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Abstract: Monitored infection and vaccination rates during past past waves of the coronavirus are
used to infer a posteriori two-key parameter of the SIRV epidemic model, namely, the real-time
variation in (i) the ratio of recovery to infection rate and (ii) the ratio of vaccination to infection rate.
We demonstrate that using the classical SIR model, the ratio between recovery and infection rates
tends to overestimate the true ratio, which is of relevance in predicting the dynamics of an epidemic
in the presence of vaccinations.
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1. Introduction

Massive vaccination campaigns profoundly influence the temporal evolution of pan-
demic waves. The accurate prediction of the dynamics of epidemics, including quan-
titatively evaluating the influence of vaccination campaigns, is important to optimize
the societal and medical responses to controlling epidemics. The susceptible–infected–
recovered/removed–vaccinated (SIRV) epidemic model [1–5] is an important generalization
of the simpler susceptible–infected–recovered/removed (SIR) epidemic model originally
developed by Kermack and McKendrick [6] and refined by Kendall [7], as the former
accounts for the effects of vaccination campaigns on a considered population, while the
original SIR model does not take into account vaccinations. Both models are realistic com-
partment models where persons from the considered population are assigned to the three
(SIR) or four (SIRV) compartments: S (susceptible), I (infectious), R (recovered/removed)
and (V) vaccinated. The SIR and SIRV epidemic models provide a good explanation for the
temporal evolution of COVID-19 waves caused by different mutants [8–10]. Later refine-
ments of these models, such as the SEIR [11–20], SVEIR [21,22], SEIRD [23], SIRD [24–26]
and SIRS [27,28], have introduced additional compartments (for reviews, see refs. [29–35]).

Within the SIR and SIRV models, the time-dependent infection (a(t)), recovery (µ(t))
and vaccination (v(t)) rates regulate the transitions between the compartments S → I,
I → R and S → V. Two important key parameters of the SIRV pandemic model are
the ratios k(t) = µ(t)/a(t) of the recovery to infection rate and b(t) = v(t)/a(t) of the
vaccination to infection rate. Recently derived analytical solutions to the SIRV model’s
equations [1,2] have adopted originally stationary values of the ratios k(t) = k0 and
b(t) = b0, allowing for arbitrary time-dependent infection rates a(t). This implies that the
recovery and vaccination rates have the same time dependence as the infection rate.

Here, we apply a recently analyzed inversion approach [36] for the SIR model to the
SIRV model. Instead of adopting different time dependencies of the rates k(t) and b(t)
and then solving the SIRV equations as before, we express key parameters k(t) and b(t) in
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terms of the observed rate of new infections J̇(t), its corresponding cumulative fraction J(t)
and the known time dependence of the cumulative fraction of vaccinated persons V(t) by
using well-monitored data from several countries.

2. SIRV Model
2.1. Starting Equations

The original SIRV equations read as follows:

dS
dt

= −a(t)SI − v(t)S, (1)

dI
dt

= a(t)SI − µ(t)I, (2)

dR
dt

= µ(t)I, (3)

dV
dt

= v(t)S, (4)

obeying the sum constraint

S(t) + I(t) + R(t) + V(t) = 1 (5)

at all times t ≥ t0 after the start of the wave at time t0 with the initial conditions

I(t0) = η, S(t0) = 1− η, R(t0) = 0, V(t0) = 0, (6)

where η is positive and usually very small, η � 1.

2.2. Key Parameter

In terms of the reduced time

τ =
∫ t

t0

dξ a(ξ), (7)

the SIR Equations (1) read as follows:

dS
dτ

= −SI − b(τ)S, (8)

dI
dτ

= SI − k(τ)I, (9)

dR
dτ

= k(τ)I, (10)

dV
dτ

= b(τ)S, (11)

with the time-dependent ratios

k(τ(t)) =
µ(t)
a(t)

, b(τ(t)) =
v(t)
a(t)

. (12)

Combining Equations (8) and (11) yields

d(S + V)

dτ
= −SI = −j(τ) = − dJ

dτ
(13)

in terms of the rate of new infections j(τ) = SI and the cumulative number of new
infections J =

∫ τ
0 j(ξ)dξ. Equation (13) immediately integrates to

J(τ) = 1− S(τ)−V(τ) = R(τ) + I(τ), (14)
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where the initial conditions (6) determine the integration constant and where the last
identity follows from the sum constraint (5).

Combining Equation (8) with Equation (14) provides

I(τ) = −b(τ)− dS(τ)/dτ

S(τ)
= −b(τ)− d ln S(τ)

dτ

= −b(τ)− d
dτ

ln[1−V(τ)− J(τ)]. (15)

For the ratio b(τ), we use Equation (11) in the form

b(τ) =
1
S

dV
dτ

=
dV/dτ

1−V − J
, (16)

where we inserted S from Equation (14). Combining Equations (15) and (16) then provides

I(τ) =
dJ(τ)/dτ

1−V(τ)− J(τ)
=

j(τ)
1−V(τ)− J(τ)

. (17)

Likewise, Equation (9) yields

k(τ) = S− d ln I
dτ

= 1−V(τ)− J(τ)− d
dτ

ln
[

j(τ)
1−V(τ)− J(τ)

]
, (18)

where we used Equations (14) and (17).
Equations (16) and (18) are the first two central results of our investigation. As can be

seen the two key parameters b and k can be expressed in terms of the observed epidemic
quantities: the rate of new infections j, its cumulative number J and the cumulative number
of vaccinated persons V.

2.3. Comparison with the SIR Model Limit

The SIR model corresponds to the limit of no vaccinations v = b = 0 corresponding to
V = 0. At this limit, the general result (18) reduces readily to

kSIR(τ) = 1− J(τ)− d
dτ

ln
[

j(τ)
1− J(τ)

]
= 1− J(τ)− d

dτ
ln
[

d
dτ

ln[1− J(τ)]−1
]

. (19)

The derived kSIR agrees exactly with the earlier derived Equation (12) in ref. [36]. The difference

kSIR(τ)− k(τ) = V(τ) +
d

dτ
ln

1− J(τ)
1−V(τ)− J(τ)

= V(τ) +
j(τ)V(τ) + [1− J(τ)] dV(τ)

dτ

[1− J(τ)][1−V(τ)− J(τ)]
≥ 0 (20)

is always non-negative because all quantities on the right-hand side of (20) are positive,
including the derivative dV/dτ of the cumulative fraction of vaccinated persons. Con-
sequently, for the same values of J(τ) and j(τ), the general ratio k for the SIRV model is
always smaller than the ratio kSIR for the SIR model for finite values of V(τ). This result is
very reasonable: to yield an unchanged cumulative number of new infections, compared
with the SIR scenario without vaccinations, the value of the ratio k of the SIRV has to
be smaller than the kSIR. This inequality is accompanied by a correspondingly higher
infection rate.
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To shed some light on the obtained results and the difference between k and kSIR,
consider a synthetic scenario, where k(τ) and b(τ) are given analytically, and the SIRV
Equations (8)–(11) are used to calculate the reduced time evolution of the SIRV values. In
the next section, we will perform the reverse method and use measured real-time values
of I(t) and V(t) to calculate k(t) and b(t). Figure 1 shows the numerical solution of the
coupled system of differential SIRV equations for the case of a constant ratio between
vaccination and infection rates, b(τ), and a time-dependent ratio k(τ) that rises during
the course of reduced time τ from 0.3 to 0.8. The initial condition at τ = 0 is given by
Equation (6) with a tiny η � 1. The chosen form of k(τ) is specified in the caption of
Figure 1 and plotted in Figure 1c. Figure 1a,b display the solutions of the SIR and SIRV
models, respectively. While V(τ) = 0 in the former case, V(τ) rises monotonously in
the latter, giving rise to a significant decrease in the fraction of infected persons. Because
vaccination is assumed to be ongoing after the number of infections has dropped, the
fraction of susceptible persons continues decreasing towards zero. While I(τ) denotes the
fraction of infected persons at time τ, the quantity j(τ) is the usually measured differential
fraction of infected persons. Figure 1c highlights the difference between k(τ) and kSIR(τ),
if both are evaluated using the data shown in Figure 1b. As discussed, kSIR(τ) is seen to
overestimate k(τ).
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Figure 1. Solution to the (a) SIR and (b) SIRV models versus reduced time τ for
k(τ) = 0.5 + 0.2 tanh[0.05(τ − 30)], η = 10−8 and b(τ) = 0 and b(τ) = 0.01 in (a) and (b), re-
spectively. Shown are S(τ), I(τ), R(τ), V(τ) as well as j(τ) = S(τ)I(τ). (c) Assuming that the data
in (b) had been measured, k(τ) and b(τ) are correctly reconstructed from Equations (18) and (16). For
comparison, we show kSIR(τ) obtained from Equation (19). The displayed values of I, j and b were
multiplied by factors of 4, 4 and 10, respectively, in order to avoid overlarge figures.

2.4. Real Time Dependence

In terms of the real time dependence, J̇(t) = a(t)j(τ), J(t) = J(τ), V(t) = V(τ) and
V̇(t) = (dV/dt) = a(t)(dV/dτ) are the general ratios, and (16) and (18) read as follows:

b(t) =
V̇(t)

a(t)[1−V(t)− J(t)]
, (21)

k(t) = 1−V(t)− J(t)− 1
a(t)

d
dt

ln
J̇(t)

a(t)[1−V(t)− J(t)]
. (22)

Multiplying Equation (21) with a(t) yields b(t) = v(t)/a(t) for the vaccination rate:

v(t) =
V̇(t)

1−V(t)− J(t)
, (23)

which is generally valid at all times t. As in [36], we also consider the case of a stationary
infection rate a(t) = a0. In this case, all real-time dependencies of the ratios k(t) and b(t)
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are attributed to time-dependent recovery (µ(t)) and vaccination (v(t)) rates. Equation (22)
then reduces to

b(t) =
V̇((t)

a0[1−V(t)− J(t)]
,

k(t) = 1−V(t)− J(t)− 1
a0

d
dt

ln
J̇(t)

a0[1−V(t)− J(t)]

= 1−V(t)− J(t)− 1
a0

[
J̈(t)
J̇(t)

+
V̇(t) + J̇(t)

1−V(t)− J(t)

]
. (24)

The difference between k(t) and kSIR(t) in real time, analogous to (20), is confirmed by
Figure 2b, where, for Germany and using a0 = 5 day−1 [37], the difference between the
values of k is shown, calculated with and without the effect of vaccinations. The sign
change of k(t) visible at later times in Figure 2b may be used as an indicator that the
sum J(t) + V(t) (Figure 2a) approaches unity, or alternatively, that the mortality ratio
f = D(t)/J(t) has significantly changed at the time of the divergence. This time (end of
2021) seems to coincide with the onset of the Omicron wave.

The curves are qualitatively very similar for other countries. In Figure 3a, we report
data for the daily number of new fatalities divided by f = 0.005 and the size of the
population to account for the fatality rate f . This approach allows us to estimate the
daily fraction of the population becoming newly infected persons, J̇(t), with much higher
accuracy than using the often incomplete reported fraction of newly infected persons.
The latter numbers cannot be used due to an unknown number of infections. Using this
approach, we follow previous works [37]. Figure 3b shows the corresponding cumulative
fraction of infected persons, while Figure 4a,b displays the reported vaccination data for
the same eight countries: Australia (AUS), Switzerland (CHE), Germany (DEU), France
(FRA), Italy (ITA), Sweden (SWE) and the United States (USA). The dimensionless rates
k(t) and b(t) that we obtain using these data in Equation (24) are given in Figure 5. As
for Germany, the k(t) decreases with time until the fractions of vaccinated and infected
persons approach unity.
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Figure 2. (a) Reported data [38] for Germany for the estimated cumulative fraction I(t) = 200 D(t) of
infected people, where D(t) is the reported cumulative fraction of fatalities and V(t)is the cumulative
fraction of vaccinated persons, as well as their sum. We assume here that vaccinated and infected
fractions belong to disjunct compartments, the SIRV model therefore breaks down as soon as the
reported I(t) + V(t) exceeds unity, manifested by a sign change of k(t). (b) Ratios k(t) (solid) and
kSIR(t) (dashed) according to Equation (24) with and without V(t), respectively.
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Figure 3. (a) Daily fraction J̇(t) and (b) cumulative fraction J(t) of infected persons in Australia
(AUS), Switzerland (CHE), Germany (DEU), France (FRA), Italy (ITA), Sweden (SWE) and the United
States (USA). Up to the end of 2021, the number of truly infected persons is estimated from the
number of fatalities, using a fatality rate of 0.005. Afterwards, due to a not precisely known change
in the fatality rate, the estimated J̇(t) is not considered in this work. The raw data were retrieved
from [38].
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Figure 4. (a) Daily fraction and (b) cumulative fraction of fully vaccinated persons in Australia (AUS),
Switzerland (CHE), Germany (DEU), France (FRA), Italy (ITA), Sweden (SWE) and the United States
(USA). The raw data were retrieved from [38].
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Figure 5. Dimensionless ratios (a) b(t) and (b) k(t) evaluated using Equation (24) and the data shown
in Figures 3 and 4. As in Figure 2, regimes with k(t) < 0, here also b(t), are indicated by light color.
The raw data were retrieved from [38].
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3. Cumulative Vaccination Fraction

In Figure 4, the real-time history of the vaccination campaigns in selected countries
is shown, indicating the daily fractions of fully vaccinated persons and the total fraction
summed over all vaccination campaigns. It can be seen that the shape of the cumulative
fraction as a function of real time and their values are of the same order.

The cumulative fraction of total vaccinated persons shown in Figure 4 can be repre-
sented well by the function

V(t) = V∞

[
1− e−

t−tA
tF

]
Θ[t− tA], (25)

where Θ denotes the step function. The parameters V∞ and tA, tF of the function (25)
differ for different countries and are listed in Table 1. The starting time of the vaccination
campaigns tA > t0 in general is later than the starting time of the mutant wave t0.

Table 1. Effective vaccination onset tA, relaxation time τ and final fraction of fully vaccinated persons
V∞ obtained using Equations (25) and vaccination data shown in Figure 4; tA is specified in number
of days after 1 January 2020.

Country α3 Code tA τ V∞

Australia AUS 570 78 days 0.90
Switzerland CHE 479 86 days 0.72
Germany DEU 491 83 days 0.76
France FRA 494 92 days 0.80
Italy ITA 492 88 days 0.79
Sweden SWE 503 85 days 0.77
United States USA 407 122 days 0.70

4. Conclusions

We have derived explicit expressions for the two potentially time-dependent, and
dimensionless parameters k(t) and b(t) of the SIRV model in terms of measured and
measurable fractions. Obtaining such parameters from reported data is an important
prerequisite in the forecasting of the time-evolution of epidemics. The time-evolution
of these parameters, which are often considered constant to simplify the analysis, may
be better modeled with time-evolutions from past epidemics at hand. To this end, we
analyzed their time-dependency and moreover showed that, using the classical SIR model,
the ratio between recovery and infection rate, k(t), can be highly overestimated in the
presence of vaccinations. We furthermore highlighted the effect of vaccinations on the
time-evolution of the k(t) and b(t), which in turn determine the S, I, R and V dynamics in
a straightforward fashion.

The proposed inversion method allows one to infer the key parameters of the SIRV
pandemic model from past COVID-19 mutant waves in terms of the well-monitored
cumulative fractions of new infections and vaccinations. A sign change in the temporal
evolution of the ratio between the recovery and infection rate can be used as a diagnostic
indicator for a significant change in the mortality ratio of an ongoing mutant wave.
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