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A healthy body composition facilitates healthy ageing 

Improvements in healthcare, medicine and nutrition have led to a continuous increase in 

worldwide life expectancy at birth, and thus rapid manifestation of demographic ageing (1, 2). 

Between 1960 and 2020 lifespan had risen globally from 53 to 73 years (3). According to the 

first German mortality table (which covers the periods 1871/1881), average life expectancy was 

35.6 years among men and 38.5 years among women (4). In 2019/2021, it has increased to 78.5 

years (men) and 83.4 years (women) (4). This corresponds to an average life expectancy at birth 

that has approximately doubled for both sexes. 

Globally, the proportion of the population aged 60 years or over is predicted to increase from 

one billion in 2020 to two point one billion in 2050 (5). Projections indicate that by 2050 one 

in every six persons could be aged 60 years or above (5). 

Since life expectancy is rising, many older people can spend a longer period in good health (6). 

Nevertheless, the probability of decreased physical function grows (7, 8), and thus the risk of 

falls (9), hospitalization (10), co-morbidity (11) and mortality (10). In light of the demographic 

change, ever-increasing personal but also social and economic burdens (e.g. high health care 

and social protection systems costs) will be the consequence. Therefore, the aim in an ageing 

population is to age in a healthy way without disability and disease to maintain active 

participation in society, independence and quality of life. Research focusing on the mechanisms 

of healthy aging is imperative whereby body composition changes in older adults could provide 

a thematic focal point. 

 

Age-related changes in body composition 

The ageing process leads to a wide variety of physiological changes among which those 

affecting body composition are phenotypically the most apparent. During adolescence, muscle 

and bone develop and reach a peak in mass around the ages between 20 and 40, which is then 

maintained in midlife ((12–18), for reviews see (19, 20)). In the time of maintenance, the 

musculoskeletal system, that plays an essential role in human movement and regulation of 

whole body metabolism (for reviews see (21–24)), comprises approximately 55% of the body 

composition of a healthy adult without overweight or obesity (for a review see (25)). With 

advanced age, a progressive and generalized reduction of muscle quantity (i.e. muscle mass 

(MM)) and quality, defined as micro- and macroscopic changes in muscle architecture and 

composition (26) and muscle strength or power per unit of MM (for a review see (27)), occurs. 

Estimates of MM loss rates vary between 0.3% and 2.6% annually (for a review see (28)), while 
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the average rates of muscle strength loss are reported to be between 0.5% and 3.1% (29–32). A 

low muscle quantity and quality accompanied by a decline in muscle strength and physical 

performance are referred to as ‘sarcopenia’, which can be divided into primary (age-related) 

and secondary (disease-related) sarcopenia (26). In terms of human health, sarcopenia is 

associated with numerous negative outcomes including a higher risk of falls and fractures (for 

a review see (33)), impaired ability to perform activities of daily living (34), cognitive 

impairment (for a review see (35), (36)) and death (34).  

Similarly, after achievement of the peak bone mass, an age-related progressive bone loss can 

be observed ((17, 18), for reviews see (19, 20)). Depending on the bone type and age, published 

rates of bone loss vary between 3% and 13% per decade (37). A low bone mass accompanied 

by a microarchitectural deterioration of bone tissue leading to greater bone fragility results in 

‘osteopenia’ and/or ‘osteoporosis’ (38). These are silent diseases, in which the affected 

individual is often unaware of his or her condition until fractures occur causing secondary 

adverse outcomes like disability (39, 40), reductions in quality of life (41, 42) and death (43, 

44). Osteoporosis affects a large number of persons, particularly older women (45). Using the 

World Health Organization’s (WHO) definition, approximately 6.3% of men and 21.2% of 

women over the age of 50 years globally suffer from osteoporosis (45). In 2019, across Europe 

(i.e. European Union, Switzerland and United Kingdom) 32 million individuals aged over 50 

years were estimated to be affected from osteoporosis, equivalent to nearly 25.5 million women 

and 6.5 million men (45).  

Growing evidence indicates that sarcopenia and osteoporosis frequently co-occur (46–49). For 

example, in a population-based Finnish study, postmenopausal women with sarcopenia had 

12.9 times higher odds of suffering from osteoporosis than women without sarcopenia (47). 

Similarly, in the ‘Copenhagen Sarcopenia study’, bone mineral density (BMD) was found to be 

lower in subjects with sarcopenia, increasing the risk of developing osteoporosis (49). The 

synergy of these two conditions is called ‘osteosarcopenia’ and leads to a higher risk of adverse 

clinical outcomes than sarcopenia or osteoporosis alone (50, 51). 

In contrast to a reduction in muscle and bone tissue, the aging process is associated with an 

increase in fat mass (FM) and with a higher prevalence of overweight and obesity in both 

women and men (6) resulting in a higher risk of morbidity and mortality ((52, 53),  for a review 

see (54)). Data from the ‘German Health Update’ (6) show that about 26.2% of women and 

36.5% of men in the 18-to 29-year-old age group are affected by overweight (including obesity). 

These proportions rise to more than 56% (women) and 68% (men) among the 65 years old (6). 
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Thus, overweight and obesity are increasingly present in medical practice as people are getting 

older. Since the prevalence of both sarcopenia and obesity increases with advanced age, 

‘sarcopenic obesity’ is often observed in older adults (26). The excess amount of adipose tissue 

(AT) in addition to a too low MM can exacerbate the negative effect of sarcopenia (55). In this 

context, a higher risk of incident disability and mortality in persons with sarcopenic obesity 

compared to subjects with sarcopenia alone has been reported (56). 

The peak FM appears to be obtained between the sixth and seventh decades of life (57–59) and 

then it might plateau or decline in very old subjects (60). An increase in FM may mask a MM 

loss by a concomitant increase in connective tissue (i.e. fat-free mass (FFM) in AT). Further 

important changes during the aging process are (i) the redistribution from subcutaneous to intra-

abdominal visceral fat depots (61, 62) enhancing the risk to develop low insulin sensitivity (63), 

type 2 diabetes (64, 65) and cardiovascular diseases (66–68), (ii) ectopic fat infiltrations within 

the liver, muscle and bone marrow (for a review see (69)) and (iii) the release of free fatty acids 

(for a review see (70)). These changes contribute to a decline of strength in both muscle and 

bone ((71–73), except liver fat). As underlying mechanism, the release of free fatty acids has 

been reported to exert a lipotoxic effect on osteocytes, osteoblasts and myocytes (74, 75). The 

abnormal secretion of pro-inflammatory mediators by AT and ectopic fat may further 

exacerbate the musculoskeletal decline in those individuals with obesity (76, 77).  

Taken together, the age-related decline in muscle and bone mass with simultaneous increase in 

FM and redistribution of AT can lead to an ‘obese osteosarcopenic’ phenotype, a new syndrome 

which was introduced in 2014 by Ilich and colleagues (78). Up to that time point, the 

combination of only two tissues like muscle (sarcopenia) and bone (osteoporosis (46, 47), for 

a review see (79)) or muscle and AT (sarcopenic obesity (for reviews see (80, 81))) has been 

discussed. Osteosarcopenic obesity is likely to be associated with negative health outcomes 

such as a higher risk of frailty (82) and poor physical performance and functionality (82–84). 

When combined, it was reported that the triad of sarcopenia, osteoporosis and obesity was 

associated with worse outcomes compared to persons with sarcopenic obesity, sarcopenia or 

obesity alone (83). Consequently, the triad represents a high health burden for affected 

individuals. It is therefore important to recognize the co-existence and co-development of all 

three conditions with ageing and to expand knowledge and understanding of pathophysiological 

mechanisms helping to set up an improved therapy plan.  
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History of the diagnosis of obesity, osteoporosis and sarcopenia 

In 1832, Adolphe Quetelet developed the body mass index (BMI, kg/m2). Since Ancel Keys 

demonstrated that the BMI was a good indirect measure to evaluate total body fat (85), it is 

used until today to assess overweight and obesity in adults (86). According to the WHO, 

overweight in adults is defined as BMI higher or equal to 25 kg/m² and obesity as BMI greater 

than or equal to 30 kg/m² (86).  

In 1993, an international consensus development conference statement defined osteoporosis as 

‘[…] a systematic skeletal disease characterized by low bone mass and microarchitectural 

deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to 

fracture’ (38). One year later, the WHO established diagnostic criteria defining osteopenia as 

one to two point five standard deviations (SDs) and osteoporosis as two point five SDs or more 

below the mean BMD or bone mineral content (BMC) of a young adult reference group (87), 

using dual X-ray absorptiometry (DXA).  

The term sarcopenia derives from the Greek words ‘sarx’ meaning flesh and ‘penia’ meaning 

poverty (88). It was first defined by Irwin Rosenberg in 1989 referring to the age-related loss 

of MM (89). Seven years later, the new concept of sarcopenic obesity was introduced by Heber 

and colleagues (90). Since MM and strength are not directly correlated with each other (91, 92), 

Clark and Manini subsequently coined the term ‘dynapenia’ in 2008 to distinguish between the 

age-related loss of MM (sarcopenia) and the loss of muscle strength and power (dynapenia) (for 

a review see (93)). This knowledge was taken up by ‘the European Working Group on 

Sarcopenia in Older People’ (EWGSOP) that provides a working definition of sarcopenia as 

‘[…] a syndrome characterized by progressive and generalized loss of skeletal muscle mass 

and strength with a risk of adverse outcomes such as physical disability, poor quality of life 

and death’ (88). 

Subsequently, various sets of operational criteria for sarcopenia have been developed by other 

institutional groups such as ‘the European Society for Clinical Nutrition and Metabolism 

Special Interest Groups’ (94), ‘the International Working Group for the Study of Sarcopenia’ 

(95), ‘the Asian Working Group for Sarcopenia’ (AWGS) (for a review see (96)), ‘the AWGS 

2019’ (97), ‘the Foundation for the National Institutes of Health Sarcopenia Project’ (FNIH) 

(98) and the ‘EWGSOP2’ (26) whereas the sets by the two latter ones are the most widely used. 

Although the two definitions of FNIH and EWGSOP2 differ to some instances, both define 

sarcopenia as the loss of MM, decline in muscle strength (e.g. hand grip strength (HGS)) and 

physical performance (e.g. gait speed). 
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Since sarcopenia has been recognized as a specific disease entity, it was assigned the individual 

‘International Statistical Classification of Disease and Related Health Problems’ code ICD-10-

CM (M62.84) in 2016 (99, 100). This may lead to an increased interest of physicians to diagnose 

sarcopenia and of pharmacological companies to develop drugs. 

 

Limitations of the definition of sarcopenia  

Whereas the diagnostic criteria and definitions of osteoporosis are internationally accepted, no 

universally adopted consensus on the operational definition of sarcopenia that is suitable for the 

use in research and clinical practice has been reached. As mentioned above, rather a variety of 

definitions exist that have been developed based on different reference populations. There is 

also a lack of standardized diagnostic criteria, the availability of techniques used to accurately 

determine parameters of sarcopenia and appropriate cut-off points. Missing guidelines lead to 

challenges in estimating the prevalence of sarcopenia, when comparing results from 

interventions directed against MM depletion and in diagnosis and treatment of sarcopenia for 

clinicians.  

Due to heterogeneous methods and terminologies that lead to differences in diagnostic criteria 

among studies and consensus definitions, the assessment of a low MM for the diagnosis of 

primary and secondary sarcopenia remains difficult. The second chapter of this thesis therefore 

provides an overview of previously published cut-off points for a low MM applied in clinical 

and research settings considering the impact of the underlying methodological assumptions, 

limitations and normalization of MM parameters.  

 

Endocrine relationship between muscle, bone and adipose tissue  

The prevalence of each body composition component of osteosarcopenic obesity increases with 

advanced age and with shared risk factors (for a review see (101)). Thus, an overlap in these 

three conditions can be assumed. In Figure 1 this overlap between muscle, bone and fat tissues 

in older adults and its associated risk factors is presented. 
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Figure 1. Risk factors for the development of an obese osteosarcopenic phenotype and its health 
consequences in older adults. 

 

Besides endogenous factors (e.g. genetic, developmental, chronic and neurodegenerative 

disorders (for reviews see (78, 102))), exogenous factors are discussed (e.g. sedentary lifestyle, 

nutritional status (for reviews see (101-103))). The impact of endocrine determinants on body 

composition has led to an emerging interest since a variety of hormonal changes is observed 

during the ageing process. In addition to the increase in inflammatory cytokines, aging is 

characterized by a gradual decrease in anabolic hormones (e.g. sex and growth hormones (104, 

105)) with a simultaneous increase in catabolic hormones (e.g. cortisol (106)). In this context, 

muscle, bone and AT are recognized as hormonal target tissues and hormonal tissues 

themselves producing various biologically active proteins (for reviews see (25, 78, 107, 108)). 

Increasing evidence suggests that these three tissues are in a close interrelationship acting 

through an endocrine crosstalk orchestrated via alterations in levels of myokines (derived from 

myocytes), osteokines (derived from bone cells) and adipokines (derived from adipocytes) (for 

reviews see (25, 78)). The fourth chapter of this thesis sets out to analyse this ‘bone-muscle-fat 

crosstalk’ in healthy community-dwelling older adults.  

 

The adiponectin paradox 

Adiponectin is one of the most prominent adipokines. Studies have shown beneficial effects of 

this hormone on diabetes, metabolic syndrome and cardiovascular diseases in young and 

middle-aged persons (for a review see (109)). It is therefore surprising that human studies 

suggested that adiponectin levels were negatively correlated with muscle (110) and bone tissue 

(111) and positively associated with all-cause and cardiovascular mortality in older adults (112, 

113). This so called ‘adiponectin paradox’ indicates that adiponectin may not exert salutary 

effects in advanced age. Although some explanations have been proposed for the adiponectin 

paradox (for reviews see (114, 115)), it remains unknown why higher adiponectin levels among 
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older adults are associated with adverse changes in body composition. In the third chapter of 

this thesis, possible causes for the adiponectin paradox were investigated in healthy older 

adults.  

 

Objectives 

Based on this background the present thesis analyses  

 

(i) reference values for a ‘normal’ skeletal MM (CHAPTER II), 

(ii) the paradoxical relationship between adiponectin and MM (CHAPTER III), 

(iii) endocrine determinants of bone mass in healthy older adults (CHAPTER IV). 
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ABSTRACT 

Lower bone mass in older adults may be mediated by the endocrine crosstalk between muscle, 

adipose tissue and bone. In 150 healthy community-dwelling adults (59-86 years, BMI 17-

37kg/m2; 58.7% female), skeletal muscle mass index, adipose tissue and fat mass index (FMI) 

were determined. Levels of myokines, adipokines, osteokines, inflammation markers and 

insulin were measured as potential determinants of bone mineral content (BMC) and density 

(BMD). FMI was negatively associated with BMC and BMD after adjustment for mechanical 

loading effects of body weight (r-values between -0.37 and -0.71, all p<0.05). Higher FMI was 

associated with higher leptin levels in both sexes, with hsCRP in women and with lower 

adiponectin levels in men. In addition to weight and FMI, sclerostin, osteocalcin, leptin x sex 

and adiponectin were independent predictors of BMC in a stepwise multiple regression 

analysis. Muscle mass, but not myokines, showed positive correlations with bone parameters 

that were weakened after adjusting for body weight (r-values between 0.27 and 0.58, all 

p<0.01).  Whereas the anabolic effect of muscle mass on bone in healthy older adults may be 

partly explained by mechanical loading, the adverse effect of obesity on bone is possibly 

mediated by low-grade inflammation, higher leptin and lower adiponectin levels. 

 

INTRODUCTION 

Aging is characterized by the progressive decline of bone mass that is responsible for adverse 

outcomes like fracture risk and mortality [1]. Numerous studies indicate that a higher skeletal 

muscle mass is associated with a higher bone mineral density (BMD) in older adults [2-4] 

whereas sarcopenia [5] and high levels of fat mass (FM, [6-8]) exert a negative impact on bone. 

Therefore, the age-related decrease in muscle mass and increase in FM as well as fat infiltration 

in the musculoskeletal system may contribute to the impairment of bone mass leading to an 

obese osteosarcopenic phenotype and resulting in poorer overall strength and functionality [9]. 

As an underlying mechanism, the endocrine and paracrine crosstalk between bone and muscle 

or adipose tissue is suggested (for reviews see [10-12]). Due to the clinical importance of age-

related musculoskeletal diseases, this ‘bone-muscle-fat crosstalk’ may reveal new targets to 

prevent or mitigate bone degradation.  

The role of adipokines in the regulation of bone mass in older adults remains controversial. A 

pro-osteogenic effect has been shown for adiponectin that was found to promote 

osteoblastogenesis and inhibit osteoclastogenesis in in vitro and in vivo models [13,14] whereas 
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results from studies in older people often demonstrate a negative relationship between 

adiponectin and bone [15,16]. Likewise, leptin was reported to be positively as well as 

negatively associated with bone parameters in humans [17]. Accordingly, both osteogenic and 

osteolytic effects of leptin have been found in cell and animal models (for a review see [18]). 

Myokines, like irisin and myostatin, could be useful markers for the assessment of disorders of 

the muscle-bone unit and metabolic bone diseases or even therapeutic targets for the treatment 

of sarcopenia and osteoporosis. Irisin was found to be positively associated with bone mineral 

content (BMC) [19] and negatively with the prevalence of fracture risk [19,20]. By contrast, 

myostatin negatively regulates bone mineralization while concurrently enhancing bone 

resorption by inhibiting osteoblast differentiation and promoting osteoclast differentiation 

[21,22]. 

Vice versa, osteokines may exert anabolic or catabolic effects on muscle and adipose tissue (for 

reviews see [10-12]). Sclerostin, a negative regulator of bone growth secreted by osteocytes 

(for a review see [23]), has been shown to inhibit myogenesis in vitro and ex vivo [24] and was 

observed to be negatively associated with muscle mass in humans [25]. Sclerostin is also 

thought to increase FM by promoting adipogenesis and lipid accumulation in pre-adipocyte cell 

lines [26,27], in primary mesenchymal stromal cells from mice and humans [26] and in animal 

experiments [28]. These findings are supported by positive correlations between sclerostin and 

FM in some [29,30], but not all clinical trials [31]. In a recent study, sclerostin was identified 

as a putative new myokine that was found to impair the functional maturation of osteoblasts 

[32]. By contrast, osteocalcin, an osteoblast-derived marker of bone formation (for a review see 

[23]), has been shown to exert positive effects on muscle in vitro [33], in vivo [34] and in 

humans [36,36] and to protect from obesity in men [37] and women [38]. 

These findings indicate that mechanistic experiments in vitro and in vivo do not always agree 

with results from human studies. Discrepant findings may be due to confounding effects of 

ageing associated diseases like metabolic impairment (i.e. insulin resistance, chronic 

inflammation) or decreased kidney function. The aim of the present study was therefore to 

identify potential determinants of bone mass and bone density derived from the crosstalk with 

skeletal muscle and adipose tissue in healthy community-dwelling older adults with a wide 

BMI-range. 
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SUBJECTS AND METHODS 

Study population 

Data of 150 Caucasian men and women were collected at the ‘German Reference Center for 

Body Composition’ (Institute of Human Nutrition and Food Science at the University of Kiel, 

Germany) between 2019 and 2020 as described in detail elsewhere [39]. The primary aim of 

the study was to develop prediction equations for two seca medical bioelectrical impedance 

analysis devices for older adults. The trial was registered at clinicaltrials.gov as NCT04028648. 

Exclusion criteria were edema, chronic diseases, heart failure, renal failure, paralysis (e.g. after 

a stroke), neurodegenerative diseases, tumors in treatment, amputation of limbs, electrical and 

metallic implants, current alcohol abuse, not removeable piercings and large tattoos on the arms 

or legs (because of possible interference with magnetic resonance imaging (MRI) 

examinations) as well as medication which could influence body composition. The recruitment 

was realized using local advertisements and notice board postings. The study protocol was 

authorized by the medical ethic committee of the Christian-Albrechts-University of Kiel, 

Germany, and conducted according to the guidelines laid down in the ‘Declaration of Helsinki’. 

Written informed consent was received from each subject before participation [39]. 

Body composition analysis 

Body weight was measured with subjects in underwear to the nearest 0.01 kg by an electronic 

scale (Tanita, Tokyo, Japan) connected to the BOD POD® Body Composition System (Cosmed 

srl, Rome, Italy). Height was assessed without shoes using a stadiometer (SECA, Modell 285, 

Hamburg, Germany). Air-displacement plethysmography (BOD POD® Cosmed srl, Rome, 

Italy) was performed to determine FM and fat-free mass (FFM) as previously described [40]. 

Absolute FM (kg) was calculated from body density using the equation by Siri et al. [41]. FFM 

(kg) was then calculated as the difference between body weight and absolute FM. FM-Index 

(FMI) and FFM-Index (FFMI) were calculated as FM (kg)/height (m2) and FFM (kg)/height 

(m2). Measurements of skeletal muscle mass, subcutaneous and visceral adipose tissue (SAT 

and VAT) were performed using whole body MRI with a 1.5 T scanner (Magnetom Avanto, 

Siemens Medical Systems, Erlangen, Germany) [42,43]. Subjects were examined in a supine 

position with arms extended above their heads and were required to hold their breath during 

scans in abdominal and thoracic regions. The whole body was scanned from wrist to ankle using 

continuous axial images of 8 mm slice thickness and 2 mm interslice gaps for arms, legs and 

trunk. Images were obtained using a T1-weighted-gradient echo sequence (repetition time: 157 
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ms; echo time: 4 ms for scans of arms, legs and abdominal region). Volumes of skeletal muscle 

mass, SAT and VAT were manually determined by using segmentation software (SliceOmatic 

4.3, Tomovision, Montreal, Canada). VAT was defined as intra-abdominal fat between the top 

of the liver and femur heads. Volumes of total skeletal muscle (excluding head and neck 

muscles, hands and feet), VAT and SAT were determined from the sum of tissue areas (cm2) 

multiplied by the slice thickness. Volume data were then converted into tissue masses using the 

assumed densities of 1.04 g cm-3 for muscle and 0.92 g cm-3 for SAT and VAT [44]. Skeletal 

muscle mass was normalized to height squared using skeletal muscle mass index (SMI, 

(kg)/height (m2)). 

Whole body BMC, BMD and T-Score were measured by dual X-ray absorptiometry 

(HOLOGIC Discovery A (S/N 82686), Inc., Bedford, MA, USA). Before daily measurements, 

a spine phantom calibration was performed. Manufacturer’s software (version 12.6.1:3, 

Hologic, Inc.) was used for analysis. Results were summed up for both arms and legs as well 

as the head. 

Hand grip strength (HGS) was measured using a hydraulic SAEHAN® handgrip dynamometer 

(SH5001, Masan, South Korea). Subjects conducted the test in a standing position. The elbows 

were flexed at 90 degrees with the shoulder attached to the torso. HGS of the left and right hand 

was determined three times and the greatest value of the dominant hand was included in the 

analysis. 

Endocrine parameters  

After a minimum 10-h overnight fast, serum and plasma blood samples were taken from an 

antecubital vein and analyzed as in detail described elsewhere [39]. Briefly, the participants 

were instructed to refrain from vigorous exercise and alcohol intake on the day prior to blood 

sampling. Serum was stored at room temperature in an upright position for 30 min for complete 

coagulation. Plasma and serum were obtained by centrifugation at 2000 g for 10 min at 20 °C 

and stored at − 40 °C. Blood sample analyses were performed at the ‘German Institute of 

Human Nutrition’, Potsdam-Rehbrücke, Department of Nutrition and Gerontology, Nuthetal, 

Germany and a laboratory in Kiel, Germany [39]. 

To investigate the interaction between and within bone, muscle and adipose tissue and its effects 

on body composition in advanced age, numerous humoral cytokines and growth factors were 

measured via commercial ELISA kits: the osteokines sclerostin (intra-assay CV: ≤ 7 %, inter-

assay CV: ≤ 10 %; BIOMEDICA, Vienna, Austria) and osteocalcin (n = 93; intra-assay CV: 
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3.0-4.6 %, inter-assay CV: 3.4-5.5 %; BioVendor, Brno, Czech Republic), the myokines 

myostatin (intra-assay CV: 1.8-5.4 %, inter-assay CV: 3.1-6 %; bio-techne, NE, Minneapolis, 

MN, USA) and irisin (intra-assay CV: 4.9-8.2 %, inter-assay CV: 8.0-9.7 %; BioVendor, Brno, 

Czech Republic) and the adipokines leptin (intra-assay CV: 4.2-7.6 %, inter-assay CV: 4.4-6.7 

%; BioVendor, Brno, Czech Republic) and adiponectin (intra-assay CV: 2.8-3.9 %, inter-assay 

CV: 5.9-6.4 %; Immundiagnostik AG, Bensheim, Germany). As growth factor insulin-like 

growth factor 1 (IGF-1) (intra-assay CV: 5.1-6.7 %, inter-assay CV: 5.5-6.6 %; BioVendor, 

Brno, Czech Republic) was measured. The inflammation markers interleukin 6 (IL-6) (intra-

assay CV: 4.2-5.1 %, inter-assay CV: 4.7-5.0 %; BioVendor, Brno, Czech Republic) and high-

sensitivity C-reactive protein (hsCRP) (intra-assay CV: 0.73-5.73 %, inter-assay CV: 1.50-5.76 

%; BECKMAN COULTER, Brea, CA, USA) were determined via commercial ELISA kit and 

immuno-turbidimetric test, respectively. Levels of insulin were measured by a 

chemiluminescent microparticle immunoassay (intra-assay CV: 1.4-2.1 %, inter-assay CV: 1.5-

2.2 %; Abbott, Wiesbaden, Germany). Elevated insulin levels were set at > 25.0 mU/l and 

inflammation was based on hsCRP > 3 mg/l [39]. 

Statistical analysis  

Statistical analyses were carried out with SPSS statistical software (SPSS 28.0, Inc., Chicago, 

IL, USA). All data are presented as means ±SD. Differences between independent samples were 

tested by unpaired t-test. Shapiro-Wilk test and residual analysis were used to verify normality 

[39]. Pearson's and Spearman's correlation coefficients were calculated to identify bivariate 

associations between and within body composition, hormones, growth factors, inflammation 

markers and HGS. Partial correlations were used to adjust for various confounders. Effects of 

mechanical loading on bone parameters were assessed by adjusting for body weight. Stepwise 

regression analyses were performed to access factors independently associated with BMC, 

BMD and T-Score. The qualitative factor sex (male or female) was coded numerically (1 or 2). 

All tests were two-sided and the level of significance was set at p < 0.05. 

 

RESULTS 

From the included 150 participants, data of 117 adults (71 women and 46 men) aged 60-82 

years with a BMI between 18 and 37 kg/m2 were analysed. Data from 18 participants were 

excluded due to creatinine levels and estimated glomerular filtration rates exceeding the 

reference range. Further data from 15 subjects were excluded because of motion artefacts or 
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incorrect patient positioning in MRI. Descriptive characteristics of the study population are 

summarized in Table 1. 

Table 1 Characteristics of the study population 

 all subjects women men 

n 117 71 46 

age (y) 70.2 ±5.0 69.6 ±4.7 71.2 ±5.8 

height (m) 1.68 ±0.10 1.62 ±0.06*** 1.77 ±0.1 

weight (kg) 73.1 ±16.1 64.4 ±10.5*** 86.6 ±13.6 

BMI (kg/m2) 25.6 ±3.9 24.4 ±3.7*** 27.4 ±3.5 

FMI (kg/m2) 9.3 ±3.2 9.8 ±3.3* 8.5 ±2.8 

SAT (kg) 17.5 ±6.2 18.3 ±6.2 16.3 ±6.1 

VAT (kg) 2.1 ±1.5 1.4 ±1.0*** 3.2 ±1.6 

FFMI (kg/m2) 16.3 ±2.4 14.7 ±1.0*** 18.8 ±1.4 

Skeletal muscle mass (kg) 22.6 ±6.1 18.4 ±2.6*** 29.0 ±3.7 

SMI (kg/m2) 7.8 ±1.4 7.0 ±0.8*** 9.2 ±1.0 

BMC (kg) 2.05 ±0.53 1.70 ±0.28*** 2.58 ±0.36 

BMD (g/cm2) 1.0 ±0.1 0.9 ±0.1*** 1.1 ±0.1 

T-Score -1.6 ±1.2 -2.1 ±1.1*** -0.8 ±1.0 

HGS (kg) 31.4 ±10.5 24.7 ±5.0*** 41.8 ±8.1 

Values are means ±SD.; BMI, body mass index; FMI, fat mass index; SAT, subcutaneous adipose tissue; VAT, 

visceral adipose tissue; FFMI, fat-free mass index; SMI, skeletal muscle mass index; BMC, bone mineral content; 

BMD, bone mineral density; HGS, hand grip strength. *p < 0.05, ***p < 0.001 sex differences by t-test. 

 

Men had a higher BMI, FFMI, VAT, skeletal muscle mass, SMI, BMC, BMD, T-Score and 

HGS and a lower FMI compared with women.  

Levels of hormones, growth factors and inflammation markers of the study population are 

summarized in Table 2.  
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Table 2 Levels of hormones, growth factors and inflammation markers in the total population 
and in the subgroups of men and women 

 all subjects women men 

n 117 71 46 

insulin (µU/ml) 9.8 ±6.7 8.7 ±4.5* 11.6 ±8.9 

leptin (ng/ml) 11.9 ±11.0 14.5 ±12.6*** 8.0 ±6.2 

adiponectin (mg/l) 18.8 ±14.1 21.3 ±16.0** 15.0 ±9.5 

IL-6 (pg/ml) 10.38 ±26.06 6.09 ±4.88* 17.00 ±40.50 

hsCRP (mg/l) 2.28 ±3.30 2.09 ±2.81 2.58 ±3.97 

myostatin (ng/ml) 2.2 ±0.8 2.2 ±0.8 2.4 ±0.8 

irisin (µg/ml) 6.6 ±4.7 6.7 ±4.7 6.5 ±4.7 

sclerostin (pmol/l) 48.3 ±23.2 43.0 ±14.6** 56.5 ±30.8 

osteocalcin (ng/ml) 14.8 ±5.4 16.0 ±5.4** 12.9 ±4.9 

IGF-1 (µg/l) 163.9 ±57.8 147.4 ±52.2*** 189.2 ±57.3 

Values are means ±SD. IL-6, interleukin 6; hsCRP, high sensitivity C-reactive protein; IGF-1, insulin-like growth 

factor 1. *p < 0.05, **p < 0.01, ***p < 0.001 sex differences by t-test.  

 

Insulin, IL-6, IGF-1 and sclerostin levels were higher and leptin, adiponectin as well as 

osteocalcin levels were lower in men compared with women. Prevalence for elevated hsCRP 

and insulin levels was 18.8 % and 2.6 %, respectively. 

Effects of muscle on bone parameters 

In the total population, muscle mass and SMI were positively associated with bone parameters 

(for muscle mass, kg: BMC r = 0.82, BMD r = 0.63, T-Score r = 0.49, all p < 0.001 and for 

SMI, kg/m2: BMC r = 0.67, BMD r = 0.55, T-Score r = 0.41, all p < 0.001). In the subgroup of 

women, muscle mass was only positively correlated with BMC (r = 0.49, p < 0.001) whereas 

in men, muscle mass was associated with higher BMC, BMD and T-Score (BMC r = 0.53, 

BMD r = 0.37, T-Score r = 0.37, p < 0.01 - p < 0.001). In the total population, the positive 

association between SM or SMI and bone parameters persisted after adjustment for weight 

(except for the correlation between SMI and T-Score) but were slightly weakened (data not 

shown). In the subgroups of men and women, the correlations between muscle mass and bone 

parameters remained no longer significant after adjusting for body weight. No relationships 

were found between myostatin or irisin and muscle mass, SMI or bone parameters. 
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Effects of adipose tissue on bone parameters 

After adjustment for body weight, FMI showed consistent negative associations with BMC, 

BMD and T-Score ranging between -0.37 and -0.71 in men and women (all p < 0.01). 

Concerning different fat compartments, VAT was negatively correlated with bone parameters 

in men when controlling for weight (BMC r = -0.43, p < 0.01, BMD r = -0.33, p < 0.05). 

Negative relationships were also observed between SAT and bone parameters after accounting 

for weight (men: BMC r = -0.52, p < 0.01, BMD r = -0.35, p < 0.05, T-Score r = -0.42, p < 

0.01, women: BMC -0.32, p < 0.001). 

Body fat compartments (SAT and VAT) and FMI were positively associated with leptin 

concentrations in both sexes and with inflammation markers in women whereas FMI was 

negatively correlated with adiponectin in men (Table 3).  

Table 3 Correlation coefficients between BMI or fat compartments and inflammation markers, 
leptin or adiponectin in the subgroups of men and women 

 women men 

 hsCRP IL-6 leptin adiponectin hsCRP IL-6 leptin adiponectin 

BMI  0.55** - 0.77** - - - 0.76** - 
FMI  0.57** - 0.80** - - - 0.78** -0.29* 
VAT  0.54** 0.25* 0.62** - - - 0.74** - 
SAT  0.54** 0.25* 0.77** - - - 0.70** - 

hsCRP, high sensitivity C-reactive protein; IL-6, interleukin 6; BMI, body mass index; FMI, fat mass index; VAT, 

visceral adipose tissue; SAT, subcutaneous adipose tissue. *p < 0.05, **p < 0.01. 

 

IL-6 levels were negatively associated with bone parameters in men (BMC r = -0.34, p < 0.05, 

BMD r = -0.34, p < 0.05, T-Score r = -0.32, p < 0.05). Correlations remained significant after 

excluding two subjects with elevated IL-6 levels of 146 and 243 pg/ml. No relationship was 

observed between hsCRP or leptin and bone parameters. To test if an effect of leptin on bone 

could be masked by weight, partial correlation analyses adjusted for weight between leptin and 

bone parameters were performed and a significant negative association between leptin and 

BMC was found in men (r = -0.40, p < 0.01). Regarding inflammation markers, leptin levels 

were positively correlated with hsCRP (men: r = 0.36, p < 0.05, women: r = 0.54, p < 0.001) 

and with levels of IL-6 in women (r = 0.33, p < 0.01). Leptin showed consistent positive 

correlations with skeletal muscle mass and SMI (ranging between 0.38 and 0.44 in men and 

women (all p < 0.01)).  
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Effects of bone on bone parameters 

Sclerostin levels were positively associated with bone parameters in the total population and in 

men whereas in women only a positive correlation between sclerostin and BMC was found 

(Table 4).  

Table 4 Correlations coefficients between sclerostin or osteocalcin levels and bone parameters 

 all subjects women men 

 sclerostin osteocalcin sclerostin osteocalcin sclerostin osteocalcin 

BMC (kg) 0.38** -0.31** 0.31** - 0.38** - 

BMD (g/cm2) 0.36** -0.33** - - 0.43** - 

T-Score 0.36** -0.28** - -0.30** 0.43** - 
BMC, bone mineral content; BMD, bone mineral density. **p < 0.01.   

 

Relationships between sclerostin and bone parameters remained significant after accounting for 

body weight or SMI as potential confounders in partial correlation analyses. In contrast to 

sclerostin, higher osteocalcin levels were associated with lower bone parameters in the total 

population and higher osteocalcin concentrations correlated with a lower T-Score in women. A 

negative association was observed between osteocalcin and sclerostin levels (all: r = -0.25, p < 

0.05, men: r = -0.49, p < 0.01).  

IGF-1 levels were positively correlated with BMC, BMD and T-Score in the total population 

(BMC r = 0.33, BMD r = 0.37, T-Score r = 0.33, all p < 0.001). 

Multiple stepwise regression analyses with BMC, BMD or T-Score as dependent variables and 

weight, FMI, SMI, leptin, leptin x sex, adiponectin, sclerostin, osteocalcin, IL-6, hsCRP, IGF-

1, age and sex as independent variables were performed (Table 5).   
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Table 5 Stepwise multiple regression analyses with BMC, BMD and T-Score as dependent 
variables 

Dependent variables 
and predictors 

β coefficient R2 SEE p-value VIF 

BMC (kg)      
Modela      

Step 1: weight  32.644 0.526 1.413 < 0.001 1.618 
Step 2: FMI  -128.564 0.833 9.795 < 0.001 2.681 
Step 3: sclerostin  2.608 0.864 0.877 0.004 1.239 
Step 4: osteocalcin  -13.799 0.875 3.569 < 0.001 1.223 
Step 5: leptin x sex  4.040 0.890 1.197 0.001 2.142 
Step 6: adiponectin  2.764 0.896 1.199 0.024 1.079 

BMD (g/cm2)      
Modela      

Step 1: sex  -0.156 0.409 0.021 < 0.001 1.056 
Step 2: sclerostin  0.001 0.458 0.000 0.006 1.056 

T-Score      
Modela      

Step 1: sex  -0.625 0.173 0.242 0.012 1.255 
Step 2: sclerostin  0.017 0.240 0.005 0.001 1.101 
Step 3: IGF-1  0.005 0.286 0.002 0.019 1.200 

BMC, bone mineral content; FMI, fat mass index; IGF-1, insulin-like growth factor 1; BMD, bone mineral 

density; SEE, standard error of estimation; VIF, variance inflation factor. 

aModel: independent variables: weight, FMI, SMI, leptin, leptin x sex, adiponectin, sclerostin, osteocalcin, IL-6, 

hsCRP, IGF-1, age and sex. 

 

Using BMC as independent variable, the analysis revealed that weight and FMI were the main 

predictors, but the osteokines sclerostin and osteocalcin independently explained 4.2 % of the 

variance and both adipokines leptin and adiponectin further explained 2.1 % of the variance. 

Concerning BMD and T-Score, sclerostin explained 4.7 % or 6.7 % of the variance in addition 

to the main predictor sex. As a further predictor for the T-Score, IGF-1 entered in the equation. 

Regarding muscle, sclerostin levels were positively associated with SMI in the total population 

(r = 0.23, p < 0.05) and with HGS (women: r = 0.26, p < 0.05; all: r = 0.27, p < 0.01) whereas 

osteocalcin levels showed a negative correlation with SMI (all: r = -0.32, p < 0.01).  

In Figure 1 an overview of the regulation of bone mass or bone density derived from the results 

of the present study is given. 
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Figure 1 Overview of the regulation of bone mass or bone density.  

       positive correlation 

       negative correlation 

 no correlation. 

 

DISCUSSION 

Crosstalk between bone and adipose tissue  

The present data indicate that beside FMI both, subcutaneous and visceral obesity are strong 

predictors and critical risk factors of a low bone mass and density in older adults when 

controlling for the mechanical loading effects of total body weight on bone mass (see results). 

These results are confirmed by previous findings that identified FM [8,45-47] or VAT [48-50] 

as independent negative determinants of bone mass or bone density. The etiology of impaired 

bone health in obesity is multifactorial and a number of mechanistic explanations have been 

proposed to explain the inverse association between fat and bone (for a review see [51]). 

Beyond vitamin D deficiency, insulin resistance and reduced mobility, altered adipokine 

secretion and chronic pro-inflammatory status were identified as risk factors. An increased 

release of pro-inflammatory mediators has been shown to stimulate bone resorption (for a 
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review see [52]). In line with this mechanism, the present data demonstrated negative 

associations between IL-6 and BMC, BMD or T-Score in men (who had higher IL-6 levels 

compared to women, Table 2). A higher expression of IL-6 mRNA has been found in bone 

samples from postmenopausal women with osteoporotic fractures compared to women with 

normal BMD [53]. Consistent with this clinical observation, knockout of the IL-6 gene in 

ovariectomized mice has been shown to prevent bone loss by upregulating mRNA expression 

of osteoblast-related genes and downregulating osteoclast-related mRNA [54].  

The negative association between FMI and BMC might also be explained by lower adiponectin 

levels with increasing FMI [55] which we found in the subgroup of men (see results). Stepwise 

multiple regression analysis revealed that adiponectin was a significant positive predictor of 

BMC (Table 5). By contrast, previous human studies have demonstrated a negative relationship 

between adiponectin levels and BMD especially in advanced age [15,56]. The contradictory 

results may arise from distinct adiponectin concentrations or isoforms assessed by different 

ELISA kits as well as heterogenous study populations. In line with the findings of the present 

study, adiponectin has been demonstrated to promote proliferation, differentiation and 

mineralization in human osteoblasts [57]. With respect to the underlying mechanisms, 

transcription, translation and secretion of adiponectin as well as expression of its receptors were 

found in bone-forming cells [58] and a pro-osteogenic role for adiponectin with increased 

osteoblastogenesis or lower osteoclastogenesis was found in in vitro and in vivo studies [13,59]. 

Stepwise multiple regression analysis also revealed leptin x sex as a positive predictor of BMC 

(Table 5). Population based cross-sectional studies also found positive relationships between 

leptin and BMC and/or BMD adjusted for various confounders (e.g. age, %fat or BMI) in 

postmenopausal women [60-63] and in men [63] and reduced leptin levels in patients with 

vertebral fractures [61]. As an underlying mechanism, in vitro studies suggested that leptin 

exerts direct osteogenic effects mediated by its receptors in osteoblasts and osteoclasts [64-66]. 

Published data regarding the effects of leptin on bone parameters are however contradictory 

showing both anti-osteogenic as well as anabolic effects on bone formation (for a review see 

[67]). In the present study, partial correlation analyses revealed a significant negative 

association between leptin and BMC in men after adjusting for weight (with BMD and T-Score 

showing a trend towards significance) confirming a sex-specific effect of this hormone. It has 

been suggested that leptin may exert diverging effects depending on whether central (via 

hypothalamus) or peripheral (via osteoblasts) mechanisms are operating [68-70]. The response 
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of bone to leptin signaling might also differ between different skeletal sites (i.e. appendicular 

vs. axial) and bone structures (i.e. cortical vs. trabecular) [70-72]. 

Crosstalk between bone and muscle  

The present data indicate positive effects of muscle mass on bone parameters in the total 

population. These findings are consistent with previously published results [3]. The bone-

protective properties of muscle mass may be explained by increased weight bearing and 

mechanical effects due to muscle contraction whereas no relationships were found between 

myostatin or irisin and bone parameters (see results). In line with this supposition, the 

correlations between muscle mass and bone parameters weakened after adjusting for body 

weight (see results). In contrast to these findings, myostatin has been demonstrated as a negative 

regulator of bone in older subjects [73]  whereas irisin was shown to be associated with reduced 

risk of osteoporosis in postmenopausal women (for a review see [74]). Previous in vitro and in 

vivo studies have demonstrated higher myostatin concentrations in the context of a sedentary 

lifestyle [75], obesity [76,77] and pro-inflammatory environments [78]. Since the study sample 

comprises healthy community-dwelling, mobile older adults, myostatin levels might be too low 

to exert a negative effect on bone tissue. 

Higher skeletal muscle mass, kg and SMI, kg/m2 were correlated with higher leptin levels in 

men and women (see results). These findings are confirmed by various studies among older 

subjects [79-81] and might be explained by an anabolic effect of leptin on muscle. In line with 

this supposition, in vitro experiments in cultured primary myoblasts have shown increased 

expression of myogenic genes by leptin treatment [82] and an in vivo study in aged mice 

demonstrated that leptin administration increased the expression of microRNAs involved in 

myogenesis [83]. 

Autocrine effects on bone 

The present data demonstrated positive associations between sclerostin and all bone parameters 

(Table 4). Multiple stepwise regression analyses also revealed that sclerostin was a positive 

predictor of BMC, BMD and T-Score (Table 5). These findings are in line with previous studies 

that reported a positive relationship between sclerostin and BMD in pre- and postmenopausal 

women as well as in men [29,84,85]. Further studies also demonstrated that postmenopausal 

women with osteoporosis exhibit lower levels of sclerostin than healthy controls [84,86,87] and 

an increase in circulating sclerostin levels after risedronate treatment in patients with 

osteoporosis [86]. By contrast, levels of sclerostin have also been observed to be negatively 
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associated with BMD in patients with hemodialysis [88]. However, end-stage renal disease 

impairs bone mass by other factors like secondary hyperparathyroidism. In recent mendelian 

randomization studies, evidence for bidirectional causal relationship between circulating 

sclerostin concentrations and BMD was proposed, with a positive effect of BMD on sclerostin 

levels, and a negative effect of sclerostin on BMD [89,90]. These findings suggest that the 

measurements of sclerostin may include both bioactive molecules and biomarkers of osteocyte 

activity (for reviews see [23], [90]). Therefore, a reasonable explanation for the paradoxically 

positive association of sclerostin and bone parameters observed in our population may be due 

to the determination of total sclerostin. However, sclerostin is synthesized by osteocytes. Thus, 

the higher bone mass (i.e. more osteocytes), the higher is the overall synthesis and secretion of 

sclerostin. 

In the present study, sclerostin levels were positively associated with SMI in the total population 

and with HGS in the total sample and in women. In agreement with these findings, higher serum 

sclerostin levels were shown to be associated with a lower risk of sarcopenia, low muscle mass 

and weak muscle strength in Korean older adults independent of age, sex and BMI [91]. In a 

recent study by Magarò et al. [32], sclerostin was discovered in muscle cells in vitro and in 

muscles from variably aged mice suggesting sclerostin as a putative new myokine. Since muscle 

was positively correlated with bone parameters and sclerostin levels in the present study, the 

positive association between sclerostin and bone parameters might be explained by muscle 

tissue. Partial correlation analyses between sclerostin and BMC, BMD and T-Score adjusted 

for SMI and skeletal muscle mass however revealed, that the positive associations between 

sclerostin and bone parameters persisted.  

Due to the effect of sclerostin in inhibiting bone formation, osteocalcin as a marker of bone 

formation, would be expected to be negatively correlated with sclerostin levels. This hypothesis 

is supported by the present data. The negative correlation between sclerostin and osteocalcin 

levels may therefore explain the unexpected negative relationship between osteoclacin and 

BMC, BMD and T-Score (Table 4). By contrast, multiple regression analyses revealed that 

osteocalcin was a negative predictor for BMC independent of sclerostin (Table 5). Negative 

effects of osteocalcin on bone health, that have been proposed from studies in mice and in vitro 

experiments [92-94] can therefore not be excluded. 

Strengths and limitations  

The study population of older community-dwelling Caucasians was healthy, with normal renal 

function, thus confounders caused by disease or relevant medication can be excluded. The 
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population was also well characterized using whole body MRI, which is considered as the gold 

standard method of the assessment of skeletal muscle mass. Nevertheless, the present findings 

should be considered in the context of some limitations. First, adiponectin circulates in blood 

in multiple (iso-)forms with different physiologic functions [95,96]. As only total 

concentrations were measured, the effects of the different (iso-)forms could not be examined. 

Second, since the primary aim of the study was to validate measures of bioelectrical impedance 

analysis vs. reference methods, lifestyle factors affecting bone mass were not assessed (e.g. 

smoking habits, sports, vitamin D supplementation). Third, the quality of the kits for the 

measurement of the various hormones might influence the results. Finally, the findings need to 

be confirmed using a longitudinal study design. 

In conclusion, in contrast to skeletal muscle mass, our results suggest that FMI and different 

body fat compartments are strongly related to lower bone mass and density in healthy older 

adults and possibly mediated by low-grade inflammation, higher leptin and lower adiponectin 

levels. In line with other human studies and in contrast to animal and cell culture experiments 

the present study reveals sclerostin as an important positive predictor of bone mass and density. 

Further investigations are needed to clarify this paradox. 

 

Data availability 

The datasets generated during and/or analysed during the current study are available from the 

corresponding author on reasonable request. 
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Summary of the study rationale and objectives 

The aging process is accompanied by a simultaneous deterioration of muscle and bone mass 

and an excessive fat accumulation that lead to an obese osteosarcopenic phenotype resulting in 

adverse health outcomes (1-3). Beside a high personal burden, an increase in social and 

economic costs will be the consequence. With regard to the demographic change and the 

growing number of older people there is thus a need to respond. More research on (i) how to 

develop accurate reference values for a ‘normal’ MM and (ii) how to define reliable cut-off 

points for individuals is needed in order to diagnose and treat sarcopenia at an early stage. 

Recognizing the co-existence and co-development of sarcopenia, osteoporosis and obesity, 

knowledge about the pathophysiology and underlying endocrine mechanisms that explains the 

interplay between muscle, bone and fat tissues has to be expanded deriving the best screening 

and treatment methods for these conditions. 

Therefore, the present thesis first summarized and analysed previously published cut-offs for a 

‘normal’ MM and discussed the impact of the underlying methodological assumptions and 

limitations (CHAPTER II).  

Secondly, taken different hormones into account, we focused on adiponectin to investigate why 

increased adiponectin levels are paradoxically correlated with poor physical functioning, MM 

or BMD in older age despite its widely known beneficial properties. Associations between the 

hormone adiponectin and muscle or bone tissue were investigated and determinants of its 

concentrations were identified (CHAPTER III).  

Finally, potential endocrine determinants of bone mass and density derived from the crosstalk 

with MM and AT as well as autocrine effects of bone-secreted osteokines were analysed in 

healthy older adults (CHAPTER IV). 
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Reference Values for Skeletal Muscle Mass - Current Concepts and Methodological 

Considerations 

Main findings  

Although the loss in MM is a major predictor of falls, fractures (for a review see (4)) and 

mortality (5) in older age, no broadly accepted clinical definition of sarcopenia has been reached 

so far. This is due to the use of variable combinations of body composition indices and 

discrepancies in the methods of normal range-definitions and cut-offs. Published reference 

values for a ‘normal’ MM thus vary dependent on the outcome parameter, measurement 

techniques and reference populations (for a review see (6), CHAPTER II). To prevent difficulties 

in comparisons between different research findings and to facilitate the interpretation of study 

results, it is recommended (i) to use a unified nomenclature for outcome parameters with 

specification of the respective device and software version of the body composition tools, (ii) 

to take into account the limitations of all proxies for the total body MM and (iii) to check, if the 

most suitable body composition method for the objective of the study was chosen (e.g. use of 

magnetic resonance imaging (MRI) for the assessment of MM changes due to its high precision) 

(for a review see (6), CHAPTER II). Since the evaluation of MM is complicated by a variety of 

available methods providing different outcome parameters as a proxy for MM, it is imperative 

to have accurate reference values using cut-off points that apply to the respective individual 

under study and body composition method. For example, MM cut-offs derived from a single 

slice at the level of the third lumbar vertebra are especially published in patients, in which 

computed tomography (CT) is routinely applied for cancer staging. The usage of these cut-off 

values might be specific for the population studied and the transferability of the results to other 

patient groups or healthy subjects needs to be investigated (for a review see (6), CHAPTER II). 

State of research & critical reflection  

Up to now, conventional reference values use sex-specific cut-offs for a low MM set at two 

SDs below the mean or percentiles of healthy normal weight young adult’s reference groups to 

facilitate comparisons of study results (normative approach) (7). It may be yet questionable 

whether this approach is of advantage, since (i) the expected MM of a 70-year-old individual 

should be lower than that of a 50-year-old person and (ii) since an individual with obesity is 

likely to have a higher MM compared to a person with overweight. Contrary to the normative 

approach, many publications use a simple stratification of their own study populations based 

on cut-offs (e.g. lowest 20%, quartile, quintile) (stratification approach) (for a review see (6), 

CHAPTER II). Drawbacks of this method are the hampered transferability of cut-off points to 
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another study population of different ethnicity or age. Regardless of the approaches, diagnostic 

criteria or reference populations, cut-off points can still be criticised as arbitrary.  

Reference values are used to determine whether an individual’s MM is statistically ‘normal’ 

and considered as healthy or not. However, the theoretical linkage between reference values, 

normality and health has to be questioned as it is only based on statistics. For developing 

internationally accepted valid reference values of ‘normal’ MM, cut-offs should be correlated 

with the risk of health problems at population level (e.g. at which MM exists an increased risk 

of fractures?). The development of validated cut-off points will therefore depend on their 

predictive values for hard end-points - a challenge for research studies (7). The establishment 

of ever new population-based reference and cut-off values that are not related to a health 

problem is obsolete, since there is a risk of the existence of only ‘normal’ individuals. 

The above mentioned examples illustrate the particular challenge in developing a reference 

value for a ‘normal’ MM and thus the diagnosis of sarcopenia. Besides the difficulty in 

determining the amount of MM that is associated with diseases, MM and also muscle quality 

are technically not easy to measure accurately and impracticable for epidemiological use (7). 

These limitations recently led to an updated consensus definition of the EWGSOP2 considering 

sarcopenia as a muscle disease, with poor muscle strength (as the most reliable measure of 

muscle function) overtaking the role of low MM as the primary determinant (7). This change 

could facilitate the assessment of sarcopenia in practice, particularly because a low HGS is a 

good predictor of poor patient outcomes such as increased functional impairments, reduced 

quality of life (8) and mortality (9, 10). However, in older adults with sarcopenic obesity the 

relatively low MM might be masked by a higher amount of FM, which in turn would require 

some kind of body composition analysis. 

Given the importance of MM in clinical medicine, there is a need to establish accurate reference 

values and cut-offs for a low skeletal MM that are not strictly presented in the form of reference 

tables categorized according to sex, age and BMI. 

 Outlook 

A pragmatic and easy-to-use concept to determine a person’s ‘normal’ MM could be a valuable 

tool for assessing the risk of sarcopenia. As a possible approach, an online calculator as open 

source tool based on mathematical modeling would be conceivable. Due to a better reflection 

of the age-related dynamic and gradual changes of body composition, a continuous model is 

preferred as compared to a static model (e.g. a simple linear regression) that considers sex, age, 

height, FM, BMI and ethnicity as variables ((11), in revision). The advantage of using such a 
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model becomes apparent considering for example the age-related development of muscle tissue 

that first increases until reaching a peak mass, maintains in midlife and then begins slowly to 

decrease with an increasing declining rate with advanced age (12, 13). In the following 

paragraphs, explanations for the parameters that need to be considered in the continuous model 

are given: 

(1) age 

Reference values for a ‘normal’ MM related to age are needed due to the above mentioned 

physiological development of musculature within the ageing process. Besides, an increased 

contribution of connective tissue to lean mass in advanced age involves the risk of masking the 

MM depletion (14, 15). The latter aspect will be described in more detail under (4) FM and 

BMI. 

(2) sex 

Sex differences in age-associated decline of MM exist with a greater absolute (16) and higher 

relative reduction (17) of skeletal MM in men compared to women. Longitudinal studies 

reported a MM loss at a rate of 0.64-0.70% per year in women and 0.80-0.98% per year in men 

aged 75 years (18). These sex differences may be attributed to the greater initial MM in men 

(19). 

(3) height 

Height is associated with a physiologic increase in MM (for a review see (15)). Two individuals 

with the same %FFM differing in height can have a different nutritional status, with the taller 

person having a lower muscularity (for a review see (15)). 

(4) FM and BMI  

Body weight, fat and muscle are in a close relationship confirmed by the observation that an 

increase in weight and FM is normally related to a gain in MM expecting that subjects with 

overweight and obesity have a higher MM compared to persons with normal BMI (for a review 

see (20)). However, it should be noticed that age can be an important confounder affecting the 

relationship between FM and MM, since an increase in body weight and FM may also mask a 

loss of MM due to an increase in connective tissue (i.e. FFM in AT), especially with ageing-

associated weight gain ((11), in revision, (12, 14)). In addition, the same MM is worth less at a 

higher FM ((11), in revision). That is likely due to fatty infiltrations (both intramyocellular and 

intermuscular), muscle collagen increases and alterations in fiber size, -number and -type (for 

a review see (15)) that together result in a lower MM quality and function in individuals with 

overweight or obesity (21).  
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(5) ethnicity 

Both, the amount of MM and the risk of MM loss vary between ethnicities. In a cross-sectional 

study with a large multi-ethnic sample it was observed that African Americans tend to have 

higher values of MM followed by Caucasians, Hispanics and Asians (22). Furthermore, African 

American women showed the greatest MM loss, whereas Hispanic women had the least. 

Hispanic men tended to show a higher negative association of MM with age followed by 

African Americans and Whites (22). 

In conclusion, a ‘normal’ MM should be defined sex- and ethnicity-specific and estimated on 

the basis of the parameters age, FM and BMI. Otherwise, advancing age, obesity or weight gain 

could lead to a misleading interpretation of MM due to an increased contribution of connective 

tissue to lean mass (for a review see (15)). Instead of rigid age- and sex- or BMI-specific cut-

offs for the determination of a ‘normal’ MM, continuously modelled reference values are 

preferred, since they (i) are more sensitive to dynamical changes of body composition 

depending on age, BMI and FM and (ii) are more user-friendly avoiding the use of complex 

tables ((11), in revision). 
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Analysis of the adiponectin paradox in healthy older people 

Main findings  

Adiponectin levels showed negative correlations with skeletal muscle mass index (SMI, 

skeletal MM normalized by height, kg/m2) and BMC (all) and a positive association with 

lumbar muscle fat (women) ((23), CHAPTER III). The present thesis thus confirms the 

adiponectin paradox in older adults without inflammatory diseases. In contrast to adiponectin, 

insulin-like growth factor 1 (IGF-1) levels were positively correlated with SMI (all, men, 

women), with BMC, BMD and T-Score in the total population and BMD and T-Score in 

women. Furthermore, IGF-1 concentrations were negatively associated with muscle fat (all, 

women), age (men, women) and adiponectin levels (all). These findings suggest that 

adiponectin might not be causally related to an unhealthy body composition in older subjects. 

The association is rather mediated by an age-related decrease in IGF-1 levels that might 

contribute to higher adiponectin concentrations in advanced age ((23), CHAPTER III). 

State of research & critical reflection 

Up to now, different explanations are discussed for the adiponectin paradox including renal 

dysfunction, impaired hepatic clearance, weight loss, and a compensatory increase in 

adiponectin levels due to subclinical risks (reverse causality) (24). Furthermore, previous 

studies have demonstrated that a low MM due to sarcopenia was linked to higher adiponectin 

concentrations (25). It is therefore possible that higher levels of adiponectin are a consequence 

of catabolic processes. Since our study design was cross-sectional, we cannot make any causal 

inference. But apart from the IGF-1 mediated approach contributing to the epiphenomenon of 

higher adiponectin levels, it is possible that higher adiponectin concentrations resulted from a 

low MM and might be thus be understood as a starvation signal. However, this interpretation 

seems to be unlikely in a healthy non-malnourished study population ((23), CHAPTER III).  

Even though the question of causality cannot be sufficiently clarified due to the cross-sectional 

study design, for better understanding the relationship between adiponectin, IGF-1 and body 

composition, a mediation analysis could be conducted as a next step. This model is a useful 

statistical tool that is becoming more and more prominent in medical research (26). It tries to 

identify and explain the underlying mechanism of an observed relationship between an 

independent variable (adiponectin) and a dependent variable (MM or BMC) by the inclusion of 

a mediator variable (IGF-1) (Figure 2). Mediation has to be tested by identifying four 

regression coefficients: a, the effect of adiponectin on IGF-1, b, the effect of IGF-1 on MM or 

BMC, (c), the total effect of adiponectin on MM or BMC and c’, the direct effect of adiponectin 
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on MM or BMC. A partial mediation is given, if the associations a, b, (c) and c′ are significant. 

If there is no significant effect c′, the mediation is assumed to be completed. 

 

 

Figure 2. Conceptual framework of the mediation analysis. IGF-1, insulin-like growth factor 
1; MM, muscle mass; BMC, bone mineral content; a, regression coefficient: the effect 
of adiponectin on IGF-1; b, regression coefficient: the effect of IGF-1 on MM or BMC; 
(c), regression coefficient: total effect of adiponectin on MM or BMC; c’, direct effect 
of adiponectin on MM or BMC. 

 

Results of this statistical approach have also to be interpreted with caution because there are 

many other alternative models that would explain the observed relationships equally well (e.g. 

adiponectin is the mediator of IGF-1 to MM or BMC or IGF-1 and MM or BMC cause 

adiponectin) (26). Thus, in many situations it is difficult to distinguish these alternatives without 

more information. Plausible mechanistic explanations derived from cell and animal studies 

could provide more certainty. In this context, our suggestion that the associations between 

higher adiponectin levels and lower MM or BMC in healthy older people might be explained 

by a decline in IGF-1 with increasing adiponectin levels is supported by mechanistic 

explanations showing decreased adiponectin mRNA levels by IGF-1 or insulin in in vitro 

experiments in cultured 3T3-L1 adipocytes (27) and decreased plasma levels of adiponectin in 

rats with infusion of recombinant human IGF-1 (28). Conducting a longitudinal study would be 

the best way to confirm our result. Examples are given in CHAPTER III (23). 

 Outlook 

There is a great variety of techniques that can be used to measure MM but due to high costs and 

limited availability some techniques are more suitable for research than for clinical practice 

(29). The imaging technologies MRI and CT are gold standard methods for the assessment of 

MM because of their high accuracy (for a review see (30)) and precision (for a review see (31), 
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(32)). Even if these methods were used in clinical practice, large reference databases on sex-

specific MRI or CT estimates of MM do not exist presently. DXA and bioelectrical impedance 

analysis (BIA) have been and are still being used in research and clinical settings. DXA is an 

alternative method which is used to determine appendicular lean soft tissue mass (ASM). 

However, it should be kept in mind that ASM is the sum of the bone-free fat-free mass plus 

skin and connective tissue resulting in a higher MM measured by DXA compared to muscle 

volume assessed by imaging technologies (33). The overestimation of MM increases with 

advanced age and obesity due to a higher contribution of connective tissue that can mask a 

reduction in MM at unchanged total ASM (for a review see (15)). These limitations may lead 

to an underestimation of the diagnosis of sarcopenia. With regards to BIA, available devices 

differ dependent on the reference methods that are used for the validation (e.g. MRI, DXA, 

four-compartment (4C) model) and thus in the BIA-algorithms and BIA muscle output 

parameters (e.g. MM, ASM or FFM) (for a review see (6), CHAPTER II). The choice of the 

reference methods can lead to significant differences in the measurement accuracy of distinct 

types of BIA-devices. For example, when compared with 4C model DXA was shown to provide 

systematically higher estimates of FFM (34). Thus, in order to allow better comparison of 

different study results, authors should indicate the manufacture, the device, the validation 

method and the software version of the BIA-device used. Body composition changes, and thus 

the risk of a low MM, are most prominent in older age. It is therefore an important advance that 

the BIA scale company seca gmbh & co. kg. (Hamburg, Germany) conducted a study to validate 

measures of BIA vs. reference methods in older adults. Nevertheless, for the diagnosis of 

sarcopenia in clinical practice, a user-friendly and easily realizable method would be preferable. 

Since in the present thesis results have suggested that the association between adiponectin and 

impaired mass of the musculoskeletal system is mediated by an age-related decrease in the 

anabolic hormone IGF-1 ((23), CHAPTER III), the implementation of IGF-1 as a biomarker for 

an adverse body composition in older people could be used for developing an attractive risk 

screening tool. At the admission to hospital, a blood test obtaining IGF-1 levels can be easily 

performed and thus supersede the technical difficulties in the assessment of MM and bone 

parameters. The availability of valid cut-offs for IGF-1 levels that are associated with a low 

muscle and bone mass is a prerequisite for this practical approach. If the cut-off value is reached 

by a person, further testing for sarcopenia can be applied like measuring HGS as a simple and 

inexpensive functional parameter, as recommended by the EWGSOP2 (7), or using BIA 

equipment that is affordable, portable and user-friendly (7).  
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Endocrine determinants of bone mass in healthy older adults derived from the crosstalk 

with muscle and adipose tissue 

Main findings 

EFFECTS OF AT ON BONE. Beside fat mass index (FMI, FM (kg)/height (m2)), both subcutaneous 

and visceral AT (SAT, VAT) were strongly associated with lower bone mass and density in 

healthy community-dwelling adults. The negative effects of FM might be mediated by low-

grade inflammation, higher leptin and lower adiponectin concentrations ((35), submitted, 

CHAPTER IV). 

EFFECTS OF MM ON BONE. In contrast to AT, MM showed positive correlations with bone 

parameters. The osteo-protective effect of MM may be partly explained by increased 

mechanical loading ((35), submitted, CHAPTER IV). No associations were found between 

myokines and muscle or bone parameters. 

AUTOCRINE EFFECTS OF BONE. Sclerostin levels showed positive correlations with bone mass 

and density, while osteocalcin concentrations were negatively associated with BMC, BMD and 

T-Score. Between sclerostin and osteocalcin a negative relationship was found that might 

explain the negative correlations between osteocalcin and bone parameters. In multiple 

regression analyses, osteocalcin was however a negative predictor of BMC independent of 

sclerostin ((35), submitted, CHAPTER IV). 

State of research & critical reflection 

EFFECTS OF AT ON BONE. There are many publications on the relationship between obesity and 

bone. Despite of a large variety of previously published study results showing a protective effect 

of obesity on bone (36-39), the traditional notion of an osteo-protective impact of obesity has 

come into question (for a review see (40)). Published epidemiological and clinical studies have 

indicated that high levels of FM exert negative effects on bone and bone health (41-43). For 

example, in a large cross-sectional study including 13,000 subjects, a higher risk of 

osteoporosis, osteopenia (defined by hip BMD) and non-spine fractures in individuals with a 

higher percentage of body fat was revealed after controlling for body weight, physical activity 

and age (41). Without adjustment for weight as confounder, a positive association between FM 

and bone mass was reported. In the same study, across 5 kg strata of body weight, FM was 

shown to be negatively associated with whole body BMC. These results implied that FM 

negatively affects BMD and BMC in contrast with the positive effect of total body weight itself 

(41), which could be confirmed in our study findings ((35), submitted, CHAPTER IV). The higher 
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bone mass in people with obesity can thus be explained by a larger body weight that induces 

greater mechanical loading effects on bone (44, 45), especially on the cortical elements (for a 

review see (46)). As underlying mechanisms, in vitro experiments have shown that in response 

to mechanical stimulation osteocytes inhibited osteoclast formation, released soluble factors 

that signal osteoclasts to decrease bone resorption (47) and stimulated osteoblastic 

differentiation (48). Moreover, an increased prevalence of osteoblast and osteocyte apoptosis 

was observed in mechanical unloaded mice, followed by bone resorption and loss of BMD and 

strength (49). No controlling for the mechanical loading effect of total body weight can 

therefore lead to biased results and to contradictory findings with regard to the relation between 

obesity (based on excessive fat accumulation) and bone (41, 50, 51). 

In accordance to our findings highlighting a negative association between VAT and bone 

parameters ((35), submitted, CHAPTER IV), several studies have been published showing VAT 

as an independent negative predictor of BMD in obesity (52-55). Up to now, potential 

mechanisms by which VAT mediates a negative effect on bone are not fully elucidated. Some 

authors reported higher VAT levels to be correlated with lower bone formation markers (e.g. 

osteocalcin) (56-58) and decreased levels of the anabolic hormone IGF-1 in pre- and/or 

postmenopausal women (59) whereas in middle-aged men, higher amounts of VAT were 

associated with reduced growth hormone or testosterone concentrations (53). A study by 

Bredella and colleagues has demonstrated a positive association between VAT and vertebral 

bone marrow fat in premenopausal women with obesity (59). The authors also reported that 

higher vertebral bone marrow fat was associated with both lower vertebral BMD and serum 

IGF-1 levels. Latter correlated negatively with VAT and were a significant predictor of BMD 

and procollagen type 1 amino-terminal propeptide (52). These findings indicate that VAT exerts 

harmful effects on BMD through increased bone marrow fat and that IGF-I mediates the 

negative impact of VAT and marrow fat on bone via reduced bone formation markers (52, 57, 

59). This hypothesis was supported by Cohen and colleagues (57). Our findings in both 

postmeno- and andropausal Caucasians with a wide BMI-range could not confirm the observed 

associations between VAT and osteocalcin, IGF-1 or BMD, possibly due to the heterogenous 

study populations and different adjustments made in the cited studies ((35), submitted, 

CHAPTER IV).  

The negative relationships between SAT and bone parameters observed in our study ((35), 

submitted, CHAPTER IV) are in line with previous findings showing SAT to be independently 

and negatively related to BMD in postmenopausal women with severe obesity (60) and in white 
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and African American adults aged from 18 to 74 years (54). Contrary to this result, some authors 

showed a positive association but no results when controlling for body weight or lean body 

mass (e.g. (61, 62)). In a variety of CT studies, which distinguished between fat compartments, 

VAT was observed to be most strongly correlated with lower BMD (52, 54, 63). This is not in 

line with our findings demonstrating stronger negative associations between SAT and different 

bone parameters than VAT ((35), submitted, CHAPTER IV). Further research is needed to better 

understand the underlying mechanisms. 

Regardless of FM, VAT or SAT, further mechanisms by which AT negatively affects bone 

health are (i) the release of pro-inflammatory cytokines from adipocytes (for a review see (64)), 

which play an important role in bone resorption by stimulating osteoclast activity (for a review 

see (65)) and (ii) the altered secretion of adipokines (66, 67). These findings are in line with our 

observations demonstrating that FMI and body fat compartments were positively associated 

with interleukin 6 and/or leptin levels which in turn showed a negative relationship to bone 

parameters in men ((35), submitted, CHAPTER IV). We also confirmed lower adiponectin 

concentrations with higher FMI and revealed adiponectin as a positive predictor of BMC ((35), 

submitted, CHAPTER IV). However, opposite results regarding the effect of adiponectin (68, 69) 

and leptin (70) on bone have also been reported in previously published studies. Possible 

explanations for the discrepancy as well as further examples by which AT can influence bone 

density and bone mass are given in CHAPTER IV ((35), submitted). 

In our study, whole body BMD, BMC and T-Score were assessed by DXA (HOLOGIC 

Discovery A (S/N 82686), Inc., Bedford, MA, USA, software version 12.6.1:3, Hologic, Inc.). 

Up to now, DXA is considered the gold standard method for the measurement of BMD in 

clinical and research settings and is the most widely used technique for the diagnosis of 

osteoporosis and the evaluation of fracture risk (for reviews see (30, 31)). In addition to bone 

parameters, DXA systems provide whole body and regional estimates of lean soft mass and FM 

and are accepted as a non-invasive method for body composition analysis (for reviews see (30, 

31)). The advantages of DXA include minimal training of operators, easy patient set-up, low 

radiation exposure (<10 µSv) (for a review see (71)), short scan time and a high precision (for 

a review see (72)). Besides high equipment costs, lack of portability and the rely on algorithm, 

the susceptibility to biased results due to fat accumulation is the major disadvantage of DXA 

(73-77). For example, Javed and colleagues showed that BMD of a beef femur progressively 

increased with increased thickness of fat surrounding the bone (73). When surrounded by 3 kg 

fat, the assessed BMD was overestimated by 20.5% in comparison to when bone was not 
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surrounded by fat (73). Increased BMD and BMC induced by exogenously added fat slices 

(lard) were also observed in 11 healthy subjects (BMD: +3.2% with 11.1 kg lard or +5.5% with 

22.3 kg lard; BMC: +2.2% with 22.3 kg lard) (74). These results were in line with a previously 

conducted study among six adults showing a seven percent increase of total body BMC when 

8.8 kg lard was positioned on the body (75). Contrary to this set of studies, exogenous fat 

layering was shown to significantly reduce DXA spine BMD (76) and whole body BMD (77) 

in humans. Differences between study results may be explained by the use of distinct DXA-

devices, software versions, phantom configurations as well as the choice of measured sites (e.g. 

lumbar spine, whole body) and investigated target objects (human, spine phantom, cadaver). 

An additional source of error that might prevent accurate BMD measurements by DXA is the 

non-uniform distribution of extraosseous body fat and lean tissue (78, 79). Bolotin and 

colleagues showed that already small extraosseous soft tissue inhomogeneities within the region 

of interest of DXA scans lead to an increase in BMD inaccuracies that can be as large as 20-

50%, especially in patients with osteopenia, osteoporosis and higher age (78). In summary, 

extraosseous fat (i) limits the accurate assessment of BMD and BMC in humans, animal models 

and phantom studies and (ii) leads to impeded reliable evaluations of bone status. Whether the 

percentage error includes an overestimation or an underestimation of BMD and BMC 

measurements in the case of overweight or obesity is still a continuing debate (80). Physicians 

and researchers should therefore be cautious in interpreting DXA results in patients with 

overweight or obesity. Moreover, to facilitate comparison between different study results, 

scientists should indicate the exact DXA device and software version. Since our study 

population also included subjects with overweight or obesity, we cannot exclude the possibility 

of biased measurements of BMD and BMC values and therefore of distorted results when 

bivariate correlations between AT and bone parameters were calculated. 

EFFECTS OF MM ON BONE. Both, MM and SMI were positively associated with bone parameters 

((35), submitted, CHAPTER IV). Our results are thereby in line with previous findings showing 

moderate to strong correlations (81-83). Up to now, there are conflicting results if MM or FM 

is the stronger predictor for bone density (for a review see (46)). A variety of previously 

published studies indicate that the effect of mechanical loading on bone is determined by lean 

mass rather than by FM (84-86). These observations are contrary to our findings showing 

stronger correlations between FMI and bone parameters in men and women after controlling 

for body weight ((35), submitted, CHAPTER IV). The discrepancy could be due to the different 

measurement approaches of body composition. In our study, MM and FM were assessed by 

whole body MRI ((35), submitted, CHAPTER IV), whereas in other analyses DXA was 
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performed. As mentioned above, the use of DXA is not without limitation, since DXA measures 

not the pure MM but lean mass as a proxy for MM. This results in an overestimation of skeletal 

MM when compared to muscle volume assessed by MRI (33). Thus, further studies, in which 

MRI is used for body composition analysis, are needed to confirm our results. Additional 

explanations for the inconsistent findings may be the inadequately powered study (86), the 

heterogenous study populations (age, ethnic groups, sex) as well as the measurement sites (87). 

AUTOCRINE EFFECTS OF BONE. In cell culture (88, 89) and animal studies (90-92) sclerostin was 

demonstrated to be a negative regulator of bone metabolism, while osteocalcin was shown to 

exert positive or negative effects on bone (for reviews see (93-95)). The observed negative 

effects of sclerostin as well as the positive effects of osteocalcin are not in line with our results 

((35), submitted, CHAPTER IV) and also with previous findings in pre- and postmenopausal 

women and men (96-98) showing exactly the opposite effects of sclerostin and osteocalcin on 

BMD and BMC. Differences in results could be explained by first, the choice of distinct assays 

for measuring circulating sclerostin and osteocalcin. Second, only total hormone concentrations 

were measured. In the case of sclerostin, hormone measurement might include both active 

protein and biomarkers of osteocyte activity (for a review see (95)). Third, the discrepancy in 

results might be further explained by the cross-sectional study design. Since there is no evidence 

for causal inference between the observed correlations, this type of study constitutes a potential 

hazard for distorted results. The best way to prove causality in research is by conducting an 

experiment, e.g. by randomized controlled trials (RCT), but ethical or practical reasons can 

complicate their realization (for a review see (99)). Knowledge must then be acquired via 

observational studies. Throughout the past decades, advances have been made in theory and 

methods of causal inference, which have contributed to a better understanding and avoidance 

of bias in cross-sectional study types (for a review see (100)). A number of factors distorting 

the results of observational studies exists, whereby distortion by ‘confounding bias’ is the most 

familiar problem in research (101). Confounding bias occurs ‘[…] when an apparently causal 

relationship between an exposure […] and an outcome is, in reality, distorted by the effect of a 

third variable (the confounder)’ (101). The bias can lead to an under- or overestimation of the 

exposure effect and to a reversal of the apparent direction of the effect. Hence, (i) confounding 

factors have to be identified and eliminated early when studies are planned or (ii) adjustments 

for potential confounders need to be made after the data gathering process reducing the bias 

effects from the final results. Prerequisite for this approach is the knowledge of possible 

confounders, which can pose a challenge to researchers. As epidemiological data demonstrate 

that higher body weight is correlated with higher bone density (102) and that body weight 
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reductions might cause bone loss (103), all significant correlations between bone parameters 

and muscle tissue, fat tissue or endocrine determinants were controlled for total body weight in 

our data analysis ((35), submitted, CHAPTER IV). Since our analysis was a secondary analysis, 

lifestyle factors that affect bone health were not determined. Physical activity, calcium and 

protein intake, vitamin D supplementation, smoking and drinking habits are, however, relevant 

factors for bone metabolism and thus potential confounders. Future analyses of the interactions 

within and between bone, muscle, AT and endocrine determinants with ageing should therefore 

consider dietary and exercise patterns for adjustments. A second factor leading to distorted 

results in cross-sectional studies is the so-called ‘collider bias’ (for a review see (100)). The 

term ‘collider’ describes ‘[…] a variable that is caused by at least two other variables (the 

causing variables ‘collide’ in the collider)’ (for a review see (100)). An example with regard to 

our study ‘Analysis of the adiponectin paradox in healthy older people’ (CHAPTER III, (23)) is 

represented in Figure 3. If adiponectin would be negatively affected by both IGF-1 (exposure) 

and MM (outcome), adiponectin would be a collider for the association between IGF-1 and 

MM and not a confounder. The differentiation between confounder and collider is essential 

because methods correcting for confounding (e.g. regression analysis) can lead to bias if they 

are applied to colliders (for a review see (100)).  

 

 

Figure 3. Graph depicting the hypothetical collider adiponectin caused by IGF-1 and MM. 
Arrows: causal relationships between the variables. IGF-1, insulin-like growth factor 
1; MM, muscle mass. Graph was created by the software DAGitty, available free at 
www.dagitty.net. 

 

While evidence exists for the causal negative relationship between IGF-1 and adiponectin in 

vitro (27) and in vivo (28), it is possible that higher adiponectin levels result from a low MM 

and might be therefore interpreted as a starvation signal. Since our study population was healthy 

and non-malnourished, we considered this assumption to be unlikely (CHAPTER III, (23)). Thus, 

we were able to reject the hypothesis of adiponectin as a collider. While confounding is a well-

known problem that is habitually considered in the study analysis, bias due to colliders has 
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received little attention in research up to now (for a review see (100)). This circumstance can 

lead to wrong or paradoxical associations between variables. For a better understanding, a 

hypothetical example is given in Figure 4. There is a direct negative causal association between 

age and MM and an indirect causal relationship mediated by higher adiponectin levels that is 

due to increased age. Lower IGF-1 concentrations are associated with higher adiponectin levels 

and lower MM. Although there is no relation between IGF-1 and age, this relationship is evoked 

when conditioning is introduced on the collider ‘adiponectin’, since both IGF-1 and age 

influence adiponectin levels (example was inspired by: (100)). 

 

 

Figure 4. Graph depicting confounder and collider bias (hypothetical). Arrows: causal 
relationships between the variables. +, positive association; -, negative association. 
Green arrow: direct causal relationship between exposure and outcome. IGF-1, insulin-
like growth factor 1; MM, muscle mass. Graph was created by the software DAGitty, 
available free at www.dagitty.net. 

 

Up to now, no universal statistical methods correcting collider bias exist (for a review see 

(100)). It is therefore all the more important to identify potential sources for a collider at an 

early stage so that these can be considered during the data collection process (for a review see 

(100)). In this regard, creating graphs via software (as illustrate in Figure 4) representing causal 

relationships between variables could be a helpful tool (one example for such a software: 

DAGitty, available free at www.dagitty.net, for a review see (100)).  

 Outlook 

First, as already stated, more lifestyle factors that are known to influence bone density and bone 

mass should be taken into account in further analyses. Second, instead of measuring total 

hormone concentrations, different (iso-)forms have to be considered, since they possibly exert 

different physiological functions on target tissues. Third, the investigation of a longitudinal 

relationship between changes in body composition and selected endocrine determinants is 
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preferred over a single measurement. This approach allows to determine the extent to which 

concentrations of hormones influence bone, muscle and AT. Finally, well-controlled 

longitudinal studies will be necessary to reveal reliable results of endocrine determinants of 

bone mass derived from the crosstalk with muscle and adipose tissue. The implementation of 

an antibody-based intervention study could be a useful strategy. Only recently, a novel potential 

human monoclonal antibody called ‘bimagrumab’ (BYM338; Novartis) was developed (104). 

Bimagrumab blocks activin type II receptors and prevents binding and activity of negative 

muscle regulators, e.g. the muscle-derived myostatin, and is thus considered as myostatin 

inhibitor (104). In preclinical studies, single and multiple doses of bimagrumab have been 

observed to increase MM (105) and lean mass (106-109) while decreasing FM (107-109). The 

results indicate that myostatin might be a potential target in the treatment of both sarcopenia 

and obesity (107). Myostatin not only plays a role in muscle and fat, but has also been observed 

to negatively affect bone metabolism in vitro ((110-112), for a review see (113)) and in animals 

(110, 111, 114, 115), whereas findings on the negative relationship between myostatin and bone 

in humans are limited (for a review see (113)). Therefore, as a complementation to our cross-

sectional study and also to previous studies that only investigated the effect of bimagrumab on 

MM and FM, a double-masked, placebo-controlled RCT in community-dwelling adults with 

osteosarcopenic obesity aged 65 or older could be conducted, where adults receive either 

bimagrumab or placebo in a given period of time ‘x’. As primary end points the change from 

baseline to week ‘x’ in bone density and bone mass could be measured by DXA. As secondary 

endpoints MM, FM (via MRI), body weight and hormone levels changes as well as the 

prevalence of fractures could be determined. This study design could allow to clarify the role 

of myostatin in the ‘bone-muscle-fat crosstalk’ providing a new pathway for the 

pharmacological management of osteosarcopenic obesity. Besides bimagrumab, anti-sclerostin 

antibodies like ‘romosozumab’ (AMG 785) could be examined in future RCTs to investigate 

the observed paradoxical association between sclerostin and bone parameters in our study ((35), 

submitted, CHAPTER IV). Romosozumab was the first human monoclonal antibody against 

sclerostin demonstrating to increase bone formation and BMD in animal and human studies (for 

reviews see (116, 117)).  
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SUMMARY 

Increased demographic pressure due to a rising life expectancy and growing proportion of older 

adults in the total population results in challenges for the state, society, economy and healthcare 

sector. Aging-associated changes in body composition and hormone production favor the 

development of an obese osteosarcopenic phenotype that is characterized by sarcopenia 

(reduced muscle mass (MM) and/or muscle strength), osteoporosis (low bone mineral density) 

and increased body fat (overweight/obesity). This triad of conditions results in adverse health 

outcomes including a higher risk of frailty, cognitive impairment and mortality. The present 

thesis contributes to an improved diagnosis of a low MM that is needed for secondary 

prevention and therapy. In addition, analysis of the hormonal crosstalk between skeletal muscle, 

bone and adipose tissue leads to a better understanding of the etiology of the obese 

osteosarcopenic phenotype.  

The main results of the thesis are: 

(i) Current reference values for skeletal MM depend on the measurement technique, on 

characteristics of the study population (e.g. sex, age, ethnicity, disease) as well as on 

normalization for body size and fat mass (FM). The adverse effects of obesity on muscle quality 

and function may lead to an underestimation of sarcopenia in obesity and therefore 

normalization of MM for FM is required. Random and systematic errors of measurement 

techniques which provide proxies for MM like single images or appendicular lean mass limit 

the assessment of individual cases and the accurate detection of changes in MM. Reference data 

for total skeletal MM based on the gold standard whole body magnetic resonance imaging 

(MRI) are scarce due to high costs and cumbersome image-segmentation. Therefore, normal 

values for skeletal muscle mass index (MM (kg) normalized by height (m2)) assessed by 

bioelectrical impedance analysis and validated against MRI were generated based on a young 

and healthy Caucasian population stratified into underweight, normal weight, overweight and 

obesity.  

(ii) Adiponectin, commonly known for its beneficial metabolic effects, was negatively 

correlated with muscle and bone mass and positively with muscle fat (so called adiponectin 

paradox). Negative correlations between adiponectin and the anabolic hormone insulin-like 

growth factor 1 (IGF-1) suggest that higher adiponectin levels are not causally related to lower 

muscle or bone masses in advanced age. The associations may rather be mediated by an age-

related decrease in IGF-1 that results in an increase in adiponectin.  
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(iii) The anabolic effect of muscle on bone was partly explained by the mechanical loading 

effect. By contrast, a higher FM exerts adverse effects on bone because bone mass was 

negatively associated with leptin levels as well as with inflammation markers that were 

positively related with FM. Based on these findings, nutritional recommendations for the 

prevention of osteoporosis can be derived. For example, an energy-restricted diet rich in anti-

inflammatory foods (e.g. vegetables, fruits, fish, whole grains and nuts) may lead to a reduction 

in FM and improvement in inflammatory status and therefore to a reduced risk of bone loss and 

fracture. In conclusion, endocrine determinants of bone mass and density derived from the 

crosstalk with muscle and adipose tissue could provide targets for preventing and mitigating 

bone degradation. 
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ZUSAMMENFASSUNG 

Der zunehmende demografische Wandel durch die steigende Lebenserwartung und den 

kontinuierlich wachsenden Anteil älterer Erwachsener an der Gesamtbevölkerung führt zu 

Herausforderungen für den Staat, die Gesellschaft, die Wirtschaft und den Gesundheitssektor. 

Altersbedingte Veränderungen der Körperzusammensetzung und der Hormonproduktion 

begünstigen die Entwicklung eines adipösen osteosarkopenen Phänotyps, der durch Sarkopenie 

(reduzierte Muskelmasse (MM) und/oder Muskelkraft), Osteoporose (niedrige 

Knochenmineraldichte) und erhöhtes Körperfett (Übergewicht/Adipositas) gekennzeichnet ist. 

Diese Triade übt negative gesundheitliche Folgen aus wie ein erhöhtes Risiko für 

Gebrechlichkeit, kognitive Beeinträchtigungen und Mortalität. Die vorliegende Arbeit leistet 

einen Beitrag für eine verbesserte Diagnose einer niedrigen MM, die für die 

Sekundärprävention und Therapie erforderlich ist. Darüber hinaus trägt die Analyse des 

hormonellen Zusammenspiels zwischen Skelettmuskel, Knochen und Fettgewebe zu einem 

erweiterten Verständnis der Ätiologie des adipösen osteosarkopenen Phänotyps bei. 

Die wichtigsten Ergebnisse der Arbeit sind:  

(i) Die aktuellen Referenzwerte für die skelettale MM hängen von der Messmethode, den 

Merkmalen der Studienpopulation (z.B. Geschlecht, Alter, ethnische Zugehörigkeit, Krankheit) 

sowie von der Normalisierung für die Körperhöhe und Fettmasse (FM) ab. Die nachteiligen 

Auswirkungen eines hohen Körperfettgehalts auf die Muskelqualität und -funktion können zu 

einer Unterschätzung der Sarkopenie-Prävalenz bei Adipositas führen. Daher ist eine 

Normalisierung der MM für die FM zwingend erforderlich. Einzelne Schichtbildaufnahmen mit 

Computertomographie oder Magnetresonanztomographie (MRT) sowie die mittels Dual-

Röntgen-Absorptiometrie oder bioelektrischer Impendanzanalyse (BIA) gemessene 

appendikuläre Magermasse werden als valide Parameter für die gesamte MM angesehen. 

Jedoch schränken zufällige und systematische Messfehler die Anwendbarkeit dieser Surrogate 

bei der Einzelfall-Bewertung ein und limitieren die Erkennung von Veränderungen der MM. 

Referenzwerte für die gesamte MM, die auf dem Goldstandard der Ganzkörper-MRT beruhen, 

sind aufgrund der hohen Kosten und der zeitaufwändigen Segmentierung der Bilder rar. Daher 

wurden mittels BIA, die gegen Ganzkörper-MRT validiert wurde, Normalwerte für den 

Skelettmuskelmassen-Index (MM (kg) normalisiert für Körperhöhe (m2)) auf der Grundlage 

einer jungen und gesunden kaukasischen Population ermittelt, die nach Untergewicht, 

Normalgewicht, Übergewicht und Adipositas stratifiziert wurde.  
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(ii) Adiponektin, ein für seine günstigen Effekte auf den Stoffwechsel bekanntes Hormon, 

korrelierte negativ mit der Muskel- und Knochenmasse und positiv mit der Verfettung des 

Muskels (sogenanntes Adiponektin Paradoxon). Die negative Korrelation zwischen 

Adiponektin und dem anabolen Hormon Insulin-like growth factor 1 (IGF-1) lässt vermuten, 

dass höhere Adiponektin-Spiegel nicht kausal mit einer geringeren Muskel- oder 

Knochenmasse im fortgeschrittenen Alter zusammenhängen, sondern dass die Assoziationen 

möglicherweise durch eine altersbedingte Abnahme von IGF-1-Spiegeln vermittelt werden, die 

zu einem Anstieg von Adiponektin führen.  

(iii) Die anabole Wirkung der MM auf den Knochen konnte teilweise durch mechanische 

Belastung erklärt werden. Im Gegensatz dazu zeigte eine höhere FM ungünstige Wirkungen 

auf den Knochen, die über die negativen Assoziationen zwischen der Knochenmasse und den 

Leptin-Spiegeln sowie Entzündungsmarkern, die wiederum positiv mit der FM korrelierten, 

erklärt werden konnten. Auf Basis dieser Ergebnisse lassen sich Ernährungsempfehlungen zur 

Prävention von Osteoporose ableiten. Eine energiereduzierte Ernährung, die reich an 

entzündungshemmenden Lebensmitteln (z.B. Gemüse, Obst, Fisch, Vollkornprodukten und 

Nüssen) ist, könnte daher zu einer Verringerung der FM und einer Verbesserung des 

Entzündungsstatus und damit zu einem geringeren Risiko für Knochenschwund und Frakturen 

führen. Endokrine Determinanten der Knochenmasse und -dichte, die sich aus der Interaktion 

mit Muskel- und Fettgewebe ergeben, liefern daher Ansatzpunkte zur Reduktion des 

Knochenabbaus. 
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