200 nm on SiO2/Si substrates and ∼ 440 nm
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Tab. 4.2: Transition temperatures of TiNiHf films on Si substrates and SiO2/Si substrates
for different thicknesses determined by XRD.

Substrate Thickness/µm As/◦C Af/◦C Ms/◦C Mf/◦C ∆T/◦C
Si substrate 5 88.2 114.2 72.7 50.4 39.6

0.88 95.3 110.1 69.3 56.9 39.6
0.44 95.4 108.7 67.9 56.5 39.9
0.22 No transformation between 30 ◦C and 130 ◦C
0.11 No transformation between −100 ◦C and 130 ◦C

1.5 µm SiO2/Si 0.44 92.9 108.3 68.2 50.9 41.1
substrate 0.11 No transformation between 30 ◦C and 130 ◦C

on Si substrates. This confirms both the dramatic film thickness effect below critical film
thicknesses and the substrate dependence of this film thickness effect observed in electrical
resistance measurements. Fig. S1 (Supporting Information) shows all TiNiHf film thicknesses
above the critical thickness value on SiO2/Si substrates transform from the martensite phase
at 30 ◦C, to the austenite phase upon heating to 110 ◦C. 220 nm and 440 nm films on SiO2/Si
substrates were fully transformed to the austenite phase by 110 ◦C. Films with a thickness
greater than 880 nm on SiO2/Si substrates still showed weak (200) and (020) martensite peaks
indicating that these samples are still partially martensite at 110 ◦C.
Temperature-dependent XRD measurements were used to determine the transformation tem-
peratures of TiNiHf films with thicknesses of 110 nm, 220 nm, 440 nm, 880 nm, and 5 µm on
Si substrates and a 440 nm thick TiNiHf film on 1.5 µm SiO2/Si substrates. The samples were
heated and cooled in 5 ◦C increments between 30 ◦C and 130 ◦C at a heating rate of 10 ◦C

s . By
monitoring the change in peak intensity of the B2 austenite peaks at 42◦ and 91◦ and using
a Rietveld refinement on the (110) B2 cubic austenite phase, it was possible to determine
the SMA transition temperatures [131]. The results of the transformation temperatures for
all tested films are given in Table 4.2. 110 nm films on SiO2/Si substrates were in the cubic
austenite phase, with no transformation taking place in the temperature range between 30 ◦C
and 130 ◦C. 220 nm films on Si substrates were also found to be in the cubic austenite phase
at 30 ◦C with no transformations taking place between 30 ◦C and 130 ◦C (Fig. S2, Supporting
Information). 440 nm TiNiHf films on Si substrates were martensite at room temperature
and displayed a high temperature phase transformation with As = 95.4 ◦C and Af = 108.7◦C
(Fig. S3, Supporting Information). There was not a significant change in transformation
temperatures for 440 nm on Si versus 440 nm films on 1.5 µm SiO2/Si substrates. Scanning
electron microscopy cross-sectional images of different TiNiHf film thicknesses (5 µm, 2 µm,
880 nm, and 440 nm) on Si substrates are shown in Fig. S4 (Supporting Information).
Temperature-dependent XRD data was used to estimate the CTE for austenite phase of the
Ti40.4Ni48Hf11.6 alloy by monitoring the change in the cubic lattice parameter while cool-
ing the SMA over a temperature range of 120 ◦C-85 ◦C [154]. The CTE of the austenite
phase (αA) was calculated to be 30 × 10−6 1

K ± 5 × 10−6 1
K from XRD measurements. This
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Fig. 4.6: a) Deflection versus temperature measurements of bi-directional TiNiHf/SiO2/Si
actuators with TiNiHf film thicknesses of 0.88 µm on 100 nm buffer layer of SiO2
on 300 µm Si substrates (see inset for the sample picture). b) Influence of func-
tional fatigue on transition temperatures for the 0.88 µm TiNiHf/SiO2/Si compos-
ite. Cantilevers were 3.5 mm×20 mm in size, with a freestanding cantilever length
of 14 mm during measurement.

value falls between the austenite CTEs reported for binary NiTi (αA =13 × 10−6 1
K) [99]

and for a Ti29.7Ni50.3Hf20 alloy (αA =49.6 × 10−6 1
K ± 3.4 × 10−6 1

K) [113]. For computa-
tional simulations, the calculated value from XRD data is used (αA =30 × 10−6 1

K), and
for simplicity, the CTE value for martensite is estimated to be half the value of austenite
(αM =15× 10−6 1

K).

4.3.3 Bi-directional actuation based on TiNiHf/SiO2/Si bimorph film composites

Actuation in SMA/Si bimorph cantilevers arises from the combined shape memory effect
and CTE difference between bimorph layers [49]. The different stress states in the bimorph
cantilever that lead to desirable deflection arise when heating the composite to temperatures
above Af and cooling the composite below Mf . The maximum actuation stroke is determined
by the y-deflection obtained between the martensite and austenite phases using CDM.
Figure 4.6a) shows 145 cycles of deflection for 0.88 µm TiNiHf/100 nm SiO2/300 µm Si can-
tilever composite. The transition temperatures, thermal hysteresis, and maximum stroke
upon thermal cycling are given in Table 4.3. A decrease in transformation temperatures and
a slight decrease in the actuation stroke are observed with increasing cycles. Figure 4.6b)
shows the change in characteristic transformation temperatures as a function of thermal cycles
for 0.88 µm TiNiHf/100 nm SiO2/300 µm Si bi-directional actuator. The thermal-mechanical
hysteresis stabilized after ∼ 120 cycles, with minor shift in transformation temperatures be-
tween cycles 120 and 145. After ∼ 60 cycles, the Mf temperature dropped below minimum
test temperature of 30 ◦C; therefore, the material was not fully transformed. The Mf tem-
perature is marked with a green open symbol in Figure 4.6b) to indicate Mf < 30 ◦C. Very
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Tab. 4.3: Influence of functional fatigue on bi-directional stroke and characteristic transfor-
mation temperatures of different TiNiHf thicknesses on 100 nm SiO2/Si substrates.

Cycle # Thickness/µm As/◦C Af/◦C Ms/◦C Mf/◦C ∆T/◦C Stroke/µm
1 2 110 134 85 59 50 39
40 2 101 127 74 45 54.5 35
1 0.88 100 125 78 45 51 32
40 0.88 92 117 67 37 52.5 31.5
140 0.88 88 110 60 <30 54 31.5

Fig. 4.7: a) Schematic of interlaced polymer and SMA hysteresis, enabling bistability. b)
Superimposed stable states (I) and (II) for comparison. The cross section of the
trimorph layers (PMMA/TiNiHf/Si) is sketched.

small reduction in maximum actuation stroke from 32 µm to 31.5 µm within the first 40 cycles
(i.e. an indication of functional fatigue) is observed which then stabilized in the subsequent
cycles.

4.3.4 Bistable actuation based on PMMA/TiNiHf/Si trimorph film composites

Bistable actuation principle

The unique properties of TiNiHf/Si bimorph films of large hysteresis and an Af temperature
larger than 105 ◦C open the opportunity for the design of bistable actuation using a polymer
layer on TiNiHf/Si composite. As depicted in the schematic in Figure 4.7a), SMA/Si bimorph
structures can become bistable if combined with a polymer with matching glass transition
temperature (Tg). That means the glass transition temperature of the polymer is required to
fall within the thermal hysteresis of the SMA (Ms < Tg < As ) [143]. Assume the composite is
in stable state I, as shown in Figure 4.7b). In order to switch to stable state II, the composite
is heated above austenite finish temperature (Tg < Af < T2), allowing the polymer to soften
and adapt to the deflected shape of the composite. Upon cooling below Tg, the polymer
will become hard and, thereby, fixes the deflected shape that corresponds to stable state II.
In order to recover stable state I, the composite is heated to intermediate temperature T1
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(Tg < T1 < As), and the polymer becomes soft again and adapts to the initial shape in
martensite phase, which will be fixed upon cooling to room temperature. The fixation effect
will be effective if the thickness of the polymer is large enough.
Here, we use PMMA as the polymer in a PMMA/TiNiHf/Si trimorph composite. PMMA
is a standard resist material in various lithography methods such as X-ray lithography, deep
UV-lithography, and E-beam lithography techniques [4, 29, 46, 60]. The glass transition
temperature of PMMA is 105 ◦C, which fulfills the criteria for bistability.

Polymer and Si model

Since the PMMA in mind does not exhibit shape memory effects, the polymer is modeled as
a passive material. This is done by using a thermally coupled viscoelastic Maxwell model for
finite strains [102], where the viscosity is 1×107 MPa s at low temperatures below Tg = 105 ◦C
and 1 MPa s at high temperatures. Thus, the polymer is soft above Tg, while still being
stiff at colder temperatures. For simplicity, the CTE (70 × 10−6 1

K) [31, 42, 158], Young’s
modulus (500 MPa), and Poisson’s ratio (0.4) of the PMMA polymer are held constant in
simulations. The Si layer is modeled using a thermally coupled Neo-Hookean elastic model
with Young’s modulus of 130 GPa and Poisson’s ratio being equal to 0.278 [42]. The CTE of
Si is 2.6×10−6 1

K [138]. The SiO2 buffer layer is neglected in simulations as it is not expected
to influence the mechanical properties of the composite.

Actuator geometry and boundary conditions

The modeled actuator has a length of 1 mm and a width of 100 µm. The Si and SMA films have
a thickness of 2 µm and 1 µm, respectively. The geometry is discretized by 20 elements over
its length and 6 over its width, whereas each layer of material is discretized by 4 elements
over the thickness. At the left side, it is clamped, i.e., the displacements on the left side
are constrained to be zero. Additionally, at the top and bottom of the thin film, a Robin
boundary condition with a convective heat transfer coefficient of 70 W

m2 K [51] is used to model
heat convection with the surrounding air, which has a temperature of 20 ◦C. Furthermore,
Joule heating is realized through a heat source term in the TiNiHf. The actuator model is
shown in Figure 4.7b).

Optimization of polymer thickness

The actuator’s maximum bistable stroke is strongly dependent on the polymer layer thickness.
If the layer is too thin, it is not able to hold the austenite-related shape at room temperature.
If the polymer layer is too thick, it hampers the stroke and limits the actuation speed as well
as power consumption. Additionally, larger body forces and less freedom for the thermal
hysteresis of the SMA limit the design space of the actuator. Therefore, we optimize the
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Fig. 4.8: a) Demonstration of bistable actuation of PMMA/TiNiHf/Si through simulation
assuming a Tg of 105 ◦C. b) FEM simulation of maximum bistable stroke ver-
sus polymer thickness for a cantilever consisting of a PMMA/TiNiHf/Si trimorph
composite with TiNiHf and Si layer thicknesses of 1 µm and 2 µm, respectively.
The cantilever length L and width w are 1 mm mm and 100 µm, respectively.

Tab. 4.4: Simulated stroke of downsized trimorph actuator geometries.
Layer thicknesses t

Length L Width w Si SMA Polymer Bistable Relative bistable
stroke ∆y stroke ∆y/L

1 mm 100 µm 2 µm 1 µm 20 µm 116 µm 12 %
100 µm 10 µm 2 µm 1 µm 20 µm 4.4 µm 4.4 %
20 µm 2 µm 0.4 µm 0.2 µm 4 µm 0.8 µm 4 %

polymer geometry by simulating several thicknesses. For clarity, only two polymer thicknesses
of this sweep are shown in Figure 4.8a), where the achieved vertical displacement and the
temperature in the middle of the SMA at the end of the beam are plotted over time. In the
beginning, we start with the actuator at room temperature, which is held by the polymer in
stable state (I). Subsequently, the actuator undergoes a low heat cycle (1-2) in Figure 4.8a),
in which the polymer softens and releases the stress, which results in the flattened, stable
state (I). After that, the actuator is heated above Af (3-4). Next, it is cooled down to room
temperature again (5), at which it returns to stable state (II) again.
When reaching Mf , depending on the polymer thickness, it can hold the shape (e.g. for 25 µm)
or release most of the actuation (e.g. for 7.5 µm, shown in Figure 4.8a)). Additionally, since
the area moment of inertia depends in a cubic manner on the polymer layer thickness, any
thinner layers result in less achievable stroke. The influence of the polymer layer onto the
achievable bistable stroke is depicted in Figure 4.8b), where the difference between the vertical
displacement of stable states (I) and (II) is compared. Furthermore, favorable thickness
combinations for smaller actuator geometries and stack sizes are listed in Table 4.4. The
maximum relative bistable strokes (∆y/L) show a scaling-dependent decrease when reducing
the lateral dimensions L×w from 1000 µm×100 µm down to 20 µm×2 µm. Yet, even for the
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smallest bistable device, a considerable bistable stroke of 4 % is expected, which is of special
interest for actuator applications at ultra-small scales. Because the model at hand does not
inherit any size effects, further model refinement might be required considering additional
effects such as grain size, oxidation, compositional or other influences affecting the actuation
behavior. Furthermore, the Tg of PMMA is dependent on parameters such as film thickness
and polymer molecular weight. Additionally, both the Tg and CTE are dependent on the
interfacial energy between the polymer film and substrate and the exposure dose used during
structuring [29, 46, 60]. These processing and scaling effects are not captured by the model
and must be taken into account when designing bistable actuators with PMMA/TiNiHf/Si
trimorph composites.

4.4 Discussion

The shape memory properties of TiNiHf/SiO2/Si bimorph composites were characterized
experimentally for use as micro and nano bi-directional actuators. Controlling functional fa-
tigue characteristics upon thermal cycling in Ni-lean TiNiHf is pivotal in the development of
bi-directional actuators. DSC and CDM results showed that the transition temperatures of
fabricated TiNiHf freestanding films and TiNiHf/SiO2/Si bimorph composites decrease with
thermal cycling. The change in transition temperatures with cycling is reduced for TiNiHf
films bound to an SiO2/Si substrate compared to the functional fatigue DSC results reported
for freestanding films from Table 4.1. An average reduction in transition temperatures of
12 ◦C - 18 ◦C is obtained for 0.88 µm TiNiHf/SiO2/Si composites after 140 cycles compared
to an average reduction in transition temperatures of 29 ◦C - 38 ◦C for 5 µm freestanding
TiNiHf films after 140 cycles. Additionally, XRD and CDM show thermal hysteresis width is
also reduced for TiNiHf films constrained by SiO2 and Si substrates compared to freestanding
films of similar thicknesses. This might imply an improvement in the compatibility of the
austenite and martensite phases for films constrained by a substrate. The Si and SiO2/Si
substrates cause an inhomogeneous stress profile at the film-substrate interface, which may
affect phase transformation temperatures as it poses an additional energy barrier for the for-
mation of martensite upon cooling [59].
Based on the analysis of our experimental results, we can infer a pronounced substrate in-
fluence as well as a dramatic film thickness effect below a substrate-dependent critical film
thickness on the phase transformation properties of TiNiHf films. Freestanding TiNiHf films
show a thickness-dependent decrease of all characteristic transformation temperatures of
∼ 10 ◦C when reducing thickness from 21 µm to 5 µm. Similarly, decreasing the SMA’s
thickness was found to decrease the martensitic transformation temperatures for SMA wires
(e.g. NiMnGa [51]), freestanding films (e.g. TiNiCu [55], NiTi [44, 134]), and sputtered
bimorph systems (e.g. NiMnGa/Si [59], NiTi/Si [44], NiTi/Pt [45, 63], Ti2NiCu/Pt [55]).
This thickness effect can also be seen for TiNiHf with decreasing film thickness from 5 µm
down to 110 nm constrained on Si and SiO2/Si substrates. There is a critical thickness of
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TiNiHf films on both Si and SiO2/Si substrates, below which the thermal hysteresis width
increases significantly. Temperature-dependent electrical resistance measurements and XRD
measurements are in agreement that these values are between 110 nm and 220 nm for films
on SiO2/Si substrates and between 220 nm and 440 nm for films on Si substrates.
This shows evidence that the interface between the substrate and TiNiHf film plays an impor-
tant role in the phase transformation and is more pronounced below a critical thickness. The
existence of the observed critical thickness values could also be ascribed to a change in the
composition of the TiNiHf film due to diffusion at the surface and interface of the substrate
during the annealing process. One explanation of the change is a TiOx oxidation layer on
the surface of the SMA film [44, 45], which is claimed to affect films with a thickness below
1 µm [45, 55]. The oxidation layer will create a Ti-lean zone beneath, which is much thicker
than the oxidation layer, changing the composition of the film. The effect of the SiO2 buffer
layer on the change of the critical thickness to lower values might be attributed to the effect
of diffusion as well. Jarrige et al. [45] propose that for binary NiTi systems, there is an addi-
tional TiOx oxidation layer between the film and SiO2/Si substrate, and this layer can hinder
the diffusion of Ni and Si atoms between the film and the substrate, as was observed for films
annealed on Si substrates. Furthermore, the stress at the TiNiHf/Si interface might be re-
duced due to stress release by the intermediate SiOx layer, which affects phase transformation
at small SMA layer thicknesses. These considerations help to understand that the critical
thickness of TiNiHf films on SiO2/Si substrate could be smaller than that on Si substrate.
However, further investigations on the layer sequence (addition of buffer layers and diffusion
barriers like Si3N4 or Ta) of bimorph sample sections are needed for better understanding.
The transition temperatures deduced from different experimental methods of DSC, XRD,
electrical resistance, and bi-directional deflection reveal systematic deviations. The different
length scales and different loading conditions may cause major differences. While XRD probes
undergo phase transformation at the local scale, electrical resistance reveals average values of
the whole test specimen. Bi-directional bending reflects the non-uniform stress profiles during
beam bending, which is absent in DSC. Another difference is ascribed to the different time
scales of temperature cycling in the phase transformation regime. In particular, electrical
resistance measurements have been performed by providing sufficient waiting time between
data points to enable quasi-stationary equilibrium conditions, while DSC experiments have
been conducted using a fixed heating and cooling rate. However, these details are not the
focus of this investigation. Conclusions are drawn based on the dependencies observed by
each experimental method independently, while direct comparisons are avoided.
The experimental results shown in this work envisage a possible route for developing bistable
actuators using additional polymer layer to TiNiHf/Si bimorphs. The biggest challenge in
experimentally realizing such bistable devices is tailoring transformation temperatures of
TiNiHf to match the Tg of PMMA. Simulations incorporated the experimental results on
TiNiHf phase transformation properties accounting for substrate influence and film thickness
effects that arise when downscaling to nanofilms. Simulation results indicated that trimorph
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PMMA/TiNiHf/Si film composites exhibit large bistable actuation with scaling-dependent
bistable stroke per length (∆y/∆L). The simulation results should be considered as an
outlook and guideline for future experimental work.

4.5 Conclusions

For the investigated chemical composition of Ti40.4Ni48Hf11.6 and optimized annealing condi-
tions of 635 ◦C - 5 min, it is found that decreasing the layer thickness of TiNiHf in bimorph
composites decreases the phase transformation temperatures. A large reduction of Ms/As by
more than 100 ◦C is observed when TiNiHf film thickness drops below a critical thickness.
The onset of the film thickness effect depends on the substrate. For Si substrates, critical
thickness occurs between 440 nm and 220 nm, while for 1.5 µm SiO2 buffer/Si substrate it
occurs between 220 nm and 110 nm. Functional fatigue was improved for TiNiHf films in
bi-directional TiNiHf/SiO2/Si composites as compared to freestanding TiNiHf films. The
fabricated bi-directional actuator demonstrated a stable actuation stroke after 40 thermal
cycles and thermal stability after 125 cycles. Freestanding films, on the other hand, achieved
were not stabilized in the first 150 thermal cycles. Tailoring the substrate and film proper-
ties of TiNiHf films above room temperature leads to the possibility to use these films for
advanced nano- or micro-actuation. To further investigate the utility of these films for the
actuation, simulations were carried out by adding an additional PMMA layer to show that
with this material system, bistable actuation can be achieved at nanoscales. Once functional
fatigue is controlled in sputtered TiNiHf/SiO2/Si film composites, these results show they are
promising materials for nanoscale actuation to enable novel applications in nanomechanics
and photonics.
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CHAPTER 5

Conclusions and outlook

5.1 Conclusions

This dissertation dealt with modeling the incompressibility constraint for finite deformations
in shape memory alloys. In contrast to the gold standard of making use of the exponential
map, a new projection ansatz was used in this work. It allows to include the entire model
formulation in the generalized standard materials framework, from which all model equations
follow.
Article 1 introduced this new projection approach, which due to its simpler nature, is im-
plemented for finite deformation von Mises elastoplasticity instead of a shape memory alloy
model. The projection approach is embedded in the generalized standard materials frame-
work, which ensures thermodynamic consistency. Besides this, it also enables better control
over the model by giving the possibility to modify the time-discretized potential to, e.g.,
obtain a numerically favorable formulation. Additionally, a novel way of improving the log-
arithm function for tensors was employed to greatly improve the algorithm’s convergence
behavior for large time steps. Furthermore, we extended the model to include Armstrong-
Frederick type kinematic hardening. Finally, it was shown that in contrast to the exponential
map, our approach intrinsically preserves the system’s symmetry.
Article 2 adapted the projection ansatz for the small strain shape memory alloy model by
Sedlák et al. [109], which was extended to the finite strain case. The model was formulated
in the generalized standard materials framework, which itself was extended to include the
temperature as an additional field of unknowns. The from the potentials resulting model
and evolution equations are, due to their highly nonlinear nature, numerically challenging.
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To overcome the numerical difficulties, regularizations and additional energy terms are in-
troduced and analyzed. A novel way using a logarithmic strain measure to ensure vanishing
inelastic strains upon reverse transformation is employed. Furthermore, the volume change
upon phase transformation that occurs in some shape memory alloys is included in the model.
The model results are shown in several numerical examples.
Article 3 showed a way to manufacture TiNiHf/SiO2/Si shape memory film composites for
bidirectional micro actuation. Several different annealing conditions for magnetron sput-
tered thin films with different layer thicknesses are analyzed for their actuation properties
and functional fatigue. Here, a multitude of experiments, including tensile testing at differ-
ent temperatures, differential scanning calorimetry, electrical resistance measurements, X-ray
diffraction, cantilever deflection measurements as well as scanning electron microscopy was
used to obtain critical material parameters and information about the downscaling phenom-
ena happening in the shape memory alloy we utilized. Additionally, the in the experiments
obtained material parameters were used to fit the model parameters of the model developed
in Article 2, which was extended to better approximate the apparent hardening behavior of
the NiTiHf thin films. The model was then used to demonstrate a concept for shape memory
alloy nanoactuators which utilize PMMA as an additional layer to gain bistability by curing
the polymer in different stroke states.

5.2 Outlook

Modeling of shape memory alloys is still a very active area of research. Some possibilities to
improve and extend the shown works are summarized in the following:

5.2.1 One to one numerical comparison of the exponential map and projection approach

The proposed projection scheme to circumvent the exponential mapping was analyzed with
respect to numerical accuracy and convergence behavior in Article 1. Here, it showed a
slightly worse convergence behavior with respect to the number of time steps required to
obtain an accurate solution. However, another interesting aspect of replacing the exponential
mapping was to circumvent it’s rather high numerical cost arising from the singular value
decomposition. Hurtado et al. [43] showed a decreased computational cost using a similar
projection ansatz, when comparing it to the exponential map. Still, for our approach, a
computational performance comparison with the exponential map is yet to be done.

5.2.2 Inclusion of functional fatigue into the shape memory alloy model

Recently, many authors have included fatigue phenomena such as transformation induced
plasticity into their models. This allows to predict cyclic loading behavior over many cycles
as well as to analyze and optimize the training process used in many shape memory alloy
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applications.
For the application to shape memory alloy nanoactuators, adding the capability for modeling
functional fatigue behavior is a key ingredient in predicting the lifetime of them as well as
optimizing them for long-term use.

5.2.3 Improve shape memory model for nanoscale simulations via a gradient extension

In Articles 2 and 3, the shape memory alloy model was applied to nanoactuator simulations.
Here, it became apparent that for composites thin films in the nanometer range, thermo-
mechanical size effects play a large role in the materials behavior. Article 3 suggests that
these size effects mainly arise from the boundary layers, which might undergo diffusion. A
possibility to include these effects would be to include a gradient extension for the martensite
volume fraction ξ into the model.

5.2.4 Better validation by conducting more shape memory alloy experiments

The proposed shape memory alloy model possesses many mechanical, thermo-mechanical and
thermal parameters. Some of these parameters were taken from the literature, while most
of them were obtained by experiments in Article 3. However, to minimize the influence of
possible experimental influences, there is additional need to validate the model in additional
experiments.



106

Bibliography

[1] Achenbach, M. and Müller, I. (1985). Simulation of material behaviour of alloys with
shape memory. Archiwum Mechaniki Stosowanej, 37(6):573–585.

[2] Aravas, N. (1994). Finite-strain anisotropic plasticity and the plastic spin. Modelling and
Simulation in Materials Science and Engineering, 2(3A):483–504.

[3] Arghavani, J., Auricchio, F., and Naghdabadi, R. (2011). A finite strain kinematic hard-
ening constitutive model based on Hencky strain: General framework, solution algorithm
and application to shape memory alloys. International Journal of Plasticity, 27(6):940–961.

[4] Arivanandhan, G., Li, Z., Curtis, S., Velvaluri, P., Quandt, E., and Kohl, M. (2020).
Temperature homogenization of co-integrated shape memory-silicon bimorph actuators.
Proceedings, 64(1).

[5] Armstrong, P. J., Frederick, C., et al. (1966). A mathematical representation of the
multiaxial Bauschinger effect, volume 731. Berkeley Nuclear Laboratories Berkeley, CA.

[6] Auricchio, F., Bonetti, E., Scalet, G., and Ubertini, F. (2014). Theoretical and numer-
ical modeling of shape memory alloys accounting for multiple phase transformations and
martensite reorientation. International Journal of Plasticity, 59:30–54.

[7] Auricchio, F., Reali, A., and Stefanelli, U. (2007). A three-dimensional model describ-
ing stress-induced solid phase transformation with permanent inelasticity. International
Journal of Plasticity, 23(2):207–226.

[8] Bechtold, C., Chluba, C., Zamponi, C., Quandt, E., and de Miranda, R. L. (2019).
Fabrication and characterization of freestanding NiTi based thin film materials for shape
memory micro-actuator applications. Shape Memory and Superelasticity, 5(4):327–335.

[9] Bellini, C., Berto, F., Di Cocco, V., and Iacoviello, F. (2021). A cyclic integrated
microstructural-mechanical model for a shape memory alloy. International Journal of
Fatigue, 153:106473.



Bibliography 107

[10] Bernardini, D. and Pence, T. J. (2002). Models for one-variant shape memory ma-
terials based on dissipation functions. International Journal of Non-Linear Mechanics,
37(8):1299–1317.

[11] Brepols, T., Wulfinghoff, S., and Reese, S. (2017). Gradient-extended two-surface
damage-plasticity: Micromorphic formulation and numerical aspects. International Jour-
nal of Plasticity, 97:64–106.

[12] Choudhary, N. and Kaur, D. (2016). Shape memory alloy thin films and heterostructures
for MEMS applications: A review. Sensors and Actuators A: Physical, 242:162–181.

[13] Chowdhury, P. and Sehitoglu, H. (2017). Deformation physics of shape memory alloys -
Fundamentals at atomistic frontier. Progress in Materials Science, 88:49–88.

[14] Cisse, C., Zaki, W., and Ben Zineb, T. (2016). A review of constitutive models and
modeling techniques for shape memory alloys. International Journal of Plasticity, 76:244–
284.

[15] Cuitino, A. and Ortiz, M. (1992). A material-independent method for extending stress
update algorithms from small-strain plasticity to finite plasticity with multiplicative kine-
matics. Engineering computations, 9(4):437–451.

[16] Dettmer, W. and Reese, S. (2004). On the theoretical and numerical modelling of
Armstrong-Frederick kinematic hardening in the finite strain regime. Computer Methods
in Applied Mechanics and Engineering, 193(1):87–116.

[17] Du, H., Chau, F. S., and Zhou, G. (2016). Mechanically-tunable photonic devices with
on-chip integrated MEMS/NEMS actuators. Micromachines, 7(4):69.

[18] Eckart, C. (1948). The thermodynamics of irreversible processes. IV. The theory of
elasticity and anelasticity. Physical Review, 73(4):373.

[19] Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J., and Painter, O. (2009).
A picogram- and nanometre-scale photonic-crystal optomechanical cavity. nature,
459(7246):550–555.

[20] Errando-Herranz, C., Takabayashi, A. Y., Edinger, P., Sattari, H., Gylfason, K. B., and
Quack, N. (2020). MEMS for photonic integrated circuits. IEEE Journal of Selected Topics
in Quantum Electronics, 26(2):1–16.

[21] Es-Souni, M., Es-Souni, M., and Fischer-Brandies, H. (2005). Assessing the biocompat-
ibility of NiTi shape memory alloys used for medical applications. Analytical and Bioana-
lytical Chemistry, 381(3):557–567.



Bibliography 108

[22] Eterovic, A. L. and Bathe, K.-J. (1990). A hyperelastic-based large strain elasto-plastic
constitutive formulation with combined isotropic-kinematic hardening using the logarith-
mic stress and strain measures. International Journal for Numerical Methods in Engineer-
ing, 30(6):1099–1114.

[23] Evirgen, A., Karaman, I., Santamarta, R., Pons, J., Hayrettin, C., and Noebe, R. (2016).
Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich Ni-
TiHf and NiTiZr high temperature shape memory alloys. Acta Materialia, 121:374–383.

[24] Fischer, A. (1992). A special Newton-type optimization method. Optimization, 24(3-
4):269–284.

[25] Fish, J. and Shek, K. (2000). Finite deformation plasticity based on the additive split of
the rate of deformation and hyperelasticity. Computer Methods in Applied Mechanics and
Engineering, 190(1):75–93.

[26] Flory, P. J. and Volkenstein, M. (1969). Statistical mechanics of chain molecules. Biopoly-
mers, 8(5):699–700.

[27] Frost, M., Benešová, B., and Sedlák, P. (2016). A microscopically motivated constitutive
model for shape memory alloys: Formulation, analysis and computations. Mathematics and
Mechanics of Solids, 21(3):358–382.

[28] Frost, M., Benešová, B., Seiner, H., Kružík, M., Šittner, P., and Sedlák, P. (2021).
Thermomechanical model for NiTi-based shape memory alloys covering macroscopic lo-
calization of martensitic transformation. International Journal of Solids and Structures,
221:117–129. Special Issue dedicated to papers from the International Union of Theoreti-
cal and Applied Mechanics 2019 Symposium on Phase Transformations in Shape Memory
Materials: Modeling and Applications.

[29] Fryer, D. S., Peters, R. D., Kim, E. J., Tomaszewski, J. E., de Pablo, J. J., Nealey, P. F.,
White, C. C., and Wu, W.-l. (2001). Dependence of the glass transition temperature of
polymer films on interfacial energy and thickness. Macromolecules, 34(16):5627–5634.

[30] Gall, K., Sehitoglu, H., Chumlyakov, Y. I., and Kireeva, I. V. (1999). Tension-
compression asymmetry of the stress-strain response in aged single crystal and polycrys-
talline NiTi. Acta Materialia, 47(4):1203–1217.

[31] Goods, S. H. (2003). Thermal expansion and hydration behavior of PMMA moulding
materials for LIGA applications.

[32] Govindjee, S., Mielke, A., and Hall, G. J. (2003). The free energy of mixing for n-variant
martensitic phase transformations using quasi-convex analysis. Journal of the Mechanics
and Physics of Solids, 51(4):I–XXVI.



Bibliography 109

[33] Grummon, D. S. (2003). Thin-film shape-memory materials for high-temperature appli-
cations. JOM, 55(12):24–32.

[34] Hackl, K. (1997). Generalized standard media and variational principles in classical and
finite strain elastoplasticity. Journal of the Mechanics and Physics of Solids, 45(5):667–688.

[35] Hairer, E. (2001). Geometric integration of ordinary differential equations on manifolds.
BIT Numerical Mathematics, 41(5):996–1007.

[36] Halphen, B. and Nguyen, Q. S. (1975). Sur les matériaux standard généralisés. Journal
de Mécanique, 14(1):39–63.

[37] Han, S., Seok, T. J., Quack, N., Yoo, B.-W., and Wu, M. C. (2015). Large-scale silicon
photonic switches with movable directional couplers. Optica, 2(4):370–375.

[38] Han, W. and Reddy, B. D. (1999). Plasticity: Mathematical Theory and Numerical
Analysis, volume 9. Springer Science & Business Media.

[39] Hartl, D. J., Chatzigeorgiou, G., and Lagoudas, D. C. (2010). Three-dimensional mod-
eling and numerical analysis of rate-dependent irrecoverable deformation in shape memory
alloys. International Journal of Plasticity, 26(10):1485–1507.

[40] Helm, D. (2006). Stress computation in finite thermoviscoplasticity. International Jour-
nal of Plasticity, 22(9):1699–1727.

[41] Hoffmann, M., Bezzaoui, H., and Voges, E. (1994). Micromechanical cantilever res-
onators with integrated optical interrogation. Sensors and Actuators A: Physical, 44(1):71–
75.

[42] Hopcroft, M. A., Nix, W. D., and Kenny, T. W. (2010). What is the Young’s modulus
of silicon? Journal of Microelectromechanical Systems, 19(2):229–238.

[43] Hurtado, D., Stainier, L., and Ortiz, M. (2014). The special-linear update: An ap-
plication of differential manifold theory to the update of isochoric plasticity flow rules.
International Journal for Numerical Methods in Engineering, 97(4):298–312.

[44] Ishida, A. and Sato, M. (2003). Thickness effect on shape memory behavior of Ti-
50.0at.%Ni thin film. Acta Materialia, 51(18):5571–5578.

[45] Jarrige, I., Holliger, P., and Jonnard, P. (2004). Diffusion processes in NiTi/Si, NiTi/SiO2

and NiTi/Si3N4 systems under annealing. Thin Solid Films, 458(1):314–321.

[46] Kahle, O., Wielsch, U., Metzner, H., Bauer, J., Uhlig, C., and Zawatzki, C. (1998). Glass
transition temperature and thermal expansion behaviour of polymer films investigated by
variable temperature spectroscopic ellipsometry. Thin Solid Films, 313-314:803–807.



Bibliography 110

[47] Karaca, H., Saghaian, S., Ded, G., Tobe, H., Basaran, B., Maier, H., Noebe, R., and
Chumlyakov, Y. (2013). Effects of nanoprecipitation on the shape memory and material
properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Materialia,
61(19):7422–7431.

[48] Karaca, H. E., Acar, E., Tobe, H., and Saghaian, S. M. (2014). NiTiHf-based shape
memory alloys. Materials Science and Technology, 30(13):1530–1544.

[49] Karakoc, O., Hayrettin, C., Bass, M., Wang, S., Canadinc, D., Mabe, J., Lagoudas,
D., and Karaman, I. (2017). Effects of upper cycle temperature on the actuation fatigue
response of NiTiHf high temperature shape memory alloys. Acta Materialia, 138:185–197.

[50] Karakoc, O., Hayrettin, C., Evirgen, A., Santamarta, R., Canadinc, D., Wheeler, R.,
Wang, S., Lagoudas, D., and Karaman, I. (2019). Role of microstructure on the actua-
tion fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta
Materialia, 175:107–120.

[51] Knick, C. R., Smith, G. L., Morris, C. J., and Bruck, H. A. (2019). Rapid and low
power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal
bimorph actuators. Sensors and Actuators A: Physical, 291:48–57.

[52] Kockar, B., Karaman, I., Kim, J., and Chumlyakov, Y. (2006). A method to enhance
cyclic reversibility of NiTiHf high temperature shape memory alloys. Scripta Materialia,
54(12):2203–2208.

[53] Kohl, M. (2004). Shape memory microactuators. Springer Science & Business Media.

[54] Kohl, M., Krevet, B., and Just, E. (2002). SMA microgripper system. Sensors and
Actuators A: Physical, 97-98:646–652. Selected papers from Eurosenors XV.

[55] König, D., Ehmann, M., Thienhaus, S., and Ludwig, A. (2010). Micro- to nanostructured
devices for the characterization of scaling effects in shape-memory thin films. Journal of
Microelectromechanical Systems, 19(5):1264–1269.

[56] König, D., Zarnetta, R., Savan, A., Brunken, H., and Ludwig, A. (2011). Phase transfor-
mation, structural and functional fatigue properties of Ti-Ni-Hf shape memory thin films.
Acta Materialia, 59(8):3267–3275.

[57] Kröner, E. (1959). Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannun-
gen. Archive for Rational Mechanics and Analysis, 4(1):273–334.

[58] Lagoudas, D. C., Entchev, P. B., Popov, P., Patoor, E., Brinson, L. C., and Gao, X.
(2006). Shape memory alloys, part II: Modeling of polycrystals. Mechanics of Materials,
38(5):430–462. Shape Memory Alloys.



Bibliography 111

[59] Lambrecht, F., Lay, C., Aseguinolaza, I. R., Chernenko, V., and Kohl, M. (2016).
NiMnGa/Si shape memory bimorph nanoactuation. Shape Memory and Superelasticity,
2(4):347–359.

[60] Lan, T. and Torkelson, J. M. (2014). Methacrylate-based polymer films useful in litho-
graphic applications exhibit different glass transition temperature-confinement effects at
high and low molecular weight. Polymer, 55(5):1249–1258.

[61] Lee, E. H. (1969). Elastic-plastic deformation at finite strains. Journal of Applied
Mechanics, 36(1):1–6.

[62] Lee, H.-T., Kim, M.-S., Lee, G.-Y., Kim, C.-S., and Ahn, S.-H. (2018). Shape memory
alloy (SMA)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation
speed. Small, 14(23):1801023.

[63] Lega, P., Nedospasov, I., Orlov, A., Koledov, V., and Tabachkova, N. (2019). On the
fundamental limits of the size of the shape memory nanoactuators posed by martensitic
transition in Ti2NiCu shape memory alloy on nano-scale. In 2019 IEEE International
Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-
NANO), pages 90–93.

[64] Lester, B. T., Baxevanis, T., Chemisky, Y., and Lagoudas, D. C. (2015). Review and
perspectives: Shape memory alloy composite systems. Acta Mechanica, 226(12):3907–3960.

[65] Lexcellent, C., Boubakar, M., Bouvet, C., and Calloch, S. (2006). About modelling the
shape memory alloy behaviour based on the phase transformation surface identification
under proportional loading and anisothermal conditions. International Journal of Solids
and Structures, 43(3):613–626.

[66] Lima de Miranda, R., Zamponi, C., and Quandt, E. (2013). Micropatterned freestanding
superelastic TiNi films. Advanced engineering materials, 15(1-2):66–69.

[67] Lion, A. (2000). Constitutive modelling in finite thermoviscoplasticity: a physical
approach based on nonlinear rheological models. International Journal of Plasticity,
16(5):469–494.

[68] Lührs, G., Hartmann, S., and Haupt, P. (1997). On the numerical treatment of fi-
nite deformations in elastoviscoplasticity. Computer Methods in Applied Mechanics and
Engineering, 144(1):1–21.

[69] Mandepudi, S. K. and Ackler, H. D. (2010). Processing and characterization of compos-
ite shape memory alloy (SMA) thin film structures for microactuators. In Behavior and
Mechanics of Multifunctional Materials and Composites 2010, volume 7644, pages 154 –
165. International Society for Optics and Photonics, SPIE.



Bibliography 112

[70] Meng, X., Cai, W., Chen, F., and Zhao, L. (2006). Effect of aging on martensitic trans-
formation and microstructure in Ni-rich TiNiHf shape memory alloy. Scripta Materialia,
54(9):1599–1604.

[71] Meng, X., Cai, W., Fu, Y., Li, Q., Zhang, J., and Zhao, L. (2008). Shape-memory
behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy. Intermetallics,
16(5):698–705.

[72] Meng, X., Cai, W., Fu, Y., Zhang, J., and Zhao, L. (2010). Martensite structure in
Ti-Ni-Hf-Cu quaternary alloy ribbons containing (Ti,Hf)2Ni precipitates. Acta Materialia,
58(10):3751–3763.

[73] Meng, X., Cai, W., Wang, L., Zheng, Y., Zhao, L., and Zhou, L. (2001). Microstructure
of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy. Scripta
Materialia, 45(10):1177–1182.

[74] Meng, X., Cai, W., Zheng, Y., Tong, Y., Zhao, L., and Zhou, L. (2002). Stress-induced
martensitic transformation behavior of a Ti-Ni-Hf high temperature shape memory alloy.
Materials Letters, 55(1):111–115.

[75] Meng, X., Zheng, Y., Cai, W., and Zhao, L. (2004). Two-way shape memory effect
of a TiNiHf high temperature shape memory alloy. Journal of Alloys and Compounds,
372(1):180–186.

[76] Miehe, C. (1996a). Exponential map algorithm for stress updates in anisotropic multi-
plicative elastoplasticity for single crystals. International Journal for Numerical Methods
in Engineering, 39(19):3367–3390.

[77] Miehe, C. (1996b). Multisurface thermoplasticity for single crystals at large strains
in terms of eulerian vector updates. International Journal of Solids and Structures,
33(20):3103–3130.

[78] Miehe, C. (2011). A multi-field incremental variational framework for gradient-extended
standard dissipative solids. Journal of the Mechanics and Physics of Solids, 59(4):898–923.

[79] Miehe, C., Stein, E., and Wagner, W. (1994). Associative multiplicative elasto-plasticity:
Formulation and aspects of the numerical implementation including stability analysis.
Computers & Structures, 52(5):969–978.

[80] Mirzaeifar, R., DesRoches, R., Yavari, A., and Gall, K. (2013). A micromechanical
analysis of the coupled thermomechanical superelastic response of textured and untextured
polycrystalline NiTi shape memory alloys. Acta Materialia, 61(12):4542–4558.

[81] Moler, C. and Van Loan, C. (2003). Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Review, 45(1):3–49.



Bibliography 113

[82] Motemani, Y., McCluskey, P. J., Zhao, C., Tan, M. J., and Vlassak, J. J. (2011). Anal-
ysis of Ti-Ni-Hf shape memory alloys by combinatorial nanocalorimetry. Acta Materialia,
59(20):7602–7614.

[83] Moumni, Z., Zaki, W., and Nguyen, Q. S. (2008). Theoretical and numerical modeling of
solid-solid phase change: Application to the description of the thermomechanical behavior
of shape memory alloys. International Journal of Plasticity, 24(4):614–645.

[84] Müller, C. and Bruhns, O. (2006). A thermodynamic finite-strain model for pseudoelastic
shape memory alloys. International Journal of Plasticity, 22(9):1658–1682.

[85] Nagtegaal, J., Parks, D., and Rice, J. (1974). On numerically accurate finite element
solutions in the fully plastic range. Computer Methods in Applied Mechanics and Engi-
neering, 4(2):153–177.

[86] Nemat-Nasser, S. (1982). On finite deformation elasto-plasticity. International Journal
of Solids and Structures, 18(10):857–872.

[87] Noebe, R., Biles, T., and Padula, S. (2006). NiTi-based high-temperature shape-memory
alloys: properties, prospects, and potential applications. MATERIALS ENGINEERING-
NEW YORK-, 32.

[88] Ollier, E. (2002). Optical MEMS devices based on moving waveguides. IEEE Journal
of Selected Topics in Quantum Electronics, 8(1):155–162.

[89] Ortiz, M., Radovitzky, R. A., and Repetto, E. A. (2001). The computation of the expo-
nential and logarithmic mappings and their first and second linearizations. International
Journal for Numerical Methods in Engineering, 52(12):1431–1441.

[90] Ortiz, M. and Stainier, L. (1999). The variational formulation of viscoplastic constitutive
updates. Computer Methods in Applied Mechanics and Engineering, 171(3):419–444.

[91] Oshida, Y. and Tominaga, T. (2020). Nickel-Titanium Materials: Biomedical Applica-
tions. Walter de Gruyter GmbH & Co KG.

[92] Otsuka, K. and Ren, X. (2005). Physical metallurgy of Ti-Ni-based shape memory alloys.
Progress in Materials Science, 50(5):511–678.

[93] Otsuka, K. and Wayman, C. M. (1999). Shape memory materials. Cambridge university
press.

[94] Panico, M. and Brinson, L. (2007). A three-dimensional phenomenological model for
martensite reorientation in shape memory alloys. Journal of the Mechanics and Physics of
Solids, 55(11):2491–2511.



Bibliography 114

[95] Patoor, E., Lagoudas, D. C., Entchev, P. B., Brinson, L. C., and Gao, X. (2006). Shape
memory alloys, part I: General properties and modeling of single crystals. Mechanics of
Materials, 38(5):391–429. Shape Memory Alloys.

[96] Perić, D., Owen, D., and Honnor, M. (1992). A model for finite strain elasto-plasticity
based on logarithmic strains: Computational issues. Computer Methods in Applied Me-
chanics and Engineering, 94(1):35–61.

[97] Potapov, P., Shelyakov, A., Gulyaev, A., Svistunov, E., Matveeva, N., and Hodgson,
D. (1997). Effect of Hf on the structure of Ni-Ti martensitic alloys. Materials Letters,
32(4):247–250.

[98] Qidwai, M. and Lagoudas, D. (2000). On thermomechanics and transformation surfaces
of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity,
16(10):1309–1343.

[99] Qiu, S., Krishnan, V. B., Padula, S. A., Noebe, R. D., Brown, D. W., Clausen, B.,
and Vaidyanathan, R. (2009). Measurement of the lattice plane strain and phase fraction
evolution during heating and cooling in shape memory NiTi. Applied Physics Letters,
95(14):141906.

[100] Rastjoo, S., Fechner, R., Bumke, L., Kötz, M., Quandt, E., and Kohl, M. (2020). De-
velopment and co-integration of a SMA/Si bimorph nanoactuator for Si photonic circuits.
Microelectronic Engineering, 225:111257.

[101] Reese, S. and Christ, D. (2008). Finite deformation pseudo-elasticity of shape memory
alloys - constitutive modelling and finite element implementation. International Journal
of Plasticity, 24(3):455–482.

[102] Reese, S. and Govindjee, S. (1997). Theoretical and numerical aspects in the thermo-
viscoelastic material behaviour of rubber-like polymers. Mechanics of Time-Dependent
Materials, 1(4):357–396.

[103] Rezaee-Hajidehi, M., Tůma, K., and Stupkiewicz, S. (2020). Gradient-enhanced ther-
momechanical 3D model for simulation of transformation patterns in pseudoelastic shape
memory alloys. International Journal of Plasticity, 128:102589.

[104] Rockafellar, R. T. (2015). Convex Analysis. Princeton University Press.

[105] Rondelli, G. (1996). Corrosion resistance tests on NiTi shape memory alloy. Biomate-
rials, 17(20):2003–2008.

[106] Saghaian, S., Karaca, H., Tobe, H., Turabi, A., Saedi, S., Saghaian, S., Chumlyakov,
Y., and Noebe, R. (2017). High strength NiTiHf shape memory alloys with tailorable
properties. Acta Materialia, 134:211–220.



Bibliography 115

[107] Sanjabi, S., Cao, Y., and Barber, Z. (2005). Multi-target sputter deposition of
Ni50Ti50–xHfx shape memory thin films for high temperature microactuator application.
Sensors and Actuators A: Physical, 121(2):543–548.

[108] Scalet, G., Karakalas, A., Xu, L., and Lagoudas, D. (2021). Finite strain consti-
tutive modelling of shape memory alloys considering partial phase transformation with
transformation-induced plasticity. Shape Memory and Superelasticity, 7(2):206–221.

[109] Sedlák, P., Frost, M., Benešová, B., Ben Zineb, T., and Šittner, P. (2012). Thermo-
mechanical model for NiTi-based shape memory alloys including R-phase and material
anisotropy under multi-axial loadings. International Journal of Plasticity, 39:132–151.

[110] Seelecke, S. and Müller, I. (2004). Shape memory alloy actuators in smart structures:
Modeling and simulation . Applied Mechanics Reviews, 57(1):23–46.

[111] Sehitoglu, H., Wu, Y., Patriarca, L., Li, G., Ojha, A., Zhang, S., Chumlyakov, Y., and
Nishida, M. (2017). Superelasticity and shape memory behavior of NiTiHf alloys. Shape
Memory and Superelasticity, 3(2):168–187.

[112] Shen, J., Zeng, Z., Nematollahi, M., Schell, N., Maawad, E., Vasin, R., Safaei, K.,
Poorganji, B., Elahinia, M., and Oliveira, J. (2021). In-situ synchrotron X-ray diffraction
analysis of the elastic behaviour of martensite and H-phase in a NiTiHf high temperature
shape memory alloy fabricated by laser powder bed fusion. Additive Manufacturing Letters,
1:100003.

[113] Shuitcev, A., Vasin, R., Balagurov, A., Li, L., Bobrikov, I., and Tong, Y. (2020a).
Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy. Intermetallics,
125:106889.

[114] Shuitcev, A., Vasin, R., Fan, X., Balagurov, A., Bobrikov, I., Li, L., Golovin, I., and
Tong, Y. (2020b). Volume effect upon martensitic transformation in Ti29.7Ni50.3Hf20 high
temperature shape memory alloy. Scripta Materialia, 178:67–70.

[115] Shutov, A. (2016). Efficient implicit integration for finite-strain viscoplasticity with
a nested multiplicative split. Computer Methods in Applied Mechanics and Engineering,
306:151–174.

[116] Shutov, A. and Kreißig, R. (2008). Finite strain viscoplasticity with nonlinear kine-
matic hardening: Phenomenological modeling and time integration. Computer Methods in
Applied Mechanics and Engineering, 197(21):2015–2029.

[117] Shutov, A. and Kreißig, R. (2010). Geometric integrators for multiplicative viscoplas-
ticity: Analysis of error accumulation. Computer Methods in Applied Mechanics and En-
gineering, 199(9):700–711.



Bibliography 116

[118] Sielenkämper, M., Dittmann, J., and Wulfinghoff, S. (2022). Numerical strategies for
variational updates in large strain inelasticity with incompressibility constraint. Interna-
tional Journal for Numerical Methods in Engineering, 123(1):245–267.

[119] Sielenkämper, M. and Wulfinghoff, S. (2022). A thermomechanical finite strain
shape memory alloy model and its application to bistable actuators. Acta Mechanica,
233(8):3059–3094.

[120] Simo, J. (1992). Algorithms for static and dynamic multiplicative plasticity that pre-
serve the classical return mapping schemes of the infinitesimal theory. Computer Methods
in Applied Mechanics and Engineering, 99(1):61–112.

[121] Simo, J., Taylor, R., and Pister, K. (1985). Variational and projection methods for
the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied
Mechanics and Engineering, 51(1):177–208.

[122] Šittner, P., Landa, M., Lukáš, P., and Novák, V. (2006). R-phase transformation
phenomena in thermomechanically loaded NiTi polycrystals. Mechanics of Materials,
38(5):475–492. Shape Memory Alloys.

[123] Sterzl, T., Winzek, B., Rumpf, H., and Quandt, E. (2002). Bistable shape memory
composites for switches, grippers and adjustable capacitors. In Proceedings of the 8th
International Conference on New Actuators, Actuator, pages 91–94.

[124] Stupkiewicz, S., Rezaee-Hajidehi, M., and Petryk, H. (2021). Multiscale analysis of the
effect of interfacial energy on non-monotonic stress-strain response in shape memory alloys.
International Journal of Solids and Structures, 221:77–91. Special Issue dedicated to papers
from the International Union of Theoretical and Applied Mechanics 2019 Symposium on
Phase Transformations in Shape Memory Materials: Modeling and Applications.

[125] Tabesh, M., Lester, B., Hartl, D., and Lagoudas, D. (2012). Influence of the latent heat
of transformation and thermomechanical coupling on the performance of shape memory
alloy actuators. volume 2: Mechanics and Behavior of Active Materials; Integrated System
Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting of
Smart Materials, Adaptive Structures and Intelligent Systems, pages 237–248.

[126] Taya, M., Liang, Y., Namli, O. C., Tamagawa, H., and Howie, T. (2013). Design of two-
way reversible bending actuator based on a shape memory alloy/shape memory polymer
composite. Smart Materials and Structures, 22(10):105003.

[127] Taylor, R. L. (2017). FEAP - finite element analysis program. http://projects.ce.

berkeley.edu/feap/.

http://projects.ce.berkeley.edu/feap/
http://projects.ce.berkeley.edu/feap/


Bibliography 117

[128] Tong, J., Zhan, Z.-L., and Vermeulen, B. (2004). Modelling of cyclic plasticity and
viscoplasticity of a nickel-based alloy using Chaboche constitutive equations. International
journal of Fatigue, 26(8):829–837.

[129] Tong, Y., Shuitcev, A., and Zheng, Y. (2020). Recent development of TiNi-based shape
memory alloys with high cycle stability and high transformation temperature. Advanced
Engineering Materials, 22(4):1900496.

[130] Turner, T. L. (2001). Thermomechanical response of shape memory alloy hybrid com-
posites. DIANE Publishing.

[131] Uchil, J., Fernandes, F. B., and Mahesh, K. (2007). X-ray diffraction study of the phase
transformations in NiTi shape memory alloy. Materials Characterization, 58(3):243–248.

[132] Vitushinsky, R., Schmitz, S., and Ludwig, A. (2009). Bistable thin-film shape memory
actuators for applications in tactile displays. Journal of Microelectromechanical Systems,
18(1):186–194.

[133] Vladimirov, I. N., Pietryga, M. P., and Reese, S. (2008). On the modelling of non-
linear kinematic hardening at finite strains with application to springback - comparison of
time integration algorithms. International Journal for Numerical Methods in Engineering,
75(1):1–28.

[134] Waitz, T., Kazykhanov, V., and Karnthaler, H. (2004). Martensitic phase transforma-
tions in nanocrystalline NiTi studied by TEM. Acta Materialia, 52(1):137–147.

[135] Wang, B. and Zhu, S. (2018). Cyclic tension-compression behavior of superelastic shape
memory alloy bars with buckling-restrained devices. Construction and Building Materials,
186:103–113.

[136] Wang, J., Moumni, Z., and Zhang, W. (2017a). A thermomechanically coupled finite-
strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys.
International Journal of Plasticity, 97:194–221.

[137] Wang, J., Moumni, Z., Zhang, W., Xu, Y., and Zaki, W. (2017b). A 3D finite-strain-
based constitutive model for shape memory alloys accounting for thermomechanical cou-
pling and martensite reorientation. Smart Materials and Structures, 26(6):065006.

[138] Watanabe, H., Yamada, N., and Okaji, M. (2004). Linear thermal expansion coefficient
of silicon from 293 to 1000 K. International Journal of Thermophysics, 25(1):221–236.

[139] Weber, G. and Anand, L. (1990). Finite deformation constitutive equations and a time
integration procedure for isotropic, hyperelastic-viscoplastic solids. Computer Methods in
Applied Mechanics and Engineering, 79(2):173–202.



Bibliography 118

[140] Winzek, B., Schmitz, S., Rumpf, H., Sterzl, T., Hassdorf, R., Thienhaus, S., Feydt,
J., Moske, M., and Quandt, E. (2004a). Recent developments in shape memory thin film
technology. Materials Science and Engineering: A, 378(1):40–46. European Symposium
on Martensitic Transformation and Shape-Memory.

[141] Winzek, B., Schmitz, S., and Vitushinsky, R. (2004b). Shape memory actuators in
mobile robots for planetary surface exploration. In Tools and Technologies for Future
Planetary Exploration, volume 543, pages 115–120.

[142] Winzek, B., Sterzl, T., and Quandt, E. (2001). Bistable thin film composites with
TiHfNi-shape memory alloys. In Transducers ’01 Eurosensors XV, pages 706–709, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[143] Winzek, B., Sterzl, T., Rumpf, H., Botkin, N., and Quandt, E. (2002). Thin film
shape memory composites. In NatoConference on Martensitic Phase Transformation,
Metz, Frankreich., Metz.

[144] Winzek, B., Sterzl, T., Rumpf, H., and Quandt, E. (2003). Composites of different
shape memory alloys and polymers for complex actuator motions. In Journal de Physique
IV (Proceedings), volume 112, pages 1163–1168. EDP sciences.

[145] Woodworth, L. A., Lohse, F., Kopelmann, K., Cherif, C., and Kaliske, M. (2022).
Development of a constitutive model considering functional fatigue and pre-stretch in shape
memory alloy wires. International Journal of Solids and Structures, 234-235:111242.

[146] Wriggers, P. (2008). Nonlinear finite element methods. Springer Science & Business
Media.

[147] Wulfinghoff, S. and Böhlke, T. (2013). Equivalent plastic strain gradient crystal plas-
ticity – enhanced power law subroutine. GAMM-Mitteilungen, 36(2):134–148.

[148] Xu, L., Solomou, A., Baxevanis, T., and Lagoudas, D. (2021). Finite strain constitu-
tive modeling for shape memory alloys considering transformation-induced plasticity and
two-way shape memory effect. International Journal of Solids and Structures, 221:42–59.
Special Issue dedicated to papers from the International Union of Theoretical and Ap-
plied Mechanics 2019 Symposium on Phase Transformations in Shape Memory Materials:
Modeling and Applications.

[149] Yang, Q., Stainier, L., and Ortiz, M. (2006). A variational formulation of the coupled
thermo-mechanical boundary-value problem for general dissipative solids. Journal of the
Mechanics and Physics of Solids, 54(2):401–424.

[150] Yi, X., Meng, X., Cai, W., and Zhao, L. (2019). Multi-stage martensitic transformation
behaviors and microstructural characteristics of Ti-Ni-Hf high temperature shape memory
alloy powders. Journal of Alloys and Compounds, 781:644–656.



Bibliography 119

[151] Yoshida, F. and Uemori, T. (2003). A model of large-strain cyclic plasticity and
its application to springback simulation. International Journal of Mechanical Sciences,
45(10):1687–1702.

[152] Yu, C., Kang, G., Sun, Q., and Fang, D. (2019). Modeling the martensite reorientation
and resulting zero/negative thermal expansion of shape memory alloys. Journal of the
Mechanics and Physics of Solids, 127:295–331.

[153] Zaki, W., Moumni, Z., and Morin, C. (2011). Modeling tensile-compressive asymmetry
for superelastic shape memory alloys. Mechanics of Advanced Materials and Structures,
18(7):559–564.

[154] Zamkovskaya, A., Maksimova, E., Nauhatsky, I., and Shapoval, M. (2017). X-ray
diffraction investigations of the thermal expansion of iron borate FeBO3 crystals. Journal
of Physics: Conference Series, 929:012030.

[155] Zarinejad, M., Liu, Y., and White, T. J. (2008). The crystal chemistry of martensite
in NiTiHf shape memory alloys. Intermetallics, 16(7):876–883.

[156] Zhang, M. and Baxevanis, T. (2021). An extended three-dimensional finite strain
constitutive model for shape memory alloys. Journal of Applied Mechanics, 88(11). 111010.

[157] Zhang, Y., Kang, G., Miao, H., and Yu, C. (2022). Cyclic degeneration of elastocaloric
effect for NiTi shape memory alloy: Experimental observation and constitutive model.
International Journal of Solids and Structures, 248:111638.

[158] Zhang, Y., Li, M., Wang, Y. D., Lin, J. P., Dahmen, K. A., Wang, Z. L., and Liaw, P. K.
(2014). Superelasticity and serration behavior in small-sized NiMnGa alloys. Advanced
Engineering Materials, 16(8):955–960.


	Eidesstattliche Erklärung
	Introduction
	Motivation
	State of the art
	Modeling the incompressibility constraint for plasticity
	Shape memory alloy modeling

	Outline of the dissertation
	Publication 1
	Publication 2
	Publication 3


	Article 1: Numerical strategies for variational updates in large strain inelasticity with incompressibility constraint
	Introduction
	Modeling of finite deformation plasticity
	Kinematics
	Casting finite deformation plasticity into the generalized standard materials framework
	Time discretization of the rate potential for isotropic hardening
	Treatment of the incompressibility constraint
	Elimination of singularities
	Improving the approximation of the logarithm
	Initial guesses for  and -5mu-
	Solving the local and global system of equations

	Numerical results for isotropic hardening
	Gauss point evaluations
	3D necking of a circular bar
	Comparison of the approximations of the logarithm

	Incorporation of kinematic hardening
	Expanding the potential for kinematic hardening
	Results for kinematic hardening

	Summary and outlook
	Appendix A: Consistency of the dissipation potential
	Appendix B: Algorithmic yield criterion
	Appendix C: First derivatives of 
	Appendix D: Second derivatives of 
	Appendix E: Consistent tangent

	Article 2: A thermomechanical finite strain shape memory alloy model and its  application to bistable actuators
	Introduction
	Modeling of shape memory alloys
	Kinematics
	(Im-)Balance equations
	Helmholtz free energy
	Dissipation potential
	Transformation / yield criteria and inelastic evolution equations
	Rate potential

	Numerical strategies
	Inelastic volume preservation
	Differentiability at r Ci= 0
	Algorithmic yield criterion
	Algorithmic transformation criteria
	Initial guess for -5mu-
	Computing derivatives of  for 0
	Regularization of h
	Viscosity of the martensite volume fraction 
	Thermomechanical coupling
	Active set search

	Numerical results
	Gauss point evaluations
	Plate with a hole
	Finite element actuator model

	Summary and outlook
	Appendix A: Discussion of the dissipation potential 
	Appendix B: Proof of 0mu-s,tr minimizing  for 0
	Appendix C: First derivatives of 
	Appendix D: Second derivatives of 
	Appendix E: Consistent tangent

	Article 3: TiNiHf/SiO2/Si shape memory film composites for bidirectional  micro actuation
	Introduction
	Methods and materials
	Preparation of freestanding TiNiHf films
	Preparation of TiNiHf/Si and TiNiHf/SiO2/Si bimorphs
	Tensile testing
	Differential scanning calorimetry
	Electrical resistance measurements
	X-Ray Diffraction (XRD)
	Cantilever deflection measurements
	Constitutive modeling

	Results
	Functional properties of freestanding TiNiHf films
	Functional properties of TiNiHf/Si and TiNiHf/SiO2/Si bimorphs
	Bi-directional actuation based on TiNiHf/SiO2/Si bimorph film composites
	Bistable actuation based on PMMA/TiNiHf/Si trimorph film composites

	Discussion
	Conclusions

	Conclusions and outlook
	Conclusions
	Outlook
	One to one numerical comparison of the exponential map and projection approach
	Inclusion of functional fatigue into the shape memory alloy model
	Improve shape memory model for nanoscale simulations via a gradient extension
	Better validation by conducting more shape memory alloy experiments


	Bibliography

