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Abstract 
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Abstract 

Studies of land-water interactions are important for water management. The properties of 

land surfaces determine the quantity and quality of water resources. Land use changes can 

modify streamflow regimes and exacerbate water pollution. Thus, a better understanding of the 

quantity and quality of water resources in changing environments is critical for watershed 

management, especially in coastal watersheds, because they provide important ecosystem 

services.  

Understanding how land use/cover change (LUCC) impacts regional water resources is 

also of great concern for water security. The assumption of stationarity in hydrology is 

questioned in a changing environment as the theoretical basis of water resource management 

and the linkage between land use and water quality is scale-dependent and nonlinear. Thus, the 

aims of this study are to identify the spatial driving factors that control LUCC patterns, to 

investigate the impacts of human activities on hydrological extremes, and to explore the 

nonlinear relationship between LUCC and water quality in coastal watersheds.   

The driving factors of LUCC were evaluated using a machine learning-based CA-Markov 

model developed in this study. The results illustrated that changes in each category of land use 

were well calculated, with average AUC (Area Under Curve) values of 0.999 and 0.916 for the 

training and testing periods, respectively. We found out that urbanization is highly related to 

the distribution of population and GDP, and spatial variations of topography factors influence 

the distribution of woodland. The proposed method identifies the driving forces of LUCC and 

can therefore be used for sustainable land management in coastal watersheds.  

Besides the LUCC, the climate variability may change the regimes of streamflow. Thus, 

the non-stationary methods have been employed to understand the relationship between 

hydrological extremes, human activities and climate variability. The results reveal that 

amplified streamflow according to precipitation may be easier to observe at shorter time scales, 

and human activities may potentially amplify streamflow extremes in the watersheds, especially, 

in small-scale watersheds. To further understand the coupling effects of climate change and 

human activities, the relationship between LUCC and regional climate change was analyzed. 

We found that accelerating urbanization in the Minjiang River watershed modified climate 

extremes. The influence of climate variability on water resources is intensified by human 

activities.  

To further understand the effects of LUCC on water quality at different developing stages, 

we selected coastal watersheds in difference regions as the study areas and analyzed them using 

the interpretable machine learning. We found that the land use category with the highest 

influence on water quality changes with development stages, although agricultural activities 
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still played a major role in water pollution at all stages. In China, pollution from urbanization 

still constitutes an important factor controlling the water quality in watersheds. In contrast, 

because of the high rate of domestic wastewater treatment in the USA, urbanization has 

contributed only slightly to water quality degeneration in coastal watersheds. Additionally, 

climate variability is a cause of a nonlinear relationship between LUCC and water quality. It 

amplifies the export of nutrients from nonpoint or point pollution sources and modifies the 

transport and biochemical processes.  

This study highlights how LUCC impacts the water quantity and water quality under a 

changing environment in coastal watersheds. The findings provide new insights into water 

resource management under global change conditions. 
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Zusammenfassung 

Studien zu Interaktionen zwischen Gewässern und der Landoberfläche sind Grundlagen 

des Managements von Wasserressourcen, denn die Eigenschaften der Landoberflächen steuern 

die Quantität und Qualität der Wasserressourcen. Durch Änderungen der Landnutzung ändern 

sich auch das Abflussregime und die Verschmutzung der Gewässer. Ein besseres Verständnis 

der Entwicklung von Quantität und Qualität ist deshalb vor allem in sich schnell ändernden, 

küstennahen Systemen nötig, weil sie auch wichtige Ökosystemdienstleistungen bereitstellen.  

Die Auswirkungen von Landnutzungsänderung auf regionale Wasserressourcen spielen 

auch eine wichtige Rolle bei der Beurteilung der Sicherheit der Wasserversorgung. In einem 

sich verändernden hydrologischen System sind die Zusammenhänge zwischen Landnutzung 

und Wasserhaushalt oft nicht mehr stationär, sondern nicht-linear und skalenabhängig. Das Ziel 

dieser Arbeit ist deshalb die Identifikation der räumlichen Einflußfaktoren, die Analyse des 

anthropgenen Einflusses auf hydrologische Extreme und die Analyse der nicht-linearen 

Beziehungen zwischen Landnutzungsänderungen (LUCC) in küstennahen Ökosystemen.   

Die Steuergrößen des LUCC wurden mit einem “machine learning” basierten CA-

(Cellular Automata) Markov Modell analysiert, das in dieser Arbeit entwickelt wurde. Die 

Ergebnisse zeigen, dass die Änderungen in jeder Kategorie gut erfassbar waren, die mittleren 

AUC (Area Under Curve) Werte bewegten sich zwischen 0.999 und 0.916 für die Trainings- 

und Testperioden. Wir fanden eine starke Verbindung zwischen der Urbanisierung, 

Bevölkerungsverteilung und Bruttosozialprodukt. Die Verteilung von Waldflächen wurde vor 

allem von der Topographie beeinflusst.  Mit der Methode konnten die Kontrollgrößen des 

LUCC identifiziert werden und für das nachhaltige Management der Landnutzung in 

küstennahen Einzugsgebieten genutzt werden.  

Neben LUCC beeinflusst auch die Klimavariabilität das Abflussverhalten. Zum 

Verständnis der Wechselwirkungen zwischen hydrologischen Extremen, anthropogenen 

Aktivitäten und der Variabilität des Klimas wurden nicht-stationären Methoden eingesetzt.  

Die Ergebnisse zeigen, dass erhöhter Abfluss in kürzeren Zeitintervallen besser zu beobachten 

ist. Anthropogene Aktivitäten verändern hydrologischen Extreme, vor allem in kleinen 

Einzugsgebieten. Für ein tieferes Verständnis zwischen Klimaänderungen und anthropogenen 

Aktivitäten wurde der Zusammenhang zwischen regionalen Klimaänderungen und LUCC 

analysiert. Wir konnten eine Verbindung zwischen Urbanisierung des Minjiang Einzugsgebiets 

und veränderten klimatologische Extremen identifizieren und damit nachweisen, dass 

anthropogene Aktivitäten die Variabilität des lokalen Klimas beeinflussen. 

Zur vertieften Analyse der Auswirkungen von LUCC auf die Wasserqualität wählten wir 
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verschiedene küstennahe Regionen mit unterschiedlichen ökonomischen Entwicklungsstadien 

aus und analysierten sie mit KI-Methoden (interpretable machine learning). Wir fanden heraus, 

dass die Landnutzung den stärksten Einfluss auf die Wasserqualität hatte, gefolgt von 

verschiedenen landwirtschaftlichen Aktivitäten. In China spielt die Wasserverschmutzung aus 

urbanen Regionen immer noch eine wichtige Rolle, durch die Abwasserreinigung nimmt die 

Rolle in anderen Regionen jedoch ab. Außerdem beeinflusst auch das Klima die Verbindung 

zwischen LUCC und Wasserqualität, es verstärkt der Export von Nährstoffen und aus Punkt- 

und Flächenquellen und modifiziert den Transport von Stoffen und andere biogeochemische 

Prozesse.  

 In dieser Studie wird analysiert, wie LUCC die Wasserquantität und -qualität von 

küstennahen Einzugsgebieten bei geänderten klimatischen Rahmenbedingungen beeinflusst. 

Die Ergebnisse geben neue Einblicke in das Management von Wasserressourcen in Zeiten des 

Klimawandels.
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Chapter 1 General Introduction 

1.1 Research background 

Water resources are the ultimate connectors in global commitment towards a sustainable 

future (UN WWDR, 2020). Coupled with multiple stressors (e.g. climate change, hydrology 

processes), human activities may reduce the predictability of water availability and affect water 

quality. It is not surprising that many rivers across the world suffer from severe water quality 

deterioration owing to the rapidly increasing human population and economic development 

(UN WWDR, 2009). With a large population and rapid economic development,  coastal 

watersheds in China have undergone unprecedented urbanization rates, as well as accelerated 

disturbances from climate change, which may modify regional water resources (Bai et al., 2014; 

Lu et al., 2019). Therefore, it is essential to quantify and understand the effects of land use 

change on water resources in coastal watersheds in a sophisticated and clear manner. 

1.1.1 Dynamics of water sources 

Valuing water has become recognized worldwide because over 2 billion people live in 

areas where water scarcity is becoming more prominent as the world changes (UN WWDR, 

2021). Climate change is one of the major factors influencing the hydrological cycle, 

diminishing water resources availability, and changing spatial distribution worldwide (UN 

WWDR, 2020). In addition, increases in human activities, such as dam construction, 

deforestation, and urbanization, have significantly contributed to streamflow regimes alteration 

and water quality degradation (Zhang et al., 2020a).  

Water pollution exacerbates regional water scarcity (Ma et al., 2020) and water pollution 

is on the rise globally, and eutrophication of surface waters is still a major environmental 

concern worldwide, especially in developing countries, because of the accelerating 

development of these areas and high demand for resources (UN WWDR, 2009; Shi et al., 2017). 

Given that water quality plays a pivotal role in habitat protection, agriculture, industry, and 

public health (Akasaka et al., 2010; Cuo et al., 2013; Shi et al., 2017; Qu et al., 2022), 

understanding the dynamics of water quality in watersheds is necessary for sustainable water 

resources management. 

Watershed models serve as powerful tools for understanding watershed processes and are 

supportive for water resource management (Hörmann et al., 2007; Jackson-Blake et al., 2017; 

Zhang et al., 2020b). Although some models have clear physical significance, researchers 
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should consider critical criteria, such as the objectives of the user, data availability, and cost-

benefit analysis, when selecting an appropriate model to understand the key processes within 

watersheds. Overly simplistic models are likely to fail under different field conditions that are 

beyond the bounds of the calibration data, whereas models with too many parameters may 

surpass the type of data required, and turn out to be unjustified in practice (Perrin et al., 2001; 

Paudel and Jwaitz, 2012; Jackson-Blake et al., 2017). Therefore, there is a continuing challenge 

in constructing or selecting an appropriate model structure that adequately represents the key 

watershed processes. 

1.1.2 Dynamics of land use/cover change 

Land use/cover change (LUCC) is an important theme regarding the impacts of human 

activities on the Earth ecosystems and plays a vital role in the evolution of the local or regional 

environment (Foley et al., 2005; Lambin and Meyfrooidt, 2011; Ning et al., 2018). As a priority 

region, the dramatic transformations of land use in Asia have been a concern for related studies 

(Zhao et al., 2006; Song and Deng, 2017; Shfizadeh-Moghadam et al., 2019). Because of the 

rapid economic development and complex ecosystems, the remarkable land changes, especially 

urbanization, that have occurred in coastal China during recent decades have been extensively 

documented and have drawn much attention (Huang et al., 2018; Liu et al., 2021a; Xie et al., 

2022). Therefore, it is essential to quantify the patterns of LUCC and identify the major factors 

that influence LUCC in the coastal areas for watershed management.  

Coupling human activities and related environments, spatial and temporal patterns of 

LUCC can reflect underlying human activities as well as their interactions with nature over 

time (Lambin and Meyfroidt, 2011; Xie et al., 2022). LUCC was mainly studied from a 

disciplinary perspective until the 1990s, while new tools and techniques have recently enhanced 

our ability to monitor and explore changes in land use/cover (Turner et al., 2007; Verburg et al., 

2009; Chen and Kirwan, 2022). The recent development of geographic information systems 

and remote sensing technology has enabled researchers to deal with large amounts of data to 

understand LUCCs at the spatial and temporal scale (Mundia and Anlay, 2005; Rodriguez-

Galiano et al., 2012; Ayalew et al., 2022). Based on these technologies, numerous methods have 

been proposed for detecting the dynamics of LUCC. Most of the methods were developed for 

the specific environmental settings (e.g., urbanization, forest retreat), or are too subtle to 

interpret without the fundamental knowledge of basic metrics of LUCCs. Recently, the intensity 

analysis, which provides a quantitative framework that can identify the patterns of land use 

change at different levels, has been widely applied to gain insights into the processes of land 

use changes in many countries such as Greece, India, and China (Mallinis et al., 2014; Huang 

et al., 2018; Govind and Ramesh, 2019).  
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Land use models are useful tools for identifying the driving forces of LUCC and 

understanding the patterns of land use/cover with specific environmental settings (Verweij et 

al., 2018; Zhou et al., 2020). Since the 1970s, a few seminal papers have discussed the topic of 

land use modelling, and boosted by increasing remote sensing data availability, and a number 

of land use models have been developed in recent decades, such as urban growth, forest 

landscapes, and agricultural land use models (Wilson, 1971; Batty et al., 1997; Liao et al., 2016; 

Thompson et al., 2016; Verweij et al., 2018). Thus, various methods have been proposed to 

simulate land use/cover under different scenarios, such as the multi-agent model, support vector 

machines, logistic regression, and cellular automata models (Castella and Verburg, 2007; 

Wagner and Waske, 2016; Thompson et al., 2016; Mustafa et al., 2018). The advantages and 

disadvantages of these models have been widely discussed in related studies (Perez-Vega et al., 

2012; Mustafa et al., 2018; Niya et al., 2020). For example, the Markov chain models were 

proven to be effective in simulating LUCCs, providing adequate information to support land 

use management, while it is difficult to identify the spatial variation of the system effectively 

(Sang et al., 2011; Zhou et al., 2020; da Cunha et al., 2021). Therefore, to take advantage of 

them and eliminate their defects, researchers have attempted to integrate these models and apply 

them in land use modelling to achieve a deep understanding of the causes and possible future 

developments of land-use systems. 

1.1.3 Impacts of land use on water quality 

Nutrient exports in the watersheds are strongly related to increasing anthropogenic 

influences, such as urbanization, agriculture, industry, and sewage (Brabec et al., 2002; Brett 

et al., 2005; Huang et al., 2015). According to the Secretary-General of the United Nations, 

more than 80% of the pollutants entering the seas are contributed by the land-based pollution 

(UN General Assembly, 2004). As one of the most important hotspots characterized by 

intensive agricultural activities and dense populations, nutrient pollution in the watershed-coast 

continuum is one of the most significant environmental problems worldwide (Fohrer and 

Chicharo, 2011). It alters aquatic ecosystems and affects their capacity to provide essential 

ecosystem functions (Howarth et al., 2002; Brizzetti et al., 2021). However, compared with the 

point sources of the nutrients (e.g., industrial, and municipal wastewater discharge), the 

nonpoint sources of the nutrients, such as fertilizer application during agricultural activities, are 

more difficult to control in watersheds (Ongley et al., 2010). Therefore, identifying the 

relationship between land use and nutrient pollutants in watersheds is an imperative step into 

understanding the dynamics of the water quality in watersheds and in controlling the nutrient 

export within the catchment-coast continuum. 

Several studies have addressed the relationships between land use and water pollution. 

Generally, human-impacted land has significant positive correlations with water pollution, 
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whereas the natural land is significantly negatively correlated with nutrients (Lopez et al., 2008; 

Pratt and Chang, 2012; Huang et al., 2015). Agricultural activities in watersheds may enhance 

nutrient export. Many studies also point out that riverine nutrients export is highly related to 

arable land in Europe, China, and the USA (Ahearn et al., 2005; Huang et al., 2015; Kändler et 

al., 2017) As a result of urbanization, increasing impervious surfaces in the watersheds may 

modify the streamflow regimes, and additional nutrient exports are usually observed in the 

urbanized areas (Kaushal et al., 2011). In contrast, the natural lands are usually considered as 

the net sinks for the pollutants in watersheds because forests can absorb or fix nutrients (Huang 

et al., 2015; Pacheco et al., 2015; Jachniak et al., 2019). Wetlands can improve downstream 

water quality by intercepting soil, nutrients, and other pollutants transported from uplands and 

upstream aquatic ecosystems (Tan et al., 2013).  

The relationship between land use and water pollutants may be inconsistent and nonlinear 

across space (Kaushal et al., 2008; Liu et al., 2016). In addition, climate variability, soil 

conditions, and topographic factors may modify the relationship between land use and nutrient 

exports in the watersheds (Lei et al., 2021; Huang et al., 2021). The impacts of land use on 

water quality may also vary under different climatic conditions (Larned et al., 2004; Julian et 

al., 2017). The interaction between land use and climate variability may lead to large changes 

in pollutant concentrations or fluxes over short periods (Kaushal et al., 2008; Vidon et al., 2009; 

Huang et al., 2021). For example, Kaushal et al. (2008) suggested that the pollutants retained 

by the impervious surfaces in urbanized areas may amplify the nutrient export the during the 

flood season. Additionally, the natural land may become a source of nutrients because of 

anthropogenic activities, too. For example, the excess nitrogen in mature forests may be 

exported and result in nitrification and nitrate leaching (Pacheco et al., 2015). Thus, more 

attention should be paid to the relationship between land use composition and water quality in 

a watershed. 

1.2 Aim of the study 

1.2.1 Research gaps 

 As a result of complex interactions between humans and the physical environment, 

LUCC has been recognized as an important component of global environmental change (Foley 

et al., 2005; Huang et al., 2012; Akinemi et al., 2017; Ayalew et al., 2022). Assisted by 

technologies like remote sensing and geographical information systems, researchers can 

preliminarily understand the state and trend of LUCC over time and identify its major driving 

factors (Wilson, 1971; Batty et al., 1997; Liao et al., 2016). With statistical methods like the 

logistic regression, exploratory regression, and principal component analysis, researchers have 

identified the major driving factors of the heterogeneity and inertia of land use and employed 

these factors for land use modelling (Lau and Kam 2005; Feng and Tong, 2017; Lei et al., 2019). 
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However, it is still difficult to identify the relationship between the driving force and land use 

patterns. 

LUCC can modify the water resources by changing the characteristics of the land surface, 

infiltration patterns, runoff, groundwater recharge, sediment, water yield, and 

evapotranspiration (Lee et al., 2009; Cuo et al., 2013; Shrestha et al., 2018). Additionally, land 

use change may alter the characteristics of nutrient exports by linking water quality to specific 

land use types. The complexity of processes induced by human activities and other factors in a 

watershed can exert linear or nonlinear impacts on water resources. Coupled with other factors, 

the patterns of nutrient exports may be more complex because of nonlinear relationships 

between land use and water quality under specific environmental settings. Therefore, it remains 

unclear how LUCCs control watershed water resources in a changing environment.  

It is necessary to understand the dynamics of LUCCs and evaluate its potential impact on 

regional water resources in watersheds caused by intensifying human activities and accelerating 

economic development. Land use in the coastal areas will change constantly owing to 

population pressure and limited resources, and one key question is how water resources will be 

affected under such conditions. Thus, considering the stress caused by rapid LUCC, more 

attention should be paid to the coupling and coordination between LUCC and regional water 

resources, especially in coastal watersheds.  

1.2.2 Research questions 

In this thesis we aimed to investigate the effects of LUCC on water resources in a changing 

environment. The main research questions of this study are as follows:  

(1) What are the major factors influencing the land use/cover change in coastal watersheds?  

(2) How does land use/cover change impact regional water resources in the context of 

climate variability?  

(3) What is the nonlinear relationship between land use and water quality in coastal 

watersheds? 

1.3 Methodology 

Focusing on the overall research objective and the key research questions, we developed 

a machine learning-based CA-Markov model to identify the major driving factors influencing 

the distribution of land use/cover, and the dynamics of LUCC under different scenarios. The 

effects of human activities and climate were identified using the non-stationarity theory based 

on a rainfall-runoff model, remote sensing data, and long-term hydrology records. Using an 

interpretable machine learning method, the nonlinear relationships between LUCC and water 

quality were identified in coastal watersheds with different development stages. Figure 1.1 

shows the method route followed in this study.  
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Fig. 1.1 Work flow in this study 

1.4 Thesis structure 

This PhD thesis is organized into seven chapters. Chapter 1 is a general introduction 

involving the background, research gaps and questions. Chapter 2 identifies the major factors 

influencing LUCC in coastal watersheds. Chapters 3 and 4 answer the question of how LUCC 

impacts regional water resources in the context of climate variability. Chapters 5 and 6 

investigate the nonlinear relationships between land use and water quality in coastal watersheds. 

Chapter 7 discusses the main findings of this thesis and draws conclusions. 
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Chapter 2 A machine learning based CA-Markov model to 

understand land use changes with multi-scenario simulation in a 

large watershed in Southeast China 

Zhenyu Zhang, Georg Hörmann, Jinliang Huang, and Nicola Fohrer 

To be submitted Remote Sensing on 31
th 

January 2023 
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Abstract 

Understanding the land use/cover change (LUCC) in watersheds is essential for 

sustainable development. To comprehensively evaluate the factors that influence LUCC, we 

developed and implemented a machine learning-based CA-Markov model to understand the 

dynamics of LUCC in a coastal watershed located in Southeast China, namely, Minjiang River 

Watershed (MRW). The proposed method performed well for each category of land use with 

an average AUC value of 0.999 and 0.916 for the training and testing periods for the suitable 

images. And the overall accuracy for LUCC was 0.971. The process of urbanization in the 

MRW was speeding up recently, and the urban area increased by 2.22% of the total area during 

2015-2020, and most of that was transferred from woodland and agricultural land. The 

population and GDP were the major factors influencing the distribution of urbanized land in 

the MRW. In contrast, the distribution of woodland was highly related to the topographic 

factors in the MRW. Additionally, the scenario analysis was employed based on the proposed 

method. The result shows that process of urbanization may be more complex with increasing 

population and GDP. Land use evolution may be more sustainable with scientific spatial plans 

which consider facilities for human beings and ecological protection. The proposed method 

quantified the LUCC with changing environmental settings, which would be a helpful tool for 

sustainable watershed management.  

 

Key words: Land use/cover change; Machine learning; CA-Markov; Intensity Analysis; 
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2.1 Introduction 

Land use/cover change (LUCC), as the most direct indicator depicting the effects of human 

activities on the natural ecosystem, plays a significant role in the process of global change 

(Hersperger et al., 2018; Bacau et al., 2022; Wang et al., 2022). As a complex system 

constructed by the interaction between natural processes and human activities, regional LUCC 

is influenced by social, political, and natural factors (Wang et al., 2021a; Chen and Kirwan, 

2022; Palmate et al., 2022). Therefore, assessing and quantifying LUCC patterns is critical for 

developing regional environmental management and enhancing the understanding of the 

interactions between ecosystems and human activities (Marques et al., 2019; Zheng and Hu, 

2018; Ayalew et al., 2022).  

Modelling of LUCC has recently attracted growing interest, as it is a complex issue 

involving physical, environmental, and socio-economic factors (Aburas et al., 2017, 2019; 

Zhou et al., 2020). It has been proven that models are one of the most effective tools for 

understanding the dynamics of LUCC under various scenarios, grasping the spatio-temporal 

pattern of LUCC for regional environmental management, and providing a scientific reference 

for rational decision-making (Bacau et al., 2022; Fu et al., 2018; Yang et al., 2020). For this 

reason, a number of models have been developed to simulate LULC patterns, such as the 

logistic regression model, multi-agent models, and the cellular automata-Markov chain (CA-

Markov) (Ervinia et al., 2018; Lei et al., 2019; Wang et al., 2021a; Palmate et al., 2022). These 

models have been widely applied to understand the evolution of land use and play a significant 

role in spatial planning (Zhou et al., 2020; Bacau et al., 2022). However, it is still difficult to 

meet the requirements of land use planning and management with these models for the absence 

of considering impacts from socio-economic and natural factors in these models (Zhou et al., 

2020; Wang et al., 2021a). Hereby, the coupled models were developed recently to understand 

the LUCC in regional or global scale (e.g . Wagner and Fohrer, 2019; Zhou et al., 2020).  

Coupled with different modelling techniques, the CA-Markov model has more advantages 

for simulating changes in complex land use systems by providing improved accuracy and 

effective simulation (Fu et al., 2018; Palmate et al., 2022; Wang et al., 2022). Typically, the 

researchers attempted to assign the suitability score for each affecting factor for land use based 

on experience, literature review, and the fuzzy-logic method, and quantify the impacts of factors 

on land use by converting original values to a unified scale, namely the degree of suitability. 

After scoring the suitability of each factor, transition rules were constructed and further applied 

for land use modelling (Fu et al., 2018). Among them, fuzzy-logic-based methods, such as 

logistic regression, have been widely used to build suitability data for land use modelling (Fu 

et al., 2018; Lei et al., 2019; Wagner and Fohrer, 2019). For example, to understand the driving 

forces for land use, Wang et al. (2022) integrated CA-Markov and logistic regression models 
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to scientifically simulate the law of land use evolution, and suggested that natural and human 

factors have the main impact on LULC, while proximity factors have a relatively small impact. 

Thus, the CA-Markov model is more scientific and practical compared to other models 

(Arsanjani et al., 2013; Xu et al., 2019; Wang et al., 2021a).  

A common problem in existing methods is that the assignment suitability scores may not 

reflect land use changes for specific regions (Fu et al., 2018; Okwuashi and Ndehedehe, 2021). 

Although the fuzzy logic-based methods can model uncertainty in real world data with 

continuous boundaries, these methods may produce the problem of overfitted models because 

their rules are based on heuristics (Amato et al., 2018; Okwuashi and Ndehedehe, 2021). 

Meanwhile, these traditional fuzzy-logic based methods may not work well when modelling 

complex relationships between the potential driving factors and land use for the non-linear 

behaviour or discard the effects of heterogeneity may not be fully captured, especially for the 

process of urban development (Xu et al., 2019; Zhou et al., 2020; Viana et al., 2021). Recently, 

machine learning methods have attracted the attention of geospatial science researchers and 

have been applied in the remote sensing data analysis (Aburas et al., 2019; Karimi et al., 2019). 

As a subfield of artificial intelligence, machine learning can successfully overcome the 

limitations of previous methods, and achieve superior or at least equivalent accuracy outcomes 

(Ren et al., 2020; Viana et al., 2021). Nowadays, several studies have been carried out to 

understand land use change using machine learning models in cities or metropolitan regions. 

For example, coupled with the machine learning method, Zhou et al. (2020) simulated the 

evolution of urban space in Shanghai from 2015 to 2030 under different scenarios and showed 

that urban development will be more sustainable under the constraints of ecological and 

cultivated protection. However, most related studies have focused on the evolution of 

urbanization; these methods have rarely been introduced to understand the evaluation of 

multiple land use types at global or regional scales.   

Using the integrated CA-Markov Chain model is of significance due to its important role 

in land use modelling, especially in developing countries (Aburas et al., 2017; Zhou et al.,2020). 

To date, few studies have combined machine learning models with the CA-Markov model, and 

limited research has been conducted on the regional scale in China. To close these knowledge 

gaps, we developed a machine learning-based CA-Markov model with a random forest (RF) 

algorithm. RF has proven to be a suitable machine-learning algorithm with good interpretability 

and moderate time complexity (Zhou et al., 2020). To understand the impacts of multiple 

variables on the evaluation of land use at the regional scale, we applied this model to the largest 

watershed in Southeast China, namely Minjiang River Watershed (MRW), which is under 

increasing pressure from continuous population growth, rapid socio-economic development, 

and limited natural resources. To improve the capability of the CA-Markov model, we selected 

the MRW as a case to study LUCC in Southeast China, and the aims of this study were (1) to 
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quantify the land use change in Southeast China, (2) to analyze the evolution of land use under 

different scenarios, and (3) to understand the role of strategic spatial planning on regional land 

use change and provide in-depth implications for sustainable watershed management.  

2.2 Material and methods 

2.2.1 Study area 

The MRW (116°23′–119°43′ E, 25°23′–28°19′N) is the largest watershed in Southeast 

China, with an area of 60,992 km2. As a watershed located in the subtropical zone, the mean 

annual temperature and precipitation are 18 °C and 1617 mm, respectively, with approximately 

70% of the precipitation occurring between April and September (Zhou et al., 2016; Zhang et 

al., 2019). Based on the official population record, the populations of 2010, 2015, and 2020 

were 10.75 million, 11.02 million, and 11.72 million. More than 60% of the population lives in 

urban areas (Fig. S1). The GDP increased by 200% approximately in the past 10 years, which 

increased from 417 billion CNY (2010) to 1292 billion CNY (2020) (Fig. S2-1). By 2021, more 

than 1900 km of high-speed railway and 6000 km of highways were built in Fujian Province, 

and about 60% of which were built in the MRW. More highways and high-speed railways are 

planned to be constructed by 2030, which may change the patterns of land use in the MRW 

(Fig. 2-1).   

2.2.2 Data sources 

Landsat images were obtained from the USGS Earth Explorer 

(https://earthexplorer.usgs.gov/) for the years 2010, 2015, and 2020 in the MRW. After 

examining the available images, we realized that the uncertainties caused by the clouds would 

be more significant than the uncertainties induced by the inconsistent dates of images. 

Therefore, different dates were used to obtain complete and cloud-free coverage of the study 

area (Table 2-1). The unsupervised classification for the Landsat images was performed using 

the Iterative Self Organizing Data Analysis Technique Algorithm (ISODATA) integrated with 

post-classification enhancement (Yang and Liu, 2005; Huang et al., 2018). Ancillary data, 

including high-resolution images from Google Earth, GIS data, and information collected 

during field trips, were employed as reference data for the classification and accuracy 

assessment. In this study, we classified the land use/cover into 7 categories, namely, Woodland, 

Grassland, Agriculture, Orchard, Urban, Barren and Water (Table 2-2). The results of the 

accuracy assessment were shown in Table S2-1 and Table S2-2, and the overall accuracy of the 

classifications was 0.805±0.024, 0.863±0.021, and 0.864±0.021 for the years 2010, 2015, 

and 2020, respectively.   

 

https://earthexplorer.usgs.gov/
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Fig 2-1 Study area 

Based on previous studies, the spatial driving factors influencing land use/cover that we 

employed were listed in Table 2-3. The topographical data, including elevation, slope, and 

aspect, were estimated using the 30 m SRTM Digital Elevation Database produced by the 

National Aeronautics & Space of USA (NASA, https//www.nasa.gov/).The vector and Point-

of-Interest (POI) data were collected from the OpenStreatMap (OSM, 

https://www.openstreetmap.org/), including motorway, high-speed rail, city centers, and 

education facilities in the MRW. The VIIRS Night-time Light (VNL) data were used to identify 

the socio-economic development in the MRW (Fig. S2-2), which was produced by the Earth 

Observation Group, Payne Institute for Public Policy, Colorado School of Mines (Elvidge et 

al., 2017; 2021). The population data were obtained based on China’s population density 

provided by the WorldPop & Center for International Earth Science Information Network 

(2018). 

 

 

file:///C:/Users/jjj/Desktop/博士论文提交/https/www.nasa.gov/
https://www.openstreetmap.org/
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Table 2-1 Information of the satellite images 

Year 2010  Year 2015  Year 2020 

Acquisition data Path/Row Satellite-senor  Acquisition data Path/Row Satellite-senor  Acquisition data Path/Row Satellite-senor 

10/31/2010 119/41 Landsat 5-TM  9/27/2015 119/41 Landsat 8-OLI  10/10/2020 119/41 Landsat 8-OLI 

10/31/2010 119/42 Landsat 5-TM  9/27/2015 119/42 Landsat 8-OLI  4/17/2020 119/42 Landsat 8-OLI 

12/9/2010 120/41 Landsat 5-TM  2/26/2015 120/41 Landsat 8-OLI  2/20/2020 120/41 Landsat 8-OLI 

12/9/2010 120/42 Landsat 5-TM  5/13/2015 120/42 Landsat 8-OLI  2/20/2020 120/42 Landsat 8-OLI 

1/14/2010 121/41 Landsat 5-TM  10/11/2015 121/41 Landsat 8-OLI  4/15/2020 121/41 Landsat 8-OLI 

1/14/2010 121/42 Landsat 5-TM  2/13/2015 121/42 Landsat 8-OLI  4/15/2020 121/42 Landsat 8-OLI 

Note: TM:Thematic Mapper; OLI: Operational Land Imager. 
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Table 2-2 Classifications of land use/cover in the MRW 

Category Description 

Woodland 
Any significant clustering of dense vegetation, typical with a closed or dense 

canopy. 

Grassland Open areas covered in homogenous grasses with little vegetation. 

Agriculture 
Land used for cultivation, including newly cultivated land, fallow land, 

swidden land, and rotation plough land. 

Orchard 
Areas for planting perennial woody plants and perennial herb which were 

used for collecting their fruit, leaves and rhizome. 

Built-up 
Human made structures, road, railway, large homogenous impervious 

surfaces. 

Barren 
The areas with little vegetation, including exposed rock or soil, desert and 

sand dunes, dry salt flats/pans, mines. 

Water Areas where water was predominantly present throughout the year. 

 

 

Table 2-3 Driving factors for land use/cover change modelling 

Category Driving factor Year 

Topographical 

variable 

Elevation  

Slope  

Aspect  

Proximity 

variables 

Distance to motorway 
2015, 

2020 

Distance to high-speed rail 
2015, 

2020 

Distance to city center (i.e. cities and counties) 2020 

Distance to education facilities (i.e. kindergartens, schools, 

colleges and universities) 
 

Distance to entertainment facilities (e.g. public garden)  

Socioeconomic 

variables 

Population density 
2015, 

2020 

VIIRS nighttime lights 
2015, 

2020 

 

2.2.3 The RF-CA-Markov model 

LUCC models were commonly set up based on the relationship between historical land 

use and related driving factors (Wu et al., 2019; Feng et al., 2020). In this study, we proposed 

a method to simulate land use with RF, CA and Markov chain (Fig. 2-2). The relationship 

between multiple driving factors and each land use type was identified with the RF method, 

and the cells that may transfer to other types of land use were depicted by the transition 
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suitability images estimated by the RF models. Previous studies have proven that RF is a 

powerful machine learning classifier for land use studies because of its non-parametric nature, 

high classification accuracy, ability to determine variable importance, and capability to avoid 

over-fitting (Rodriguez-Galiano et al., 2012; Tan et al., 2017; Zhou et al., 2020).    

 

 

Fig 2-2 The flowchart of the coupling models 

 

The coupled CA with the Markov model can be used to simulate the dynamics of land use. 

The CA model can describe the changes in spatial positions, while the temporal changes in land 

use were simulated by the Markov transformation matrix. The CA model is characterized by 

discreteness in space and the state of land use, which can be used to analyze spatial distribution 

and neighborhood interactions (Fu et al., 2018; Wang et al., 2021a). The overall complex, self-

organizing system was described with a CA model based on individual cell behaviour and 

interactions between neighbouring cells (Wu & Webster, 1998). The land use changes were 

simulated with the assumption that areas have a higher tendency to transfer to typical land use 

when the same type of land use was nearby (Arsanjani et al., 2013). The CA model is composed 

with four elements, including a cell, cell state, neighbourhood, and transformation rules. The 

CA model has been widely applied in urbanized land use, such as sprawl (e.g. Zhou et al., 2020; 

Bacau et al., 2022).  

The Markov model is a stochastic model to simulate LUCC in temporal scale to describe 

how likely one state is to change to another state. Based on the formation of Markov random 

process for the prediction and optimal control theory, the possibility of one state transferring to 

another state was described by the probability matrix (Takada et al., 2010). In the land use 
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analysis, the transition objective was produced by the Markov analysis with the historical land 

use images (Arsanjani et al., 2013). 

2.2.4 Method to evaluate land use change 

To evaluate the performance of the model, the simulated transition suitability images were 

validated with the receiver operating characteristic (ROC) curve. The Area Under Curve (AUC) 

was calculated to evaluate the performance of the model. An AUC value of 1 represents a 

perfect model performance and value of 0.5 is no better accuracy than chance. Additionally, 

the user’s and producer’s accuracy along with figure of merit (FOM) were employed to evaluate 

the performance of simulated land use maps which calculated values based on the confusion 

matrix (Table S2-3).  

CRFAMH

CRH
accuracyOverall
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Where H, M, FA, and CR are the number of hits, misses, false alarms, and correct 

rejections in the confusion matrix. 

Intensity analysis for the category level was used to quantify land use change of each 

category. The change intensity of each category was measured by the percentages of Gain and 

Loss (Pontius et al., 2004). The components of the intensity were estimated by the percentages 

of Quantity, Exchange, and Shift for each category in the study area (Pontius and Santacruz, 

2014). Quantity is the quantitative difference of two time points, Exchange is the location 

changes between two categories during the period, and Shift was the location change of more 

than two categories (Shafizadeh-Moghadam et al., 2019; Pontius 2019). 

2.2.5 Scenario analysis 

To understand the patterns of LUCC under different strategies, we developed three 

scenarios to explore the dynamics of land use change in MRW under different policies. The 

scenarios Ⅰ (Scenarios Ⅰ) was set up under the assumption that changes of land use will be 

developed under current environmental setting, and all related factors were same as that in the 

year of 2020. The scenarios Ⅱ (Scenarios Ⅱ) was built with the assumption that the population 

and socio-economic development will increase or improve based on the expected value. Based 

on these plans, the Government of China indicated that China’s total population will reach 1.45 

billion which will increase by 2% compared to the population in 2020, and the GDP will grow 

at a rate of 5% per year. The scenarios Ⅲ (Scenarios Ⅲ) was built with the assumption that the 
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socio-economic factors will develop as expected, and the traffic, education, and the living 

facilities in the MRW will be improved continually. More high-speed railways and motorways 

will be built based on plans of the local government (Fujian Provincial Development and 

Reform Commission, http://fgw.fujian.gov.cn). The distances to the education and 

entertainment facilities will be decreased by 20% compared the year of 2020, and human 

activities will be limited with the protected area in the MRW.. 

2.3 Results 

2.3.1 Patterns of land use change 

The patterns of land use of ten years were presented in the Fig. S2-3, along with the losses 

and gains of different land use categories during each time interval. The transitions of each 

category of land use were also calculated in the Table 2-4. Woodland accounted for more than 

80% of the MRW area at all time points. Net increased urban area was observed during all time 

intervals and there were no losses of urban area for these two periods. The urban area increased 

by 0.84% and 2.22% of the total area in 2010-2015, and 2015-2020. The increasing urban area 

was mainly transferred from agricultural and woodland areas, and 0.65% and 1.92% of the total 

area were transferred to the urban area which accounts for more than 75% net increased urban 

area in these periods. 

The intensity of loss and gain and the components of temporal differences in the two 

periods were quantified in this study (Fig. 2-3). Based on the intensity analysis, the contribution 

of each category to the overall change was identified. The grassland, agricultural land, orchard, 

urban, and barren land were always active during the two periods. 

2.3.2 Model training and validation 

The RF models performed well for each land use category, with average AUC values of 

0.999 and 0.916 for the training and testing periods, respectively (Fig. 2-4). During the testing 

period, the AUC values ranged from 0.844 for barren land to 0.981 for the water areas in the 

MRW. Overall, a high model performance was identified when estimating the transition 

suitability of woodland, agricultural areas, orchard, urban areas, and water areas, whereas low 

accuracy was observed for grassland and barren land. 

The contribution of each driving factor on the output of RF models was displayed in Fig.2-

5. The population, VIIRS nighttime lights, and slope were the most important factors 

influencing the distribution of urban areas. Population and slope were important factors that 

influence the distribution of agricultural land. In contrast, natural land use may be influenced 

by topographical variables. The most important factor that influenced distributions of woodland 

was slope, meanwhile the top factor that influenced distributions of water was alleviation. 

http://fgw.fujian.gov.cn/
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Table 2-4 Land use/cover change during the two periods (% of MRW) 

From Category Period Woodland Grassland Agriculture Orchard Built-up Barren Water Sum Loss 

Woodland 
2010-2015 84.13 0.11 0.36 0.12 0.20 0.01 0.01 84.94 0.81 

2015-2020 85.34 0.17 0.14 0.28 0.71 0.01 0.01 86.66 1.32 

Grassland 
2010-2015 2.51 1.59 0.02 0.06 0.10 0.01 0.03 4.32 2.73 

2015-2020 0.15 1.28 0.09 0.13 0.06  0.01 1.72 0.44 

Agriculture 
2010-2015 0.02 0.01 3.18 0.10 0.45   3.76 0.58 

2015-2020 0.02 0.07 2.16 0.15 1.21  0.02 3.63 1.47 

Orchard 
2010-2015   0.05 1.80 0.09 0.01  1.95 0.15 

2015-2020  0.03 0.03 1.81 0.20  0.01 2.08 0.27 

Built-up 
2010-2015 0.00 0.00 0.00 0.00 3.54 0.00 0.00 3.54 0.00 

2015-2020 0.00 0.00 0.00 0.00 4.38 0.00 0.00 4.38 0.00 

Barren 
2010-2015  0.01 0.01   0.10  0.12 0.02 

2015-2020 0.02 0.02 0.02 0.02 0.01 0.04  0.13 0.09 

Water 
2010-2015   0.01    1.36 1.37 0.01 

2015-2020 0.03 0.01  0.11 0.03  1.22 1.40 0.18 

Sum 
2010-2015 86.66 1.72 3.63 2.08 4.38 0.13 1.40 100  

2015-2020 85.56 1.58 2.44 2.50 6.60 0.05 1.27 100  

Gain 
2010-2015 2.53 0.13 0.45 0.28 0.84 0.03 0.04   

2015-2020 0.22 0.30 0.28 0.7 2.22 0.01 0.05   

Note: Blanks indicated less than 0.005% of the total area of the MRW 
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Fig 2-3 Intensity analysis of land use for different periods 

 

 

 

 

Fig 2-4 Performance of RF model for land use in the MRW  
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Fig 2-5 Variable importance for determining land use change based on RF models 

(Note: EL. ,SL., AS., MO., RA., CI., ED., EN., PO., and NL. represented elevation, slope, 

aspect, distance to motorway, distance to high-speed railway, distance to city center, distance 

to education facilities, distance to entertainment facilities, population density and VIIRS 

nighttime lights, respectively) 

 

The land use patterns of the MRW in 2020 were simulated based on the proposed model 

(Fig. 2-6). The simulated land use was highly consistent with the observed land use. Though 

the accuracy of barren land (Producer’s accuracy=68.30%, User’s accuracy=61.70%, 

FOM=0.60) and grassland (Producer’s accuracy=60.98%, User’s accuracy=84.59%, 

FOM=0.64) was lower than other categories of land use, the proposed model still suitable for 

predict land use change in the MRW. The overall accuracy of the map was 0.971 (Table 2-5). 

2.3.3 Land use change under different scenarios 

Based on the conditions set under the three development scenarios, transition suitability 

images were simulated using the RF models (Fig. S2-4,S2-5, and S2-6). In Scenario I, the 

patterns of land use change were identified under the assumption that changes in land use will 

be developed under the environmental setting of 2020 (Fig. 2-7). The results show that there 

are no new barren areas, and approximately 81.8% of barren land may be transferred to other 

types of land use, including urbanized land, orchard, agricultural land, and grassland. And the 

urban area will increase continually during this process.. 

 



Chapter 2 Driving factors for land use/cover change 

 21 

 

 

Fig 2-6 Observed and simulated land use patterns in 2020 
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Table 2-5 Accuracy assessment of the model 

 Woodland Grassland Agriculture Orchard Built-up Barren Water 

Overall accuracy 98.58% 99.46% 98.73% 99.18% 98.53% 99.91% 99.78% 

Producer's accuracy 99.76% 60.98% 96.59% 75.60% 78.00% 68.30% 96.72% 

User's accuracy 98.63% 84.59% 66.74% 92.20% 99.89% 61.70% 87.32% 

FOM 0.99 0.64 0.65 0.75 0.78 0.6 0.85 

Overall accuracy of map 0.971 

Kappa* 0.884 

*Note: Kappa is a metric we do not encourage. We include it here to help user better understand its misleading properties and compare with related studies. For 

detail discussion of its drawbacks, please see Pontius and Miliones (2011).  
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Fig 2-7 Patterns of land use change under Scenarios Ⅰ 

 

 

Fig 2-8 Patterns of land use change under Scenarios Ⅱ 
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Fig 2-9 Patterns of land use change under Scenarios Ⅲ 

 

The transformation patterns of land use were also evaluated with Scenario II, which 

assumes that the social and economic factors will be improved with increasing population and 

GDP (Fig. 2-8). The results indicated that barren land may be more frequent, and approximately 

9.1% of new barren areas were gained during this process. The process of urbanization will be 

more complex under scenario II, and it is found that approximately 0.5% of urban area may 

transfer to other types of land use.  

Spatial planning of the related facilities may influence land use patterns in the MRW (Fig. 

2-9). Compared with the transformation pattern under Scenario II, barren land may be less 

prominent under the assumption of Scenario III. There was no newly gained barren land under 

the assumption of Scenario III. Meanwhile, the intensity of agricultural activities may be less 

pronounced compared to Scenario Ⅲ. The gained orchard and agricultural land were 45.3% 

and 7.6%, respectively, under Scenario III (Fig. 2-9). In contrast, approximately 46.2% and 9.3% 

of orchard and agricultural land may be gained under the assumption of Scenario II. In addition, 

the process of urbanization may still be complex under this scenario.  

 

2.4 Discussion 

2.4.1 LUCC in the MRW 
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Chinese cities are undergoing rapid anthropogenic disturbance, and the LUCC in China 

has drawn much attention recently (Huang et al., 2012; Zhou et al., 2020). The pattern of land 

use in the MRW during 2010-2020 was analyzed in this study (Table 2-4, Fig. 2-3). The land 

transformation has accelerated across the two time intervals, which is consistent with the 

accelerating economic development in Southeast China (Fig. S2-1). This finding is comparable 

to the results of previous studies in related area (Huang et al., 2012; Zhou et al., 2014). The 

change in grassland was pronounced at two time intervals, and the change was most prominent 

during 2015-2020. This result is similar with the trend observed in Asia (Shafizadeh-

Moghadam et al., 2019). In this study, an efficient hybrid geospatial explicit approach was 

developed based on a RF model combined with CA and Markov models to understand patterns 

of land use in a large watershed located in Southeast China.  

Although the CA-Markov model has been widely used in landscape and urban planning, 

the development of suitability maps for the model has not improved over the past decades (Fu 

et al., 2018). The RF model has the advantage of exploring the relationship between land use 

and local factors, especially for nonlinear relationships. The accuracy of the proposed method 

was relatively high, which was satisfactory for land use modelling. Compared to other land use 

categories, the accuracy for grassland and barren land was relatively low (Fig. 2-4). The 

uncertainty from input data, parameters, model structure, processes, and mathematical 

representation may influence the performance of land use models (Pontius et al., 2006; Ren et 

al., 2019; Lu et al., 2020). Recently, Lu et al. (2020) suggested that the percentage of land use 

may also affect the performance of the models. It was confirmed in this study, the total areas of 

the barren land and grassland in the MRW were less than other categories of land use, and data 

for training and testing for the RF models may not enough.  

2.4.2 Driving factors for land use change 

The evolution of land use is affected by regional environmental settings, socio-economic 

development, and related policies (Arsanjani et al., 2013; Lei et al., 2019). Land use models are 

valuable tools for understanding land use changes and identifying potential outcomes of 

policies or strategies (Van Vilet et al., 2019; Bacau et al., 2022). The importance of the driving 

factors influencing land use change was identified using the RF models (Fig. 2-5). It is indicated 

that the urban sprawl may be significantly affected by socio-economic factors. Population 

density and VIIRS nighttime lights were proven to be the major factors that influence the 

distribution of urbanized land in the MRW (Fig. 2-5). These results are consistent with the 

findings of previous studies (Huang et al., 2018; Lei et al., 2019; Zhou et al., 2020). Meanwhile, 

the topography was one of the most important factors influencing human-induced land use, and 

in this study, we also found that slope can highly influence the distributions of urbanized land 

and agricultural land use in the MRW.  
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Topographic factors such as elevation and slope gradient can reflect land productivity 

(Guan et al., 2019). The area with steep slopes may be more difficult to develop and use, and 

lower economic benefits may be achieved in these lands, which have a lower probability of 

change. Thus, natural or semi-natural land uses were likely to be found in these areas (Arsanjani 

et al., 2013; Lei et al., 2019; Guan et al., 2019). For example, Lei et al. (2019) indicated that 

the probability of fallow, forest, or orchard/garden would increase by 35.7%, 34.7%, and 50.3%, 

respectively, while the slopes would increase by 1 degree in a rural lowland catchment in 

Germany. Viana et al. (2021) also proposed that slope can be used as an explanation factor 

regarding agricultural land use, and different threshold values were found in the Beja district 

located in southern Portugal. In contrast, the urbanized land uses are usually observed in the 

area with flat terrain (Zhou et al., 2020; Bacau et al., 2022). In this study, we also found that 

the distribution of woodland was highly related to slope in the MRW.  

2.4.3 Effects of spatial planning on the dynamics of land use change 

The land use patterns were simulated under different scenarios in this study (Figs. 2-7, 2-

8, and 2-9). Overall, the urbanized land may still be dynamic in these scenarios, and most of 

the newly gained urbanized areas were transferred from the agricultural land and woodland. 

Similar studies also found that the agricultural land may be replaced by the urbanized land to 

meet the demand of market in the former socialist countries such as Slovakia and Romania in 

Europe with changing policies (Pazur and Bolliger, 2017; Bacau et al., 2022). With increasing 

demands of market, the process of urbanization becomes more complex, some urbanized land 

may be lost and more of the woodland was transferred to the urbanized land under Scenarios II 

and III (Figs. 2-8, and 2-9). For the rapid economic development and high population in the 

highly urbanized area, the urbanized land may be increased in these areas for urban sprawl, 

while the urbanized land may be reduced in the rural area due to a decreasing population. The 

similar results were observed in related studies in China. For example, Zhou et al. (2020) found 

that the urban land area in the Chongming District, the rural area of Shanghai, experienced 

negative growth during 2015-2020 while the urban area of Shanghai was increasing 

continuously.  

The spatial regional planning plays an important role in land use development (Zhou et al., 

2020; Bacau et al., 2020). Comparing the scenarios of rapid economic development and high 

population (i.e., Scenarios II and III), we found that regional planning may reduce the effect of 

land degeneration during the process of urbanization. Although more urbanized land may have 

been gained under these scenarios, increased land abandonment was observed under Scenario 

II (Figs. 2-8, and 2-9). For the unconstrained development and limited facilities to meet the 

demands of people, the land use change patterns were more intense under Scenarios Ⅱ, and 

more orchard, agricultural land, and barren land were gained compared with the results under 
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Scenarios Ⅲ. On the one hand, for the limited facilities, the demands in urbanized area may 

increase, thus the agricultural and orchard may increase nearby. On the other hand, for 

unconstrained development in this area, more area may be developed without limitation; thus, 

more land may be abandoned and more barren land may be gained. 

2.4.4 Outlook 

To understand LUCC with changing environmental settings, the relationship between the 

driving factors and land use was identified using RF models, and suitable images for each 

category of land use were simulated. The improved CA-Markov model is more efficient for 

understanding land use patterns in different scenarios. However, the Markov model was built 

based on the historical land use images, which may have enhanced the uncertainty of the model. 

In the next step, we will attempt to improve the Markov model by considering the changing 

environmental setting to improve the accuracy of the model. 

2.5 Conclusions 

We developed a machine learning-based CA-Markov method to understand LUCC under 

different scenarios in the MRW. The proposed method exhibited an acceptable performance. 

Lower accuracy was observed in the grassland and barren land simulations. The land 

transformation has been accelerating in past decades, which is consistent with accelerating 

socio-economic development in the MRW. With the RF model, the most important driving 

factor for land use change was identified. The spatial planning may play a non-negligible role 

in land use evolution. This study provides an in-depth understanding of LUCC patterns using 

various strategies. 
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Abstract 

The sustainability of existing water resources is influenced by extreme streamflow, and 

climate variability and human activities are generally the major factors controlling these 

dynamics. However, most of previously proposed methods to determine the effects of these 

factors have only been developed under the assumption of stationarity. Therefore, to overcome 

the existing research gap, an innovative method was proposed in this study to analyze and 

distinguish the effects of climate variability and human activities on extreme streamflow based 

on the non-stationarity theory. Accordingly, a rainfall-runoff model was developed using long-

term hydrological data in the watersheds of Southeast China, which cover >75,000 km2. The 

model proposed in this study showed an acceptable performance, as indicated by the Nash-

Sutcliffe efficiency coefficient (NSE), the Kling-Gupta efficiency (KGE), and percent bias 

(PBIAS). The NSE, KGE, and |PBIAS| were 0.67–0.75, 0.57–0.74, and 1.22–16.79 during the 

calibration periods, respectively. And the NSE, KGE, and |PBIAS| were 0.69–0.77, 0.65–0.76, 

and 0.98–17.51 during the validation periods, respectively. The trends of the extreme 

streamflow were analyzed for these watersheds at different time scales. The streamflow 

extremes at short time scales were found to be more sensitive to changing environment than 

those at longer time scales. The major factor controlling streamflow extremes at short time 

scales was human activities and climate change may be the dominant factor influencing 

streamflow extremes at long time scales. The findings of this study could provide useful 

insights into water management under global change conditions. 

 

Keywords: Rainfall-runoff model; Streamflow; Generalized extreme value; Non-stationarity; 

Climate change 
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3.1 Introduction 

Changes in the frequency and intensity of extreme hydrologic events worldwide threaten 

human life, infrastructure, and agriculture, thereby adversely impacting society and economy 

(Milly et al., 2008; Vinnarasi and Dhanya, 2019; UN WWDR, 2020). Hydrologic modeling is 

a useful tool to estimate the frequency and intensity of hydrologic extremes in the future 

(Ervinia et al., 2020; Zhang et al., 2020a). However, these models have been developed with 

stationary parameters. Models are calibrated with present available data, but applied for future 

projections (Wagner and Fohrer, 2019; Ervinia et al., 2020; Kiesel et al., 2020). It is 

increasingly recognized that the responses of hydrologic systems to changing environment 

needs to be better understood (Mentaschi et al., 2016; Pathiraja et al., 2016; Ouarda et al., 2019). 

Methods to evaluate extreme events are crucial for assessing the risks that human beings 

are facing, and for water management (Ishak et al., 2013; Mentaschi et al., 2016). Hydrologic 

frequency analysis, which estimates the occurrence probability of rare hydrologic events by 

fitting a probability distribution to the data selected from the maxima in a defined period, is 

widely applied to design variables to an acceptable exceedance probability (Sraj et al., 2016; 

Luke et al., 2017; Bracken et al., 2018). Conventionally, most of these analysis methods are 

developed based on the hypothesis of independency and stationarity of streamflow events, 

assuming that the probabilistic distribution parameters and exceedance probability of events 

are static (Huang et al., 2013a; Zhang et al., 2014; Ouarda et al., 2019). Consequently, most 

hydrologic modeling practices have been performed under this assumption (Mentaschi et al., 

2016; Sadegh et al., 2019). However, an assumption that the change in extreme events is 

stationery has been challenged by the fact that extreme events are changing in the past decades 

and are likely to change in the future (Sraj et al., 2016; Ceres et al., 2017; Sadegh et al., 2019). 

Additionally, The stationary models may misestimate flood quantiles relative to the non-

stationary models and many studies highly recommend the consideration of a non-stationary 

framework to enhance the flood management in Europe (Sraj et al., 2016; Hesarkazzazi et al., 

2021). Therefore, it is necessary to quantify extreme hydrologic events under the assumption 

of non-stationary. 

Non-stationarity of hydrologic events can be attributed to local anthropogenic impacts, 

such as land use change and damming, or to the global climate change (Milly et al., 2008; Zhang 

et al., 2015; Ouarda et al., 2019; Cui et al., 2020). Related studies indicated that extreme 

precipitation events are projected to be more frequent and intense, exceeding known historical 

records, and thereby providing strong evidences that extreme hydrologic events are closely 

related to global climate change (Luke et al., 2017; Sarhadi et al., 2018; Sun et al., 2018). The 

distribution of hydrologic extremes is likely to be modified in the context of climate change 

(Nasri et al., 2017; Li et al., 2018a; Carney et al., 2020). Additionally, human activities have 
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increasingly influenced the streamflow regime and extreme hydrologic events (Zhang et al., 

2015; Zhang et al., 2020a). Human land use has a strong impact on water balance components 

and it has been identified as a major contributing factor to non-stationarity in rainfall-runoff 

relationships (Wagner et al., 2016; Deb et al., 2019; Wagner et al., 2019; Aghsaei et al., 2020). 

Furthermore, the interaction between local human activities and global climate change 

made this non-stationarity more complex (Li et al., 2018b; Ervinia et al., 2020). For example, 

in the developing regions, urban expansion may be the major factors to modify the change 

patterns of the local climate. A study in the Yangtze River Delta found that the recurrence levels 

of the 1-day and 5-day maximum precipitation increased by 25.9 % and 59.1 % for highly 

urbanized areas, 34.2 % and 36.9 % for slightly urbanized areas, and 30.7 % and 61.5 % for 

rural stations, respectively (Lu et al., 2019). In contrast, the climate change may increased the 

risk of flood or high flow events in the developed regions. Some studies indicated that the 

increasing magnitude of extreme precipitation may increase the non-stationarity and lead to 

more uncertainties of flooding. (Tromel and Schonwiese, 2007; Sraj et al., 2016; Huo et al., 

2021). Sraj et al. (2016) found that a 10 % increase in annual precipitation, the 10-year flood 

increases by 8 % in a watershed of Slovenia. Although significant progress has been made in 

understanding hydrologic extremes, the role of local or global forcing on the frequency and 

intensity of high flows remains uncertain. 

The coastal watersheds in southeast China had been suffering from increased frequencies 

of climate events (e.g., typhoons) and drastic human activities (e.g. accelerated land use 

changes) (Huang et al., 2013a; Huang et al., 2013b; Zhang et al., 2020a). To understand the 

vulnerability induced by extreme hydrology events, the non-stationary patterns of high flows 

was identified in this study. To achieve this goal, a rainfall-runoff hydrology model coupled 

with the generalized extreme value (GEV) model were developed. The objectives of this study 

were: (1) to evaluate the occurrence of non-stationary patterns in high flows, (2) to identify the 

impacts of climate change and human activities on high flows, and (3) to provide evidences for 

management of water-related extremes. This study provides new insights into the non-

stationary of high flows in the context of human activities and climate changes. 

3.2 Materials and methods 

3.2.1 Study area 

Minjiang River Watershed and Jiulong River Watershed are the two largest watersheds in 

Southeast China located west of the Taiwan Strait, in the subtropical zone with a subtropical 

monsoon climate (Fig 3-1). The Minjiang River Watershed covers 60,992 km2 and the annual 

average precipitation is 1617 mm, of which 70 % occurs between April and September. The 

average annual discharge of the Minjiang River Watershed is 1980 m3/s (Zhang et al., 2019; 

Huang et al., 2020). The Jiulong River Watershed is the second largest river in the Fujian 
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Province and it covers an area of approximately 14,700 km2. The average discharge of the 

Jiulong River Watershed is 380 m3/s (Huang et al., 2013a; Zhang et al., 2015). These 

watersheds supply water to >35 million residents, households, and industries, and provide 

resources for agricultural irrigation (Zhang et al., 2015; Zhang et al., 2019; Huang et al., 2020). 

As a result of population increase and economic growth, the areas of urban increased 

significantly after 1980s (Huang et al., 2010; Huang et al., 2012a). Simultaneously, the 

demands of water resource increased. For example, hundreds of dams or reservoirs were build 

in the in the Jiulong River Watershed (Zhang et al., 2015). 

3.2.2 Data sources and processing 

The daily river discharge data of nine hydrological stations in two major watersheds in the 

Fujian Province (i.e., Jiulong River Watershed and Minjiang River Watershed; Fig. 3-

1 and Table 3-1) were obtained from the Hydrology and Water Resources Bureau. 

Meteorological data with 0.5°×0.5° spatial resolution from 1961 to 2012, including mean daily 

air temperature, maximum daily air temperature, minimum daily air temperature, and daily 

precipitation, were obtained from the China Meteorological Administration (http://data.cma.cn). 

The potential evapotranspiration was estimated based on the Hargreaves method (Hargreaves 

et al., 1985; Hargreaves and Allen, 2003). The climate variability trends of these watersheds 

are shown in Fig 3-2, Fig 3-3, and Fig 3-4. 

3.2.3 Streamflow reconstruction 

A conceptual rainfall-runoff hydrology model was developed in this study based 

on Jackson-Blake et al. (2017). The model was calibrated for the baseline (i.e., streamflow 

generated under the environmental setting of the 1980s), and the baseline streamflow (i.e., 

streamlfow re-constructed based on the environmental setting of baseline) after the 1980s were 

reconstructed by only changing the meteorological inputs of the model. The surface runoff, soil 

water, and groundwater were considered as input variables in this model (Fig S3-1), and they 

were estimated as follows:  

PfQ s                                  (1) 

where Qs is the surface runoff, f is the proportion of precipitation that exceed the infiltration, 

and P is the precipitation.  
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Fig 3-1 Map of the study area 

 

 

Fig 3-2 Precipitation in the study area 
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Fig 3-3 Temperature in the study area 

 

 

Fig 3-4 Potential evapotranspiration in the study area 
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Table 3-1 Description of the hydrology stations 

Name Hydrology station Watershed size (km2) Time period Length (m) 

West River Watershed (WRW) Zhengdian (ZD) 3491.37  1961-2012 239430 

North River Watershed (NRW) Punan (PN) 8458.72  1961-2012 509131 

Shaxi River Watershed (SRW) Shaxian (SX) 9918.13  1965-2012 549756 

Jianxi River Watershed (JRW) Qilijie (QL) 14816.17  1961, 1963-1968, 1970-2012 647260 

Futunxi River Watershed (FRW) Jiangle (JL) 5995.75  1961, 1965-1966, 1970-2012 531577 

 Shaowu (SW) 2712.34  1961, 1963-1967, 1969-1972, 1976-2000, 2003-2012 205356 

Youxi River Watershed (YRW) Datian (DT) 370.94  1962-1977 13865 

 Youxi (YX) 4075.33  1984, 1990-2012 321146 

Dazhangxi River Watershed (DRW) Youtai (YT) 3948.38  1961, 1963-2012 375344 
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where Qsoil is the soil water flow, Vsoil is the soil water volume, fs is the soil field capacity, fl is 

the threshold between soil and groundwater flow, Ts is the soil water time constant, PET is the 

potential evapotranspiration, alpha is the correction factor for the potential evapotranspiration, 

and μ is a parameter that determines the shape of the curve that link the relationship between 

evapotranspiration and soil water content (Fenicia et al., 2011). . 
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where Vg is the groundwater volume, beta is the baseflow index, Tg is the groundwater time 

constant, and Qg is the groundwater flow. 

We argue that physical changes in a watershed transform the underlying processes, which 

are manifested in the temporal variation of parameters in this conceptual model. The 

comparison method was employed to understand the non-stationary of streamflow in two 

periods (i.e. baseline period and impacted period ) with the assumption that the human activities 

were inactive in the baseline period and were active in the impacted period. Thus, the 

parameters for conceptual model would not change too much during this period. The model 

was calibrated and validated using the daily streamflow data by comparing the simulation 

results with field measurements. The periods for calibration and validation of the model were 

1961-1969 and 1970-1977, respectively. The Nash-Sutcliffe efficiency coefficient (NSE) (Nash 

and Sutcliffe, 1970), percent bias (PBIAS), and Kling-Gupta efficiency (KGE, Gupta et al., 

2009) were used to evaluate the performance of the model. PBIAS is a statistical metric 

providing an estimate of over prediction (PBIAS>0) or under prediction (PBIAS<0) of the 

model. They were calculated as follows: 
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where Qobs, Qcal, Qave, and n are the measured data, simulated data, the average, the number of 

days. 

222 1111 )(b)(a)(rKGE                   (9) 

where  r, a, and b are the linear correlation between observations and simulations, the measure 

of the flow variability error (i.e. the ratio between the standard deviation of simulated flow and 

the standard deviation of observed flow), and the bias term respectively (i.e. the ratio between 

the mean simulated and mean observed flow). Knoben et al. (2019) reported that the KGE 

scores between -0.41 and 1.0 can be considered as satisfactory model performance. The index 

of agreement (d) (Willmott 1981) was employed to evaluate the degree of model prediction 

error. The agreement value of 1 indicates a perfect match, and 0 indicates no agreement at all. 

3.2.4 GEV model 

The GEV distribution is one of the most important extreme distribution functions applied 

in extreme theory, and has been widely used worldwide (Ishak et al., 2013; Zhang et al., 2014; 

Zhang et al., 2018; Ragno et al., 2019). The cumulative distribution function for the non-

stationary GEV model is defined as follows (Towler et al., 2010): 
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where x is the annual extreme value;    is the location parameter in the non-stationary GEV 

model; is the covariate of the linear function of the location parameter; and   and   are 

the scale and shape parameters of the GEV model, respectively. The employed GEV method is 

based on a study by Ragno et al. (2019), named Process-informed Nonstationary Extreme Value 

Analysis (ProNEVA), in which the non-stationarity component can be defined by the temporal 

explanatory variable. Using the ProNEVA approach, the distribution parameters were estimated 

by the Bayesian inference approach and the posterior distribution function of the parameters 

was sampled with a newly-developed hybrid evolution Markov Chain Monte Carlo approach 

(Ragno et al., 2019).  

The precipitation in Southeast China has increased in the past, and may continue to 

increase in the future (Huang et al., 2013a; Zhang et al., 2015; Ervinia et al., 2020). Moreover, 

the intense human activities (including land use change) after the 1980 may have modified the 

streamflow regime in this region (Huang et al., 2012; 2013a; 2018). In addition, patterns of 

hydrological may be changed at different scales (Tu et al., 2017; Sun et al., 2018). Therefore, 

in this study, the 3-day maximum streamflow (annual maxima of 3-day means; Sm3day), 7-

day maximum streamflow (Sm7day), 30-day maximum streamflow (Sm30day), and 90-day 

maximum streamflow (Sm90day) were used as the annual extreme values for GEV models. 
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These indices of the flow statistics were calculated according to previous studies (Zhang et al., 

2015; Zhang et al., 2020a). 

3.2.5 Method to distinguish the non-stationary of climate change and 

human activities 

Theoretically, the hydrologic extremes can be extrapolated with probability density 

function or cumulative distribution function with observed maxima or minima. According to 

the assumption of the non-stationary theory, the extrapolated extreme can vary temporally and 

the return level can be estimated annually. This is also referred to as the effective return level 

(Cheng et al., 2014). The parameters in the GEV distribution can change temporally, thus 

facilitating the efficient detection of extreme trends within this framework (Bennett et al., 2015; 

Zhang et al., 2018; Steirou et al., 2019). In this study, we developed GEV models under two 

conditions, including the baseline streamlfow (i.e., streamflow re-constructed with the 

environmental setting of the baseline, which was influenced by the changed climate conditions 

in 1978-2012) and impacted streamflow (i.e., observed streamflow, which was influenced by 

the changed climate conditions and human activities). Distribution curves for the effective 

return levels for the two scenarios were then constructed. The slopes of the return period at the 

specific scale were further estimated to quantify the impacts from the related factors (Lu et al., 

2019) (i.e., α and β; Fig 3-5). The increased slope (i.e., positive value) indicated that the 

magnitude of the streamflow extreme may increase in the future, and the decreased slope (i.e., 

negative value) indicated that the magnitude of the streamflow extreme may decrease in the 

future. 

 

Fig 3-5 Method to identify the non-stationarity of hydrologic extremes associated with 

climate and human forcing 

 

Then, the contribution of climate change (Ec) and human activities (including the coupled 

effect of climate change and human activities) (Eh) can be estimated as follows: 
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%
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Ec 100                             (11) 
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                            (12) 

 

3.3 Results 

3.3.1 Model calibration and validation 

The calibration and validation results are shown in Fig 3-6. The simulated discharge fitted 

well with the observed values, with an NSE over 0.65, |PBIAS| less than 20, and KGE over 

0.60 except for the DT station (Table 3-2), suggesting that the models reasonably reflected the 

characteristics of the rainfall-runoff processes in these watersheds during the baseline period, 

and thus can be used to evaluate future changes with the environmental setting in this period. 

Additionally, the simulated flow duration curves fitted well with the observed curves (d=0.967-

0.989), which indicated that the models can perform well for the maxima and minima 

streamflow (Fig 3-6).  

3.3.2 Patterns of hydrologic extremes 

The time series of maximum streamflow at different scales for the period from 1978 to 

2012 are illustrated in Fig 3-7. The alteration of the red to blue from bottom to top indicated 

that the maximum streamflow decreased with a longer time scale. Moreover, high variabilities 

were observed in the bottom area of the time series, such as for Sm1day and Sm3day, which 

indicated that these indicators may be more sensitive to the changing environment. In contrast, 

low variabilities were observed for Sm90day and Sm30day, and this might suggest that these 

indicators were less sensitive to the changing environment. In addition, similar patterns of the 

annual maxima streamflow were observed in adjacent hydrology stations, such as the ZD and 

PN stations which are located in the Jiulong watershed. 

According to the non-stationary GEV analysis, the return level curves of the annual 

maxima streamflow for the different scales (Fig 3-8) and the observed data fitted well with the 

maximum likelihood return level curve. All the stations exhibited similar return level patterns 

(Fig 3-8). 
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Table 3-2 Nash-Sutcliffe efficiency coefficient (NSE), Kling-Gupta efficiency (KGE), and percent bias (PBIAS) of the rainfall-off model in streamflow 

simulation 

Station 
Calibration Validation 

NSE KGE PBIAS NSE KGE PBIAS 

ZD 0.67 0.72 1.92 0.71 0.72 1.83 

PN 0.72 0.73 11.26 0.74 0.76 9.42 

SX 0.72 0.57 16.61 0.77 0.74 14.89 

QL 0.71 0.63 -6.81 0.75 0.65 -7.46 

JL 0.75 0.63 16.79 0.69 0.68 17.51 

SW 0.67 0.74 1.22 0.72 0.70  0.98 

DT 0.50  0.58 25.86 0.52 0.62 18.36 

YT 0.70  0.70  8.99 0.74 0.74 2.49 
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Fig 3-6 Daily streamflow calibration and validation for the rainfall-runoff hydrology model 
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Fig 3-7 Annual maxima streamflow of the study area  

(Note: from up to down: ZD, PN, SX, QL, JL, SW, YX, and YT) 

 

3.3.3 Impacts of climate change and human forcing 

The non-stationary GEV models of the hydrology stations were set up for the different 

streamflow scenarios, and accordingly, the effects of human activities and climate change were 

identified (Fig 3-9). Except for the SW and YX stations, the return levels of the annual maxima 

streamflow might be reduced in the future because of human activities. Climate variability 

evidently had limited impacts on the annual maxima streamflow in the YT station which might 

be due to the small watershed area and low variability of climate change (Table 3-1, Fig 3-2, 

Fig 3-3, and Fig 3-4). 
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Fig 3-8 Return level of the annual maxima streamflow 

 

Furthermore, the quantified effects of human activities and climate change are presented 

in Table 3-3. Human activities might alter the patterns of annual maxima streamflow in terms 

of the Sm3day and Sm7day for the small watersheds (i.e., ZD, SW, and YT stations). The Eh 

of Sm3day and Sm7day at the ZD, SW, and YT stations, with watershed sizes less than 3500 
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km2, were 177-208% and 114-214%, respectively. Except for the YT station, climate change 

was the major factor that influenced the patterns of the annual maxima for the different stations 

(Table 3-3). 

 

 

Fig 3-9 Time series of the effective return levels for the annual maxima streamflow based on 

the non-stationary generalized extreme value (GEV) model (10-year return level)  
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Table 3-3 Effects of human activities and climate change (%) 

Station Index Eh Ec Station Index Eh Ec 

ZD 

Sm3day 208 -108 

JL 

Sm3day 22 78 

Sm7day 118 -18 Sm7day 39 61 

Sm30day -42 142 Sm30day 16 84 

Sm90day -11 111 Sm90day -1 101 

PN 

Sm3day 28 72 

SW 

Sm3day 177 -77 

Sm7day 7 93 Sm7day 214 -114 

Sm30day 24 76 Sm30day -29 129 

Sm90day 51 49 Sm90day -24 124 

SX 

Sm3day 22 78 

YX 

Sm3day 16 84 

Sm7day 11 89 Sm7day 175 -75 

Sm30day 23 77 Sm30day -10 110 

Sm90day 31 69 Sm90day 166 -66 

QL 

Sm3day 174 -74 

YT 

Sm3day 189 -89 

Sm7day 18 83 Sm7day 114 -14 

Sm30day 13 87 Sm30day 107 -7 

Sm90day 27 73 Sm90day 99 1 

Note: Eh and Ec are the effect of human activities and climate variability, respectively. 

 

3.4 Discussion 

3.4.1 Applicability of the rainfall-runoff model 

This study assumed that the marginal distribution of streamflow regimes follows a GEV 

distribution, where the distribution parameters can vary temporally. However, the streamflow 

regimes may be controlled by climatic factors (including precipitation, temperature, and 

weather generator parameters) and human-induced factors (including land use/cover change 

and dam construction) in the watersheds (Huang et al., 2013a; Zhang et al., 2015; Steirou et al., 

2019; Aghsaei et al., 2020). Hydrological models are useful tools for understanding the impacts 

of climate variability on watersheds (Deb et al., 2019; Ervinia et al., 2020; Zhang et al., 2020a). 

To identify the streamflow regimes controlled by climate change, the streamflow of the study 

area was reconstructed, which eliminated the interference of human activities after the 1980s, 

by only changing the meteorological inputs of the watersheds. The model structure employed 

in the study was found to be a viable tool to simulate the rainfall-runoff process for the large-

scale watershed.  
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Previous studies in the study area employed models with more complex structures (Huang 

et al., 2013a; Zhang et al., 2019; Zhang et al., 2020a). Although the assumptions of the rainfall-

runoff model proposed in this study were simpler than the popular process-based models, that 

is, Soil & Water Assessment Tool (SWAT) and Hydrological Simulation Program-FORTRAN 

(HSPF), the performance of the proposed model was comparable to those models in previous 

studies (Table S3-1). For example, the NSE for the daily streamflow simulation of SWAT in 

the NRW during the calibration and validation periods were 0.64 and 0.60 while those were 

0.72 and 0.74 respectively, using the rainfall-runoff model in this study (Table 3-2, and Table 

S3-1). 

The development of watershed models may be highly complex under certain 

environmental settings (Jackson-Blake et al., 2017). In this study, this conclusion for watershed 

modeling was further confirmed by comparing the results of this model with the other models 

employed in previous studies in Southeast China (Table S3-1). Three major runoff generation 

processes were considered in this study, and both the models performed similarly during 

calibration and validation in the large watersheds. Although the process-based models, 

including SWAT and HSPF, better represent watershed processes, such as land use and soil 

condition, these might also intensify the uncertainty in the structure of the model due to 

insufficient or parsimonious inputs of models for the large watersheds. Compared to the 

performance on small watersheds, the model exhibited better performance on the large 

watershed because the effects of some processes (e.g., land use changes and dam construction) 

can be neglected in such cases (Zhang et al., 2020a). 

Compared with the combination methods for estimating potential evapotranspiration (e.g., 

Penman-Monteith method), the temperature-based methods have been widely applied in water 

energy balance analysis because of its low data requirements and better correlation with 

temperature, which would be beneficial for future projections (Weiland et al., 2012; Seong et 

al., 2018). Some researchers have attempted to adapt these methods to estimate daily potential 

evapotranspiration. Aguilar and Polo (2011) indicated that the Hargreaves method can be used 

to study the water and energy balance on a daily scale after correction. For example, Weiland 

et al. (2012) proposed a revised Hargreaves method to estimate daily global reference potential 

evapotranspiration. In this study, the potential evapotranspiration was further corrected to 

simulate the soil runoff, and the models were acceptable (Table 3-2). Some models have 

employed the similar methods to correct potential evapotranspiration to satisfy requirements 

(e.g., Jung et al., 2016). 

Obtaining representative meteorological data for watershed-scale hydrological modeling 

can be difficult and time-consuming (Fuka et al., 2014). Grid-based meteorological data are 

becoming an important source for driving hydrological models because of their high temporal 

resolution and reliability (Wang et al., 2021b; Tan et al., 2021). Fuka et al. (2014) also indicated 
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that grid-based data such as CFSR data (~0.5° resolution) can be as good as the traditional 

weather gauging stations in small watersheds (22.1-1200 km2). In this study, we used grid-

based meteorological data as the driving force for the rainfall-runoff model to understand 

streamflow regime in Southeast China. It required less time due to the less data acquired to 

establish the model. Although the performance of this were lightly poorer in the small sub-

watersheds, for example the NSE of simulated streamflow during the calibration and validation 

periods were 0.50 and 0.52 at DT station (390 km2) (Table 3-2 and Table S3-1). In this study, 

we also compared the performance of the rainfall-runoff model with different driving forces 

(Fig S3-2), the results shown that the performance of grid-based meteorological data can be as 

good as the local stations. Compared to the performance of related studies (e.g. Fuka et al., 

2014), our model is acceptable.  

3.4.2 Hydrologic extremes in Southeast China 

Streamflow regimes are generally controlled by climate variability such as precipitation, 

temperature, evapotranspiration, soil moisture (Huang et al., 2013a; Zhang et al., 2015), and 

they may be effective indicators that identify regional change (Wang et al., 2013; Huang et al., 

2014; Zhang et al., 2018). Moreover, changes in precipitation amplify changes in streamflow, 

as observed for the past decades across the Asian Pacific region (Chen et al., 2007; Huang et 

al., 2014; Zhang et al., 2018). However, this trend would be altered due to intensive human 

activities. For example, a different trend was observed in Southeast China. Owing to global 

change, an amplified runoff response to rainfall was observed at the eastern Taiwan Strait, 

China (Huang et al., 2014). However, this trend was rarely observed in the Jiulong River 

Watershed, which is located at the western Taiwan Strait China (Huang et al., 2013a).  

In this study, these conclusions were further confirmed by analyzing the patterns of 

streamflow extremes across eight hydrologic stations in Southeast China. These differed from 

each other even though they exhibited similar patterns of climate variability since the past 

decades (Figs 3-2, 3-3, 3-4, and 3-7). For example, the streamflow extremes of West River 

Watershed (WRW; ZD station) were evidently more sensitive to the climate variability than the 

DRW (YT station), even though they exhibited similar climate variability and watershed 

characteristics (Table 3-1). In addition, a study in the Pearl River, which is near the present 

study area, indicated that the response of extreme low flows to climate change would vary with 

different time scales and the annual minima with a short time scale may be more sensitive to 

climate change based on the observed streamflow in the past decades (Tu et al., 2017). A similar 

result was obtained in this study, as compared to shorter time scales, a lower variability was 

observed in the streamflow extreme for the annual maxima streamflow (e.g., 1-day maximum 

streamflow; Fig 3-7). Thus, the amplified streamflow according to precipitation may be more 

evident for shorter time scales.  

https://www.sciencedirect.com/science/article/pii/S0048969722054407#f0010
https://www.sciencedirect.com/science/article/pii/S0048969722054407#f0015
https://www.sciencedirect.com/science/article/pii/S0048969722054407#f0020
https://www.sciencedirect.com/science/article/pii/S0048969722054407#f0035
https://www.sciencedirect.com/science/article/pii/S0048969722054407#t0005
https://www.sciencedirect.com/science/article/pii/S0048969722054407#bb0265
https://www.sciencedirect.com/science/article/pii/S0048969722054407#f0035
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The joint return periods for streamflow extreme is one of the most important factors that 

should be considered in the field of water management (Bennett et al., 2015; Vinnarasi and 

Dhanya, 2019). However, the stationary model may underestimate streamflow quantiles under 

climate change or overestimate streamflow quantiles because of human activities relative to the 

non-stationary models (Zhang et al., 2015; Sraj et al., 2016; Liu et al., 2021b). The hydrological 

return period must be carefully reformulated and extended under non-stationary conditions due 

to the time-varying aspect of climate extremes as well as the changed characteristics of 

watersheds that may be induced by human activities (Sraj et al., 2016; Lu et al., 2019). The 

return levels of the annual maxima streamflow were also evaluated in this study based on the 

non-stationary theory, and all the stations exhibited similar patterns in terms of the return level 

and the uncertainty, which might increase in the high return period (e.g., 100-year scale). Thus, 

more attention should be paid to the non-stationarity of the high return period level of the 

streamflow extreme, when considering a hydraulic project in the watershed.  

3.4.3 Impacts of climate change and human forcing 

During the last decades, numerous theories and conceptions have been proposed to 

evaluate the impacts of human activities and climate change, including hydrological indicators 

(Richter et al., 1996), the elasticity of rainfall-runoff (Sankarasubramanian et al., 2001), 

ecohydrological analysis methods (Tomer and Schilling, 2009), and other related methods 

(Zhang et al., 2015; Huang et al., 2014; Zhang et al., 2020a). However, most methods were 

developed based on the stationary theory, which assumed that the return level of annual 

streamflow extremes is constant and a simple relationship exists between the return period and 

the return level of streamflow extremes. However, the non-stationarity of signals is a common 

problem including hydrological research (Bennett et al., 2015; Mentaschi et al., 2016; Bracken 

et al., 2018). To our knowledge, this study was the first to identify the impacts of human 

activities and climate variability on the streamflow based on the non-stationarity theory in 

Southeast China. Compared with the previous methods, this study not only distinguished the 

impacts of human activities and climate variability on the watershed processes but also 

evaluated these impacts on different time scales.  

The maximum flow at different periods can be used to understand the magnitude and 

duration of annual extreme flow conditions (Richter et al., 1996). The maximum flow at 

different scales may respond differently to the effects of climate variability and human activities. 

For example, in Japan, due to monsoons, persistent heavy rainfall over several days frequently 

occurs during the rainy season, and 5-day maximum flow have proven to be a useful index to 

represent the potential damage caused by persistent heavy rain (Hu et al., 2017). Sraj et al. 

(2016) suggested that streamflow regimes with 10-year return levels may be more sensitive to 

precipitation. In this study, the impacts of climate variability and human activities were also 
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determined in terms of the 10-year return period in Southeast China (Fig 3-9 and Table 3-3). 

Human activities and climate change in Southeast China evidently reduced the return levels of 

extreme high flow based on the 10-year return period.  

Human activities potentially amplify floods in the watershed (Sun et al., 2018; Zhang et 

al., 2018). Extreme streamflow at low time scales (e.g. Sm3day and Sm7day) may be more 

sensitive to human activities, particularly in small-scale watersheds (Table 3-3). Accordingly, 

amplified floods have been observed more frequently in high urbanized areas with intensified 

human activities and small discharge areas (Fang et al., 2022). The observed Eh values of 

Sm3day and Sm7day at stations where the discharge areas are less than 3500 km2 were 177-

208% and 114-214%, respectively (Table 3-3). Moreover, human activities may directly 

decrease streamflow owing to the increasing demand for water consumption (Zhang et al., 2015; 

Wang et al., 2020). Mahmoodi et al. (2021) found that the Sm90day may decrease 35% with 

increasing demand for water resources and climate change in a dry area. The dam construction 

may decrease the magnitude of 90-day max flow while climate variability may increase the 

magnitude of 90-day max flow (Zhang et al., 2020a). The values of Ec for the Sm30day and 

Sm90day in the stations, except for the YT, were high compared that those of Eh (Table 3-3). 

Notably, human activities were always the dominant factor controlling the streamflow extreme 

in the YT station, which might be attributed to the intensive water intake in this watershed. 

Similar results were also observed in North China (Wang et al., 2020). 

3.4.4 Limitations and outlook 

The performance of the rainfall-runoff model proposed in this study might be lower for 

the small watersheds than the large ones. To reduce the complexity, the effect of the 

evapotranspiration on surface flow was neglected in the model, which may overestimate the 

surface flow and underestimate the soil flow. Moreover, the different forces of human activities 

(e.g., land use/cover change, water intake, and hydropower dam operation) might have a 

different effect on the regional hydrological processes. The effects of climate and human 

activities may be coupled. Therefore, the rainfall-runoff model in this study should be improved, 

and the effects of the different forces of human activities on streamflow regimes could be 

distinguished and quantified in future studies. 

3.5 Conclusions 

This study presents an innovative approach to distinguish the effects of climate change 

and human activities on extreme streamflow based on the non-stationarity theory. A rainfall-

runoff model was adopted to evaluate the streamflow regimes under the natural conditions. The 

proposed approach facilitates the detection of the non-stationarity of high flow driven by 

climate change and human activities at different time scales. The method proposed in this study 

could be valuable for understanding the potential impacts of climate change and human 
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activities on the watershed system. For the watersheds in Southeast China, human activities 

may be the major factor that controls the streamflow extremes for short time scales. Climate 

change would be the dominant factor that influences streamflow extremes at long time scales. 

Furthermore, the water intake in the watershed might be an important factor that influences its 

streamflow extremes. 
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Abstract  

Urbanization has profoundly influenced the local environment and climate conditions. 

Based on non-stationary theory, a grid-to-grid framework was proposed in this study to quantify 

the effects of urbanization on the regional climate change in the Minjiang River Watershed 

(MRW), the largest watershed in Southeast China. The urbanization in the MRW was inactive 

during 1980-2000, and cities in the MRW have continued to expand at an increasing rate since 

2000. These changes may modify climate extremes. A significant increasing trend was observed 

for the 3-day maximum precipitation (Rx3day) during 1980-2000 in some grid cells, while a 

decreasing trend was detected from 2001 to 2020 in the same area. The 30-day maximum PET 

(Ex30day) and 90-day maximum PET (Ex90day) decreased slightly from 1980 to 2000, but the 

values of most grid cells increased from 2001 to 2020. The patterns of 90-day maximum 

precipitation (Rx90day), 7-day maximum temperature (Tx7day), and 30-day maximum 

temperature (Tx30day) may be more sensitive to the urban sprawl. And the extreme 

temperatures may be amplified in the highly urbanized areas. The proposed method quantified 

the impacts of urbanization on local or regional climate and could be useful for understanding 

the relationship between human activities and climate change. 

 

Key words: Urbanization; Regional climate change; Non-stationary; 
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4.1 Introduction 

The past several decades have seen a widespread urban expansion as well as a changed 

climate (Song et al., 2019; Li et al., 2020a; Chen et al., 2021). Land use/cover change, as one 

of the most important human-induced change, have been proved by many studies that it may 

exert a great influence on local environment (Grimm et al., 2008; Fenner et al., 2019; Song et 

al., 2021). And there is a broad agreement that urbanization may influence local or regional 

climate extremes (Sun et al., 2016; Gu et al., 2019). As a result of an exponential population 

growth and accelerated economic development, the increased impervious surface area caused 

by urbanization may alter the surface energy balance and the regional climate (Yang et al., 2013; 

Li et al., 2020a; Song et al., 2021). However, the response of regional climate to urbanization 

may be different for varying climate parameters and the urbanization may modify the patterns 

of climate extremes in the local or regional scales (Vittal et al., 2016; Lu et al., 2019). It is 

therefore crucial to identify the impacts of urbanization on regional climate change.  

Previous studies suggested that urbanization may influence the urban boundary layer and 

modify the local climate including regional climate extremes by increasing the impervious 

surface areas (Grimm et al., 2008; Gu et al., 2019; Li et al., 2019; Wang et al., 2021c). For 

example, several studies found that urbanization may amplify precipitation in cities, and 

increasing frequencies and amounts of short-duration intense rainfall was observed in the 

urbanized areas (Yang et al., 2017; Lu et al., 2019). Meanwhile, some studies also found a 

negative influence of urbanization on local precipitation (Wang et al., 2012). Many studies also 

concluded that urbanization has a significant influence on extreme temperatures. As a result of 

the urban heat island induced by the effects of urbanization, higher air temperature was usually 

observed in urban areas (Grimm et al., 2008; Mishra et al., 2015; Li et al., 2020b). However, 

different trends were observed in different regions. For example, several studies indicated that 

unexpected heat waves may be induced as the result of urbanization in some cities of Japan, 

USA, and China (Nonomura et al., 2009; Mishra et al., 2015; Li et al., 2020b). The relationship 

between urbanization and regional climate change is very complex and varies spatially, which 

is still an open question (Scott et al., 2018; Fenner et al., 2019); climate extremes may be 

amplified or reduced by urbanization (Li et al., 2014; Gu et al., 2019; Li et al., 2020b). To 

contribute to this discussion, we analyzed the impacts of urbanization on regional climate 

extremes for cities within the largest watershed in Southeast China. 

Extreme value theory has been widely used to analyze meteorological and hydrological 

extremes (Vasilliades et al., 2015; Tian et al., 2021). Due to the changes in climate patterns and 

human activities, the traditional assumption of stationarity might underestimate the extreme 

events. Many studies suggested that the temporal evolution of climate extremes would follow 

the patterns of non-stationary (Milly et al., 2008; Vu and Mishra, 2019). For water resources 
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management, the non-stationary frequency analysis was more valuable than climate models and 

the presence of any trend can have a considerable effect on the interpretation of observations 

(Chen et al., 2017: Su and Chen, 2019). The non-stationary patterns of climate extremes may 

be controlled by many factors and many studies suggested that regional factors induced by 

human activities are more responsible for these patterns than other factors (Liu et al., 2022). 

The non-stationary generalized extreme value (GEV) has been widely used to understand the 

characteristics of climate extremes through fitting annual series of maxima (Lu et al., 2019; Gu 

et al., 2019). For this reason, many studies developed non-stationary models for climate 

extreme based on GEV theory for water resource management including trend analysis, 

recurrence levels analysis, frequency analysis and engineering design. For example, 

Siliverstovs et al. (2010) assessed the likelihood of heat waves in summer with the GEV 

distribution. Su and Chen (2019) proposed a framework to identify major influences on extreme 

precipitation in the Pearl River Basin and suggested that extreme precipitation is not only 

affected by climate factors but also by human activities (e.g., urbanization). However, most 

studies use climate indices (e.g. ENSO) to understand the non-stationary patterns of climate 

extremes, but this may not be appropriate for modelling. The impacts of human activities, 

especially urbanization should be fully understood. 

Since the 1980s, cities in China began to sprawl and urbanization has accelerated in the 

2000s in most of China (Huang et al., 2012; Lu et al., 2019: Song et al., 2021). Recently, studies 

tried to identify the impacts of urbanization on regional climate using the difference of time 

series between urban and rural stations. For example, after comparing the patterns of climate 

extreme in urban, suburban and rural areas, Lu et al. (2019) found that urbanization increases 

the magnitudes and recurrence levels of extreme precipitation for different return periods. The 

estimated recurrence levels of the annual maximum 1-day and 5-day precipitation were 

increased by 25.9% and 59.1% for urbanized stations. Gu et al. (2019) also proved that 

urbanization may induce non-stationarity in precipitation extremes at local or regional scales in 

China, and significant non-stationarity may tend to occur in urbanized areas compared with 

rural or urbanized areas for the precipitation extremes. The classification of stations (e.g. urban, 

suburban or rural) is usually based on administrative boundaries in most studies. However, this 

method may influence the results of the studies if regions have a different developing level or 

a complex shape of the administrative unit. In addition, most of these studies were conducted 

based on limited station data. Meanwhile, most non-stationary modeling studies focus primarily 

on changes in extremes over time (Ragno et al., 2019). Few studies have explored large-scales 

areas.   

To extend the existing studies, we analyzed the spatial and temporal patterns of 

urbanization in Southeast China as well as the climate extremes during the past 40 years. To 

achieve this goal, a framework will be proposed based on the GEV method. The objectives of 
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this study are: (1) to identify the spatial-temporal variability of urbanization; (2) to understand 

the patterns dynamics of climate extremes in Southeast China; and (3) to analyze the impacts 

of urbanization on regional climate changes. 

4.2 Data and methodology 

4.2.1 Study area 

The Minjiang River Watershed (MRW) is the largest watershed in Southeast China with 

a area of 60992 km2 (116°23′–119°43′ E, 25°23′–28°19′N) (Fig 4-1) with a typical subtropical 

monsoon climate with about 70% precipitation between April and September (Zhou et al., 2016; 

Zhang et al., 2019). The annual temperature and precipitation are 18 °C and 1617 mm, 

respectively (Zhou et al., 2016; Wang et al., 2017). The watershed provides water for residential, 

industrial and agricultural activities of its more than 12 million residents which account for 

approximately half of the population in Fujian Province (Zhou et al., 2016; Zhang et al., 2019). 

Similar to other regions in Coastal China, MRW is experiencing rapid urbanization since the 

beginning of the reform and opening-up period. The impervious areas in the MRW expand with 

an increasing rate since 2000.  

 

Fig 4-1 Study area 
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4.2.2 Data sources 

The land use data for the MRW of the years 1980, 1990, 1995, 2000, 2005, 2010, 2015, 

2018, and 2020 were provided by the Data Center for Resources & Environmental Science, 

Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). The land use information was 

interpreted manually based on TM digital images. The accuracy of the six classes of land use 

(i.e. Cropland, Woodland, Grassland, Water body, Built-up land, and Unused land) was above 

94.3% while the overall accuracy of the 25 subclasses was above 91.2% (Liu et al., 2014). The 

meteorological data, including mean daily air temperature, maximum daily air temperature, 

minimum daily air temperature, and daily precipitation was obtained from the China 

Meteorological Administration (http://data.cma.cn) with 0.5°×0.5°spatial resolution during 

1980-2020 and potential evapotranspiration was estimated with the Hargreaves method 

(Hargreaves et al., 1985; Hargreaves and Allen, 2003). 

4.2.3 Urbanization & Climate indices 

Impervious surfaces have been used as an important indicator of urbanization for decades 

(Brabec et al., 2002; Claggett et al., 2013; Yang et al., 2021). The impervious surface 

coefficients (ISC) were applied in this study to estimate the percent of impervious surface area 

for each grid cell.  

A

ISCA
ISG

ii 


 

 

Where ISG is the percent of imperviousness for each analysis grid cell, Ai is the area of the 

particular land use, ISCi is the impervious surface coefficient for the specific land use category 

(Table 4-1), and A is the area of the analysis grid cell. 

 

Table 4-1 Impervious surface coefficients (ISC) for major land use category 

Land use Description ISC (%) 

Open space Natural areas 2 

Agriculture Farming area  4 

Urban area Community, neighborhood, office in urban area 83 

Suburban area Community, neighborhood, office in suburban area  69 

Other built-up Publicly owned, buildings in rural area 50 

Note: ISC was estimated based on Washburn et al. (2010) 

 

The extreme indices were calculated for precipitation, temperature and potential 

evapotranspiration (PET). The details of the indices are listed in Table 4-2. 
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Table 4-2 Indices of climate extremes 

Index Indicator name Definition  

Rx1day 1-day maximum precipitation Annual maximum precipitation of 1 day mean  

Rx3day 3-day maximum precipitation Annual maximum precipitation of 3 day means 

Rx7day 7-day maximum precipitation Annual maximum precipitation of 7 day means 

Rx30da

y 

30-day maximum 

precipitation 

Annual maximum precipitation of 30 day 

means 

Rx90da

y 

90-day maximum 

precipitation 

Annual maximum precipitation of 90 day 

means 

Tx1day 1-day maximum temperature Annual maximum temperature of 1 day mean 

Tx3day 3-day maximum temperature Annual maximum temperature of 3 day means 

Tx7day 7-day maximum temperature Annual maximum temperature of 7 day means 

Tx30da

y 
30-day maximum temperature 

Annual maximum temperature of 30 day 

means 

Tx90da

y 
90-day maximum temperature 

Annual maximum temperature of 90 day 

means 

Ex1day 1-day maximum PET Annual maximum PET of 1 day mean 

Ex3day 3-day maximum PET Annual maximum PET of 3 day means 

Ex7day 7-day maximum PET Annual maximum PET of 7 day means 

Ex30da

y 
30-day maximum PET Annual maximum PET of 30 day means 

Ex90da

y 
90-day maximum PET Annual maximum PET of 90 day means 

 

4.2.4 Methods to distinguish the impacts from urbanization 

Logistic regression models were used in this study to simulate urbanization (i.e. ISC) from 

1980 to 2020. In order to understand the relationship between climate extremes and 

urbanization, the process-informed non-stationary extreme value analysis proposed by Ragno 

et al. (2019) was used. With this method, the non-stationary GEV method was used to estimate 

return periods of climatic extremes with urbanization which was developed on a hybrid 

evolution Markov Chain Monte Carlo approach for numerical parameters estimation and 

uncertainty assessment.  

In order to understand the impacts of an increasing rate of urbanization, the non-stationary 

GEV models were built for different periods (i.e. 1980-2000 and 2001-2020). Based on the 

GEV models for the different periods, the relationship between magnitude of climate extremes 
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and the levels of urbanization at 10-year return levels. Based on previous study (i.e. Lu et al., 

2019), the impacts of the urbanization can be quantified as follow: 

g'(ISC)f'(ISC)Alteration   

Where Alteration is the index to quantify the impact of urbanization on the regional 

climate extremes; f(ISC) is the function to estimate the relationship between climate extremes 

and urbanization in the pre-impacted period (i.e. 1980-2000) and the g(ISC) is the function to 

estimate the relationship between climate extremes and urbanization in the post-impacted 

period (i.e. 2001-2020) 

The nonparametric Mann-Kendall trend (M-K) test (Mann, 1945; Kendall, 1975; Alan et 

al., 2003) was used to detect the trends of climate extremes. For the Z-score calculate for M-K 

trend test, Z-score more than 0 means increasing trend and less than 0 means decreasing trend. 

If the Z-score more than 2.58 or less than -2.58, the significance level is better than 1%. If the 

Z-score more than 1.96 or less than -1.96, the significance level is better than 5%. Z-score more 

than 1.65 or less than -1.65, the significance level is better than 10%.The Mann-Whitney test 

was used to test the difference between two groups.  

 

4.3 Results 

4.3.1 Patterns of urbanization 

Urbanization from 1980 to 2020 was estimated based on the land use change analysis (Figs 

S4-1, S4-2, 4-2, and Table S4-1). From 1980 until 2000 the urbanization was quite slow and 

the suburban area increased from 3 grid cells in 1980 to 6 grid cells in 2000. From 2000 onwards, 

the trend increased from 6 grid cells in 2000 to 15 grid cells in 2020. Urban grids also increased 

1 grid cell in 2000 to 6 grid cells in 2020.  

The patterns of the urbanization in the MRW were quantified based on the process of the 

urbanization in the two periods (i.e. 1980-2000 and 2001-2020). And three patterns of land use 

was identified as follows, Group 1: the grid cell that was inactive during two periods; Group 2: 

the grid cell that was inactive in 1980-2000 and transferred to suburbanized grid cell in 2001-

2020; Group 3: the grid cell that was inactive in 1980-2000 and transferred to urbanized grid 

cell in 2001-2020 (Fig 4-3).  

Logistic regression models were employed to further understand the process of 

urbanization (Fig S4-3). The Reduced Chi-Sqr and Adj. R2 were calculated for the logistic 

regression models in the MRW (Fig 4-4). The observed data matched well with the simulated 

data. The value of Reduced Chi-Sqr was less than 0.2 and the value of Adj. R2 was more than 

0.90. The models simulate urbanization quite well.  
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Fig 4-2 Process of urbanization in the MRW 

 

Fig 4-3 Land use patterns in the MRW 
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Fig 4-4 Reduced Chi-Sqr and Adj. R2 for the urbanization simulation 

 

 

Fig 4-5 Z-score of M-K trend test in the MRW from 1980 to 2020 

 

4.3.2 Patterns of climate change 

Based on the M-K trend test, trends of climate extremes in terms of precipitation, 

temperature and PET from 1980 to 2020 were detected (Fig 4-5).The indices of extreme 

temperature in the Southeast MWR where the level of urbanization was high increased more 

significantly, especially for the Tx1day, Tx3day, Tx7day and Tx90day. The indices of extreme 



Chapter 4 Coupled effects of land use/cover change and climate variability 

 61 

PET in the Northeast MRW where the level of urbanization was relatively low, decreased more 

significantly than other indices including Ex1day and Ex3day.  

To further understand the interaction between urbanization and climate change, the trend 

of the climate variables was also estimated with an M-K test for different periods, i.e. from 

1980 to 2000 and from 2001 to 2020 (Fig 4-6). A significantly increasing trend was observed 

for the R3day and Tx90day from 1980 to 2000 in some grid cells and a decreasing trend from 

2001 to 2020 in the same area. Ex30day and Ex90day decreased slightly from 1980 to 2000, 

but the values of most of the grid cells increased from 2001 to 2020. This shows that 

urbanization may influences trend of climate variability in the MRW.  

 

 

Fig 4-6 Z-score of M-K trend test in the MRW in different periods 

 



Chapter 4 Coupled effects of land use/cover change and climate variability 

 62 

 

Fig 4-7 Evaluation of the non-stationary GEV models 

 

  

 

Fig 4-8 Effects of urbanization on climate extremes 
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4.3.3 The impact of urbanization on climate change 

In order to understand the non-stationary patterns of climate extremes influenced by 

urbanization, the non-stationary GEV models were built for each grid cell in different periods. 

The results show that the models can be used to estimate non-stationary patterns of climate 

extremes (Fig 4-7). 

Based on the models above, the values of a 10-year return period were estimated. The 

degree of change was estimated by comparing the difference between 1980-2000 and 2001-

2020 (Fig 4-8). 

The effects of urbanization were estimated by comparing the differences among the groups 

classified (Table 4-3). The climate extremes may be modified in the high urbanized areas 

(inactive+urbanized). In contrast, the patterns of climate extremes in the suburbanized areas 

(inactive+suburbanized) were similar with the inactive areas (inactive+inactive).  

The temperature extremes were more sensitive to urbanization (Figs 4-9, and 4-10), 

especially in the high urbanized areas (Fig 4-9). And the amplified temperature extremes were 

observed with increasing urbanization, especially for the Tx7day and Tx30day (Table 4-3, and 

Fig 4-9). 

 

Table 4-3 Result of Mann-Whitney test among different group (Z-values) 

 Category Indices Inactive+suburbanized Inactive+urbanized 

Inactive+inactive 

Precipitation 

Rx1day 0.61 1.45 

Rx3day -0.78 -0.33 

Rx7day -0.72 -1.08 

Rx30day -0.09 -1.08 

Rx90day -1.18 -2.01* 

Temperature 

Tx1day 0.20 -1.92 

Tx3day 0.00 -1.73 

Tx7day -0.09 -2.20* 

Tx30day -0.61 -2.01* 

Tx90day -0.12 -0.52 

PET 

Ex1day -0.49 -0.89 

Ex3day -0.14 -1.45 

Ex7day 0.26 -0.98 

Ex30day -1.70 -1.64 

Ex90day 1.15 -1.45 
*p<0.05 
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Fig 4-9 The effects of urbanization on climate extremes (Inactive+inactive V.S. 

Inactive+urbanized) 

 

 

Fig 4-10 The effects of urbanization on climate extremes (Inactive+inactive V.S. 

Inactive+suburbanized) 
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4.4 Discussion 

4.4.1 Applicability of the proposed framework 

Recent studies have confirmed the strong relationship between urbanization and climate 

extremes (Yang et al., 2017;Song et al., 2021; Pimonsree et al., 2022). They found that the 

patterns of regional climate extremes follow a non-stationary distribution as the results of 

urbanization and developed methods to understand the relationship between urbanization and 

regional climate change. For example, Lu et al (2019) analyzed this relationship by comparing 

the differences between the non-stationary patterns of urban stations, suburban stations, and 

rural stations. With the GAMLSS (Generalized Additive Model for Location, Scale and Shape) 

framework, Gu et al. (2019) found that urbanization may induce non-stationary behavior in 

precipitation extremes. In this study, we further extend existing studies and propose a new 

framework to quantify the impacts of urbanization on regional climate extremes. 

Instead of using time covariates non-stationary models which may not cover the physical 

relations, we introduced an index of urbanization as covariates to build grid based non-

stationary models for climate extremes. To understand urbanization in the MRW, logistic 

models were used with Reduced Chi-Sqr and Adj. R2 as performance measures. Compared with 

previous studies, the non-stationary GEV models are more useful to quantify the patterns of 

climate extremes. The different metrics used to evaluate the models included AIC, BIC, RMSE, 

and NSE. Though the NSE and RMSE were similar in the three types of models (i.e. GEV 

models for Precipitation, Temperature and PET, respectively), the Observed AIC and BIC were 

more effective in these models. The calculated AIC for the precipitation, temperature, and PET 

were 50-250, 20-60, and <20 respectively (Fig 4-7). The observed BIC for the precipitation, 

temperature, and PET were 50-300, 10-70, and <30 respectively (Fig 4-7). The value of AIC 

and BIC may be more effective to evaluate the uncertainty of the non-stationary GEV models. 

Similar results were found in related studies. Panagoulia et al. (2014) showed that both AIC 

and BIC are always effective to detect non-stationary behavior, and BIC may be more effective 

to evaluate the models except in very small samples. Kim et al. (2017) also suggested that the 

AIC may be better than other metrics for non-stationary data with a relatively small sample size.  

4.4.2 Dynamics of climate extremes  

The patterns of regional climate have changed remarkably in the past decades as a 

consequence of global climate change and intensified human activities (Gu et al., 2019; Lu et 

al., 2019; Li et al., 2021). As a consequence of global climate change, precipitation can become 

more extreme in some regions (Donat et al., 2016). For example, Van den Besselaar et al. (2013) 

observed a general increase of extreme precipitation in Northern Europe in autumn, winter, and 

spring. In China, both annual maximum daily precipitation and heavy precipitation days 
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increase in southern, but decrease in northern China (Chen et al., 2011). Huang et al. (2013a) 

also found that extreme precipitation seems to be intensified in the past decades in Southeast 

China. In this study, an upward trend of extreme precipitation was also found (Fig 4-5). Slightly 

increasing trends were observed in more than 80% of the grid cells for Rx1day, Rx3day, and 

Rx30day. Significantly increasing trends were found in grid cells located in the southeast for 

Rx3day, Rx7day, and Rx30day. This suggests that the coastal area may be more sensitive to 

climate change and exhibit more frequent extreme climate events. Additionally, the extreme 

temperatures increased significantly including Tx1day, Tx3day, Tx7day, Tx30day, and 

Tx90day (Fig 4-5).  

Changes in climate extremes would follow similar patterns in all grid cells if climate 

change was the only factor controlling the climate patterns. However, the observed patterns for 

the two periods (i.e. 1980-2000 and 2001-2020) were totally different from each other (Fig 4-

6). It is therefore highly probable that the patterns of climate extremes are controlled by 

urbanization. China has experienced rapid urbanization since its reform process (Lu et al., 2019; 

Li et al., 2020a). The changes of land use in the MRW were similar to other areas in China. In 

this study, we divided the data set into two periods, a period from 1980 until 2000 and from 

2001 until 2020. In the first period, the values of ISG in each grid cell increased slowly, only a 

few rural cells were changed into suburban cells. The number of urban cells did not change. In 

contrast, in the period of 2001-2020, the number of urban grid cells increased from 1 (2000) to 

6 cells (2020). Urbanization was speeding up since 2000. Similar of land use and land cover 

changes were found in other areas in China. For example, Huang et al. (2012) found a more 

intense land use and cover change since 2000 in the Jiulong River Watershed in Southeast 

China. Lu et al. (2019) reported an increasing urbanization in the Yangtze River Delta since 

2000.  

4.4.3 Impacts of urbanization on local or regional climate extremes 

Chinese cities have been experiencing unprecedented growth for over three decades and 

the resulting urbanization has a remarkable impact on the hydrological cycle at the local and 

regional scale (Huang et al., 2013a; Gu et al., 2019; Lu et al., 2019). Urbanization may modify 

the relationship between regional climate extremes and global change and urbanization may 

contribute differently to local or regional climate extremes (Lu et al., 2019; Gu et al., 2019). 

The response to urbanization may vary with climate indices. Though an increasing trend of 

observed temperature was found in the past decades in the MRW (Fig 4-5), the opposite trends 

were identified for different periods (Fig 4-6). During the period from 1980 to 2000 with low 

urbanization, the observed extreme temperatures decreased but increased in the period of 2001-

2020 with a high urbanization rate. Most of the temperature extremes in the same period 

decreased including Tx7day, Tx30day, and Tx90day. 12 grids of Tx90day showed a 
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significantly decreasing trend in this period. Similarly, the different trends of precipitation 

extremes were also observed in these two periods, respectively. Rx1day, Rx3day, Rx7day, and 

Rx30day increased in more than 80% of the grid cells in period of 1980-2000, and most of these 

indices decreased in the period of 2001-2020 (Fig 4-6). Especially for Rx3day, 24 grids 

increased significantly from 1980 to 2000. 

Additionally, the speed of the urbanization may influence regional climate extremes. Gu 

et al. (2019) also proved that the transition patterns of land use may play an important role in 

local or regional climate patterns. The patterns of Rx90day, Tx7day, and Tx30day may be more 

sensitive to the urban sprawl (Table 4-3). There is no doubt that increasing urbanization 

increases the area of impervious surface and urban heat islands (Mishra et al., 2015; Zhou et 

al., 2019; Li et al., 2020b). Among the indices of climate extremes, the observed temperature 

and precipitation were more sensitive to urbanization then PET in this study. 

Urbanization contributes to the climate extremes and may introduce non-stationarity of 

local or regional climate data sets (Mishra et al., 2015; Lu et al., 2019; Gu et al., 2019). The 

non-stationary GEV plays an important role to understand the patterns of climate extremes (Lu 

et al., 2019; Vu and Mishra, 2019). In order to quantify the non-stationarity of climate extremes, 

Lu et al. (2019) developed a method to estimate the non-stationary impacts of urbanization in 

terms of rate and applied it in the Yangtze River Delta. We also estimated the non-stationary 

patterns of climate extremes based on the 10-year return period with the non-stationary GEV 

models (Figs 4-9 and 4-10). The non-stationary patterns of climate extreme in the long-time 

scale may be more sensitive to the process of urbanization. The Rx90day, Tx7day, and Tx30day 

changed much in the MRW (Table 4-3). Meanwhile, the urbanization may amplify the 

temperature extremes in the watershed (Fig 4-9).   

4.5 Conclusion 

This study presents a grid-based framework to identify the impacts of urbanization on 

regional climate extremes from a non-stationary perspective . The urbanization in the MRW 

may d the trend of the local climate extremes. The increase of urban area may change the non-

stationary patterns of local or regional climate by modifying the rate of the expected return 

period. The proposed method quantifies the impacts of urbanization on local or regional climate 

and would be helpful for understanding the relationship between human activities and climate 

change.  
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Abstract 

Understanding the spatial relationship between watershed properties and water quality is 

essential for watershed management. However, it remains challenging to identify such a 

relationship because of its nonlinearity. To understand the temporal and spatial effects of the 

driving of water quality, we developed a grid-baed interpretable machine learning method that 

integrated the random forest regression (RFR) model with the Shapley Additive exPlanations 

(SHAP) method to explore the relationship between water quality (e.i. nitrogen, phosphorus, 

and chemical oxygen demand) and watershed properties in the Minjiang River Watershed 

(MRW). A grid-based model was developed with 1837 input features for streams and reservoirs, 

respectively, based on land use, population, fertilizer, and Noah land surface model in the MRW. 

The simulated data fitted well with the observed values. Compared to the water quality in the 

stream, the water quality in the reservoirs may be more sensitive to the change environmental 

settings. The reservoirs may amplify the effects of climate variability on water quality. The soil 

moisture may modify the water quality, especially the dryness of the top soil may control the 

pollutants that entry into the watershed. The effects of the urbanization may modify the 

distributions of important feature that control the regional water quality. The point source 

pollution per inhabitant may be reduced with increasing urbanization. This study provides an 

in-depth understanding of the relationship between water quality and watershed properties, 

temporally and spatially. 

 

Keywords: Land-use; water quality; nonlinearity; machine learning 
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5.1 Introduction 

Climate change, topography, and anthropogenic activities can strongly affect regional 

ecosystems on different spatio-temporal scales (Collins et al., 2019; Lei et al., 2021).  Good 

water quality is one of the most critical factors to support the regional ecosystem as well as the 

livelihood of human beings. However, the increasing export of agrochemicals and nutrients 

threatens water quality globally, and an increasing in flow of waste makes these systems 

vulnerable to the adverse effects of global and regional environmental changes (Liang et al., 

2020; Ahmed and Lin, 2021). To quantify effects of global and regional changes on the 

watersheds system, the relationships between water quality and watershed properties should be 

fully understood.   

Water quality is essentially controlled by land use/cover change as well as other watershed 

properties such hydrology conditions, soil conditions and anthropogenic activities (Nielsen et 

al., 2012; Huang et al., 2014; Liu et al., 2021c). Although these relationships have been 

extensively investigated, there is no generally accepted theory (Liu et al., 2021c). Theoretically, 

land use change determines the water quality of watersheds (Baker 2003; Roberts and Prince 

2010; Liang et al., 2020). Excessive fertilizer application in agriculture has been regarded as a 

major non-point source of nutrients in rivers (Haidary et al., 2013; Lee et al., 2014; Strehmel et 

al., 2016). Urbanization may amplify nutrient exports by increasing impervious surface area 

(Kaushal et al., 2014; Huang et al., 2021). Natural land cover such as wetlands or forests may 

reduce nutrient exports by reducing soil erosion, filtering pollutants, and assimilating nutrients 

(Huang et al., 2015). Unfortunately, the results of these studies were not consistent. One of the 

most important reasons for the inconsistent results was that most studies ignored the nonlinear 

response of water quality to these factors (Liu et al., 2021c). To analyze water quality of a 

watershed, the contributions of different properties must be considered separately.  

In the past decades, many efforts have been made to understand the relationships between 

water quality and multiple properties (e.g. land use/cover change, soil conditions, and streaflow 

regimes) of watersheds (Baker, 2003; Kaushal et al., 2014; Collins et al., 2019). These 

relationships are commonly analyzed using conventional statistical methods such as ordinary 

least squares regression, redundancy analysis, and correlation analysis. Using multiple linear 

regression, Huang et al. (2013c) found that urbanization may be one of the most important 

factors that influence water quality in a watershed located in Southeast China. Using stepwise 

multiple linear regression and redundancy analyses, Lei et al. (2021) found that water quality 

is affected by soil properties, land use composition (areal shares of arable or pasture land, 

respectively with slopes >2%, forest, and urban) and configuration in a North-German 

catchment. Additionally, geographically weighted regression (GWR) was used to identify 

spatial relationships (Tu 2011; Huang et al., 2015; Wang et al., 2021d). Using this method, Tu 
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(2011) found that percentages of commercial and industrial lands have stronger positive 

relationships with the concentrations of water pollutants in less-urbanized areas than in highly-

urbanized areas in the watersheds around the metropolitan Boston USA which indicated that 

the inverse relationship may be found between land use change and water quality. However, 

these methods were developed with the assumption that the relationships between water quality 

and catchment properties are linear. Therefore, a new method should be developed to 

understand the nonlinearity and threshold effects of catchment properties on water quality.  

Recently, a nonlinear relationship between water quality and catchment properties has 

been observed in some studies (Zhou et al., 2016; Zhang et al., 2019; Liu et al., 2021c). After 

investigating the nonlinear relationships between water quality and ecological responses in 

streams with varying laud use, Amairo et al. (2019) assumed that nonlinearity may be common 

in watershed systems and found it occurred in more than 50% of the cases compared with other 

relations. This highlights the potential complexity of nonlinear relationships across the 

watershed systems. For example, Liu et al. (2021c) indicated that the limited capability of self-

purification in the polluted water body may induce a nonlinear result. The hydrology conditions 

may also modify the relationships across the watersheds. Zhang et al. (2019) found that 

reservoirs may increase the concentration of ammonia nitrogen (NH4
+-N) in the downstream 

for the modified streamflow regimes. Although the traditional nonlinear regression method 

such as power, exponential, quadratic and segmented regressions can be used to detected the 

potential nonlinear relationship across the watersheds, it is still difficult to explain the 

development of water quality because the relationships across the watershed may be modified 

at different stages. Recently, several machine learning algorithms have been proved to 

outperform traditional methods when it comes to explain complex relationship across the 

watersheds, especially for the nonlinear cases (Ahmed et al., 2021; Adedeji et al., 2022).   

Assessment and modelling of water quality is needed to understand the potential threats 

to watersheds, because it describes temporal and spatial changes in watersheds (Kaushal et al., 

2014; Gallo et al., 2015; Wang et al., 2021e). To depict the nonlinear variation of water quality 

with changing multiple properties and project the water quality in the watersheds, the machine 

learning models were employed in a few studies, recently. For example, Zhou et al. (2016) used 

self-organizing maps to identify the relationships between water quality and land use with a 

focus on point source pollution. However, the results of these models are difficult to shed 

mechanistic insights to the underlying physical processes (Lipton, 2018; Wang et al., 2021e). 

Thus, the interpretable machine learning approaches have recently been developed to gain a 

deeper understanding of the relationship between water quality and different properties. For 

example, Wang et al. (2021e) coupled the SHapey Additive exPlanations (SHAP) method with 

random forest regression (RFR) to simulate the distribution of water quality in the Taihu Lake 

Basin. They identified the driving forces and found that the total nitrogen (TN) was mainly 
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affected by agricultural non-point sources, while the permanganate index (CODMn) and total 

phosphorus (TP) were affected by agricultural and domestic sources. Wang et al., (2021d) 

analyzed the spatial relationship between water quality and different properties with the GWR 

method and interpretable machine learning modelling. They found that urban development 

influences stream water quality and that high-density urban development was more effective in 

reducing nutrient exports than current sprawl development. However, there is still a lack of 

robust methods to link water quality and different watershed properties at different temporal 

and spatial scales.  

Many rivers across the globe are experiencing declining water quality and over 45% of 

rivers in China (Vorosmarty., 2010; Lintern et al., 2018). Owing to intensified anthropogenic 

activities, water quality seems to have degraded in Southeast China (Huang et al., 2015; Zhou 

et al., 2016; Zhang et al., 2019). The Minjinag River Watershed (MRW), the largest watershed 

in Southeast China, is an important source of water for more than 13 million residents for their 

residential, industrial, and agricultural activities and plays an important role in the regional 

economy and ecology (Huang et al., 2020). Previous studies in the MRW primarily explored 

the nonlinear relationships between water quality and watershed properties as a function of the 

heterogeneity of urbanization, landscape characteristics, and hydrological conditions (Zhou et 

al., 2016; Zhang et al., 2019; Huang et al., 2020). For example, Zhou et al. (2016) assumed that 

additional point source pollution in the MRW may weaken the relationship between water 

quality and land use. Zhang et al. (2019) also indicated that reservoirs in the MRW modify the 

hydrodynamic characteristics, which may change water quality. The objectives of this study are 

to: (1) develop an interpretable machine learning approach for water quality modelling in 

temporal and spatial scales; (2) to identify the most important watershed properties that control 

water quality (e.g. nitrogen, phosphorus, and chemical oxygen demand); (3) to understand how 

the temporal and spatial heterogeneity of watershed properties controls water quality and finally 

(4) derive consequences for regional water resource management.. 

5.2 Material and methods 

5.2.1 Study area 

The MRW is the largest watershed in Southeast China, with an area of 60992 km2 

(116°23′–119°43′ E, 25°23′–28°19′N), located west of the Taiwan Strait (Fig 5-1). It lies in a 

subtropical zone with subtropical monsoon climate, with about 70% precipitation between 

April and September, and only 2-3% of precipitation occurring during November and 

December (Zhang et al., 2019; Huang et al., 2020). The annual mean temperature and 

precipitation in this watershed were 18 °C and 1617 mm, respectively (Zhou et al., 2016; Wang 

et al., 2017). As the seventh highest watershed in China in terms of runoff, more than 60 billion 

m3 runoff was produced each year which flow into the East China Sea (Zhang et al., 2019). As 
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one of the most developed regions in China, more than 15 million residents use it as water 

source for households, industries, and agricultural irrigation. With increasing demand, several 

dams or reservoirs were built in the MRW, which modified streamflow and nutrient budget 

(Zhang et al., 2019).  

 

Fig 5-1 Study area 

5.2.2 Data sources  

Water quality data from 2000 to 2014 were collected at 32 sampling sites in the stream 

and 20 sampling sites in the reservoirs by the Hydrology and Water Resources Survey Bureau 

of Fujian Province based on the Environmental Quality Standards for Surface Water (GB3838-

2002) (Fig 5-1). The three water quality indicators TP, NH4
+-N, and CODMn were monitored 

routinely and reflected the changes of water quality in the MRW. TP and NH4
+-N are indicators 

of nutrient pollution, CODMn can be used as an indicator of pollution with oxygen-demanding 

organic matter. 
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Table 5-1 selected features to simulate the water quality in the MRW 

Features Description TP NH4
+-N COD 

Climatic variable     

PotEvap_tavg Potential evaporation rate (W m-2) √ √ √ 

Rainf_f_tavg Rain precipitation rate (kg m-2 s-1) √ √ √ 

Hydrology     

Qs_acc Surface runoff (kg m-2) √ √ √ 

Qsb_acc Baseflow-groundwater runoff (kg m-2) √ √ √ 

Soil property     

SoilMoi0_10 Soil moisture in 0-10 cm (kg m-2) √ √ √ 

SoilMoi10_40 Soil moisture in 10-40 cm (kg m-2) √ √ √ 

SoilMoi40_100 Soil moisture in 40-100 cm (kg m-2) √ √ √ 

SoilMoi100_200 Soil moisture in 100-200 cm (kg m-2) √ √ √ 

SoilTM0_10 Soil temperature in 0-10 cm (K) √ √ √ 

SoilTM10_40 Soil temperature in 10-40 cm (K) √ √ √ 

SoilTM40_100 Soil temperature in 40-100 cm (K) √ √ √ 

SoilTM100_200 Soil temperature in 100-200 cm (K) √ √ √ 

Anthropogenic variables     

Population Population    

P_app P fertilizer applied (g m-2 cropland yr-1)     √   

N_app N fertilizer applied (g m-2 cropland yr-1)   √  

Fer_app Application of fertilizer (g m-2 cropland yr-1)   √ 

Land use/cover     

Agriculture Percentage of agricultural land (%) √ √ √ 

Nature Percentage of natural land (%) √ √ √ 

Urban Percentage of urbanized land (%) √ √ √ 

 

To understand the relationship between water quality and related properties (e.g. variables 

of climate, hydrology, soil properties, anthropogenic factors, and land use/cover), a database 

was set up to develop the machine learning models based on the location of sampling sites in 

the MRW (Table 5-1) and the sources of the data were shown in the Table 5-2. The land use 

information was interpreted manually based on TM digital images and the accuracy of the six 

classes of land use (i.e. Cropland, Woodland, Grassland, Water body, Built-up land, and 

Unused land) was above 94.3% while the overall accuracy of the 25 subclasses was above 91.2% 

(Liu et al., 2014). The land use/cover in the MRW was further classified into 3 categories: 

nature, agriculture, and urban.  
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Table 5-2 Sources of the data for the database 

Indicator Sources 

PotEvap_tavg,Rainf_f_tavg,Qs_acc,Qsb

_acc,SoilMoi0_10,SoilMoi10_40,SoilM

oi40_100,SoilMoi100_200,SoilTM0_10

,SoilTM10_40,SoilTM40_100,SoilTM1

00_200 

Noah land surface model (Noah-LSM, Kumar et 

al., 2019) based on the NASA GLobal Land Data 

Assimilation System (GLDAS) 

Population 
WorldPop & Center for International Earth 

Science Information Network (2018) 

P_app,N_app,Fer_app Spatial dataset provided by Lu and Tian (2017) 

Agriculture,Nature,Urban 

Land use data in the year of 2000, 2005, 2010, and 

2015 provided by the Data Center for Resources 

& Environmental Science, Chinese Academy of 

Sciences (RESDC) 

 

5.2.3 Impacts of urbanization on local or regional climate extremes 

We propose a grid-based interpretable machine learning approach to simulate water 

quality and identify the properties that control water quality with spatial data of 0.25-degree 

resolution. Each property was further classified into 108 sub-features according to location of 

the central point of the grid. In other words, 1836 sub-features (108×17) were used as input 

features for modelling. Additionally, the locations of the sampling sites were considered. Thus, 

1837 input features (i.e. 1836 sub-features for watershed feature and 1 feature for location of 

sampling sites) were used for the final models. Specifically, to understand the impacts of 

different streamflow regimes on water quality, the machine learning models for streams and 

reservoirs were set up, respectively. 

For the machine learning models, we used the RFR method, which is a suitable method 

because it detects nonlinearity between independent variables and is robust to outliers (Wang 

et al., 2021e). As an ensemble learning method, it is based on a large number of individual 

decision trees. Each tree was independent during the modelling process because it was built 

with a unique bootstrap sample of the training dataset (Breiman 2001). The models were 

verified with the observed data and the key hyperparameters were identified with k-fold cross-

validation. As a resampling method to tune the hyperparameters of the models, the k-fold cross-

validation was usually used to evaluate models with limited samples. The k in this method 

means the number of groups. In this study, we used 10-fold cross-validation to identify the 

number of trees (n_estimators), the minimum number of samples required to split a node 

(min_sample_split), the minimum number of samples required to be at a leaf node 

(min_samples_leaf), the number of features to consider when looking for the best split 

(max_features), and the maximum depth of the tree (max_depth) for the water quality models. 

Based on related studies, 80% and 20% of entire dataset were resampled randomly and further 
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split into the training and testing dataset (Wang et al., 2021e). The mean absolute error (MAE), 

mean squared error (MSE), root mean square error (RMSE), R2 coefficient of determination 

(R2), percent bias (PBIAS), and Kling-Gupta efficiency (KGE) (Gupta et al., 2009) were used 

to evaluate the performance of the model. 

The SHAP analysis was used to identify the major watershed properties that control the 

water quality at different scales. The SHAP analysis, which is based on game theory, can 

calculate the contribution of each property to the output of the models (Strumbelj and 

Kononenko, 2014; Lundberg and Lee, 2017). The contribution of each variable to the model 

output is allocated based on the marginal contribution (Lundberg and Lee, 2017). To identify 

the spatial distribution of watershed properties, Spearman’s test of rank correlation was used to 

estimate the correlation between SHAP values of input properties and indicators of topography 

or land use including slope, elevation, topographic wetness index (TWI), and percentage of 

agricultural or urbanized land use.  

5.3 Results 

5.3.1 Model training and validation 

We computed RFR models of the water quality parameters (i.e. NH4
+-N, TP, and CODMn) 

for stream and reservoir, respectively (Table 5-2). The simulated data fitted well with the 

observed values based on the MAE, MSE, RMSE, R2, PBIAS, and KGE. 

 

Table 5-3 Performance of models during the training and testing periods 

 
Stream Reservoir 

NH4
+-N TP CODMn NH4

+-N TP CODMn 

Training period MAE 0.158 0.023 0.394 0.055 0.014 0.157 

MSE 0.094 0.003 0.520 0.008 0.001 0.051 

RMSE 0.307 0.050 0.721 0.088 0.032 0.226 

R2 0.619 0.709 0.691 0.811 0.674 0.885 

PBIAS -0.541 -0.622 -0.236 0.436 -0.674 0.280 

KGE 0.616 0.577 0.544 0.779 0.562 0.770 

Testing period MAE 0.159 0.023 0.390 0.060 0.013 0.170 

MSE 0.088 0.002 0.321 0.008 0.001 0.054 

RMSE 0.296 0.039 0.567 0.089 0.026 0.232 

R2 0.724 0.591 0.585 0.828 0.603 0.861 

PBIAS 3.494 5.120 1.509 0.794 4.750 -0.400 

KGE 0.762 0.773 0.598 0.738 0.620 0.723 

 

The performance of the reservoir models was better than that of the water quality models 

for the stream (Table 5-3, Fig 5-2), particularly for the CODMn models. The extreme values may 
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not be well predicted by the models for the stream and the high concentrations may be 

underestimated by the models (Fig 5-2).  

 

Fig 5-2 The training and testing results of RFR models  

We also tested the spatial accuracy of the models. Based on the estimated local PBIAS of 

the models, the CODMn models achieved the highest accuracy, followed by the TP and NH4
+-

N models (Fig 5-3). For the water quality models of stream, the sites of low accuracy were 

found in the outlet of the MRW which may be the induced by interference from the invaded 

sea water from tidal action. The low accuracy of sites from the reservoir models were found in 

downstream of the sub-watershed where multiple sub-watersheds meet.   

 

Fig 5-3 Spatial performance of the models during the training and testing period in the MRW 
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5.3.2 Water quality 

Fig 5-4 shows an overview of the water quality in the streams and reservoirs. The variation 

and absolute values were higher in the streams than in the reservoirs. Meanwhile, the water 

quality in the streams was poorer than that in the reservoirs.And the median values of the three 

indicators in the streams were higher than that in the reservoirs (Fig. 5-4)  

 

Fig 5-4 Overview of the water quality in the MRW 

The inter-annual variation of water quality is shown in Fig 5-5. The highest variations 

were observed in NH4
+-N, followed by CODMn and TP. There were no obvious trends.  

 

Fig 5-5 Inter-annual variations of water quality during 2000-2014 

The seasonal variation of water quality is shown in Fig 5-6. The patterns are different for 

streams and reservoirs. High concentrations of NH4
+-N were found from April to October in 
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the reservoirs, and lower concentrations were found in the streams. Similar trends were also 

observed for TP. Compared with NH4
+-N and TP, the seasonal patterns of CODMn in the streams 

and reservoirs in the MRW.  

 

Fig 5-6 Seasonal variation of water quality during 2000-2014 

5.3.3 Watershed properties and water quality 

The features driving the deterioration of the water quality were identified with the SHAP 

analysis and the SHAP values were calculated for each input variable of the RFR models (Fig 

5-7). A higher SHAP value means a stronger driving force. A positive SHAP value means a 

positive influence on nutrient concentrations in the related model. As shown in Fig 5-7, 

population, soil conditions (including soil moisture and soil temperature) were the major factors 

that controlled water quality. The soil moisture at the soil surface may play a different role in 

nutrient export than soil moisture in the deep soil. Increasing SoilMoi0_10 increases the 

concentrations of NH4
+-N and TP in the reservoirs. However, increasing SoilMoi100_200 may 

reduce the concentrations NH4
+-N and TP in the streams (Fig 5-7).   

The concentrations of NH4+-N and TP in the streams are more sensitive to surface runoff 

than to the baseflow-groundwater runoff, In the reservoirs baseflow-groundwater runoff is more 

important. The increasing surface runoff and baseflow-groundwater increases concentrations 

of NH4
+-N and TP in the reservoirs, but decreases concentrations of NH4

+-N and TP in the 

streams (Fig. 5-7) Different trends were observed for COD. CODMn is more sensitive to 
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surface runoff than baseflow-groundwater. The increasing storm surface runoff increases 

CODMn in the reservoirs (Fig. 5-7).  

 

Fig 5-7 SHAP results of variable importance based on the RFR models 

 

The spatial distributions of the mean absolute SHAP values are shown in Figs 5-8, 5-9, 5-

10, 5-11, 5-12, and 5-13. The spatial distribution of the SHAP values of land use/cover (Fig 5-

13) and fertilizer (Fig 5-12) were low compared other variables and have similar contribution 

to water quality. Other variables have a much higher influence like e.g. the climate and 

hydrological variables (Figs 5-8, and 5-9). The soil variables show a similar distribution with 

high SHAP values in the southeast (Figs 5-10, and 5-11). The highest number of grid cells with 

a SHAP value were found for population variable. The grids cells located in the northeast have 

a bigger influence on regional water quality (Fig 5-12). Additionally, the distributions of TP 

were different from other two models.  
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Fig 5-8 Spatial distribution of the SHAP results for climate variables 

 

Fig 5-9 Spatial distributions of the SHAP results for the hydrology in the MRW 

 

Fig 5-10 Spatial distributions of the SHAP results for the soil moisture in the MRW 
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Fig 5-11 Spatial distributions of the SHAP results for the soil temperature in the MRW 

 

 

Fig 5-12 Spatial distributions of the SHAP results for the anthropogenic varibales in the 

MRW 

(*Note: Fertilizer for NH4
+-N, TP, and CODMn were used P_app, N_app, and Fer_app, 

respectively) 

 

To understand the spatial variation of the variables of the water quality models, Spearman 

correlation analysis was used to identify the relationships between the variables with high 

spatial variation and land use or topography indicators (Fig 5-14). Of all watershed properties, 

urbanization has the most significant influence on the spatial heterogeneity of water quality. 

Significant relationships also existed between the SHAP values of population and the 

percentage of urban areas in the MRW. The Spearman correlation coefficients for NH4+-N, TP 

and CODMn suggest that the population in the less urbanized areas may contribute more than 



Chapter 5 Effects of land use/cover change on water quality in the rapid developing countries 

 83 

in highly urbanized areas. Compared to the stream models, the effects of urbanization on the 

reservoirs contribute more to the spatial heterogeneity of the watershed variables, especially, 

for the CODMn models. In the reservoirs, the effect of urbanization is higher. 

 

 

Fig 5-13 Spatial distributions of the SHAP results for the land use/cover in the MRW 

 

 

Fig 5-14 Factors influence the spatial variations of the SHAP value of variables for water 

quality  
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5.4 Discussion 

5.4.1 Interpretable machine learning approach 

Statistical models like multiple linear regression and geographically weighted regression 

are effective tools to understand the relationship between watershed properties and water 

quality (Huang et al., 2013c; 2015). However, these methods do not cover the spatial settings. 

To address these limitations, we propose a grid-based interpretable machine learning method. 

The watershed properties of each grid cell are used as independent drivers for the models. The 

accuracy of the models was estimated on global and local scales to provide a full picture of 

water quality modelling for the entire watershed (Figs 5-2, and 5-3). The estimated global 

|PBIAS| of the models during training and testing periods were 0.236-0.674 and 0.400-5.120, 

respectively (Table 5-2) was satisfying.   

Higher accuracy of the water quality models was found in the reservoir compared to the 

stream (Table 5-2). The water quality in the reservoir may be less sensitive than that in the 

stream, and extreme values can be predicted in the models for the reservoir. The high values of 

water quality parameters may be underestimated for these models of stream water quality (Fig 

5-2). The estimated accuracy of sites in the mouth of the MRW was relatively low because of 

saltwater intrusion (Fig 5-3). In reservoirs, the models for CODMn achieved the highest accuracy. 

In contrast, higher accuracy was found in stream water quality models for nutrients (i.e. NH4+-

N, TP). This suggested that the reservoir may also modified the relationships between 

watershed properties and water quality. 

5.4.2 Relationships between watershed properties and water quality 

Several studies have described seasonal variation of water quality as a result of agricultural 

activities, climate variability, biochemical processes and so on (Kaushal et al., 2014; Greaver 

et al., 2016; Duan et al, 2021; Lei et al., 2021). For example, Lei et al (2021) observed lower 

water quality in winter compared to summer in a German lowland catchment. In Southeast 

China, low water quality occurred more frequently in the wet season in summer compared to 

the dry season in winter (Zhang et al., 2019; Huang et al., 2021). The climate is also an 

important driving factor of water quality. The German catchment is located in a high-latitude 

marine climatic zone with moderate precipitation, whereas the watersheds in Southeast China 

are located in a subtropical monsoon climate with approximately 70% precipitation during 

summer. High precipitation may transport more pollutants to water bodies after fertilizer 

application. Additionally, biogeochemical transformations may also decrease with increased 

runoff (Gallo et al, 2015; Greaver et al., 2016). High concentrations of NH4
+-N, TP, and CODMn 

were observed from May to August in the reservoirs, and the observed seasonal variability of 

water quality in streams was low compared to the reservoirs (Fig 5-6). This indicates that 
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reservoirs may amplify the effects of climate variability on water quality. A previous study in 

Southeast China also found that reservoirs or dams may enhance evapotranspiration in the 

watershed (Zhang et al., 2020a). 

Relationships between land use and water quality have been clarified in previous study, 

and they suggested that human-impact land use may be negatively correlated to water quality 

and natural land use may be positively correlated to water quality (Tu 2009; Lee et al., 2013; 

Lei et al., 2021). In this study, high SHAP values were observed with low feature values of 

natural land use (Nature) for the NH4+-N and TP models in the reservoirs which indicated that 

the high percent of natural land use would reduce the concentrations of nutrients in the 

reservoirs. In contrast, this relationships between land use and water quality may be weak in 

the stream compared to that in the reservoirs (Fig 5-7). Though the population and urbanized 

land use are highly correlated, they play different roles for the water quality. The importance 

of population (Population) was ranked high in the all models (Fig 5-7), while the percentage of 

urbanized land use (Urban) is not as important as the population. It indicated the effects of 

population on water quality may be nonlinearity.  

The spatial distribution of the population influences water quality in the MRW (Figs 5-12, 

and 5-14). Negative correlations were also found between the SHAP values of population and 

percentage of the urbanized land use (Fig 5-14), suggesting that point source pollution per 

inhabitant may be reduced with increasing urbanization. During urbanization, more sewage 

treatment plants are built and therefore point sources are reduced. Regional population and the 

fraction of residential land have a significant influence on water quality (Wang et al., 2021e). 

Similar results were also found in previous studies. Tu (2009) found in Boston that the 

percentages of commercial and industrial land have stronger positive relationships with the 

concentration of water pollutants in less urbanized areas than in highly-urbanized areas. Wang 

et al. (2021e) found that population density is positively correlated with water quality 

parameters where the population density is less than 3000 people/km2. An increasing population 

in rural areas may lower water quality. Urbanization has the most important influence on the 

spatial distribution of water quality parameters. Based on Spearman correlation analysis, more 

properties were correlated between water quality and urban land use in reservoirs than in stream 

models (Fig 5-14). Increasing urbanization increases the area of impervious surface and 

modifies the regional climate and streamflow (Mishra et al., 2015; Li et al., 2020b). 

Urbanization in the MRW may reduce the effects of climate, hydrology and soil properties on 

water quality, especially for the organic matter in the reservoir. (Fig 5-14). 

Soils act as primary sink and source of terrestrial contaminants, influence water quality 

through subsurface and soil water flows (Huang et al., 2017; Liu et al., 2017; Wang et al., 2021d) 

and biochemical processes in the change the patterns of pollutant export (Huang and Hall, 2017; 

Lei et al., 2021, Xie et al., 2023). Coupled with the regional environmental setting, the soil 
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property may influence the magnitudes of nutrient exports by changing the patterns of the 

sediment in the watersheds (Drewry et al., 2006; Lintern et al., 2018). For this reason, the 

nutrients export in the reservoirs may be more sensitive to the increasing runoff in the 

watersheds for the highly sediment exports in the storm events (Fig. 5-7). Besides, the processes 

in the soil modify the mobilization and delivery processes of the pollutants in the watersheds 

(Huang and Hall, 2017; Lintern et al., 2018; Xie et al., 2023). Huang and Hall (2017) found 

that increasing soil moisture modifies process mineralization leads to a higher release of organic 

matter. In this study we also found that soil moisture in 100-200 cm (SoilMoil100_200) was 

the important feature influence the CODMn models for streams (ranked 6/17) and reservoirs 

(ranked 5/17). However, there is a different relationship between the nutrient concentrations 

and soil conditions in streams and reservoirs. Increasing temperature and moisture in the bottom 

soil (i.e. SoilTM100_200, SoilMoil100_200) decreases the concentrations of NH4+-N and TP 

in the stream while increasing temperature and moisture in the topsoil (i.e. SoilTM0_10, 

SoilMoil0_10) increases the concentrations of NH4
+-N and TP in reservoirs (Fig. 7). The 

delivery of the pollutants from the catchment to receiving waters via subsurface flow pathways 

is strongly affected by soil hydrological properties (Lintern et al., 2018). The moisture of the 

soil may change the connectivity to the stream, and the high connectivity means more pollutants 

may entry into the streams with runoff. The studies in the USA and Sweden indicated that the 

greater pollutants may be found in the well-draining soil where the soil is more wet (Arheimer 

and Liden, 2000; Franklin et al., 2013). In this study, we also found that the nutrients exports 

were also highly related to the soil moisture in the watershed (Fig. 5-7).  

Streamflow is a holistic driver regulating material and energy flows in a catchment. 

Baseflow-groundwater runoff and surface runoff were identified as the key factors for the 

transport of nonpoint pollutants (He and He, 2008; Zhu et al., 2019). Compared to the nutrients 

in the stream, baseflow-ground water runoff (Qs_acc) and storm surface runoff (Qsb_acc) may 

transport more pollutants from non-point sources to reservoirs. A previous study in the MRW 

also indicated that storm events may significantly enhance nutrient exports in reservoirs 

compared to streams (Zhang et al., 2019). Additionally, we further confirmed that storm surface 

runoff contributes more to the nutrient export in the reservoir than baseflow-ground water 

runoff. A higher rank of storm surface runoff for the NH4
+-N (ranked 1/17) and TP (ranked 

3/17) models in reservoirs was observed (Fig 5-7). In contrast, baseflow-ground water runoff 

may play a more important role for the transport of nutrients than the storm surface runoff (e.g. 

NH4
+-N (ranked 3/17) and TP (ranked 3/17)). Compared to the nutrient exports, the COD in the 

MRW may be more sensitive to baseflow-ground water runoff and storm surface runoff. 

Increasing baseflow-ground water runoff and storm surface runoff enhance exports of organic 

matter in the watershed (Fig 5-7).  

5.4.3 Outlook 
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In this study we analyzed the spatial distributions of the properties which influence the 

water quality in our watershed with a grid-based interpretable machine learning approach. This 

method can shed light on how to improve water quality in the watershed by considering the 

spatial and temporal variability of watershed properties. This method can also be used to 

illustrate the dependency of biogeochemical variables in response to changes in land use, 

management, and policy. The increase of pollution with increasing population may be reduced 

with increasing level of urbanization level in the MRW, and the other impacts from urbanization 

were also evaluated with the proposed method. The method proposed in this study can be used 

to evaluate the source of the pollutants and help to understand the export of nutrients and 

organic matter at different scales.  

5.5 Conclusions  

We developed a grid-based interpretable machine learning method to understand the 

spatial relationships between watershed properties and water quality in the MRW. The 

proposed method exhibited acceptable performance. The water quality in the reservoir may be 

less sensitive than that in the stream, and extreme values can be predicted in the models for the 

reservoir. Higher accuracy of the water quality models was found in the reservoir compared to 

the stream. The climate change, soil conditions, population and hydrological conditions were 

identified as the most important features influence the water quality in the MRW. The nonlinear 

relationships between water quality and watershed properties were further clarified in this study. 

The reservoirs may amplify the effects of climate variability on water quality. The effects of 

the urbanization may modify the distributions of important feature that control the regional 

water quality. The point source pollution per inhabitant may be reduced with increasing 

urbanization. This study provides an in-depth understanding of the relationship between water 

quality and watershed properties, temporally and spatially. 
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water quality in the Chesapeake Bay watershed 
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Abstract 

Understanding the relationship between land use and water quality is essential for effective 

watershed management. However, it remains challenging to identify such a relationship owing 

to its nonlinearity. We developed an interpretable machine learning method that integrated the 

random forest regression (RFR) model with the Shapley Additive exPlanations (SHAP) method 

to explore the relationship between water quality and land use in the Potomac River Basin 

(PRB), the second largest tributary entering Chesapeake Bay from 2006 to 2019. The water 

quality of the 26 sub-watersheds, classified into five types (natural, forested, agricultural, mixed, 

and urbanized), was investigated using statistical methods and scenario analysis. The results 

showed that the models employed were effective in predicting the water quality. The mean 

absolute error (MAE), root mean square error (RMSE), percent bias (PBIAS), R2 coefficient of 

determination (R2), and Kling-Gupta efficiency (KGE) were 0.011-0.159 mg/L, 0.019-0.219 

mg/L, -0.14-0.64%, 0.79-0.99, and 0.69-0.98, respectively, during the training period, which 

were 0.010-0.201 mg/L, 0.017-0.292 mg/L, -1.87-0.41%, 0.82-0.99, and 0.80-0.97, respectively, 

during the testing period. The threshold effects of land use patterns were obvious for water 

quality indicators with high concentrations (i.e., TN and NH4
+-N). In contrast, the water quality 

at low concentrations (i.e., TP and NO3
--N) may be more sensitive to wetland or barren land 

with changing climate. Agricultural activities and urbanization could be the dominant factors 

determining nutrient export to the PRB. Meanwhile, the typical ‘sink’ for the nutrient such as 

wetland may change into the ‘source’ for different nutrient. This study provides an in-depth 

understanding of how riverine nutrient export responds to the land use gradient in the 

Chesapeake Bay watershed. 

 

Keywords: Land-use; water quality; nonlinearity; threshold effect; Potomac River basin 
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6.1 Introduction  

Global cycles of nitrogen (N) and phosphorus (P) are altered by human activities, which 

have contributed to increased coastal eutrophication (Baker et al., 2003; Duan et al., 2012; 

Huang et al., 2015). Land use within a watershed is important for the water quality of rivers, 

lakes, estuaries, and coastal waters (Huang et al., 2013c; Hur et al., 2014; Duan et al., 2021). 

Therefore, exploring the linkage between land use and water quality, particularly in coastal 

watersheds, is critical for developing watershed management strategies and controlling land-

based pollution in coastal bays (Huang et al., 2013c; Mulkey et al., 2017). 

Previous studies have suggested that land use change may alter the characteristics of N 

and P exports by linking water quality to specific land use types (Huang and Klemas 2012; 

Lacher et al., 2019; Ahmadisharaf et al., 2020). Natural vegetation, such as forests, can filter 

pollutant particles and reduce water pollution (Lei et al., 2021).In contrast, human-impacted 

land use may increase the risk of water quality degradation through additional sources of non-

point or point pollution (Zhang et al., 2020b; Duan et al., 2021). Jordan et al. (2018) found that 

TP and dissolved phosphate increased with a high percentage of cropland. Duan et al. (2021) 

found that non-point agricultural sources made a significant contribution to N export in streams. 

However, land use is not the only factor controlling regional nutrient export because the 

relationship between land use and riverine nutrients may be modified by regional climate 

variability (Huang and Klemas, 2012; Zhang et al., 2020b). Land use change, coupled with 

climate variability, can significantly affect nutrient export (Duan et al., 2012; Huang et al., 

2021). Huang and Klemas (2012) indicated that the percentage of built-up land is a good 

predictor of downstream water quality, whereas the linkage between water quality and 

landscape variables during wet years is stronger than that during dry years. Natural vegetation 

may also be an important source of pollution under specific conditions such as nutrient export 

from forest soils during storm events (Lee et al., 2013; Duan et al., 2021).  

Recently, the threshold effects of land use patterns have been identified (Huang et al., 2015; 

Liu et al., 2021c). The patterns of nutrient export may be modified by changing vegetation 

cover (Mulkey et al., 2017; Jordan et al., 2018; Lacher et al., 2019). For example, using 

geographically weighted regression, Huang et al. (2015) found that the built-up may be more 

associated with pollution in watersheds with less urbanized areas. Therefore, it is necessary to 

understand the nonlinear relationship between land use and water quality.  

Conceptually, riverine nutrients are strongly controlled by land use, and many effects have 

been made in the past decades to identify this relationship. Conventional statistical methods, 

such as stepwise regression, redundancy analysis, and correlation analysis, were commonly 

applied in this study. For example, using nonlinear regression (i.e. power regression, 

exponential regression, quadratic regression, and segmented regression), Liu et al. (2021c) 



Chapter 6 Effects of land use/cover change on water quality in the developed countries 

 91 

analyzed the nonlinearity and threshold effects of landscape patterns on water quality in a 

rapidly urbanized watershed. However, it may be difficult to identify the relationship between 

multiple factors and water quality. Compared with conventional statistical models, machine 

learning models may be more effective for modelling water quality with multiple factors. For 

example, Zhou et al. (2016) demonstrated how point source pollution weakens the land use-

water quality correlation using a self-organizing map-based approach. However, the 

interpretations of machine learning models were limited to quantifying the impact of related 

factors on riverine nutrients (Wang et al., 2021d; 2021e). Recently, Shapley Additive 

exPlanations (SHAP) was developed to interpret machine learning models with improved 

computational performance and consistency with human intuition (Lundberg and Lee, 2017). 

The SHAP method has been proved to be a powerful interpreter for machine learning models 

(Li et al., 2021; Wang et al., 2021d). 

Chesapeake Bay, a large temperate estuary in the mid-Atlantic region of the United States, 

has been proven to be a nutrient over-enrichment area that has produced significant symptoms 

of anthropogenic eutrophication (Duan et al., 2012; Jordan et al., 2018). In the past decades, 

many efforts have been made to improve water quality in Chesapeake Bay (Mulkey et al., 2017; 

Ator et al., 2020).  Understanding the linkage between nutrient exports and land use patterns 

is helpful for watershed management and updating the knowledge for watershed modelling 

(Baker, 2003; Hernandez Cordero et al., 2020). In this study, we hypothesized that the impact 

of climate variability can be quantified by water temperature and precipitation, the impact of 

topography can be qualified by slope, the threshold effects of land use can be quantified by 

types of watershed, and the effects of climate variability with human interference can be 

quantified by sampling time. With these external factors, the nonlinear relationship between 

land-use gradient and water quality in the PRB was analyzed with an interpretable machine 

learning method by answering the following two questions: (1) how does the stream water 

quality respond to distinct land-use gradients in the Potomac River Basin? (2) what is the 

temporal variation in land use-water quality linkages?   

6.2 Material and methods 

6.2.1 Study area 

Chesapeake Bay, the largest estuary in the United States, has experienced 

increased eutrophication over the past century (Mulkey et al., 2017, Yu et al., 2020). The 

Potomac River Basin (PRB) is the second largest tributary entering Chesapeake Bay in terms 

of water quantity, and the fourth largest river on the eastern coast of the United States (Belval 

and Sprague, 1999; Guardian et al., 2021) (Fig 6-1). It covers approximately 37,990 km2, with 

an average flow of 306 m3/s. More than five million residents rely on the PRB as their source 

of water for residential, industrial, and agricultural activities (Tanir et al., 2021). In addition, an 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/estuary
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/eutrophication
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0180
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0240
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0025
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0025
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0070
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#f0005
https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0205
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average of approximately 1,840,000 m3 of water per day is withdrawn daily in the Washington 

area for water supply. Land use is distributed unevenly across the basin, with predominantly 

forested areas in the west, dense agriculture in the central area, and major population centers in 

the east. This pattern of land use follows a general transition in topography from steep 

mountains in the west to gently rolling terrain in the east (Miller et al., 1997). 

The PRB lies in seven geological provinces, including the Appalachian Plateau, Valley 

and Ridge, Great Valley, Blue Ridge, Piedmont, and Triassic Lowlands in the upper PRB, and 

Coastal Plain Basin in the lower of the PRB. The river meanders from Fairfax Stone, West 

Virginia to Point Lookout, Maryland, which is located in parts of the Commonwealth of 

Virginia, Maryland, West Virginia and Pennsylvania state, and the District of Columbia 

(Blomquist et al., 1996, Bricker et al., 2014, Tanir et al., 2021). The PRB experiences a 

moderate climate pattern marked by cold winters and warm, humid summers, with a mean 

annual precipitation of 700–1200 mm/yr and monthly precipitation reaching its highest 

magnitude in June (Sridhar et al., 2019). 

 

 

Fig 6-1 Sampling sites in the Potomac River Basin during 2006-2019 (Note: watershed 

boundary for 26 stations in derived from NHD, USGS) 

 

6.2.2 Land Use and Land Cover 

The land-use data in 2006, 2011, 2016, and 2019 within the PRB were considered in this 

study based on the National Land Cover Database (NLCD) (Fig S6-1). The land use categories 

were classified into eight classes based on the NLCD land cover legend for Level I: water, 

urban, barren, forest, shrubland, herbaceous, agriculture, and wetland. The estimated overall 

https://www.sciencedirect.com/science/article/pii/S1470160X22004484#b0165
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accuracy of the NLCD2016 was 90.6% (Wickham et al., 2021). 

To examine the threshold effects of land use patterns, the sub-watersheds in the PRB were 

classified as natural, forested, agricultural, mixed, and urbanized based on land use composition. 

Natural and forested watersheds were identified with forest that more than 80% and 50%-80%, 

respectively. Meanwhile, the agricultural watershed was identified with agriculture that more 

50%, and the urban watershed was identified with urban that more than 50%. The remaining 

watersheds were classified as mixed. 

Land use patterns in the PRB were shown in Fig S6-1. Overall, by 2019, the largest land-

cover class in the PRB was forest (52.55%), followed by agriculture (25.21%), and urban 

(14.67%). Minor proportions of the watershed were covered by water (4.04%), wetland (2.05%), 

herbaceous (0.72%), shrubland (0.59%), and barren (0.17%). During the period of 2006–2019, 

the shrubland increased markedly by 23.43%. The urban and agriculture increased slightly by 

0.43% and 0.75%, respectively (Table 6-1). Meanwhile, a decrease of 9.53% in barren was 

observed, followed by forest (decreased by 0.29%). The water and wetland remained almost 

unchanged during this period, decreasing by only 0.06% and 0.01%, respectively.  

 

Table 6-1 Overview of land use change during period of 2006-2019 (%) 

Land use Unchanged Lost Gained Net gain/loss 

Water 99.91 0.09 0.03 -0.06 

Urban 100 0.00 0.43 0.43 

Barren 86.39 13.61 4.08 -9.53 

Forest 99.24 0.76 0.47 -0.29 

Shrubland 58.46 41.55 64.98 23.43 

Herbaceous 63.39 36.62 40.98 4.36 

Agriculture 99.82 0.18 0.93 0.75 

Wetland 99.90 0.10 0.09 -0.01 

 

6.2.3 Data Source 

In this study, water quality data during 2006.1-2019.12 were obtained from Chesapeake 

Bay Program (www.chesapeakebay.net/data). Four representative parameters, including total 

phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH4
+-N), and nitrate nitrogen (NO3

-

-N), were employed in this study. The total number of samples for TN, TP, NH4
+-N, and NO3

--

N was 5360, 4249, 3996, and 4067, respectively (Fig S6-2). Water temperature data were 

obtained from the Chesapeake Bay Program. Precipitation data were obtained from the CRU 

TS which was produced by the UK’s National Centre for Atmospheric Science at the University 

of East Anglia’s Climatic Research Unit (Harris et al., 2020). Based on the climate variability 

of the PRB, the seasonal cycle for sampling was divided into two periods (i.e. the dry and wet 

seasons). To understand the impact of topography, the slopes were estimated based on the 

http://www.chesapeakebay.net/data
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SRTM 90m Digital Elevation Database from the National Aeronautics & Space Administration 

(NASA, https://www.nasa.gov/). Additionally, the density of point source pollution in each sub-

watershed was estimated based on the point source information provided by the Chesapeake 

Bay Program. 

6.2.4 An interpretable machine learning method 

In this study, an interpretable machine method was employed to understand the 

relationship between land use and water quality in the PRB based on Random Forest regression 

(RFR) and the corresponding SHAP. The nonlinear relationships between land use and water 

quality were quantified using the trained RFR models. As an ensemble learning method, a large 

number of individual decision trees were constructed in RFR, and each independent tree was 

planted using a unique bootstrap sample of the training dataset (Breiman 2001). To reflect the 

relationship between land use and riverine nutrients, the data in year of 2006, 2011, 2016 and 

2019 were selected as the basic data for modelling. The dataset was split randomly into a 

training dataset and a testing dataset, which accounted for 80% and 20% of the entire dataset, 

respectively, based on related studies (Wang et al., 2021e).  

In this study, the k-fold cross-validation was employed to tune the hyperparameters of the 

models. The k-fold cross-validation is a resampling method used to evaluate models with a 

limited data sample, and the k refers to the number of groups split. Using 10-fold cross-

validation, the training dataset was split into 10 sub-datasets. The models were trained with 

training folds and validated with the testing fold (Fig S6-3). The number of trees (n_estimators), 

the minimum number of samples required to split a node (min_sample_split), the minimum 

number of samples required to be at a leaf node ( min_samples_leaf), the number of features to 

consider when looking for the best split (max_features), and the maximum depth of the tree 

(max_depth) were identified in this study. The models were evaluated by the mean absolute 

error (MAE), root mean square error (RMSE), percent bias (PBIAS, Gupta et al., 1999), R2 

coefficient of determination (R2), and Kling-Gupta efficiency (KGE, Gupta et al., 2009). In this 

study, R2>0.60, KGE≥0.60, and PBIAS≤±25% were used as the satisfactory thresholds for 

assessing the model performance based on previous studies (Moriasi et al., 2007, 2015; 

Odusanya et al., 2019). 

To understand the factors that influence water quality in the PRB, the SHAP analysis was 

employed in this study. As a game-theoretic approach, SHAP can interpret machine learning 

models by estimating the feature importance (Strumbelj and Kononenko, 2014; Lundberg and 

Lee, 2017). The contribution of each feature to the model output was allocated based on the 

marginal contribution (Lundberg and Lee, 2017).  

6.3 Results 

https://www.nasa.gov/).
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6.3.1 Nitrogen and Phosphorus changes across land use types and seasons 

The spatial and seasonal variations of water quality among the five types of watersheds 

were shown in Fig 6-2. The highest concentrations of NO3
--N and TN were observed in the 

mixed watersheds, followed by the agricultural and urbanized watersheds. Whereas, the 

concentrations of NH4
+-N and TP were higher in the urbanized watersheds than that in the 

agricultural watersheds (Table S6-2). Specifically, the concentrations of NH4
+-N (0.002-1.527 

mg/L) and TP (0.003-3.006 mg/L) were relatively lower than those of NO3
--N (0.001-5.467 

mg/L) and TN (0.100-7.164 mg/L). TN and NO3
--N in the dry season were higher than those in 

the wet season in all types of watersheds (Fig 6-2). There was no distinguishing difference 

between the two seasons in the concentrations of NH4
+-N and TP (Fig 6-2).  

The inter-annual variation of water quality in the PRB was shown in Fig 6-3. A 

degeneration trend in water quality was observed during the period of 2006-2009 and which 

seemed to have improved after 2010s in the PRB. However, concentrations of TN and TP have 

increased in recent years. 

6.3.2 Linkage between riverine nutrients and land use  

The RFR models were employed to understand the relationship between water quality and 

land use in the PRB considering land use, intensity of human activities (i.e., type of watershed), 

climate variability (i.e., water temperature, precipitation), topography, point source, and climate 

variability with human interference (i.e., time of sampling). The 10-fold cross-validation 

method was employed to tune the hyperparameters of the models in the PRB (Fig 6-4). All of 

the models fit well during the two periods, which indicated that the land use, season, topography, 

point source, and type of watershed could explain a high proportion of variability of the water 

quality in the PRB.  

The performance of the models was listed in Table 6-2. Compared to the performances of 

TN and NO3
--N, the performances of NH4

+-N and TP were relatively poor. The KGE of the 

NH4
+-N during the training and testing period were 0.78 and 0.80, respectively. The calculated 

KGE for the TP were 0.69 and 0.85, respectively. In contrast, the KGE of TN and NO3
--N were 

0.93-0.98 and 0.95-0.97, respectively, during the two periods. This suggested that other factors 

may have influenced the concentration of NH4
+-N and TP in the PRB.  
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Fig 6-2 Spatial and seasonal variations among five types of watersheds in the PRB 

 

 

Fig 6-3 Inter-annual variation in water quality during 2006-2019 
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The features that controlled the water quality in the PRB were identified through the SHAP 

analysis based on the RFR models (Fig 6-5). A higher SHAP value indicated a stronger driving 

force. If the SHAP value is positive, this feature is a positive driving force for increasing the 

concentration of water quality parameters. Point source pollution may play a more important 

role in the TP model (rank 3/14) than that in the other models (TN model (rank 9/14), NH4
+-N 

model (rank 12/14), NO3
--N model (rank 12/14)). Agriculture, forest, type of watershed, and 

slope were the top factors that controlled the exports of TN and NO3
--N in the PRB. Consistently, 

the feature importance for the type of watershed was low in the other two models (i.e., TP and 

NH4
+-N). Meanwhile, wetland and barren may be one of the most important factors influencing 

the migration process of TP or NH4
+-N. Increasing SHAP values of TP and NH4

+-N were 

observed with increasing feature values of wetland or barren. In contrast, increasing wetland 

may reduce TN. This indicated that human activities were still the major factors controlling the 

exports of TN and NO3
--N in the PRB, and the threshold effects of land use patterns on water 

quality may be found in the PRB. Climate variability may play a more important role in the TP 

and NH4
+-N models than the TN and NO3

--N models. Increasing SHAP values of TN and NO3
-

-N were observed with increasing feature values of temperature, whereas opposite trends were 

observed in the models of TP or NH4
+-N.  

 

 

Fig 6-4 The training and testing results of RFR models in the PRB 
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Table 6-2 Performance of models during the training and testing periods 

 Training period  Testing period 

 
MAE 

(mg/L)   

RMSE 

(mg/L)   
R2 

PBIAS 

(%) 
KGE  

MAE 

(mg/L) 

RMSE 

(mg/L) 
R2 

PBIAS 

(%) 
KGE 

TP 0.034 0.068 0.94 0.64 0.69  0.032 0.095 0.82 -1.87 0.85 

TN 0.159 0.219 0.97 -0.14 0.93  0.201 0.292 0.94 0.41 0.95 

NH4
+-N 0.011 0.019 0.79 0.61 0.78  0.010 0.017 0.91 -1.67 0.80 

NO3
--N 0.094 0.137 0.99 0.13 0.98  0.098 0.139 0.99 0.26 0.97 
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Fig 6-5 SHAP results of feature importance based on the RFR models  

(Note: the relative importance of features were ranked from up to down) 

. 

 

Fig 6-6 The features relative importance ranking in the PRB (%) 
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The relative contribution of each feature to the models was shown in Fig 6-6. The threshold 

effect was observed with the modified composition of land use. Although the wetland (36%-

55%) was the major factor influencing TP in the PRB, the contribution of this factor changed 

with increasing human-impact land use. The contribution of wetland may decrease when forest 

transferred to the agriculture, and a decreasing trend was observed from the natural watershed 

(49%) to the agricultural watershed (40%). Meanwhile, the observed contribution of wetland 

to the TP model in PRB decreased from 40% (agricultural watershed, agriculture >50%) to 36% 

(mixed watershed, agriculture≤50%, urban≤50%; forest≤50%), and increased from 36% 

(mixed watershed, agriculture≤50%, urban≤50%; forest≤50%) to 55% (urbanized watershed, 

urban >50%). Similar results were found in other models as well. 

6.3.3 Water quality in the PRB under different scenarios 

Most of the forest, agricultural land, and urbanized land likely gained from shrubland, 

herbaceous or shrubland, and herbaceous or barren, respectively, in the PRB (Table 6-1). Three 

scenarios were set up based on the land use in 2019, Scenario I, all of the shrubland transfer to 

the forest; Scenario II, all of the herbaceous and shrubland transfer to the agricultural land; and 

Scenario III, all of the herbaceous and barren transfer to the urbanized land. As shown in Fig 

6-7, TP and NH4
+-N were more sensitive to land use changes. Undoubtedly, increasing 

agricultural land (Scenario II) and urbanized land (Scenario III) may increase the concentration 

of pollutants in the PRB. Although increasing forest may reduce the export of TP, TN, and NO3
-

-N in the PRB, shrubland may play a more important role than forest. The observed NH4
+-N 

increased when the shrubland transfer to the forest (Scenario I).  
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Fig 6-7 Water qualify in the PRB under different scenarios (upper & lower quartiles) 

 

6.4 Discussions 

6.4.1 Training & validation of the models 

Understanding the linkages between land use and water quality is commonly recognized 

as an imperative step to forecast riverine nutrients (Galbraith et al., 2007; Huang et al., 2012; 

Zhou et al., 2016). Data-driven models are convenient for providing quality assessments and 

for identifying the relationship between land use and water quality. Our previous studies 

detected global and local variations in the relationship between land use and water quality using 

multiple linear regression and geographically weighted regression (Huang et al., 2012; 2015). 

However, this relationship may weaken or become nonlinearity because of interference from 

climate variability or human activities (Zhou et al., 2016; Huang et al., 2021; Liu et al., 2021c). 

To fill this gap, we developed an interpretable machine learning method that integrated the RFR 

model with the SHAP method to explore the relationship between water quality and land use 

in the PRB. Compared to the multiple linear regression models used in previous studies (e.g. 

Huang et al., 2013c), the estimated accuracy of the models in this study was relatively high. 
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The PBIAS of the models during the training and testing period were -0.14-0.64 and -1.84-0.41, 

respectively, indicating satisfactory model generalizability.  

The relationship between land use and riverine pollutants has been widely explored with 

multiple linear regression models. And the accuracy of these models may be influenced by the 

size of the data (Chen et al., 2020; Zhang et al., 2020b; Wang et al., 2021e). With limited data, 

the RFR models can provide satisfactory performance for scenario analysis and water 

management. Although the performances of TP and NH4
+-N models were slightly poorer than 

other models (Table 6-2), there were no significant differences between the observed and 

simulated baseline scenarios (Fig S6-4). Meanwhile, compared to the performance of other 

studies (e.g. Wang et al., 2021e), our models were acceptable. We believed that the trained 

models can be used to assess the water quality in the PRB.  

The TN and NO3
--N models achieved the highest accuracy, followed by the TP and NH4

+-

N models (Table 6-2). Consistently, the highest concentrations of water quality indicators were 

found in TN and NO3
--N (1-3 mg/L, Fig 6-3), followed by TP and NH4

+-N (0-0.1 mg/L, Fig 6-

3). This means that other external factors may have influenced the migration processes of NH4
+-

N and TP in the PRB. Theoretically, NH4
+-N is more unstable than other riverine nutrients and 

can be oxidized into NO3
--N via biochemical processes. Climate variability may modify this 

process in the watershed, and in this study we also found that the climate variability (i.e. 

temperature (rank 3/14) and precipitation (rank 4/14)) was one of the most important factor that 

influence concentration of NH4
+-N in the PRB (Fig 6-5). In contrast, riverine P has poor 

mobility and soil erosion may modify the migration processes of the TP. Correspondingly, the 

precipitation (rank 2/14) and point source (rank 3/14) were the important factors influencing 

the TP in the PRB. This suggested that extenal factors (e.g. climate variability, point source) 

may alter the relationship between land use and water quality. A similar result was also found 

in a previous study in the Minjiang River Watershed (Zhou et al., 2016). 

6.4.2 Nonlinear linkage between land use patterns with nutrient exports 

In this study, RFR models were employed to identify the relationship between land use 

and water quality in the PRB. The percentages of agriculture, forest, urban, and type of 

watershed were the top factors that controlled the exports of TN and NO3
--N in the PRB. 

Accelerated urbanization is a major contributor to water quality degradation because of 

increasing point source pollution. (Yu et al., 2013; Huang et al., 2015; Zhang et al., 2020b). 

However, the high percentage of developed land may not indicate high nutrient export in the 

PRB. As shown in Fig 6-5, low SHAP values were observed with high feature values of 

urbanized land. The percentage of urban may not be an important factor controlling NH4
+-N 

export in the PRB (Fig 6-5). Unlike the developing world, a high rate of domestic wastewater 

treatment is usually found in urban areas. Most studies have shown that nutrient export is poorly 
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correlated with specific land uses. (Brett et al., 2005; Lee et al., 2013). In contrast, pollutants 

from stormwater may be difficult to control in the PRB. For example, the deposited N in the 

barren may become the major source of NH4
+-N in the PRB when the point source pollution is 

well-controlled (Fig 6-5).  

Rather than urbanization, agricultural activities in the PRB may be the main factor 

determining nutrient export to the watershed (i.e., TN and NO3
--N). In this study, we found that 

agricultural land may be the most significant factor influencing the water quality in the 

watershed. Similarly, previous studies in Chesapeake Bay suggested that agricultural activities 

may contribute to more than half of the nutrient exports to that area. (Duan et al., 2012; Mulkey 

et al., 2017; Jordan et al., 2018; Duan et al. 2021). As there are larger areas of agricultural land 

use in the PRB, non-point sources may be more difficult to control for each type of watershed. 

It can be inferred that non-point sources from agricultural activities continue to be the primary 

source of pollutants in the PRB.  

The relationship between land use and water quality has been widely examined in previous 

studies. After investigating the relationships between water quality and ecological responses in 

streams with varying laud uses, Amaio et al. (2019) calculated that nonlinearity may be 

common in watershed systems, occurring in half of their study compared with linearity cases 

that occurred in less than 14%. The linear relationship between land use and water quality was 

observed in this study as well. The contributions of forest and slope to riverine nutrients were 

relatively unchanged with changing type of watershed. For example, the impacts of forest on 

NO3
--N were similar for natural (14%), forested (14%), agricultural (15%), and mixed (15%) 

watersheds (Fig 6-6). However, compared with linear relationships, nonlinear relationships 

were more common in this study.  

The nonlinear relationships between land use patterns and water quality have been 

clarified in previous studies. For example, climate variability may amply nutrients in urbanized 

watersheds (Kaushal et al., 2014; Huang et al., 2021). Pollutants may be more sensitive to the 

percentage of built-up areas in low-urbanized watersheds than highly urbanized watersheds. 

The threshold effects of land use patterns were examined in this study, and these effects were 

observed in the TN (rank 4/14) and NO3
--N (rank 4/14) models, where the initial concentrations 

of nutrients were high (Figs 6-3, and 6-5). In contrast, the threshold effects of land use patterns 

were not obvious in the remaining models, including the TP (rank 13/14) and NH4
+-N (rank 

14/14) models, where the initial concentrations of nutrients were low (Figs 6-3, and 6-5).  

Many studies have indicated that wetlands or forests are the sinks of nutrients, which 

means that a negative relationship must be established between wetlands and water quality 

(Galbraith and Burns, 2007; Wojciechowska, 2017). However, in organic-rich wetlands, 

nutrient release can occur under denitrification or redox conditions. Increasing SHAP values 

were observed with increasing feature values of wetland (i.e., TP, and NH4
+-N ), suggesting 

http://xueshu.baidu.com/s?wd=author%3A%28Wojciechowska%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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that wetlands may be a source of nutrient export in the PRB (Fig 6-5). Natural land use, such 

as forests and wetlands, can be a source of nutrients because of the modified hydrologic regimes 

and biological processes. Thus, natural land use may become nutrient sources owing to their 

insufficient capacity for specific nutrients.(Lee et al., 2013; Zhang et al., 2020b).  

6.4.3 Does seasonality matter in the linkage between land use pattern with 

water quality? 

Various land use patterns have controlled nutrient export as the changing seasons (i.e., dry 

and wet seasons) in the PRB. Seasonal variations in TN, TP, NO3
--N, and NH4

+-N across five 

types of watersheds were displayed in Fig 6-2. Generally, TN and NO3
--N in the dry season 

were higher than those in the wet season. Besides, the TP during the wet season was much 

higher than that during the dry season, especially in natural watersheds. High levels of 

phosphorus in soils can contribute to elevated levels of TP during high-flow events (Huang et 

al., 2015).  

The seasonality of the water quality may be controlled by human activities and climate 

variability. For example, fertilizer application in spring and fall may enhance nutrients in 

watersheds. Climate variability, such as changes in precipitation and temperature, may 

influence biochemical processes and alter nutrients in the watershed. Therefore, the sampling 

time (i.e. Time), precipitation, and water temperature (Temperature) were used as the seasonal 

indicators. Water temperature and precipitation can be used to depict climate variability in the 

PRB. The effects of human activities and climate variability can be depicted by sampling time. 

The sampling time may be a less important feature that controls water quality in the PRB (Fig 

6-5), and the SHAP value of that for the TP model was close to zero. The export of TN, NO3
--

N, and NH4
+-N may change seasonally. This process may be complex with different land use. 

Different biochemical processes can be observed in different seasons (Hur et al., 2014; 

Ahmadisharaf et al., 2020).  

Biochemical processes may be influenced by the initial nutrient concentrations. As shown 

in Fig 6-5, decreasing SHAP values were observed in the TN and NO3
--N models with 

increasing feature values of temperature. An opposite relationship was observed in the other 

two models. Similar results were also found in TP models in the Texas Gulf Region (Wang et 

al., 2021b). Additionally, with the continued disturbance of human activities, the linkages 

between land use and water quality would change. For example, precipitation in forested 

watersheds may dilute nutrients in winter, whereas in agricultural-dominated watersheds, high 

levels of nutrients due to precipitation and runoff. (Pratt et a al. 2012). The patterns of seasonal 

nutrients may change with interference from human activities, and the relationship between the 

feature value of time and SHAP value in the TP model changed more than the temperature. 
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6.4.4 Limitations and outlook 

In this study we analyzed the nonlinear relationship between land use and riverine water 

quality using an interpretable machine learning method. The method proposed in this study can 

be used to evaluate the impacts of land use policy on riverine nutrient. However, the spatial 

variability of watershed properties may increase the uncertainty of the results. In the next step, 

we will try to understand the impacts of the spatial and temporal variability of watershed 

properties on watershed water quality. 

6.5 Conclusions 

We developed an interpretable machine learning method to explore the threshold effects 

of land use patterns on water quality and its nonlinearity in the Potomac River Basin. The 

proposed models exhibited an acceptable performance. The threshold effects of land use 

patterns were obvious for water quality indicators with high concentrations. In contrast, the 

water quality at low concentrations may be more sensitive to wetland or barren land with 

changing water temperatures. The typical “sink” for the nutrient such as forest or wetland may 

change into the “source” for the nutrient under specific environmental setting. This study 

provides an in-depth understanding of how riverine nutrient export responds to the land use 

gradient in Chesapeake Bay watershed. 
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Chapter 7 General discussion and conclusion  

The main objective of this thesis is to understand how LUCC impacts water resources in 

coastal watersheds in a changing environment. Based on the remotely sensed data and a 

machine learning-based CA-Markov model, we gained insights into the major driving factors 

of LUCC in coastal watersheds. Using machine learning methods and hybrid watershed 

modelling, we explored how LUCC/urbanization interacts with climate change and its links 

with water resources from a nonstationary perspective. Furthermore, we investigated the 

nonlinear relationships between LUCC and water quality in two coastal watersheds with 

different development stages. This chapter addresses the research questions proposed in the 

first chapter and summarizes them from a general perspective.   

7.1 General discussion of research questions 

7.1.1 What are the major factors influencing the land use/cover change in 

coastal watersheds? 

LUCC in coastal China has drawn much attention for its population pressure and rapid 

socioeconomic development (Huang et al., 2012; Zhou et al., 2020). Compared with the 

developed countries such as the USA, the LUCC in the coastal China has been more active in 

the past decades (Figs. 2-3 and 6-2). The signals of each land use category were analyzed using 

intensity analysis. The urbanization rate in the Minjiang River Watershed has been increasing 

recently, and the built-up area has increased significantly in recent years, most of which has 

been transferred from woodland and agricultural land. We developed a machine learning-based 

CA-Markov (Cellular automata and Markov Chain) model to gain insights into the driving 

forces of the LUCCs in the coastal watersheds of China. Population and economic development 

were the major factors that controlled the distributions of the built-up area in the MRW (Fig. 2-

5), which indicated that urban sprawl in the coastal areas may be largely affected by 

socioeconomic factors. We concluded that urbanization may be more complex with increasing 

population and GDP. In this study, we also found that the distribution of woodlands was highly 

related to slope. To achieve the best cost-effectiveness, human beings prefer to develop in a 

place that is less steep, and the human-impacted land uses are more likely to be found in the 

flat areas (Lei et al., 2019; Viana et al., 2021; Bacau et al., 2022).  

We proposed a machine learning-based CA-Markov model to simulate LUCC under 

different scenarios (Fig. 2-2). The proposed method can help improve the performance of the 

CA-Markov model and increase the accuracy of the results (Fig. 2-6 and Table 2-5). Similar to 

other studies (Pazur and Bolliger, 2017; Bacau et al., 2022), most of the newly developed built-
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up areas were transferred from agricultural land and woodland in all scenarios (Figs. 2-7, 2-8, 

and 2-9). Similar to related studies (Pazur and Bolliger, 2017; Bacau et al., 2022), we also found 

that land use policy may significantly influence the distribution of land use in the MRW. Given 

that the economy may continue to develop rapidly, and a higher percentage of the population 

will reside in these areas, a reasonable spatial plan may play an important role in landscape 

ecology in the watershed by mitigating the negative effects of land degeneration during 

urbanization (Figs. 2-8 and 2-9).  

7.1.2 How does LUCC impact regional water resources in the context of 

climate variability?   

The theoretical basis of water resources management is strongly questioned, because 

traditionally, the stationarity assumption of hydrology faces a challenge from the changing 

environment. The impacts of climate variability and human activities on the high flow regime 

were analyzed using a nonstationary framework based on the hydrology model developed in 

this study. It is well known that the streamflow regimes are the results of precipitation, 

temperature, evapotranspiration, and soil moisture. Changes in precipitation may amplify the 

changes in streamflow that have been observed in the past decades in the Asian Pacific region 

(Chen et al., 2007; Huang et al., 2014; Zhang et al., 2018). These conclusions were further 

confirmed at a study site located in southeast China. After comparing the patterns of streamflow 

extremes at different time scales, we found that the streamflow extremes at shorter time scales 

may be more sensitive to the climate variability in this region. The maximum flow at different 

periods can be used to understand the magnitude and duration of extreme annual flow 

conditions (Richter et al., 1996). The impacts of climate variability and human activity on high 

flows during different periods were also determined in this study. Similar to other studies (Sun 

et al., 2018; Zhang et al., 2018), we found that human activities may amplify floods in the 

watersheds, especially small watersheds. Additionally, compared with high flow at long time 

scales, the high flows at short time scales may be more sensitive to the human activities in the 

watersheds.  

The effects of climate and human activity may be coupled. To further understand these 

effects, the relationship between LUCC and regional climate change was analyzed in this study 

based on a grid-to-grid framework. This study further confirms the results of previous studies 

(Lu et al., 2019; Song et al., 2021; Pimonsree et al., 2022), which concluded that patterns of 

regional climate extremes follow a nonstationary distribution as the results of urbanization, and 

the different patterns of climate extremes were also observed in different periods (Fig. 4-6). 

Additionally, the patterns of the climate extremes were analyzed under different patterns of 

land use. Low intensity human activities may not make a big difference in regional climate 

variability, and the patterns of climate extremes in the suburbanized areas were similar to those 
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in the natural areas (Table 4-3 and Fig. 4-10). In contrast, the patterns of precipitation and 

temperature may be modified in the highly urbanized areas.   

In summary, streamflow dynamics are consistent with human activity and climate 

variability. Human activities with low intensity contribute little to local climate variability, 

whereas high-intensity human activities may modify the local climate, and these coupled effects 

may enhance the modification of regional water resources (Fenner et al., 2019; Govind et al., 

2019; Li et al., 2020a).  

7.1.3 What is the nonlinear relationship between land use and water quality 

in coastal watersheds? 

Although a nonlinear relationship between land use and water quality has been identified 

in previous studies (Mulkey et al., 2017; Amaio et al., 2019; Liu et al. 2019c), this relationship 

is still difficult to understand using conventional statistical methods. To further understand this 

relationship in the coastal watersheds at different stages of development, we proposed an 

interpretable machine learning method and applied it to typical coastal watersheds in China and 

the USA (Chapters 5 and Chapter 6). The estimated accuracy of this method was relatively high 

in the two study areas, indicating a satisfactory generalized model. 

As the largest developing country in the world, the watersheds in China still suffer from 

high pollution levels. Pollutants in the watershed were more sensitive to climate variability and 

hydrological processes (Fig. 5-7). Additionally, human activities may increase its complexity, 

and the reservoirs built in the watershed may amplify the effects of climate variability on water 

quality. Urban point source pollution is still an important factor influencing the water quality 

in coastal China, although the point source pollution per inhabitant may be reduced with 

increasing urbanization. In contrast, urbanization and point source pollution in the USA did not 

significantly contribute to the water quality in the coastal watershed (Fig. 6-6). The high 

percentage of developed land do not indicate high nutrient export in the Potomac River 

watershed. Rather than urbanization, agricultural activities in the USA may be the main factor 

determining nutrient exports to the watersheds. Climate variability is still an important factor 

that influences the relationship between land use and water quality in the Potomac River Basin 

by modifying the migration and biochemical processes of nutrients （Fig. 6-7）.  

7.2 General conclusion 

Water resource conditions are highly influenced by human activities. As one of the most 

important indicators that reflects the intensity of human activities, LUCC has drawn much 

attention in recent decades. Thus, it is necessary to understand the LUCC patterns in watersheds 

and identify their impacts on the local water resources. We also analyzed the impacts of the 

human activities on the streamflow regime as well as the regional climate changes. Furthermore, 
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the nonlinear relationship between land use and water quality was identified in this study. The 

major findings of this study are as follows: 

1. Spatial variation in land use was highly related to the driving factors, and population and 

local economic development may be the major factors influencing urbanization processes 

in the coastal watersheds. Land use policies may play an important role in land use 

evolution. 

2. Streamflow extremes are highly impacted by the human activities and climate variability, 

and the human activities may be the major factor controlling streamflow extremes at short 

time scales.  

3. The coupled effects of climate variability and human activities were identified by 

analyzing the relationship between urbanization and climate patterns in the studied 

watersheds, and the patterns of precipitation and temperature may be modified in highly 

urbanized areas.  

4. A nonlinear relationship between land use and water quality has been widely observed, 

especially in highly polluted watersheds. 

7.3 Outlook  

Understanding the catchment hydrology, nutrient exports, and their future changes is a 

prerequisite for sustainable water management. These components are strongly influenced by 

the land use dynamics in watersheds. In this study, we analyzed the patterns of LUCC and 

identified their impacts on the conditions of water resources; however, there are still limitations 

that require further investigation. For example, the transitions of land categories were estimated 

based on past LUCCs, and the nonlinear processes of LUCC were not fully considered in these 

models. This study focused on distinguishing the individual effects of human activities and 

climate variability, but the coupled effects of related factors remain unclear. To reduce the 

complexity, a rainfall-runoff model was proposed, and the performance of the model was lower 

in the small watersheds than in large watersheds. Thus, more efforts should be made to improve 

the model to understand the complex processes in the watersheds. In this study, we proposed a 

method that can shed light on how to improve water quality in watersheds from the perspective 

of LUCCs; however, the effects of different landscapes were not fully discussed in this study. 

Therefore, more data must be collected to improve the models and methods used in this study. 

Future research could focus on modelling catchment processes, including soil processes, river 

processes and other key processes in catchment systems. In addition, long time series sampling 

data with high spatial resolution are needed for further analysis. 
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Appendix  

Supplementary materials: Chapter 2 

 

Fig. S2-1 Population and GDP in the MRW during 2010-2020 

 

 

Fig S2-2 Relationship between GDP and VIIRS Nighttime Lights 
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The unit of VIIRS Nighttime Lights data provided by the Earth Observation Group, Payne 

Institute for Public Policy, Colorado School of Mines (https://payneinstitute.mines.edu/eog/) is 

nW/cm2/sr. However, this unit do not allow us to compare the counties or districts in the 

Minjiang River Watershed. Thus, we have to convert it to other unit allowing us to estimate the 

information of nighttime lights in these counties and districts.  

The resolution of the VIIRS Nighttime Lights data is 15 arc second (~500m at the Equator), 

and the area of each pixel is  
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Fig S2-3 Maps of land use categories at three time point and two time intervals 

 

 

Fig S2-4 Transition suitability images for Scenarios Ⅰ 

 



Appendix 
 

 131 

 

Fig S2-5 Transition suitability images for Scenarios Ⅱ 

 

 

Fig S2-6 Transition suitability images for Scenarios Ⅲ 
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Table S2-1 result of accuracy assessment for each class 

 

Class 

User's Accuracy Producer's Accuracy 

2010 2015 2020 2010 2015 2020 

Agriculture 0.88±0.05 0.95±0.04 0.81±0.06 0.84±0.05 0.82±0.05 0.72±0.06  

Built-up 0.81±0.06 0.84±0.06 0.90±0.05  0.94±0.04 0.92±0.04 0.98±0.03  

Orchard 0.76±0.07 0.84±0.06 0.85±0.06  0.79±0.06 0.90±0.05 0.82±0.05  

Water 0.90±0.05 0.95±0.04 0.93±0.04  0.92±0.04 0.92±0.04 0.98±0.02  

Forest 0.74±0.07 0.94±0.04 0.97±0.03  0.81±0.06 0.88±0.05 0.93±0.04  

Bareland 0.72±0.07 0.69±0.08 0.71±0.07  0.66±0.06 0.84±0.06 0.89±0.05  

Grassland 0.84±0.06 0.83±0.06 0.89±0.05  0.73±0.06 0.78±0.06 0.79±0.05  

 

Table S2-2 Overall of accuracy assessment 

 

Metrics 2010 2015 2020 

Overall accuracy 0.805±0.024 0.863±0.021 0.864±0.021 

Allocation disagreement 0.155 0.090 0.088 

-Shift 0.073 0.037 0.031 

-Exchange 0.081 0.054 0.058 

Quantity disagreement 0.041 0.047 0.048 

 

 

Table S2-3 Variables for the confusion matrix  

 

 

  

 Observed (Yes) Observed (No) 

Simulated (Yes) Hits (H) False Alarms (FA) 

Simulated (No) Misses (M) Correct Rejections (CR) 
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Supplementary materials: Chapter 3 

 

Table S3-1 Streamflow simulation with other models in Southeast China 

Model Study area 
Discharge area 

(km2) 
Monthly streamflow 

Daily  

streamflow 
Citation 

   Cal* Val** Cal Val  

SWAT*** 

NRW, Jiulong River 

Watershed 
8459 0.86 0.86 0.64 0.6 Huang et al., 2013b 

L-S, Jiulong River 

Watershed 
132 0.92 0.77 0.89 0.73 Zhang et al., 2020 

HSPF**** 

SRW, Minjiang River 

Watershed 
9918 - - 0.78 0.75 Zhang et al., 2019 

JRW, Minjiang River 

Watershed 
14816 - - 0.78 0.74 Zhang et al., 2019 

Aojiang River Watershed 2676 0.67 0.61 - - Lin et al., 2021a 

NRW, Jiulong River 

Watershed 
8459 0.79 0.65 - - Lin et at., 2021b 

WRW, Jiulong River 

Watershed 
3491 0.65 0.65 - - Lin et al., 2021b 

Note: *Cal: Nash-Sutcliffe efficiency coefficient (NSE) of the calibration period; **Val: NSE of the validation period; ***SWAT: Soil and Water Assessment 

Tool; ****HSPF: Hydrological Simulation Program - FORTRAN 
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Fig S3-1 The structure of rainfall-runoff model  

 

Fig S3-2 Performance of the model with different sources of meteorological data during 

baseline period 
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Supplementary materials: Chapter 4 

 

 

Fig S4-1 Land use patterns in the MRW 

 

 
Fig S4-2 Overview of urbanization process in the MRW 
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Fig S4-3 Logistic models for urbanization in the MRW 
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Table S4-1 Transfer matrix for different periods in terms of urbanization (grid cells) 

From To 1980-1990 1990-2000 2000-2010 2010-2020 

Rural 
Rural 27 26 20 12 

Subrban 2 1 6 8 

 Urban 0 0 0 0 

Suburban 

Rural 0 0 0 0 

Subrban 3 5 5 7 

Urban 0 0 1 4 

Urban 

Rural 0 0 0 0 

Subrban 0 0 0 0 

Urban 1 1 1 2 
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Supplementary materials: Chapter 6 

 

 

Fig. S6-1 Maps of land use/cover, loss and gains in the PRB  
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Fig S6-2 Overview of water quality sampling during 2006-2019 

 

 

Fig S6-3 10-fold cross-validation 

 

 

Fig S6-4 Result of observed and simulated data in the baseline 
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Table S6-1 land use transfer matrix for different periods in the PRB (%) 

To From 2006-2011 2011-2016 2016-2019 To From 2006-2011 2011-2016 2016-2019 

Water 

Urban 0 0 0 

Shrubland 

Water 0 0 0 

Barren 0.57 0.7 0.99 Urban 0 0 0 

Forest 0.02 0.01 0 Barren 0.11 0.05 12.1 

Shrubland 0.1 0.03 0 Forest 0.32 0.13 0.14 

Herbaceous 0.24 0.13 0.11 Herbaceous 15.54 25.32 31.5 

Agriculture 0.01 0 0 Agriculture 0.32 0.02 0 

Wetland 0.47 0.14 0.05 Wetland 0.01 0 0 

Urban 

Water 0.03 0.01 0.02 

Herbaceous 

Water 0.06 0.07 0.03 

Barren 2.04 0.81 0.84 Urban 0 0 0 

Forest 0.26 0.13 0.22 Barren 0.58 0.35 41.95 

Shrubland 1.36 0.32 0.70 Forest 1.13 0.64 0.71 

Herbaceous 6.93 1.6 3.45 Shrubland 3.19 5.89 2.11 

Agriculture 0.68 0.31 0.43 Agriculture 0.06 0.05 0.01 

Wetland 0.27 0.11 0.2 Wetland 0.02 0.01 0.01 

Barren 

Water 0.04 0.04 0.04 

Agriculture 

Water 0.01 0.01 0 

Urban 0 0 0 Urban 0 0 0 

Forest 0 0 0.04 Barren 0.20 0.09 0.76 

Shrubland 0.02 0.02 0.15 Forest 0.16 0.06 0.02 

Herbaceous 0.21 0.14 1.80 Shrubland 2.77 1.68 0.39 

Agriculture 0 0.01 0.04 Herbaceous 1.27 1.64 5.14 

Wetland 0 0 0 Wetland 0.21 0.23 0.03 
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Table S6-1 land use transfer matrix for different periods in the PRB (%) (continued) 

Forest 

Water 0.3 0.1 0.04 

Wetland 

Water 0.21 0.18 0.45 

Urban 0 0 0 Urban 0 0 0 

Barren 1.13 2.86 0.65 Barren 0.03 0.03 0.03 

Shrubland 55.91 44.44 65.10 Forest 0.01 0 0 

Herbaceous 11.56 14.16 11.53 Shrubland 0.02 0.04 0.05 

Agriculture 0.27 0.13 0.03 Herbaceous 0.08 0.08 0.02 

Wetland 0.13 0.08 0 Agriculture 0.03 0.01 0.01 
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 Table S6-2 Descriptive statistics of pollutant concentration (mg/L) 

 TP 

 Nature Semi-nature Agriculture Mix Urban 

Min 0.004  0.003  0.010  0.005  0.003  

Max 3.006  0.870  0.263  1.268  0.716  

Mean 0.040  0.049  0.047  0.098  0.079  

Standard deviation 0.202  0.086  0.046  0.143  0.115  

 TN 

Min 0.102  0.100  1.693  0.251  0.220  

Max 3.911  7.164  3.566  6.403  8.850  

Mean 0.787  1.153  2.733  3.662  1.382  

Standard deviation 0.414  0.719  0.408  1.310  0.664  

 NH4
+-N 

Min 0.002  0.002  0.004  0.002  0.003  

Max 0.055  1.527  0.149  0.186  0.253  

Mean 0.010  0.081  0.022  0.025  0.033  

Standard deviation 0.009  0.214  0.021  0.028  0.044  

 NO3
--N 

Min 0.001  0.018  1.199  0.019  0.174  

Max 1.587  2.361  3.377  5.467  1.937  

Mean 0.567  0.562  2.409  2.418  0.894  

Standard deviation 0.302  0.458  0.455  1.729  0.402  
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