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I

Why’d you have to go
and make things so complicated?

(Avril Lavigne)Preface

In my eleven years as a Bachelor, Master and finally PhD student I sometimes found it
hard to follow every line of thought that more experienced physicists presented in their
newest cutting-edge papers. As a newcomer to nonequilibrium Green functions (NEGF)
theory, especially in the beginning, I was lacking some common, basic knowledge of the
field that is often taken for granted in more advanced publications. Making matters worse,
it is common practice that the most groundbreaking advances are published in the form of
short letters, leaving little room for in-depth explanations. While it is certainly desirable
to publish important new findings as fast as possible, this practice often damages the
replicability of the results.

In contrast, a thesis provides room for the more intricate and regularly omitted details.
As the famous saying goes: A thesis is worth a thousand papers. Moreover, nowadays it
is common practice that dissertations are published as open access on the servers of the
respective universities or institutions, making them easily accessible for everyone. As a
consequence, I found that for me personally the most fruitful reads during my studies were
the many excellent theses of my predecessors who walked this road before me. I would
like to list a small selection of them here, which I deem to be the most important and
helpful ones for the interested reader of this thesis.

• Ali Akbari, “Development And Applications Of Time-Dependent Density Matrix
Functional Theory”, University of the Basque Country (2012)

• Fabio Caruso, “Self-consistent GW approach for the unified description of ground
and excited states of finite systems”, FU Berlin (2013)

• Georg Rohringer, “New routes towards a theoretical treatment of nonlocal electronic
correlations”, TU Wien (2013)

• Ulf Briskot, “Optical and non-equilibrium properties of graphene”, Karlsruhe Institute
of Technology (2015)

• Fabian Lackner, “Time-dependent two-particle reduced density matrix theory: ap-
plication to multi-electron atoms and molecules in strong laser pulses”, TU Wien
(2017)

• Niclas Schlünzen, “Nonequilibrium Green Functions Simulations on the Next Level:
Theoretical Advances and Applications to Finite Lattice Systems”, Kiel University
(2022)
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I wrote this work with these in mind, hoping to create a thesis which is not only appealing
to experts of NEGF theory, but which will turn out to be of similar benefit for future
students as well. In that vein, each chapter is prefaced by a short informal comment, to
make the reading of this admittedly quite theory-heavy thesis more enjoyable and to give
some interesting background information.
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Abstract

The declared goal of this thesis is the development, implementation, and application of
a coherent theoretical approach that enables the accurate simulation of finite graphene
nanostructures, such as graphene nanoribbons, equally in equilibrium and nonequilibrium.
Due to their fascinating optoelectronic properties, these finite systems are expected to find
use in a number of technological applications, ranging from field effect transistors and solar
cells to quantum computers and even biomedical treatments. For this, however, a precise
understanding of the fundamental physical processes in these systems is essential. Despite
their small size, graphene nanostructures can contain several hundred to thousands of
electrons, unfortunately, making their theoretical modeling a major challenge.

The approach followed in this work focuses on modeling the most relevant electrons in
the π bonds by lattice Hamiltonians. Successful descriptions of the interactions between
electrons are provided, for example, by the Hubbard or Pariser–Parr–Pople model, which
are solved using the Green functions theory. The latter is distinguished by its precise
description of electronic correlations by self-energy approximations such as GW . Moreover,
the combination of lattice models with Green functions theory results in a numerically very
cost efficient approach. Still, in the established formalism, whose numerical effort scales
cubically with the number of required time steps, performing time-dependent simulations
of the nonequilibrium dynamics of excited finite graphene nanostructures is not feasible,
which makes further improvements urgently necessary.

Such a feat was achieved by the author and coworkers during the work on this
thesis by developing the G1–G2 scheme. It constitutes the first formulation of the
nonequilibrium Green functions approach with linearly-scaling numerical effort with respect
to the propagation time. Because of the great importance of this discovery, this thesis
addresses two main topics. The first is the aforementioned theoretical framework in general
and its application to finite graphene nanostructures. The focus is on special topologically
protected states that can occur in these systems. Specifically, a heterostructure consisting
of different graphene nanoribbons is first studied in equilibrium. The results are compared
with theoretical and experimental data from the literature to demonstrate the need for a
correct description of electronic correlations. In particular, the highly localized topological
states are found to be strongly correlated and lead to pronounced magnetic moments.
Moreover, the G1–G2 scheme is used to study the ultrafast response of various graphene
nanostructures to an external laser pulse. It is reported that the magnetic coupling of the
topological states can permanently be changed by the laser excitation. The scattering
dynamics and, in particular, the lifetime of the topological states depend critically on the
specific laser parameters. These findings will be an important step towards the practical
application of graphene nanostructures.
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The second aspect, which is treated first within the thesis, includes a detailed discussion
of the G1–G2 scheme. Many questions that have arisen in previous publications on the
subject are answered. For example, a self-energy for the dynamically screened ladder
approximation is presented. In addition, the role that the G1–G2 scheme plays as a
link between Green functions and reduced density operator theory is elaborated. The
central insight is that the derivation of the G1–G2 scheme holds many more advantages,
besides the obvious numerical ones, which arise from the connection of the two formerly
separate theories. These findings can contribute decisively to the further development
of approximation methods in many-particle theory. As an example, an extension of the
G1–G2 scheme based on an artificial neural network is presented in the outlook.
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Kurzfassung

Das erklärte Ziel dieser Thesis ist die Entwicklung, Implementierung und Anwendung
eines zusammenhängenden theoretischen Ansatzes, der die präzise Simulation von finiten
Graphen-Nanostrukturen, wie zum Beispiel Graphene-Nanobändern, gleichermaßen im
Gleichgewicht und im Nichtgleichgewicht ermöglicht. Aufgrund ihrer faszinierenden opto-
elektronischen Eigenschaften wird erwartet, dass diese endlichen Systeme in einer Reihe von
technologischen Anwendungen zum Einsatz kommen werden, die von Feldeffekttransistoren
und Solarzellen bis hin zu Quantencomputern und sogar biomedizinischen Behandlun-
gen reichen. Dafür ist jedoch ein genaues Verständnis der grundlegenden physikalischen
Vorgänge in diesen Systemen essentiell. Graphen-Nanostrukturen können trotz ihrer
geringen Größe mehrere hundert bis tausend Elektronen enthalten, was ihre theoretische
Modellierung leider zu einer großen Herausforderung macht.

Der Ansatz, der im Rahmen dieser Arbeit verfolgt wird, fokussiert sich auf die Model-
lierung der relevantesten Elektronen in den π-Bindungen durch Gitter-Hamiltonians. Er-
folgreiche Beschreibungen der Wechselwirkungen zwischen Elektronen liefern zum Beispiel
das Hubbard- oder das Pariser–Parr–Pople-Modell, welche mithilfe der Theorie der Green-
Funktionen gelöst werden. Letztere zeichnet sich durch die präzise Beschreibung von
elektronischen Korrelationen durch Selbstenergienäherungen wie GW aus. Außerdem
führt die Kombination von Gittermodellen mit der Green-Funktionen-Theorie zu einem
numerisch sehr kosteneffizienten Ansatz. Dennoch ist es mit dem etablierten Formalismus,
dessen numerischer Aufwand kubisch mit der Anzahl der benötigten Zeitschritte skaliert,
nicht möglich, zeitabhängige Simulationen der Nichtgleichgewichtsdynamik angeregter
endlicher Graphen-Nanostrukturen durchzuführen, was weitere Verbesserungen zwingend
erforderlich macht.

Ein solches Kunststück ist dem Autor und seinen Mitstreitern während der Arbeit
an dieser Dissertation durch die Entwicklung des G1–G2-Schemas gelungen. Es stellt
die erste Formulierung des Nichtgleichgewichts-Green-Funktionen-Ansatzes mit linear
skalierendem numerischen Aufwand in Bezug auf die Simulationszeit dar. Aufgrund der
großen Bedeutung dieser Entdeckung werden in dieser Arbeit zwei Schwerpunktthemen
behandelt. Das erste ist der oben erwähnte theoretische Ansatz im Allgemeinen und seine
Anwendung auf endliche Graphen-Nanostrukturen. Der Fokus liegt dabei auf speziellen
topologisch geschützten Zuständen, die in diesen Systemen auftreten können. Konkret wird
zunächst eine Heterostruktur, bestehend aus verschiedenen Graphene-Nanobändern, im
Gleichgewicht untersucht. Die Ergebnisse werden mit theoretischen und experimentellen
Daten aus der Literatur verglichen, um die Notwendigkeit der korrekten Beschreibung
von elektronischen Korrelationen aufzuzeigen. Insbesondere wird festgestellt, dass die
stark lokalisierten topologischen Zustände stark korreliert sind und zu ausgeprägten mag-
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netischen Momenten führen. Außerdem wird das G1–G2-Schema verwendet, um die
ultraschnelle Reaktion verschiedener Graphen-Nanostrukturen auf einen externen Laser-
puls zu untersuchen. Es wird berichtet, dass die magnetische Kopplung der topologischen
Zustände durch die Laseranregung dauerhaft verändert werden kann. Die Streudynamik
und vor allem die Lebensdauer der topologischen Zustände hängen entscheidend von den
spezifischen Laserparametern ab. Diese Erkenntnisse sind ein wichtiger Schritt in Richtung
der praktischen Anwendung von Graphen-Nanostrukturen.

Der zweite Aspekt, welcher innerhalb der Thesis zuerst behandelt wird, umfasst eine
ausführliche Diskussion des G1–G2 Schemas. Dabei werden viele Fragen, die in den
bisherigen Publikationen zu dem Thema aufkamen, beantwortet. Zum Beispiel wird eine
Selbstenergie zur Dynamisch-Abgeschirmten-Leiter-Näherung präsentiert. Darüber hinaus
wird die Rolle, die das G1–G2 Schema als Bindeglied zwischen Green-Funktionen- und
Reduzierte-Dichteoperator-Theorie spielt, herausgearbeitet. Die zentrale Erkenntnis ist,
dass die Herleitung des G1–G2 Schemas neben den offensichtlichen numerischen noch
viele weitere Vorteile, die aus der Verbindung der beiden vormals separaten Theorien
entstehen, bereithält. Diese Ergebnisse können entscheidend zur weiteren Entwicklung von
Näherungsverfahren in der Vielteilchentheorie beitragen. Als Beispiel wird im Ausblick eine
Erweiterung des G1–G2 Schemas, basierend auf einem künstlichen neuronalen Netzwerk,
präsentiert.
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Û , U (general / single-particle) time-evolution operator  27 ,  76 

V long-range PPP interaction  21 ,  200 

W screened interaction  44 ,  56 ,  70 ,  201 

w pair-interaction  13 ,  18 ,  21 ,  33 

w± anti(symmetrized) pair-interaction  18 ,  40 





1

1 Introduction

Maybe the real treasure was the friends we made along the way. This proverb
describes the cliché journey of an adventurer, as it is often portrayed in books or
movies: The protagonist embarks on a quest for the legendary treasure, on which
they come across a number of strangers to join them for part of their journey.
Regardless of how the search for the treasure ends, whether it is successful or not,
the moral of the story is always that the random people met during the adventure
and the friendship that developed are at least as precious as the ancient riches that
were the reason for the journey in the first place.

However, the above saying does not have to be taken literally. Rather, it stands
quite generally for accidental, valuable discoveries made while pursuing a completely
different goal. In science alone, there are several prominent examples of this.
For example, Henri Becquerel 1896 unexpectedly discovered radioactivity when he
tried to investigate a possible connection between phosphorescence and the X-rays
discovered by Wilhelm Röntgen the year before [  1 ]. Likewise, Arno Allan Penzias
and Robert Woodrow Wilson 1964 accidentally measured the cosmic microwave
background radiation, which they initially thought was a mysterious noise in their
radio measurements [ 2 ]. And penicillin was discovered by chance when Alexander
Fleming was doing research on staphylococcal bacteria in 1928 [ 3 ]. The latter is
often quoted as saying [ 4 ]: “One sometimes finds what one is not looking for.”

This thesis can be understood as a travelogue of a very similar story that fits
this quote and the initial proverb: The accidental discovery of the G1–G2 scheme
while investigating graphene nanostructures. But let’s start from the beginning.

In today’s age, humanity is more dependent on technological progress than ever before.
One example is the ever-growing demand for computational resources. In a digital world
where more and more devices such as phones, watches, and even whole houses become
smart [ 5 ], i.e. connected to the internet, insane amounts of data have to be collected,
transferred, and processed every second [ 6 ]. Another example is the pressing need to
increase the amount of sustainable energy in the attempt to mitigate the upcoming rise
in global temperature [ 7 ] that is part of the man-made climatic changes. Unfortunately,
the rate of technological advances in both areas has slowed down in recent years. For
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decades, following Moore’s law, researchers were able to nearly double the number of
transistors on integrated circuits (ICs) every two years [ 8 ]. However, as the gate length
of state-of-the-art silicon-based field effect transistors (FETs) reaches the single-digit
nanometer scale, increased tunnel currents severely hamper the further miniaturization
of these fundamental components of modern computers [ 9 ]. The solar industry, which is
supposed to be the backbone of the future carbon-free energy sector [ 10 ,  11 ], is currently
struggling with a very similar fundamental problem. Conventional solar cells can only
harvest about 30% of the incoming solar energy. This maximum efficiency is known as the
Shockley–Queisser limit and is based on the assumption that an absorbed photon only
creates one electron–hole pair [ 12 ].

In both cases, the current state-of-the-art concepts do not allow for further improve-
ments, so alternative approaches are actively being investigated. Albeit the stagnating
size of new transistors seems to spell the upcoming end of Moore’s law, the capability of
modern computers can be increased by other means than the sheer density of transistors
on an IC [ 9 ]. One direction of improvement is to reduce the delay and power consumption
of FETs by using other, more promising materials than silicon [  13 ]. A completely differ-
ent approach is the practical realization of quantum computers, which are expected to
solve certain tasks such as combinatorial optimization problems exponentially faster than
classical modern computers, an achievement known as quantum supremacy [ 14 ]. In the
development of solar cells, one idea to exceed the Shockley–Queisser limit is the utilization
of materials that exhibit high rates of carrier multiplication, a process where a single
photon effectively excites more than one electron [ 15 ].

A promising candidate material for all the above-mentioned applications is finite
graphene nanostructures [  16 ], which makes them one of the most exciting systems to-
day. While they inherit the high carrier mobility of graphene, their finite 2D shape
with dimensions of only a few nanometers results in a semiconducting band gap due to
strong quantum confinement [ 17 – 19 ]. Both properties are good prerequisites for a wide
range of practical applications. A subclass of graphene nanostructures that gained special
interest due to their high versatility is graphene nanoribbons (GNRs) [ 20 ]. These quasi-1D
strips of graphene are typically about 1 nm in width and up to 10 to 100 nm in length.
Their optoelectronic properties were found to fundamentally depend on their geometry
and especially their edge structure. On the one hand, the width of the ribbon directly
determines the size of the band gap [  21 ,  22 ], and on the other hand, certain shapes of the
outer edges can lead to topologically protected states [ 23 – 25 ]. Due to the rapid progress
in chemical synthetization techniques, today it is possible to create GNRs with atomical
precision [  16 ,  26 ,  27 ], making them a platform for developing custom materials with
hand-picked optoelectronic and spintronic properties [ 28 ,  29 ]. A recent example is the
realization of GNR heterostructures that can contain various types of topological states,
ranging from metallic in-gap bands [  30 ] to (coupled) spin chains [ 23 ]. This versatility is
the reason why GNRs are expected to find application in multiple fields of technology.
While GNR-based FETs were already realized on multiple occasions and are showing
promising first results [  31 ], the creation of quantum computers using quantum spin chains
or Majorana fermions in GNR heterostructures is still in its infancy [ 24 ,  29 ]. Further basic
research is essential in both directions [ 32 ]. The same is true for GNR-based solar cells.
Although carrier multiplication has been predicted for GNRs [ 33 ], a deeper theoretical
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understanding of the occurring processes is necessary for further progress.
In summary, for all these applications it is of utmost importance to get further insight

on especially the nonequilibrium dynamics of the electrons in GNRs, such as the lifetime of
carriers, the time-dependent change in the spin coupling, or the scattering rates of carrier
multiplication processes. However, as interesting and promising as GNRs are, they are
difficult to handle both experimentally and theoretically. The combination of their finite
nanometer size and the femtosecond time scale of their charge carrier dynamics makes the
study of these systems a major challenge in the laboratory and on the computer cluster
alike. Only recently, the successful application of lightwave-driven terahertz scanning
tunneling spectroscopy (THz-STS) has led to the first measurements of GNRs with both
atomically spatial and subpicosecond temporal resolution [ 34 ,  35 ]. With THz-STS the
ultrafast nonequilibrium dynamics of the localized topological states in finite GNRs can be
studied experimentally for the first time, suggesting a large number of exciting new results
in the coming years. These recent developments emphasize the need for an adequate
theoretical description of these systems.

However, although the small size of the GNRs is a hindrance to experimental measure-
ments, the number of electrons to be described is still too large for modern theoretical
methods, since typical systems contain hundreds to thousands of carbon atoms. The
resulting high numerical costs are a fundamental problem of computational quantum me-
chanics. Already shortly after the introduction of the nonrelativistic Schrödinger equation
in 1926 [ 36 ], long before the advent of computational physics, it was realized that an
exact solution by means of the diagonalization of the interacting many-body Hamiltonian
is not feasible except for very small systems like the hydrogen atom [ 37 ]. At first, this
finding does not seem surprising, since the solution of many-body problems is a challenging
task in classical mechanics as well, where exact analytical solutions can only be obtained
for the two-body problem and special limiting cases of the three-particle problem [ 38 ].
However, upon closer inspection, it turns out that the numerical complexity in classical
systems increases only quadratically with the number of particles, whereas for interacting
many-body problems in quantum mechanics the size of the Hilbert space, and with that
the complexity of the numerical solution, grows exponentially [ 39 ].

Therefore, studying quantum-mechanical many-body systems belongs to the class of
exceedingly difficult problems that cannot be solved numerically within a polynomial run
time. Similar challenges can be found in other areas outside physics as well, for instance
in the field of operations research in theoretical computer science. One of the most famous
problems there is that of the traveling salesman, which was first formulated mathematically
by William Rowan Hamilton, after whom the quantum-mechanical operator is named [ 40 ].
The exact deterministic solution of the problem by means of the Held–Karp algorithm also
requires exponential run time [ 41 ], so that in practice various polynomial-scaling heuristics
are used to achieve approximate results [ 42 ].

In quantum mechanics, the idea is very much the same. The emerging attempts regard-
ing the approximate solution schemes can be roughly split into two groups of approaches.
The first focuses on ways to reduce the complexity of Schrödinger’s N -particle wavefunc-
tion, while the second abandons the wavefunction description entirely and, instead, resort
to the description of auxiliary quantities like the reduced density matrices. However, as
outlined in the following, most of the approaches are not suited for the description of finite
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graphene nanostructures. Early works for the wavefunction-based methods were done
by Hartree [ 43 ], Fock [ 44 ], and Slater [ 45 ] shortly after the introduction of Schrödinger’s
famous equation and resulted in what is nowadays known as the Hartree–Fock (HF) ap-
proximation, where the wavefunction is expressed by a single Slater determinant. However,
an accurate model of finite graphene nanostructures has to include the correct treatment
of electron–electron correlation effects, which are increased in these spatially confined
systems [ 46 – 48 ]. And the reduced numerical requirements of the HF method are bought
by the neglect of electronic correlations, a price not worth paying when trying to model
moderately correlated graphene nanostructures. In contrast, the subsequently developed
post-HF methods like configuration interaction (CI) [ 49 ], coupled cluster (CC) [  50 ,  51 ],
and multi-configurational time-dependent Hartree–Fock (MCTDHF) [ 52 – 55 ] do include
these correlations by expressing the wave function using a linear combination of multiple
Slater determinants. But they are so expensive that they can only be applied to small
atoms and molecules.

For larger systems, one, therefore, resorts to the second group of approaches that is
based on reduced quantities like the single- or two-particle density matrix, which are often
expressed in the single-particle basis of a model Hamiltonian [ 56 ]. The most prominent
example is density-functional theory (DFT) [ 57 ,  58 ] and its time-dependent generalization
(TDDFT) [ 59 – 61 ] in the basis of the Kohn–Sham orbitals [ 62 ]. DFT has been applied
successfully to a wide range of solid-state problems. However, its accuracy heavily relies
on the choice of an appropriate approximation for the exchange–correlation functional.
Common variants include the local-density approximation (LDA) [ 63 ], generalized gra-
dient approximations (GGA) [ 64 ] such as PBE [ 65 ], and various hybrid functionals like
B3LYP [  66 ]. However, all these exchange–correlation functionals notoriously underestimate
electronic correlation effects. Therefore, DFT and TDDFT are also not suitable to describe
GNRs with the sufficient accuracy required for the studies of this work.

Instead, it has been found that for the accurate and at the same time efficient de-
scription of GNRs, it is advisable to restrict oneself to effectively modeling only the π
orbitals, which are responsible for most of the optoelectronic properties of graphene nanos-
tructures [ 56 ,  67 ]. The models used in practice all greatly reduce the complexity of the
problem but differ in the description of the pair interaction between the electrons. While
the Hubbard Hamiltonian [ 68 ] includes only local interactions, the Pariser–Parr–Pople
(PPP) Hamiltonian [ 69 ] also includes long-range Coulomb interactions. However, not all
available theoretical methods are suitable for solving these models. For example, dynamical
mean-field theory (DMFT) [ 70 ,  71 ] is not applicable here, since it is based on mapping the
physical system to a local impurity model, which is not suited for describing the finite edge
structure of GNRs. Another widely used procedure is the density matrix renormalization
group (DMRG) [  72 – 75 ] method, which, however, is effective only for strictly 1D systems.

This leaves reduced density operator (RDO) [ 76 ] and nonequilibrium Green functions
(NEGF) [  77 ,  78 ] theory as the most promising approaches. Both are based on a hierarchy
of quantum kinetic equations, the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy [  76 ] for the single-time reduced density matrices and the Martin–Schwinger
hierarchy [ 78 ] for the multi-time Green functions, respectively. The numerical effort, in
either case, scales polynomially with the size of the single-particle basis. A crucial difference
between the methods, however, is the scaling with respect to the number of time steps.
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While within RDO theory, the numerical effort increases linearly with the simulation time,
much like in the case of the time-dependent Schrödinger equation and most other methods,
NEGF theory notoriously suffers from a cubic time scaling [ 79 ]. Nevertheless, Green
functions theory also has several advantages over the RDO method. First, within NEGF
theory, conserving approximations such as the second-order Born (2B), the T -matrix, or
the well-known GW approximation can be systematically derived by means of many-body
perturbation theory (MBPT) and the self-energy diagram technique [ 80 ,  81 ], whereas
approximations in RDO theory are missing this foundation and, in practice, often suffer
from instabilities [  82 ]. Second, Green functions theory is easily applied to systems in
equilibrium by solving the Dyson equation, an integral equation for the single-particle
Green function [ 83 ]. In reference to NEGF theory, this approach will be denoted EGF in
this work. And third, the multi-time structure of the Green function gives direct access to
important spectral observables like the time- and angle-resolved photoemission spectrum
(trARPES) [  84 ], which are not as easily obtainable within RDO theory.

Therefore, overall, Green functions theory in combination with model Hamiltonians is
the most appropriate theoretical approach for the comprehensive study of finite graphene
nanostructures. Still, while ground-state calculations in equilibrium using EGF are numer-
ically cheap, the cubic time scaling of NEGF hampers its application to nonequilibrium
problems. Admittedly, the introduction of the generalized Kadanoff–Baym ansatz (GKBA)
by Lipavský et al. in 1986 [ 85 ] allowed reducing the numerical complexity of NEGF
calculations to a quadratic time scaling. However, this is only possible for the 2B ap-
proximation. Therefore, NEGF theory is restricted to either small systems and short
propagation times [ 86 ], or low-order self-energy approximations [ 87 – 89 ]. In summary, even
the most promising Green functions approach struggles to simulate the nonequilibrium
response of finite graphene nanostructures while treating correlation effects with high
accuracy.

At least this was the state of affairs before the work on this thesis, which includes ways
to advance NEGF theory. Unfortunately, the process of finding improved approximations
or solution schemes is laborious. It almost seems as if an effect similar to the Pareto
principle [ 90 ,  91 ] applies to the development of quantum mechanical methods. The Pareto
principle states that for phenomena that follow a power law, most of the total result is
provided by only a few contributions. The famous example of Pareto is that in Italy 80%
of the land is owned by 20% of the population [ 92 ]. Transferred to quantum mechanical
methods this would mean that the few most basic approximations already contain a large
part of the exact solution. And indeed, the simple HF approximation provides the main
correction compared to an entirely non-interacting description. Advanced methods like 2B
or DFT provide additional improvements but are also much more complicated than HF.
Approximations beyond that are even more intricate while adding even smaller corrections.
Figuratively, one could say that the juiciest low-hanging fruit has already been picked
and the search for even the smallest improvements, regarding the accuracy or numerical
efficiency, becomes increasingly difficult.

Despite these circumstances, the author and coworkers, almost by accident, managed
to achieve a breakthrough, the development of the G1–G2 scheme [ 93 – 95 ]. This time-linear
reformulation of the NEGF theory within the original HF-GKBA not only greatly reduces
the numerical costs of the calculations from cubic to linear time scaling but also gives
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access to more advanced self-energy approximations like the dynamically screened ladder
(DSL). The G1–G2 scheme is the last piece of the puzzle that was missing for a coherent
theoretical framework to describe GNRs, not only in equilibrium but also in nonequilibrium,
with sufficient accuracy. In the present thesis, this cohesive approach, combining lattice
models with Green functions theory, is used to study the ground-state properties as well
as the ultrafast response of finite graphene nanostructures to short laser pulses. The focus
is on the topological states in GNR heterostructures.

However, this application of the theory is not the only main result of the thesis. The
second major topic concerns the G1–G2 scheme itself. Indeed, it turns out that the latter
represents the reformulation of approximations of the NEGF approach within RDO theory.
The connection established by the G1–G2 scheme allows for the transfer of knowledge
between the two formerly separate approaches, benefiting both sides. This aspect is
extensively discussed, greatly exceeding the scope of previous publications [ 93 – 95 ].

1.1 Outline: How To Read This Thesis

This thesis includes the development of a coherent approach to the description of graphene
nanostructures and its application to the same. The work can structurally be divided into
four parts. The first includes the chapters  2 and  3 , which present the fundamental theory
of lattice models and Green functions theory. The second part includes the chapters  4 

and  5 , which outline the practical implementation of Green functions theory in equilibrium
and nonequilibrium with a special focus on the lattice models. The third part is chapter  6 

by itself, which extensively covers the G1–G2 scheme. Finally, in the fourth part, chapter  7 ,
the presented theory is applied to GNRs. A graphical illustration of how the chapters of
this thesis are connected is presented in Fig.  1.1 . In the following, the individual chapters
are shortly outlined.

• Chapter  2 : Model Hamiltonians
After a brief introduction to the concept of second quantization, lattice Hamiltonians
are discussed as a convenient way to model π-electron systems. The tight-binding,
Hubbard, and PPP models are introduced and compared by means of instructive
examples.

• Chapter  3 : Green Functions Theory
The fundamentals of Green functions theory are introduced within the Keldysh
contour-time formalism. This includes the single- and two-particle Green functions
themselves, the Martin–Schwinger hierarchy, the (Keldysh–)Kadanoff–Baym (KBE)
and Dyson equations, and the self-energy. Approximations for the latter, most
notably the dynamically screened ladder, are presented based on the Bethe–Salpeter
and parquet equations. Finally, the equations and quantities are presented within
the real-time formalism.
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• Chapter  4 : Equilibrium Theory
The practical implementation of the Green functions approach for equilibrium systems
is presented. This includes the (iterative) solution of the Dyson equation in frequency
space. The advantages and shortcomings of the approach are briefly discussed. A
separate section is dedicated to the issue of symmetry breaking and multiple solutions
of the Dyson equation, referred to as Löwdin’s symmetry dilemma.

• Chapter  5 : Nonequilibrium I: Two-Time Scheme
The practical implementation of the Green functions approach for nonequilibrium
systems is presented. This includes the solution of the KBEs on the two-time plane.
The successes and failures of the approach are briefly discussed. A solution to the
shortcomings is presented in form of the generalized Kadanoff–Baym ansatz with
Hartree–Fock propagators (HF-GKBA).

• Chapter  6 : Nonequilibrium II: G1–G2 Scheme
This is the first of the two chapters containing the main results of this thesis. The G1–
G2 scheme is introduced and thoroughly discussed including its benefits and deficits.
Using the HF-GKBA, the DSL approximation in the G1–G2 scheme is derived
explicitly from the respective self-energy introduced in chapter  3 . This reformulation
establishes a fruitful connection between two separate approaches, the NEGF and
the RDO theory, which is further analyzed. This results in additional improvements
for the G1–G2 scheme like the concept of N -representability, which allows increasing
the stability of the propagation, and (the extended) Koopmans’ theorem, which
gives access to more accurate spectral observables. Finally, a fluctuation approach is
presented as a closely connected alternative to the G1–G2 scheme. Although the
latter method is not applied practically in the context of this work, it is nevertheless
presented here because it has great potential and a lot of effort and dedication by
the author went into its development.

• Chapter  7 : Correlated Topological States in Graphene Nanostructures
The second main chapter deals with the practical application of the previously
introduced theory to study finite graphene nanostructures and in particular the
topological states in graphene nanoribbon heterostructures. It begins with a short
theoretical introduction to topological phases. Next, the Hubbard model, solved by
the equilibrium approach introduced in chapter  4 , is used to simulate the ground-state
property of a large GNR heterostructure. The results are in good agreement with
experimental data. Regarding nonequilibrium, first, the ultrafast carrier response to
a laser pulse excitation is investigated for pristine GNRs using an extended Hubbard
model and the two-time NEGF approach. Then, the knowledge gained in the process
is applied in the final study for the laser excitation of a GNR heterostructure that is
described by the PPP Hamiltonian and solved using the G1–G2 scheme. The carrier
dynamics crucially depend on an accurate treatment of electronic interactions.
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• Chapter  8 : Summary and Outlook
The final chapter, which includes the summary of all findings and an outlook toward
future developments, is split into two parts. The first covers the achievements
regarding the G1–G2 scheme and briefly discusses further potential improvements.
In a separate section, a proposal is made for a neural network approach to the G1–G2
scheme, which shows first promising results. In the second part, the results obtained
in chapter  7 for the graphene nanostructures are summarized. The outlook contains
possible improvements to the simulations and a discussion regarding alternative
systems to study with the presented theoretical framework of lattice Hamiltonians
combined with Green functions theory.
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Figure 1.1 – Graphical table of contents. The first two chapters  2 and  3 present the
fundamental theory, which is implemented in chapters  4 and  5 . The last two chapters
contain the main achievements of this thesis, the development of the G1–G2 scheme in
chapter  6 and the application of the theory to graphene nanostructures in chapter  7 .





11

2 Model Hamiltonians

Back in school, my physics teacher once explained that when we are solving Newton’s
equation of motion, Coulomb’s law, or any other famous equation we learned during
class, the obtained results should not be confused with physical reality. Instead, they
would describe a simplified model world, which, at best, can be very close to the real
universe under certain conditions. At the time, I couldn’t get used to that thought.
Wasn’t physics an exact science that accurately predicts both the fall of an apple as
well as the trajectory of moons, planets, and stars, after all?

Today, developing approximations and solving model systems has become my
daily routine as a researcher in quantum mechanics and the thought of physics
without restrictive assumptions has become fatuous. In fact, finding appropriate
model descriptions is an integral part of not only physics but any science, which
explains the recent interdisciplinary, stellar ascent of artificial neural networks,
which allow for the automatic generation of mathematical models based on large
amounts of existing data [ 96 ]. Moreover, in neuroscience, the attention scheme
theory (AST) developed by Michael Graziano proposes that consciousness itself is a
product of the self-model that the human brain constructs of itself interacting with
the universe [ 97 ,  98 ]. All in all, the importance of models cannot be understated.

Famously, the exact analytic solution of the Schrödinger equation  

1
 is possible only for

some selected problems like the Hydrogen atom [  36 ,  37 ]. In most other cases, one has to
resort to a numerical approach, which requires a finite basis set. However, the Hilbert
space underlying quantum mechanical problems grows exponentially with the number of
interacting particles, making them notoriously hard to solve. Thus, for many systems, one
has to resort to the description in terms of simple model Hamiltonians that are specifically
constructed to allow for an efficient numerical solution while still capturing the most
important features of the system.

The general idea of most model descriptions is to restrict the number of included
particles to significantly reduce the size of the Hilbert space. A common example is the
Born–Oppenheimer approximation in molecular physics, which separates the treatment

1Of course, the Schrödinger equation itself is based on the model assumptions that relativistic effects are
negligible.
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of atomic nuclei and electrons [  99 ]. The resulting electronic Hamiltonian, which includes
the effect of the nuclei as an external electrostatic field, is a lot easier to solve than the
Hamiltonian of the total system. The lattice Hamiltonians used in this work and presented
in this chapter, namely the tight-binding (TB), Hubbard and Pariser–Parr–Pople (PPP)
model, even go a step further by describing only a single electronic orbital per atom.

Besides reducing the basis size, model Hamiltonians provide an important tool to
adjust the balance between an accurate description and an easy numerical solution. Since
the interaction between particles is the main reason why quantum mechanical problems
are so challenging to solve, a clever approximate description of these interactions can
greatly reduce the numerical effort when combined with the correct theoretical methods.
Hence, the three models presented in the following mainly differ by their treatment of
electron–electron interactions. Further information on the topic of numerical scaling can
be found in sections  3.3.2 and  6.1.2 .

In this chapter, first, the second quantization formalism is briefly introduced in order
to subsequently express the three lattice models that are used throughout this work.

2.1 Second Quantization

The second quantization [ 100 – 104 ] is a convenient formalism that inherently takes into
account the indistinguishability of particles in quantum mechanics, which manifests in
symmetric (+) and antisymmetric (−) N -particle wave functions

∣∣∣ψ(N)
〉

±
for bosons

and fermions, respectively. All states of arbitrary particle number are elements of the
(anti)symmetric Fock space, which is defined as the direct sum of all (anti)symmetric
Hilbert spaces H(N)

± ,

F± :=
∞⊕

n=0
H(n)

± , (2.1)

where
∣∣∣ψ(N)

〉
±

∈ H(N)
± and H(0) includes the vacuum state |0⟩ := |0, 0, . . .⟩ without any

particles. Since each state in the Fock space F± can be expressed as a superposition of Fock
states, which are uniquely defined by complete sets of occupation numbers, every Fock
operator ÂF : F± → F± has to change the occupation of the state. Thus, a natural basis
for Fock operators is given by the canonical creation (ĉ†

i ) and annihilation (ĉi) operators,
which create and annihilate a particle in the single-particle spin-orbital i of a given Fock
state, respectively. The aforementioned (anti)symmetry of the wave function is guaranteed
by the commutator (−) and anticommutator (+) relations of the canonical operators for
bosons and fermions, respectively,

[
ĉ†

i , ĉ
†
j

]
∓

= 0 ,
[
ĉi, ĉj

]
∓

= 0 ,
[
ĉi, ĉ

†
j

]
∓

= δij , (2.2)

with the Kronecker delta δij . While most parts of this work focus on electrons, the theoret-
ical derivations of chapters  3 and  6 are presented for both bosons and fermions. In these
cases, the upper and lower sign of the ±/∓ refers to the former and latter, respectively.
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Arbitrary single-particle (ÂF
1 ) and two-particle (ÂF

2 ) Fock operators in second quanti-
zation can be expressed in the basis of the canonical creation and annihilation operators,

ÂF
1 =

∑
ij

〈
i
∣∣∣Â1

∣∣∣ j〉 ĉ†
i ĉj =:

∑
ij

Aij ĉ
†
i ĉj , (2.3)

ÂF
2 = 1

2
∑
ijkl

〈
ij
∣∣∣Â2

∣∣∣ kl〉 ĉ†
i ĉ

†
j ĉlĉk =: 1

2
∑
ijkl

Aijklĉ
†
i ĉ

†
j ĉlĉk , (2.4)

where Aij and Aijkl are the corresponding single-particle and two-particle matrix elements,
respectively. Using these definitions, the generic time-dependent many-body Hamiltonian
in second quantization is given by

Ĥ(t) =
∑
ij

[
h

(0)
ij + fij(t)

]
ĉ†

i ĉj︸ ︷︷ ︸
Ĥ(1)(t)

+ 1
2
∑
ijkl

wijklĉ
†
i ĉ

†
j ĉlĉk︸ ︷︷ ︸

ĤW

, (2.5)

where the single-particle part Ĥ(1)(t) consists of the intrinsic contribution h
(0)
ij and fij(t),

which describes time-dependent external single-particle excitations such as a laser pulse.
All pair-interaction effects are included in the two-particle contribution ĤW .

2.2 Lattice Models for Electrons

The focus of this work is on models that are commonly used to describe π electrons in
conjugated hydrocarbons [ 105 – 107 ]. These planar or nearly planar systems are charac-
terized by the sp2 hybridization of the carbon atoms, which results in the formation of
three sp2 and one remaining 2p orbital. The sp2 orbitals of adjacent carbon atoms overlap
to form the strong σ bonds. At the hydrogen-terminated edges of the carbon structure
where a neighboring carbon atom is missing, covalent bonds are formed between the excess
sp2 orbital and the s orbital of the hydrogen, which greatly increases the stability of
the structure [ 108 ]. The single-band models considered here neglect these σ bonds and
instead, focus on the delocalized π bonds originating from the overlap of the 2p orbitals
of neighboring carbon atoms. This approximation is justified, since the, with respect
to the plane of the carbon atoms, parallel σ bonds and perpendicular π bonds do not
hybridize but instead are energetically separated, with the latter distributed around the
Fermi energy and the former a few eV below and above. 

2
 

While originally, these systems were mainly studied by chemists, more recently, they
also caused a stir within physics due to the sudden interest in graphene [  67 ,  111 ]. To-
day, they certainly stand at the interface of quantum chemistry and condensed matter
physics [  112 ]. In the former field, the systems of interest are called polycyclic aromatic
hydrocarbons (PAH), where typical structures consist of up to several tens of carbon
atoms. The benzene molecule, while strictly speaking only being a monocyclic aromatic

2The exact size of the gap between the π and σ bands is often not known. Even for the same system of
trans-polyacetylene predictions range from a separation of 1.7 eV to an overlap of 1.3 eV [ 109 ]. Thus,
there are ideas for multi-band models to describe these systems [ 110 ].
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(a) (b)

Figure 2.1 – Two different conjugated hydrocarbons. The black and blue dots correspond
to carbon and hydrogen atoms, respectively, while the lines represent the strong σ

bonds between the atoms. (a) Benzene (C6H6) is the building block for large-scale
PAH. (b) A large hydrocarbon (C600H60) that can be considered as both a PAH and a
graphene nanostructure.

hydrocarbon itself, can be seen as the central building block of PAHs and is shown in
Fig.  2.1 (a). In condensed matter physics, the respective systems can be grouped under the
name of graphene nanostructures, which includes quantum dots, nano-islands, nanoribbons,
nanotubes, and heterostructures thereof [ 113 ]. In practice, these systems are typically
larger and can contain hundreds or thousands of carbon atoms. An example of a hexagonal
cluster of 600 carbon atoms is shown in Fig.  2.1 (b).

The history of the models describing these systems dates back to the early days of quan-
tum mechanics, and from the very beginning, the distinction between quantum chemistry
on one side and condensed matter physics on the other led to partly redundant devel-
opments. After Hund [ 114 – 118 ] and Mulliken [ 119 ] introduced the concept of molecular
orbitals in 1927 (and 1928), first Lennard-Jones [ 120 ] in 1929 and later Hückel [ 121 – 123 ] in
1930 laid the foundation for modern quantum chemistry by describing molecular orbitals
as a linear combination of atomic orbitals (LCAO), which for delocalized π electrons in
conjugated systems is known today as the Hückel method [  124 ]. At the same time, Felix
Bloch, in his seminal doctoral thesis of 1928, independently applied the molecular orbital
idea of Hund to solids [ 125 ], introducing what is now known in condensed matter physics
as the tight-binding method.

In the decades thereafter, the search for refined model descriptions that go beyond the
noninteracting picture of the Hückel or tight-binding model was pursued in both fields
separately. First, in order to describe the electronic structure of PAH systems, Pariser
and Parr [ 126 ,  127 ], and Pople [  128 ] 1953 introduced the PPP model by extending the
LCAO method to include long-range Coulomb interactions. Ten years later, in 1963
the Hubbard model was proposed by John Hubbard in a series of articles [ 129 – 131 ] to
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Figure 2.2 – Illustration of the one-dimensional lattice Hamiltonian given in Eq. ( 2.6 ).
Due to the Pauli exclusion principle, each individual lattice site can only be occupied
by up to one spin-up and one spin-down electron. In the standard model, electrons can
only hop between adjacent sites according to the hopping amplitude J , cf. Eq. ( 2.7 ).
Interactions can be local (U) and long-range (Vij), cf. Eqs. ( 2.11 ) and ( 2.13 ), respectively.

investigate correlation effects in narrow energy bands of solids. 

3
 Compared to the PPP

model, Hubbard neglected all but the local on-site electron–electron interactions. Later,
extended or generalized Hubbard models were introduced that include interaction between
nearest-neighbor (NN) sites [ 134 – 138 ]. However, sometimes these names are simply used
to refer to the PPP model in condensed matter literature [ 139 ,  140 ].

The general expression of a lattice Hamiltonian that incorporates all aforementioned
ideas is given by

Ĥ =
∑
i,σ

ϵiĉ
†
i,σ ĉi,σ +

∑
⟨i,j⟩,σ

tij ĉ
†
i,σ ĉj,σ

︸ ︷︷ ︸
tight binding (TB)

+U
∑

i

n̂i,↑n̂i,↓

︸ ︷︷ ︸
Hubbard

+1
2

∑
i ̸=j,σ,σ′

Vij (n̂i,σ −Qi) (n̂j,σ′ −Qj)

︸ ︷︷ ︸
Pariser–Parr–Pople (PPP)

,

(2.6)

where compared to the general Hamiltonian of Eq. ( 2.5 ), here the spin σ is expressed
separately. A sketch of all contributions is shown in Fig.  2.2 . The first term describes the
local energy ϵi of the electronic orbital |i⟩, which consists of the local kinetic energy and
the potential due to the remaining part of the atom that is not included in the model. The
second term represents the kinetic energy tij that is included in the overlap of two adjacent
orbitals indicated by the ⟨i, j⟩. In the standard TB model, this overlap is subsequently
neglected and the term is interpreted as a hopping process between neighboring point-like
orbitals on a lattice. Finally, the third term adds the local Hubbard interaction U and
the last term the long-range Coulomb interaction Vij of the PPP model. Importantly,
the latter contribution includes the charge Q of the remaining ionic atom not included
in the model. In the following, the separate Hamiltonians and their special features are
discussed.

3The Hubbard model was also independently derived by Gutzwiller [ 132 ] and Kanamori [ 133 ] in the
same year.
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2.2.1 Tight-Binding Model

The standard TB model constitutes the simplest version of the lattice Hamiltonian, which
neglects the two interaction terms of Eq. ( 2.6 ). For the matrix elements entering the
general Hamiltonian in Eq. ( 2.5 ) this corresponds to

h
(0)
ij,αβ = ϵδijδαβ − Jδ⟨i,j⟩δαβ , (2.7)

wαβγδ
ijkl = 0 , (2.8)

where similar to Eq. ( 2.6 ) the spin is expressed explicitly by the Greek indices. Both the
local energy offset ϵi → ϵ as well as the hopping term tij → −J of Eq. ( 2.6 ) are assumed
to be constant here. Again the δ⟨i,j⟩ denotes that only hopping between nearest neighbor
atoms is taken into account. Hopping processes beyond that as well as a finite overlap
between adjacent orbitals are sometimes considered in generalized versions of the lattice
models [  141 ,  142 ]. More information on the special characteristics of an extended TB
model that features up to third nearest-neighbor hopping is given in appendix  A.1 . It is
applied combined with the Hubbard interaction term to describe graphene nanostructures
in section  7.3 .

As interactions are neglected, in many cases, the TB model can be solved analytically
or numerically within a reasonable time, as the Hilbert space does not grow exponentially.
Some well-known results are, for instance, the energy dispersion of the infinite 1D chain  

4
 

E(k) = −2J cos (k) , (2.9)

or the infinite 2D hexagonal or honeycomb lattice [ 144 ]

E(k) = ±J

√√√√3 + 2 cos
(√

3ky

)
+ 4 cos

(√
3

2 ky

)
cos

(3
2kx

)
. (2.10)

As can be easily verified, the resulting bandwidths are 4J for the 1D chain and 6J for the
honeycomb lattice. In practice, these analytical expressions for the energy dispersion are
typically used to determine the hopping parameter J for a given physical system by fitting
them to the results of DFT calculations [ 141 ,  145 ,  146 ]. In Fig.  2.3 the densities of states
(DOSs) emerging from these relations are shown accompanied by the results for the square
and triangular lattice. The stark contrast between the DOSs of the different lattice types
illustrates that the TB model contains the major effects emerging from the lattice topology.
For instance, in the honeycomb case, the linear dispersion seen at ω = 0 corresponds to
the famous Dirac cones in graphene. Moreover, the 1D, honeycomb, and square geometry
are all bipartite lattices, resulting in particle–hole symmetry in the DOS of the TB model,
i.e. N(ω) = N(−ω). In contrast, the triangular geometry is a non-bipartite lattice, i.e.
N(ω) ̸= N(−ω). 

5
 

Another example of the TB model describing topological effects is shown in Fig.  2.4 for
a finite graphene nanoribbon. In Fig.  2.4 (b) a section of the DOS around the Fermi energy

4The momentum k, here and in the following, is given in units of ℏa−1, where a is the lattice spacing.
5Throughout this work, the DOS is also often labeled as D(ω).
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Figure 2.3 – Different lattice geometries (left) and their corresponding DOSs (right) in the
TB model presented with increasing bandwidth from top to bottom. The honeycomb
lattice can be understood as a triangular lattice with a two-point basis, making it a
non-bravais lattice. Thus, the DOS of the honeycomb lattice loosely resembles two
mirrored DOSs of the triangular lattice. Adapted from Ref. [  143 ].
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Figure 2.4 – Topological edge states in a finite-length armchair graphene nanoribbon
with a width of seven carbon atoms described in the TB model at J = 2.7 eV. (a)
Geometry of the system (top) and spatial distribution of selected states. (b) DOS with
the states shown in (a), labeled in the same manner.

is shown and three distinct groups of energy states are labeled as 1 , 2 and 3 . In
Fig.  2.4 (a) it is shown that the spatial distribution of these topological states is localized
at specific regions of the nanoribbon. The existence of these states crucially depends on
the geometry of the ribbon edges, a topological effect that is already captured by the TB
model without the need for electronic interactions. 

6
 Therefore, the TB model is often used

to gain a general understanding of these types of systems [ 25 ,  150 – 152 ]. Nonetheless, the
properties of the topological edge states change under the influence of electron–electron
correlations so that descriptions beyond the TB model have to be employed, which is the
main focus of the research discussed in section  7.2 .

2.2.2 Hubbard Model

Due to the good balance of simplicity and predictive power, the Hubbard model is one
of the most important and widely used models of condensed matter physics. Excellent
monographs and reviews on the topic can be found in Refs. [ 68 ,  153 – 157 ].

In the Hubbard model the kinetic term of the TB model, Eq. ( 2.7 ), is accompanied by
a local on-site interaction,

wαβγδ
ijkl = UδikδjlδijδαγδβδPαβ , (2.11)

where P is chosen as Pαβ = 1 − δαβ to take Pauli blocking into account explicitly. At
first glance, this seems to be redundant, since Pauli blocking is inherently included in the
anticommutator relations of the canonical operators in second quantization, cf. Eq. ( 2.2 ).
Therefore, additionally including it through the P in Eq. ( 2.11 ) should make no difference.
In fact, there are cases in the literature where the Pauli blocking is not explicitly included

6This is the reason why the TB-based Su–Schrieffer–Heeger (SSH) model [ 147 – 149 ] is so successful in
describing topological systems.
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Figure 2.5 – Dispersion relation of the half-filled infinite one-dimensional lattice. (a)
Solution for the TB model, cf. Eq. ( 2.9 ), which corresponds to the Hubbard model with
U = 0. (b) HF solution for the Hubbard model with U = 4J . (c) Exact Bethe solution
for the Hubbard model with U = 4J . The gray-shaded area signals the existence of
satellite states.

in the interaction, i.e. P = 1 [ 158 ]. However, as thoroughly discussed in Ref. [ 159 ], both
definitions of P are only identical in the exact case and for approximations that can be
expressed by an antisymmetrized interaction w−

ijkl := wijkl −wijlk. 

7
 In all other cases, such

as for the famous GW approximation, the choice of P influences the result. Throughout
this work, the Hubbard interaction is defined with P = 1 − δαβ, as the explicit Pauli
blocking results in easier expressions.

The local-interaction assumption of the Hubbard model is valid only when long-range
interactions are screened and exponentially decrease, as is the case of the narrow-energy
d bands, for which the Hubbard model was originally introduced [ 129 ]. For isolated
π-electron systems, there is, in general, no such metallic screening. In that case, the
missing long-range interactions in the Hubbard model have to be compensated by choosing
an effective interaction strength U that best describes the system at hand [ 160 ,  161 ]. In
practice, this is done by comparing to relevant observables obtained experimentally or
using models including long-range interactions [ 156 ]. However, if the system is in contact
with a metallic substrate, as is the case for the GNRs on a Au(111) surface studied in
section  7.2 , the long-range interaction between the π electrons is expected to be strongly
screened by the substrate electrons [ 162 ], so that the Hubbard model provides an accurate
description.

Despite approximating the full four-dimensional pair-interaction tensor w by a purely
local on-site interaction U , the Hubbard model can be solved exactly only in some special
cases. One of them is the infinite 1D chain, where the analytical solution was found
by Lieb and Wu [ 163 ] based on the Bethe ansatz. The respective result for the energy
dispersion of the infinite 1D chain at U = 4J is depicted in Fig.  2.5 (c) and compared to the

7For the approximations derived in section  3.3.2 , this is the case when the corresponding reducible vertex
F , Eq. ( 3.57 ), fulfills the symmetry relation of Eq. ( 3.53 ).
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Figure 2.6 – Eigenenergies of the half-filled Hubbard dimer for on-site interactions 0 ≤
U/J ≤ 5. In the limit U → ∞ the energies become degenerate, i.e. E− → E0 = 0
and E+ → EU = U . The arrows indicate two possible dipole transitions for U = 1J .
Adapted from Ref. [ 143 ].

Hartree–Fock result in Fig.  2.5 (b) and the dispersion of the TB model in Fig.  2.5 (a). The
original cosine dispersion of the latter, cf. Eq. ( 2.9 ), gets shifted by U/2 in the HF solution
of the Hubbard model. This shift is also present in the Bethe solution. Additionally, the
exact solution contains the famous Mott gap opening at k = ±π/2 and satellite bands
appearing outside the original bandwidth of 4J , cf. Fig.  2.3 . Notoriously, these effects
are not present in the HF solution and can thus be attributed purely to electron–electron
correlations. This is different in the PPP model, as will be shown in the following section,
where the gap opening is partially caused by exchange effects. The reason for this is that in
the Hubbard model all exchange contributions vanish, since due to the on-site interaction
and Pauli blocking, only electrons of different spins can interact.

Besides this example of an analytical solution, an exact numerical treatment of the
Hubbard model is also achievable. However, since the local interaction has no effect on
the exponential growth of the Hilbert space, the exact diagonalization of the Hubbard
Hamiltonian is restricted to small lattices of typically Nb ≤ 16 lattice sites [ 164 ,  165 ].
An instructive example is the Hubbard dimer, which contains only two lattice sites. The
configuration space of this system at half filling has a dimension of four, resulting in the
same number of eigenenergies

E± = U

2 ±
√
U2 + 16J2

2 , E0 = 0 , EU = U , (2.12)

with E− being the ground-state energy. In Fig.  2.6 these four energies are plotted for an
interaction of up to U = 5J . It becomes apparent that for vanishing interaction, which
corresponds to the TB model, the states E0 and EU are degenerate while in the limit of
infinite interaction the two lower states E− and E0, and the two upper states EU and E+
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become degenerate, respectively. In the following section, the description of this system in
the Hubbard and in the PPP model is compared providing insight into the influence of
non-local interactions.

The Mott transition observed in Fig.  2.5 is not the only interesting effect described
by the Hubbard model. The local U term also results in magnetic phase transitions and
long-range antiferromagnetic correlations above a critical value of the interaction Ucrit [ 166 ,
 167 ]. Further, beyond the topological effects described by the TB model, the Hubbard
interaction can induce additional correlation-based topological phases [ 168 ].

Finally, it should be mentioned that the Hubbard model has the unique property that
it can be precisely replicated experimentally within the framework of ultracold atoms [ 169 –
 177 ]. This makes the Hubbard model a perfect tool for benchmarking numerical approaches
and approximations against experimental measurements.

2.2.3 Pariser–Parr–Pople Model

Among the models presented here, the PPP model describes π electrons in PAHs most
accurately, as it includes, besides the on-site Hubbard interaction, also long-range Coulomb
interactions via the two-dimensional interaction matrix Vij in Eq. ( 2.6 ). Consequently, it
was applied to describe delocalized π electrons in a wide range of conjugated molecules [ 69 ,

 88 ,  178 – 185 ]. A comprehensive review on the PPP model is given in Ref. [ 56 ].
The pair-interaction matrix elements entering the Hamiltonian of Eq. ( 2.5 ) in the PPP

model are given by,

wαβγδ
ijkl = Vijδikδjlδαγδβδ , (2.13)

which constitutes the Coulomb interaction between π electrons at the lattice sites i and j.
An often neglected but actually very important part of the PPP interaction term is the
charge correction Q following the particle number operators n in Eq. ( 2.6 ). It accounts for
the fact that the PPP model, following the Born–Oppenheimer approximation, describes
only the π electrons and neglects the remaining positively charged ions of the molecule or
nanostructure. Not including this correction, which is sometimes done when extending
the Hubbard model to long-range interactions [ 134 – 138 ,  161 ,  186 – 189 ], leads to wrong
results for finite systems. 

8
 Including it results in an additional single-particle correction in

Eq. (  2.5 ) that has to be added to the TB term,

h
(0)
ij,αβ → h

(0)
ij,αβ − δijδαβV

ion
i + δijδαβ

1
2Nb

∑
i

V ion
i with V ion

i =
∑
j ̸=i

Vij . (2.14)

While the second correction term is only a constant offset, the first one contributes an
additional potential landscape for the electrons.

The local pair-interaction Vij entering Eqs. ( 2.6 ) and ( 2.14 ) not only has to describe
the long-range Coulomb interaction but also the Hubbard interaction in the local limit.

8In the uniform lattice, the correction results in an energy shift without physical impact.
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Figure 2.7 – (a) Long-range interaction in the PPP model as given by the Ohno parame-
terization of Eq. ( 2.16 ) for U/J = 3.54. The dashed lines mark the distance of the first,
second, and third nearest-neighbor site in a honeycomb lattice with a lattice constant
of a = 1.42 Å, which corresponds to the bond length of graphene. (b) Ground-state
energy of the half-filled Hubbard (red) and PPP (blue) dimer given by Eqs. ( 2.17 )
and ( 2.18 ), respectively. The parameter V is evaluated at a distance of 1.42 Å using
the Ohno parametrization.

To this end, it is typically expressed by a parametrization of the form

Vij = U

[
1 +

(
URij

ke

)n
]− 1

n

, (2.15)

with n ≥ 1, the Hubbard interaction U in eV, the distance between the sites i and j on
the lattice Rij in Å, and the Coulomb constant ke in eV·Å·e−2. This parametrization
interpolates between the on-site Hubbard limit, i.e. Vij

Rij→0−→ U , and the long-range
Coulomb limit, i.e. Vij

/
(ke/Rij)

Rij→∞−→ 1. The exact form of the interpolation function
depends on the choice of n. In practice, the most popular parametrization, which is also
used in this work, is the one due to Ohno (n = 2) [  190 ,  191 ],

Vij = U

[
1 +

(
URij

ke

)2]− 1
2

, (2.16)

which is shown in Fig.  2.7 (a). Importantly, due to this parameterization, the PPP model
only needs the same external parameters as the Hubbard model despite including long-
range Coulomb interactions.

However, for the same value of U , interaction effects are much more pronounced in the
Hubbard model than in the PPP model, since long-range interactions reduce the influence
of the on-site interaction [ 192 ]. This can be illustrated for the simple case of the dimer,
which for the Hubbard interaction was already discussed in the previous section. The
ground state energy for the Hubbard model will be repeated here,
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Figure 2.8 – DOS of benzene, cf. Fig.  2.1 , described in the PPP model using the Ohno
parametrization, cf. Eq. ( 2.16 ), and U = 4J with J = 2.539 eV. The exact diagonaliza-
tion solution (black) is compared to a spin-restricted Hartree–Fock (RHF) calculation
(red) and a spin-restricted Hartree (RH) calculation (blue). The mean-field-induced
shift to higher energies is subtracted so that the RH result is identical to the solution
of the TB model (U = 0).

EHU = U

2 − 1
2

√
U2 + 16J2 . (2.17)

In the PPP model, the energy of the lowest eigenstate has a very similar form,

EPPP = U − V

2 − 1
2
√

(U − V )2 + 16J2 , (2.18)

where V is defined as the interaction between electrons located on different sites of the
dimer. Comparing Eqs. ( 2.17 ) and ( 2.18 ), it becomes apparent that the ground state
energy of the PPP model can be expressed by a Hubbard model with a reduced effective
on-site interaction Ũ = U − V . Both energies are shown for on-site interactions of up
to U = 10J in Fig.  2.7 (b). As previously mentioned, the increase of the ground state
energy due to interactions is weaker in the PPP model than in the Hubbard model. This
is in agreement with the finding that, within the Hubbard model, a reduced effective
on-site interaction results in a better description of graphene, silicone, and benzene [ 161 ],
since neglecting long-range interaction overestimates interaction effects in real physical
systems. This also causes the best-fitting parameters of the Hubbard model to be strongly
dependent on the geometry of the system, whereas the optimal parameters of the PPP
model provide good results for a wide range of systems [ 56 ].

Another major difference between the Hubbard and the PPP model, which is also
caused by long-range Coulomb interactions, is the influence of exchange effects. In the
Hubbard model, all exchange contributions in the interaction term vanish, since identical
particles cannot be on the same site due to the Pauli exclusion principle. In contrast, in
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the PPP model with Coulomb interactions, long-range exchange effects emerge, which
crucially affect the size of the band gap. In Fig.  2.5 it was shown that the HF solution
of the Hubbard model cannot describe the opening of the band gap. In the PPP model,
this is different, since the band gap consists not only of the correlation-induced Mott
contribution as illustrated in Fig.  2.8 . There the DOS of benzene is shown for the PPP
model at U = 4J as given by the exact solution and the restricted-spin HF (RHF) and
Hartree (RH) approximations. In contrast to Fig.  2.5 , here, the shift caused by the mean
field was subtracted so that the RH result coincides with the TB solution. Notably, due to
the finite size of the system already the TB solution predicts a finite gap around ℏω = 0.
Taking all interactions into account, this gap is widened considerably as the exact solution
shows. In contrast to the case of the Hubbard model, however, the origin of the increased
gap size is not electron–electron correlations. Instead, here, it is mainly a first-order
exchange effect, since the correct gap size is nicely reproduced by RHF but not by RH. 

9
 

The many smaller satellites at high absolute energy values correspond to the additional
bands emerging in the Bethe solution of the dispersion relation in Fig.  2.5 (c). Unlike the
band gap, these satellites also in the PPP model cannot be captured by the HF solution
as they are solely a result of electron–electron correlations.

Both the Hubbard model and the PPP model require an adequate theoretical procedure
to find accurate solutions with a reasonable amount of numerical effort. One of the most
favorable methods is Green functions theory, which is introduced in the following chapter.

9When considering even larger values of U , correlations start to further increase the band gap and
eventually become the dominant effect also in the PPP model.
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3 Green Functions Theory

When learning a new subject, it is sometimes not very helpful to read the original
publications of the people after whom the idea or method was later named. The
topic of model Hamiltonians presented in the previous chapter serves as a good
example. On the one hand, the early works of Hund [ 114 – 118 ], Hückel [ 121 – 123 ],
and Bloch [  125 ] on the topic of LCAO are all in German and, thus, not accessible
to many people today. On the other hand, in the original works of Pariser and
Parr [ 126 ,  127 ], and Pople [ 128 ], the PPP model was not derived within the
framework of second quantization. For an application like in this thesis, reading a
recent summary on the topic is therefore much more instructive.

In the case of the Green functions theory, this is different. While modern
reviews [ 76 ,  78 ], of course, add additional value, the seminal works of Martin and
Schwinger [ 193 ], Baym [ 81 ] and Kadanoff [  80 ], Keldysh [ 194 ], and others [ 195 ,

 196 ] are still easy to read since most of the early notation has not changed over the
decades. Moreover, most of the facts in the original works are explained in great
detail. Perhaps because the authors, who are considered today as pioneers of the
theory, at the time had little experience with the matter themselves and therefore
attached great importance to every new insight, no matter how small. Thus, for
everyone interested in learning about Green functions theory I recommend taking a
look at the early fundamental publications.

In the previous chapter on lattice Hamiltonians, it was established that even for strongly
simplified descriptions of the electronic interaction as in the Hubbard model, exact solutions
are out of reach both analytically as well as numerically, except for some special cases
and very small systems. This leads to the need for a theoretical approach that allows the
description of electronic interactions and the resulting correlation effects as accurately and
numerically efficiently as possible, which is the topic of this chapter.

The foundation of nonequilibrium Green functions (NEGF) theory was laid by the
work on quantum field theory by Feynman [ 197 ,  198 ], Dyson [ 199 ,  200 ], Schwinger [ 201 ],
Salpeter and Bethe [ 202 ], and others [ 203 ] in the 1940s and 1950s. Matsubara [ 195 ] and
Kubo [ 204 ] were the first to apply these ideas to formulate a Green function description of
many-particle systems in thermal equilibrium. Shortly after, in their seminal work of 1959,
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which marks the birth of NEGF theory, Martin and Schwinger [ 193 ] introduced an infinite
hierarchy of equations, which describes the nonequilibrium dynamics of Green functions
and which today carries their name. Only two years later Baym and Kadanoff [ 80 ] were
able to close this hierarchy by introducing the self-energy Σ, which allows the systematic
derivation of conserving approximations. Today, NEGF theory is an important part of the
bouquet of theoretical approaches to describe many-particle systems in nonequilibrium.
It stands out not only due to its access to a wide range of approximations to describe
various types of correlation effects, but also due to its, as a multi-time approach, natural
direct access to experimentally important spectral observables such as the photoemission
spectrum.

In this chapter, first, the Keldysh contour is introduced in section  3.1 . It is used
to express the Green functions and their equations of motion, the Martin–Schwinger
hierarchy, in section  3.2 . Approximations to close the hierarchy are presented in section  3.3 .
Finally, in section  3.4 , the corresponding real-time expressions of the Keldysh formalism
are introduced to build the bridge to chapters  4 and  5 , where the practical application of
GF theory is presented for equilibrium and nonequilibrium, respectively.

3.1 Keldysh Contour-Time Formalism

Contour-time NEGF theory naturally arises in the attempt to calculate time-dependent
ensemble averages of generic quantum-mechanical operators in second quantization. For a
concise description, it is therefore indicated to first address the general concept of time
dependence.

In quantum mechanics, time can be expressed in the Schrödinger (S) or in the Heisenberg
(H) picture. In the former, the wave function |ψ(t)⟩ carries the entire time information
of the system, i.e. d

dt
|ψ(t)⟩ ≠ 0 for all times t. In contrast, the operators are constant in

time except for a possible explicit time dependence like a time-dependent potential, i.e.
d
dt
ÂS = 0. The time-dependent Schrödinger equation (TDSE) is the equation of motion

(EOM) of the states |ψ(t)⟩,

iℏ ∂
∂t

|ψ(t)⟩ = ĤS |ψ(t)⟩ , (3.1)

and describes their dynamics according to the Hamiltonian of the system ĤS. In the
latter case, the Heisenberg picture, the time information of the system is included in the
operators, i.e. d

dt
ÂH ̸= 0, whereas the states are stationary, i.e. d

dt
|ψH⟩ = 0. The dynamics

of the operators is described by the respective EOM, the Heisenberg equation,

dÂH(t)
dt = i

ℏ
[
ĤH(t), ÂH(t)

]
−

+
(
∂ÂS

∂t

)
H
, (3.2)
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where ĤH(t) is the time-dependent Hamiltonian in the Heisenberg picture. Both formalisms
are connected by the unitary time-evolution operator Û ,

Û(t, t0) :=


T
{

e− i
ℏ
∫ t

t0
dt̄ ĤS(t̄)

}
if t ≥ t0

T̄
{

e+ i
ℏ
∫ t0

t
dt̄ ĤS(t̄)

}
if t < t0 ,

(3.3)

where ĤS(t̄) can have an explicit time dependence. The causal and anticausal time-ordering
operators T and T̄ arrange the subsequent operators in chronological or antichronological
orders, respectively. Using this time-evolution operator, the states and operators of both
pictures are transformed by

|ψH⟩ = Û(t0, t) |ψS(t)⟩ , ÂH(t) = Û(t0, t)ÂSÛ(t, t0) . (3.4)

While both formalisms are in principle equivalent, 

1
 the NEGF approach is derived and

expressed using the Heisenberg picture.
After having discussed the general concept of time dependence, the next important

step is to address the statistical ensemble, for which the expectation value is obtained.
Since the NEGF approach is formulated in Fock space using second quantization where
particles can be created and annihilated, cf. section  2.1 , the grand canonical ensemble
(GCE) is the ideal choice, as it allows for a varying particle number. It is defined by the
temperature T = (kBβ)−1 with the Boltzmann constant kB and the chemical potential
µ of the system. The corresponding quantum statistical ensemble is described by the
grand-canonical density matrix

ρ̂GCE := 1
Z

e−β(Ĥ−µN̂) , (3.5)

with the corresponding grand partition function

Z := Tr
[
e−β(Ĥ−µN̂)

]
, (3.6)

where Tr[·] denotes the trace over F , N̂ := ∑
i ĉ

†
i ĉi is the particle number operator, and

Ĥ the Hamiltonian. The density matrix enables the calculation of the ensemble average
of any operator Â. Provided that the system is in equilibrium at the time t = t0, the
expectation value in the Schrödinger picture is given by

⟨Â⟩(t0) =
∑

k

pk(t0)
〈
Ψk(t0)

∣∣∣ÂS

∣∣∣Ψk(t0)
〉

= Tr
[
ρ̂S(t0)ÂS

]
, (3.7)

with pk being the probability for the system to be in the state |Ψk(t0)⟩ and ρ̂S(t0) the
equilibrium density operator.

When the system is excited out of equilibrium for times t > t0, the nonequilibrium
density operator can be constructed using the time-evolution operator Û

ρ̂S(t) = Û(t, t0)ρ̂S(t0)Û(t0, t) . (3.8)
1Alternatively, the time dependence can be included in both operators and states, leading to a third

equivalent formalism, the Dirac or interaction picture (I).
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t0 t

+

−

Cpurez̄

Figure 3.1 – Schematic illustration of the contour Cpure valid for pure states. The contour
time z can be on the causal (+) branch going from t0 to t or on the anticausal (−)
branch going from t to t0. Both branches lie on the real-time axis. The vertical spacing
between them is added for illustrative purposes only.

Using the definition ρ̂H := ρ̂S(t0) and the invariance of the trace under cyclic reordering,
the general nonequilibrium expression for the ensemble average can be transformed from
the Schrödinger to the Heisenberg picture,

⟨Â⟩(t) = Tr
[
ρ̂S(t)ÂS

]
(3.9)

= Tr
[
Û(t, t0)ρ̂HÛ(t0, t)ÂS

]
(3.10)

= Tr
[
ρ̂HÛ(t0, t)ÂSÛ(t, t0)

]
(3.11)

= Tr
[
ρ̂HÂH(t)

]
. (3.12)

For a better understanding of the underlying physics, this expression can be transformed
using the definition of Û , cf. Eq. ( 3.3 ),

⟨Â⟩(t) = Tr
[
ρ̂HT̄

{
e− i

ℏ
∫ t0

t
dt̄ Ĥ(t̄)

}
ÂST

{
e− i

ℏ
∫ t

t0
dt̄ Ĥ(t̄)

}]
. (3.13)

Since the operators under the trace act from right to left, a ket state is first propagated
by the time-evolution operator Û(t, t0) from t0 to t in chronological order. Then the
Schrödinger operator ÂS acts on the state at time t before it is propagated back in time
by Û(t0, t) from t to t0 in antichronological order.

When ignoring the density operator, for now, this sequence can be expressed in a
more compact way by introducing a real-valued time contour Cpure, 

2
 which is depicted in

Fig.  3.1 . The causal branch (C+) represents the forward propagation from time t0 to t,
whereas the anticausal branch (C−) allows for the backward propagation from time t to t0.
The idea of such a contour was first presented independently by Keldysh [ 194 ,  205 ] and
Schwinger [ 206 ]. With the contour times z ∈ Cpure, now Eq. ( 3.13 ) can be written as

⟨Â⟩(t) = Tr
[
ρ̂HTCpure

{
e− i

ℏ
∫

C+
dz̄ Ĥ(z̄)

}
ÂSTCpure

{
e− i

ℏ
∫

C−
dz̄ Ĥ(z̄)

}]
, (3.14)

2The label ’pure’ indicates that this contour is valid only for pure states since all the ensemble information
is still included in the density matrix ρ̂H. The general case of a contour for mixed states is discussed
in the following.
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where, in this case, the time ordering superoperator TCpure acts on contour-time operators.
Similar to its real-time counterpart introduced in Eq. ( 3.3 ), it arranges operators chrono-
logically on the contour Cpure. For a more concise notation one can introduce the notation
ÂS

∣∣∣
z

to specify that the operator ÂS acts at the contour time z, leading to

⟨Â⟩(z) = Tr
[
ρ̂HTC

{
e− i

ℏ
∫

Cpure
dz̄ Ĥ(z̄)

ÂS

∣∣∣
z

}]
(3.15)

= Tr
[
ρ̂HÂH(z)

]
. (3.16)

In this expression, the information about the ensemble is still included in the density
operator ρ̂H. For a coherent approach, this aspect should also be described by the contour.

Here, two cases must be distinguished. If the system is in a pure state, then Cpure already
contains all necessary information. However, if ρ̂H describes a mixed state, then the contour
has to be extended. This is usually the case, since even if the total N -particle system
happens to be in a pure state, the reduced S-particle subsystem with S < N is described
by a mixed-state density matrix, given that the N -particle system is correlated [ 207 ].
Therefore, even for a correlated zero-temperature N -particle system, a mixed-state contour
is needed to describe the reduced single- and two-particle quantities in section  3.2 . The
two most established methods in the literature for extending the contour to describe mixed
states are:

i.) adding a third vertical branch of negative imaginary times [ 208 ],
ii.) perform an adiabatic switch-on of the interaction starting from a non-interacting

state. 

3
 

In this work, the second approach is used. Nonetheless, for completeness, the idea of the
first approach will be quickly outlined. It utilizes the idea of the Wick rotation, which
allows the canonical density operator to be expressed as a time-evolution operator in
imaginary time,

e−βĤS(t0) = e+ i
ℏ ĤS(t0)[t0−(t0−iℏβ)] = Û0(t0 − iℏβ, t0) . (3.17)

Inserting this expression into Eq. ( 3.11 ) immediately suggests introducing a third contour
branch ranging along the imaginary axis from t0 to t0 − iℏβ. A more detailed discussion
of this well-established and commonly-used approach can be found in Ref. [  78 ].

The adiabatic-switching method is based on the assumption that the fully interacting
density operator ρ̂H is adiabatically connected to the non-interacting density operator ρ̂0.
There are, however, a number of limitations and requirements for this assumption, which
are given by the Gell–Mann–Low theorem [ 203 ,  209 ]. For the method to be applicable in
the first place, the initial state of the adiabatic switching, which is the non-interacting
ground state corresponding to the ideal Hamiltonian Ĥ0, has to be nondegenerate. Further,
while the final interacting state after the adiabatic-switching procedure is an eigenstate
of the fully interacting Hamiltonian, it is not guaranteed to be the ground state [ 210 ].

3In principle, also the adiabatic-switching contour has to be extended by the imaginary branch of i.).
However, in practice, it can be neglected since the adiabatic switching starts from a non-interacting
state, which is trivial to generate even for finite temperatures.
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t0 ∞

+

−

CASz̄

−∞

ρ̂0

Figure 3.2 – Schematic illustration of the contour CAS that consists of a causal (+) and
an anticausal (−) branch like the contour Cpure depicted in Fig.  3.1 . However, here,
both branches are extended to ±∞ on the real-time axis. The system starts in a
non-interacting ground state for t → −∞. Up to time t0 the interaction is switched on
adiabatically.

Consequently, in practice, the switching has to be performed slowly enough to ensure that
the final state is close enough to the actual ground state.

In order to apply the adiabatic-switching method, the Hamiltonian in second quan-
tization, which was introduced in Eq. ( 2.5 ), has to be generalized to allow for an adia-
batically increasing interaction. To this end, the interaction part ĤW is extended by an
adiabatic-switching function fAS : R → [0, 1] to switch on the interaction, which has to be
monotonically increasing with the limits

lim
t→−∞

fAS(t) = 0 and fAS(t) = 1 for all t ≥ t0 . (3.18)

It is included in a new time-dependent pair interaction wijkl(t) = fAS(t)wijkl, resulting in
the Hamiltonian,

ĤAS(t) :=
∑
ij

[
h

(0)
ij + fij(t)

]
ĉ†

i ĉj︸ ︷︷ ︸
Ĥ(1)(t)

+ 1
2
∑
ijkl

wijkl(t)ĉ†
i ĉ

†
j ĉlĉk︸ ︷︷ ︸

ĤW
AS(t)

. (3.19)

Corresponding to this adiabatic-switching Hamiltonian ĤAS, a new time-evolution operator
ÛAS can be defined. The aforementioned adiabatic relation between the noninteracting
and the correlated density operator can then be expressed as

ρ̂H = ÛAS(t0,−∞)ρ̂0ÛAS(−∞, t0) , (3.20)

where it is assumed that in the limit t → −∞ the system is in the noninteracting ground
state. Inserting this relation in Eq. ( 3.15 ) and rearranging the time-evolution operators
under the trace results in

⟨Â⟩(z) = Tr
[
ρ̂0ÛAS(−∞, t0)TC

{
e− i

ℏ
∫

Cpure
dz̄ Ĥ(z̄)

ÂS

∣∣∣
z

}
ÛAS(t0,−∞)

]
. (3.21)

The right time-evolution operator extends the causal branch from −∞ to t0 while the left
one extends the anticausal branch from t0 to −∞. Finally, it is desirable to define one
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fixed contour that is applicable for any choice of time z. 

4
 This can be achieved by utilizing

the decomposition property of the time-evolution operator and including an additional
factor of

1 = Û(t,∞)Û(∞, t) , (3.22)

effectively extending the contour to +∞. This final time contour CAS is depicted in Fig.  3.2 .
Based on CAS, the general nonequilibrium ensemble average Eq. ( 3.16 ) can be expressed
as

⟨Â⟩(z) = Tr
[
ρ̂0TCAS

{
e− i

ℏ
∫

CAS
dz̄ ĤAS(z̄)

ÂS

∣∣∣
z

}]
(3.23)

= Tr
[
ρ̂0Â

AS
H (z)

]
, (3.24)

where the new time ordering superoperator TCAS acts on times on the adiabatic-switching
contour CAS. This expression allows for the calculation of general time-dependent ensemble
averages of operators ÂAS

H (z) on the adiabatic-switching contour CAS with only the non-
interacting density matrix ρ̂0 as an additional input. The practical implementation of
both, the generation of the initial density matrix as well as the adiabatic switch-on of the
interaction is presented in appendix  A.3 .

The structure of Eq. ( 3.24 ) emphasizes the need for the correct description of contour-
time operators and their dynamics, for the calculation of ensemble-averaged expectation
values within this framework. The most important group of these contour operators are
the NEGFs, which allow for the calculation of a large number of physical observables.
They will be introduced and discussed in the following section.

3.2 Green Functions

The time contour CAS presented in the previous section requires the definition of generalized
contour versions of the canonical operators, which were introduced in section  2.1 . Following
the Heisenberg equation defined in Eq. ( 3.2 ) with the Hamiltonian of Eq. ( 3.19 ), their
EOMs are given by

iℏdĉi(z)
dz =

∑
j

h
(1)
ij (t)ĉj(z) +

∑
jkl

wijkl(z)ĉ†
j(z)ĉk(z)ĉl(z) , (3.25)

−iℏdĉ†
i (z)
dz =

∑
j

ĉ†
j(z)h

(1)
ji (z) +

∑
jkl

ĉ†
j(z)ĉ

†
k(z)ĉl(z)wjkli(z) , (3.26)

with the newly introduced single-particle Hamiltonian h(1) := h(0) + f , cf. Eqs. ( 2.5 )
and (  3.19 ), and the pair-interaction w being functions of the contour time z.

Using these generalized canonical operators as building blocks, one can define more
complex operators that actually relate to physical observables. The most prominent one

4Notice that the shape of the contour Cpure in Fig.  3.1 depends on the external time t.
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in NEGF theory is the N -particle Green function operator, 

5
 which consists of N creators

and annihilators each. Its quantum mechanical average is given by

G(N)(1, . . . , N ; 1′, . . . , N ′) :=
( 1

iℏ

)N 〈
TC
{
ĉ(1) . . . ĉ(N)ĉ†(N ′) . . . c†(1′)

}〉
, (3.27)

where the operator TC ensures the correct chronological time order of the canonical operators
on a general contour C. This definition introduces a new kind of coordinate notation,
which will be used in the following to express the NEGF theory in a compact way. The
2N coordinates (1, . . . , N ; 1′, . . . , N ′) combine spin-orbitals and contour times, with the
first half of the coordinates (without prime) corresponding to annihilation operators and
the second half (with prime) to creation operators. Since the N -particle Green function
depends not only on 2N spin-orbitals but also on 2N contour times, it can be seen as
a generalization of the N -particle density matrix. As a consequence, there are also 2N
EOMs, one along each time argument, which can be derived using the time-derivatives of
the canonical operators given in Eqs. ( 3.25 ) and (  3.26 ). The resulting equations couple to
the (N + 1)- and (N − 1)-particle Green function, forming a system of coupled equations,
the infinite Martin–Schwinger hierarchy [ 193 ]. Certainly, the most important cases in
practice are the equations for the single-particle (N = 1) and two-particle (N = 2) Green
function, which will be discussed here explicitly.

Starting from the definition of the N -particle Green function, Eq. ( 3.27 ), the single-
particle Green function directly follows as

G(1)(1; 1′) := 1
iℏ
〈
TC
{
ĉ(1)c†(1′)

}〉
.

1
1

1′
(3.28)

On the right-hand side, the respective Feynman diagram representation [  197 ,  198 ] is
shown, which consists of an arrow pointing from the creator at time 1′ on the right to the
annihilator at time 1 on the left. The corresponding equations of motion along the two
time arguments are the first level of the Martin–Schwinger hierarchy. They are given by

iℏ ∂

∂z1
G(1)(1; 1′) = δ(1; 1′) +

∫
h(1)(1; 2)G(1)(2; 1′) ± iℏ

∫
w(1, 2; 3, 4)G(2)(3, 4; 1′, 2+) ,

(3.29)

−iℏ ∂

∂z′
1
G(1)(1; 1′) = δ(1; 1′) +

∫
G(1)(1; 2)h(1)(2; 1′) ± iℏ

∫
G(2)(1, 2−; 3, 4)w(3, 4; 1′, 2) ,

(3.30)

where for the sake of readability the infinitesimal element of the integral, e.g. d2, is
dropped and integration is always performed over underlined variables. 

6
 The superscripts

of the contour times 2+ and 2− indicate that these times are increased and decreased,
respectively, by an infinitesimal amount to ensure the correct ordering of the operators on
the contour. The equations contain a time-diagonal term, which combines a Kronecker
delta for the spin-orbitals with a delta distribution for the contour times,

δ(1; 1′) := δi1i1′δC(z1, z1′) , (3.31)
5The Green function is also sometimes called propagator [  80 ,  202 ] or correlator [ 78 ].
6This includes a sum over the single-particle orbital basis and an integral over the contour time.
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followed by the kinetic term, including the ideal single-particle Hamiltonian

h(1)(1; 1′) := δC(z1, z1′)h(1)
i1i1′ (z1) . (3.32)

Finally, the interaction term, which is often referred to as collision integral I in the
literature, cf. Eqs. ( 3.36 ) and ( 3.37 ), contains the generalized four-time pair-interaction  

7
 

w(1, 2; 1′, 2′) := δC(z1, z2)δC(z1, z2′)δC(z1, z1′)wi1,i2,i1′ ,i2′ (z1) ,

1

2

1′

2′

(3.33)

and the two-particle Green function

G(2)(1, 2; 1′, 2′) :=
( 1

iℏ

)2 〈
TC
{
ĉ(1)ĉ(2)ĉ†(2′)c†(1′)

}〉
. G(2)

1

2

1′

2′

(3.34)

Both are two-particle quantities, which are represented as Feynman diagrams with four
outer vertices, with the two indices at the bottom and top corresponding to the first and
second particle, respectively. The pair interaction is represented by a wiggly line between
the two particles, while the two-particle Green function is depicted as a gray-shaded square
and will be further elucidated in the next section. The Eqs. ( 3.29 ) and ( 3.30 ) are also
known as (Keldysh–)Kadanoff–Baym equations (KBEs) since Baym and Kadanoff 1961 [ 80 ,
 211 ] were among the first to derive a set of closed solutions for these equations. In the
noninteracting case, the interaction term vanishes and the remaining equations have the
form of a traditional mathematical Green’s function  

8
 equation as introduced by George

Green in the 1820s [ 213 ,  214 ], which is indeed the origin of the name of the quantity
introduced in Eq. ( 3.27 ).

However, in the general interacting case, finding a self-consistent solution for the
single-particle Green function also requires the time-propagation of the two-particle Green
function due to the coupling of the KBEs to the latter. Of the four equations of motion
corresponding to the two-particle Green function, only the first one is shown here,

iℏ ∂

∂z1
G(2)(1, 2; 1′, 2′) =δ(1; 1′)G(1)(2; 2′) ± δ(1; 2′)G(1)(2; 1′) +

∫
h(1)(1; 3)G(2)(3, 2; 1′, 2′)

± iℏ
∫
w(1, 3; 4, 5)G(3)(4, 2, 5; 1′, 2′, 3+) . (3.35)

7The four-time interaction is a remnant of the relativistic physics of quantum field theory [ 202 ,  203 ].
8When talking about the mathematical object, the use of the possessive form “Green’s function” is

certainly correct. However, the physical quantity as a generalization of the density matrix embodies
much more than that. Hence in this thesis, the adjectival expression “Green function” is used when
referring to the latter [ 212 ].
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The infinite nature of the Martin–Schwinger hierarchy is foreshadowed by the coupling
to the three-particle Green function G(3), which makes a direct solution of the hierarchy
unfeasible. This is an unfortunate realization since the Martin–Schwinger hierarchy is an
exact alternative to the time-dependent Schrödinger equation, describing the dynamics
of quantum-mechanical systems without any approximation. As a result, one proceeds
to formally close the hierarchy by introducing the (single-particle) self-energy Σ in the
collision integral of the KBEs,

I(1; 1′) := ± iℏ
∫
w(1, 2; 3, 4)G(2)(3, 4; 1′, 2) =:

∫
Σ(1; 2)G(1)(2; 1′) , (3.36)

[I(1′; 1)]† = ± iℏ
∫
G(2)(1, 2; 3, 4)w(3, 4; 1′, 2) =

∫
G(1)(1; 2)Σ(2; 1′) , (3.37)

effectively eliminating the two-particle Green function. This replacement is motivated by
the fact that, due to the highly time-diagonal interaction, cf. Eq. ( 3.33 ), the four-time two-
particle Green function is effectively only needed for two distinct times, making it partially
redundant. The (in that regard more efficient) two-time self-energy is per definition a
functional of the single-particle Green function Σ[G(1)] and contains all interaction effects.
The collision integrals expressed by the self-energy in Eqs. ( 3.36 ) and (  3.37 ) have the
same structure as the kinetic terms in the KBEs ( 3.29 ) and ( 3.30 ). Thus, the sum of the
single-particle Hamiltonian and the self-energy h(1) + Σ can be understood as a generalized
two-time Hamiltonian, where the self-energy accounts for all effects of non-local time,
motivating the name self-energy.

It should be emphasized that this transition from the two-particle Green function to
the self-energy plays a central role in this work as it connects the traditional NEGF theory
with the newly developed G1–G2 scheme. Both representations of Eqs. ( 3.36 ) and ( 3.37 )
are equivalent and, in principle, exact if one is able to provide the exact two-particle Green
function or self-energy. As a consequence, the introduction of the self-energy alone does
not make finding a solution for the KBEs more feasible. Instead, it provides an alternative
way to find approximations within many-body perturbation theory (MBPT), which will
be discussed in the next section.

Additionally, the self-energy allows one to find a compact formal solution of the KBEs,
which are first-order integro-differential equations. Using the solution of the noninteracting
system, which is the ideal single-particle Green function G(1)

0 , the KBEs can be transformed
into two integral equations [  78 ]

G(1)(1; 1′) = G
(1)
0 (1; 1′) +

∫
G

(1)
0 (1; 2)Σ(2; 3)G(1)(3; 1′) (3.38)

1 1′
=

1 1′
+ Σ1 2 3 1′
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and

G(1)(1; 1′) = G
(1)
0 (1; 1′) +

∫
G(1)(1; 2)Σ(2; 3)G(1)

0 (3; 1′) . (3.39)

1 1′
=

1 1′
+ Σ1 2 3 1′

The noninteracting Green function G(1)
0 is represented by a dashed arrow, and filled vertices

denote variables over which to integrate. In the literature, these equations are known as
Dyson equations [ 200 ], and as such, both are formal solutions of the Martin–Schwinger
hierarchy for the single-particle Green function. While the KBEs in their differential form
are the cornerstone of the two-time NEGF approach discussed in chapter  5 , the integral
Dyson equation is essential for the equilibrium formalism of Green functions theory that
is introduced in chapter  4 .

3.3 Approximations within MBPT

The infinite nature of the Martin–Schwinger hierarchy calls for the introduction of
appropriate approximations to close the hierarchy and make it solvable in practice.
Within MBPT, there exist several equivalent ways to generate conserving many-body
approximations. Certainly, one of the most famous approaches was introduced by Hedin
in 1965 [ 196 ]. He expressed the self-energy by means of the screened interaction W and
the polarizability P , leading to the famous GW approximation. A few years earlier, in
1962, Baym [  81 ] presented a way to generate conserving self-energy approximations based
on the Φ functional [ 215 – 217 ].

However, MBPT is not limited to the single-particle level of the self-energy. A different
approach is based around the Bethe–Salpeter equation [  202 ], which provides the formal
solution of the equation of motion for the two-particle Green function, cf. Eq. ( 3.35 ),
which is equivalent to the Dyson equation solving the single-particle EOM, cf. Eqs. (  3.38 )
and ( 3.39 ). Besides finding widespread use in NEGF theory [  78 ,  218 – 221 ], 

9
 this approach

is primarily applied to extend dynamical mean-field theory (DMFT) [ 222 – 225 ]. The reason
for that is that the Bethe–Salpeter based method, which is formulated on the level of the
two-particle Green function with its four-time structure, allows for an easier derivation
and representation of more sophisticated approximations, including dynamical vertex
corrections [ 226 ]. It thus comes as no surprise that the first two mentioned approaches
by Hedin and Baym are predominantly used in computationally expensive NEGF
theory, which is applied to finite systems out of equilibrium [  78 ,  79 ,  227 ]. By contrast,
when describing computationally less demanding systems in equilibrium [ 226 ,  228 – 230 ],
especially within the local impurity model of DMFT, more advanced approximations
such as the parquet [ 231 ,  232 ] or the dynamical vertex approximation (DΓA) [  224 ,  225 ,

9In fact, Baym and Kadanoff used it in their seminal paper of 1961 [ 80 ].
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 233 ] become applicable. It should be stressed again that all approaches are equally
powerful and differ merely by their representation of the used quantities that make certain
approximations easier to express.

Counter-intuitively, although this work is centered around NEGF theory, the following
derivation of many-body approximations for the Martin–Schwinger hierarchy is based
on the Bethe–Salpeter equation for the two-particle Green function, using the notation
common in DMFT. The main reason is that within this approach, the dynamically
screened ladder (DSL) approximation is easily derived as a special case of the well-known
parquet approximation. The former will be the starting point for the derivation of the
eponymous approximation in the G1–G2 scheme, which is presented in section  6.2 . The
relations between the notation used here and the notation typically used in NEGF
literature are highlighted in appendix  A.4 .

3.3.1 Bethe–Salpeter Approach

In the first step, the two-particle Green function can be decomposed into a Hartree, a
Fock, and a correlation term  

10
 

G(2)(1, 2; 1′, 2′) =G(1)(1; 1′)G(1)(2; 2′) ±G(1)(1; 2′)G(1)(2; 1′) + G(1, 2; 1′, 2′) . (3.40)

G(2)

1

2

1′

2′

=

1

2

1′

2′

±

1

2

1′

2′

+ G
1

2

1′

2′

In the diagrammatic Feynman representation used here, the right vertices correspond to
creators while the left ones correspond to annihilators. Thus the Hartree part can easily
be identified as two independent particles propagating from right to left, while in the Fock
part the particles are exchanged between creation and annihilation. This particle–particle
notation differs from the one often used in the literature [ 78 ,  83 ,  225 ,  234 ,  235 ], where the
second particle (typically the upper) is drawn from left to right, in opposite direction to
the first one, which is the natural representation for particle–hole processes.

10Alternatively, the Fock and correlation contribution are often combined to an exchange–correlation term
L(1, 2; 1′, 2′) = ±G(1)(1; 2′)G(1)(2; 1′) + G(1, 2; 1′, 2′). More information can be found in appendix  A.4 .



3.3 Approximations within MBPT 37

The correlation part G can be expressed as [ 224 ]

G(1, 2; 1′, 2′) =
∫
G(1)(1; 3)G(1)(2; 4)F (3, 4; 5, 6)G(1)(5; 1′)G(1)(6; 2′) , (3.41)

G
1

2

1′

2′

= F
1

2

3

4

5

6

1′

2′

where the full, reducible four-point vertex function F is introduced, which is the central
quantity in the following discussion of many-body approximations. This becomes especially
clear when applying the above separation of the two-particle Green function into a Hartree,
Fock, and correlation part to the self-energy. This leads to

Σ(1; 1′) = ΣHF(1; 1′) + Σc(1; 1′) , (3.42)

where the former two contributions are combined into a mutual Hartree–Fock one ΣHF, as
is often done in the literature. Its explicit form can be found by comparing Eqs. ( 3.36 )
and (  3.40 ), resulting in the time-local terms

ΣHF(1; 1′) = ±iℏ
∫
w(1, 2; 1′, 3)G(1)(3; 2)+ iℏ

∫
w(1, 2; 3, 1′)G(1)(3; 2) , (3.43)

ΣHF
1 1′

= ±iℏ

1

2

1′

3
+iℏ

1

3 1′

2

which diagrams contain only one interaction line. Likewise, the correlation part of the
self-energy Σc can be found by additionally considering Eq. (  3.41 ), leading to,

Σc(1; 1′) = ±iℏ
∫
w(1, 2; 3, 4)G(1)(3; 5)G(1)(4; 6)F (5, 6; 1′, 7)G(1)(7; 2) . (3.44)

Σc
1 1′

= ±iℏ F
1

2

3

4

5

6

1′

7
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Comparing the above expression with the one for the two-particle Green function in
Eqs. ( 3.40 ) and (  3.41 ), it stands out that both contain the reducible four-point vertex F
as the only unknown quantity, manifesting its importance in the following derivations.

By introducing the concept of two-particle (ir)reducibility [ 232 ], F can be separated
into a part that is fully irreducible, denoted as the two-particle fully irreducible vertex
Λ, and vertices that are reducible in a specific two-particle channel, namely the particle–
particle (Φpp), the longitudinal particle–hole (Φph) and the transversal particle–hole (ΦGW )
channel, 

11
 

F (1, 2; 1′, 2′) = Λ(1, 2; 1′, 2′) + Φpp(1, 2; 1′, 2′) + Φph(1, 2; 1′, 2′) + ΦGW (1, 2; 1′, 2′) . (3.45)

In the diagrammatic picture, two-particle reducibility can be understood as the property
that a diagram can be split into two separate parts by cutting two internal single-particle
Green function lines. The three two-particle reducible channels originate from the fact
that there are three different ways to split the four outer coordinates of the two-particle
diagrams into groups of two. Consequently, the fully irreducible vertex Λ contains all
diagrams that cannot be split into two parts in this way, with the leading contribution
being the antisymmetrized pair-interaction w±.

For an easy notation it turns out beneficial to introduce, in analogy to the three two-
particle reducible terms in Eq. ( 3.45 ), three vertices Γpp, Γph and ΓGW that are irreducible
in the respective channel, i.e. they contain the fully irreducible vertex Λ and all diagrams
of the reducible vertices in the other two channels,  

12
 

Γr(1, 2; 1′, 2′) = Λ(1, 2; 1′, 2′) +
∑
r′ ̸=r

Φr′(1, 2; 1′, 2′) with r ∈ {pp, ph, GW} . (3.46)

For the sake of completeness, it should be mentioned that this allows expressing F in three
unique alternative ways via

F (1, 2; 1′, 2′) = Γr(1, 2; 1′, 2′) + Φr(1, 2; 1′, 2′) with r ∈ {pp, ph, GW} . (3.47)

However, in the following, only Eq. ( 3.45 ) will be used to express the reducible vertex F .
Using the irreducible vertex Γr, the two-particle reducible particle–particle channel,

which contains all diagrams where the outer variables (1, 2) can be separated from the
variables (1′, 2′) by cutting two Green function lines, can be expressed as

Φpp(1, 2; 1′, 2′) = 1
2

∫
Γpp(1, 2; 3, 4)G(1)(3, 5)G(1)(4; 6)F (5, 6; 1′, 2′) . (3.48)

Φpp

1

2

1′

2′

= 1
2 Γpp F

1

2

3

4

5

6

1′

2′

11The Channels were named pp, ph and GW to emphasize the connection to the well-known particle–
particle and particle–hole T -matrix, and GW approximation in NEGF theory. Note, that in DMFT
literature the transversal particle–hole channel is often denoted by ph.

12The irreducible vertex Γr is, in fact, the eponym of the well-known DΓA.
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The full vertex F carrying the outer variables (1′, 2′) is connected to the particle–particle-
irreducible vertex Γpp with the outer variables (1, 2) via two single-particle Green function
lines running from right to left, which indicates the particle–particle nature of this channel.
Cutting these two lines cuts the diagram into one part containing Γpp and the other one
containing F . The factor of 1

2 is needed to avoid double counting of diagrams. The other
two channels possess the same general structure but differ by the way the two two-particle
quantities are connected by the two single-particle Green functions. The longitudinal
particle–hole channel has the following form,

Φph(1, 2; 1′, 2′) =
∫

Γph(1, 3; 4, 2′)G(1)(4; 5)G(1)(6; 3)F (5, 2; 1′, 6) . (3.49)

Φph

1

2

1′

2′

= Γph F
1

3

4

2′

5

2

1′

6

According to the particle–hole nature of this contribution, here, the upper Green function
runs in the opposite direction, resulting in Γph and F carrying the outer indices (1, 2′)
and (2, 1′), respectively. Consequently, cutting the two Green function lines, in this case,
splits the diagram into these two contributions. Last, the transversal particle–hole channel
represents the final possible connection of Γ and F . It is given by

ΦGW (1, 2; 1′, 2′) = ±
∫

ΓGW (1, 3; 1′, 4)G(1)(4; 5)G(1)(6; 3)F (5, 2; 6, 2′) , (3.50)

ΦGW

1

2

1′

2′

= ±

ΓGW

F

1

3

1′

4

5

2

6

2′

where the outer coordinates belonging to the first and second particle, (1, 1′) and (2, 2′),
are divided between ΓGW and F , respectively. Again, the Green function lines point
in opposite (vertical) directions in this particle–hole channel. When inserting any of
the two-particle reducible channels of Eqs. ( 3.48 ), ( 3.49 ) and ( 3.50 ) into the alternative
definition of F in Eq. (  3.47 ), the well-known structure of the Bethe–Salpeter equation
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emerges with the two-particle irreducible term Γr acting as the source term.
Regarding symmetry relations, it was shown that all introduced quantities mimic the

behavior of the two-particle Green function for particle exchange [ 232 ],

X(1, 2; 1′, 2′) = X(2, 1; 2′, 1′) with X ∈ {G(2), F,Λ,Φr,Γr} , (3.51)

and complex conjugation,

X(1, 2; 1′, 2′) = [X(2′, 1′; 2, 1)]∗ with X ∈ {G(2), F,Λ,Φr,Γr} , (3.52)

where r ∈ {pp, ph, GW}. However, there is an exception when only the first or last
two variables are exchanged, which corresponds to the exchange of only the creators or
annihilators for G(2). In that case both particle–hole channels do not follow the symmetry
relation of G(2),

X(1, 2, 1′, 2′) = ±X(2, 1, 1′, 2′) with X ∈ {G(2), F,Λ,ΦPP,ΓPP} , (3.53)

but instead are connected to each other via

Φph(1, 2; 1′, 2′) = ±ΦGW (2, 1; 1′, 2′) and Γph(1, 2; 1′, 2′) = ±ΓGW (2, 1; 1′, 2′) . (3.54)

In fact, the circumstance that Γpp and F obey the symmetry relation Eq. ( 3.53 ) is the
reason why a factor of 1

2 is needed in Eq. (  3.48 ) to avoid double-counting of diagrams.

3.3.2 Approximations of the Parquet Equations

This ansatz of expressing the full vertex F by means of the fully irreducible vertex Λ and
the diagrams of the three reducible channels Φr is called parquet decomposition. Its general
idea was first introduced by Diatlov, Sudakov, and Ter-Martirosian in 1957 [ 236 ] and later
by de Dominicis and Martin [ 231 ]. The corresponding closed set of four equations ( 3.45 ),
and ( 3.48 ) to (  3.50 ), referred to as parquet equations, 

13
 is still an exact formulation of

the many-body problem. However, as such, it is too intricate to solve self-consistently in
practice. Approximations to reduce its complexity are typically introduced at the level of
Λ and Γr [ 225 ,  234 ].

Within the so-called parquet approximation, the former is restrained to its leading
contribution, the antisymmetrized pair interaction,

Λ(1, 2; 1′, 2′) ≈ iℏw(1, 2; 1′, 2′) ± iℏw(1, 2; 2′, 1′) =: iℏw±(1, 2; 1′, 2′) . (3.55)

Λ
1

2

1′

2′

≈ iℏ

1

2

1′

2′

± iℏ

1

2

1′

2′

=: iℏ w±

1

2

1′

2′

13The latter three also often go by the name of Bethe–Salpeter equations.
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This is a rather weak approximation because the first neglected term is of fourth order
in w, 

14
 as the fully reducible vertex Λ does not contain any second- and third-order

diagrams [  228 ].
A more radical simplification is considered for the channel-specific irreducible vertices Γr.

In order to decouple the individual channels of the reducible vertices Φr, the contributions
of the other channels r′ ≠ r are neglected in the Γr entering Eqs. ( 3.48 ) to ( 3.50 ), with
the fully irreducible vertex Λ being the only term remaining, cf. Eq. ( 3.46 ). Combined
with the parquet approximation of Eq. ( 3.55 ), this means

Γr(1, 2; 1′, 2′) ≈ iℏw±(1, 2; 1′, 2′) where r ∈ {pp, ph, GW} , (3.56)

which is a much stronger approximation than the parquet one on its own, since here
third-order terms are neglected in F . 

15
 

Combining both approximations, Eqs. ( 3.55 ) and ( 3.56 ), results in a new set of equations
for the full vertex

F (1, 2; 1′, 2′) = iℏw±(1, 2; 1′, 2′) + Φpp(1, 2; 1′, 2′) + Φph(1, 2; 1′, 2′) + ΦGW (1, 2; 1′, 2′)
(3.57)

and the three two-particle reducible vertices

Φpp(1, 2; 1′, 2′) = iℏ
∫
w(1, 2; 3, 4)G(1)(3; 5)G(1)(4; 6)F (5, 6; 1′, 2′) ∼ δC(z1, z2) , (3.58)

Φph(1, 2; 1′, 2′) = iℏ
∫
w±(1, 3; 4, 2′)G(1)(4; 5)G(1)(6; 3)F (5, 2; 1′, 6) ∼ δC(z1, z2′) , (3.59)

ΦGW (1, 2; 1′, 2′) = ±iℏ
∫
w±(1, 3; 1′, 4)G(1)(4; 5)G(1)(6; 3)F (5, 2; 6, 2′) ∼ δC(z1, z1′) ,

(3.60)

which diagrammatically have the same structure as Eqs. ( 3.48 ) to ( 3.50 ) but, in this
form, are effectively three-time quantities due to the highly time-diagonal interaction,
cf. Eq. ( 3.33 ). Using the symmetry relation of Eq. ( 3.53 ), the factor of 1

2 was eliminated
for the particle–particle channel by replacing w± with w.

The approximation defined by Eqs. ( 3.57 ) to ( 3.60 ) should not be confused with the
fluctuation-exchange (FLEX) approximation, which is defined in a similar fashion [ 237 – 240 ].
Within the latter, the three two-particle reducible channels are fully separated. In contrast,
here, although the different channels Φr have been partially decoupled by approximating
Γr by w±, there is still a crossover of the channels happening by means of the full vertex
F . To avoid confusion, going forward, above approximation will be called dynamically
screened ladder (DSL) approximation, as it combines the screening effects of GW with
the particle–particle and particle–hole ladder channels. This name goes back to Kremp
et al. [  221 ], who derived a similar albeit not identical approximation within MBPT, cf.
appendix  A.4 for more information. Later, a related approximation was introduced in
RDO theory [ 76 ].

At this stage, it is possible to easily identify a plethora of commonly used conserving
self-energy approximations based on the specific choice of F . More information and
diagrammatic representations of the approximations can be found in Ref. [ 79 ].
14In terms of the self-energy, this corresponds to neglecting fifth-order diagrams since an additional

interaction enters through Eq. ( 3.44 ).
15This translates to neglecting fourth-order self-energy diagrams.
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CPU Time
O (Nx

b )
HF 2B TPP TPH GW TOA FLEX DSL

O (N1
t ) O (N3

t ) O (N4
t )

wijkl 4 5 6 6 6 6 6 6

Vij with exchange 3 4 5 5 5 5 5 5

Vij without exchange 2 3 5 5 3 5 5 5

U 2 3 3 3 3 3 3 4

Table 3.1 – CPU-time scaling O (Nx
bN

y
t ) for various combinations of approximations

within NEGF theory and types of pair interactions (general basis w, PPP V , Hubbard
U) with regard to the basis size Nb (x given in the main body) and the number of time
steps Nt (given in the header). The background highlights the numerical complexity as
green (x+ y ≤ 5), yellow (6 ≤ x+ y ≤ 7) or red (8 ≤ x+ y).

Hartree–Fock approximation (HF): Ignoring the full vertex completely, i.e.,

FHF := 0 , (3.61)

results in the well-known Hartree–Fock approximation. This is straightforward to see
since, in this case, the correlation part of the self-energy, Eq. ( 3.44 ), vanishes and only
the time-local Hartree–Fock contribution, Eq. (  3.43 ), remains. This approximation is very
popular due to its low numerical complexity, cf. Tabs.  3.1 and  3.2 , and is mostly applied
when a rough mean-field description of the interactions including first-order exchange
effects is sufficient. It provides the best results for weakly correlated systems. Applications
within this work can be found in sections  4.2 ,  7.2 and  7.3 .

Second-order (Born) approximation (2B): The second-order (Born) approximation is
equivalent to neglecting all two-particle reducible diagrams, so that Eq. ( 3.57 ) becomes

F 2B := iℏw± ∼ δC(z1, z2)δC(z1, z2′)δC(z1, z1′) , (3.62)

which corresponds to the fully time-diagonal contribution of F . This includes the lead-
ing order of the correlated self-energy diagrams, which contain two interaction lines,
cf. Eq. ( 3.44 ), and describe the scattering process between two particles. It provides
considerable improvements compared to Hartree–Fock for intermediate interactions at
reasonable computational costs, cf. Tabs.  3.1 and  3.2 , especially in connection with the
HF-GKBA, cf. section  5.2 . However, for strongly correlated systems, higher-order approx-
imations presented in the following are superior. The explicit form of the second-order
Born approximation for a diagonal basis is derived in appendix  A.5 and use cases within
this work can be found in section  4.2 and  7.3 .

Particle–particle T -matrix approximation (TPP): The T -matrix approximation in
the particle–particle channel is reproduced by its namesake two-particle reducible vertex
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Memory Consumption
O (Nx

b )
HF 2B TPP TPH GW TOA FLEX DSL

O (N0
t ) O (N2

t )

wijkl 4 4 4 4 4 4 4 4

Vij with exchange 2 2 4 4 4 4 4 4

Vij without exchange 2 2 4 4 2 4 4 4

U 2 2 2 2 2 2 2 2

Table 3.2 – Memory consumption O (Nx
bN

y
t ) for various combinations of approximations

within NEGF theory and types of pair interactions (general basis w, PPP V , Hubbard
U) with regard to the basis size Nb (x given in the main body) and the number of time
steps Nt (given in the header). The background highlights the consumption as green
(x+ y = 2), yellow (x+ y = 4) or red (x+ y = 6.)

Φpp,

FTPP := iℏw± + Φpp[FTPP] = T pp ∼ δC(z1, z2)δC(z1′ , z2′) . (3.63)

Since there are no contributions of the other two channels, the full vertex FTPP effectively
reduces to a two-time function. In fact, FTPP can be identified as the particle–particle T
matrix (T pp) of scattering theory, which includes the full Born series up to infinite order
of w. This approximation excels at situations of low filling even at strong interactions. It
should be noted that, in NEGF theory, the T matrix is often defined without the leading
(singular) interaction term w±, cf. Refs. [ 79 ,  94 ,  95 ]. The resulting quantity is equivalent
to Φpp. From the numerical side the particle–particle T -matrix approximation is especially
efficient in the Hubbard model, whereas a spatial basis with long-range interactions like
the PPP model provides little improvement on the general case, cf. Tabs.  3.1 and  3.2 .

Particle–hole T -matrix approximation (TPH): As the name suggests, this approxima-
tion is the equivalent to the particle–particle T matrix approximation in the particle–hole
channel. Consequently, the corresponding full vertex F is given by

FTPH := iℏw± + Φph[FTPH] w±→w= T ph ∼ δC(z1, z2′)δC(z2, z1′) . (3.64)

The major difference to the particle–particle case arises due to the special symmetry
relation between the two particle–hole channels, cf. Eq. ( 3.54 ). When exchange effects
are included, as in the left-hand side of Eq. ( 3.64 ), this approximation is not energy
conserving [ 159 ]. Therefore, traditionally, the particle–hole T -matrix approximation is
defined without exchange contributions (w± → w), as indicated in Eq. ( 3.64 ). In that
case, FTPH is equivalent to the particle–hole T matrix (T ph). Regarding the numerical
scaling, both T -matrix approximations behave identically.
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GW approximation: The GW approximation is the eponym of the transversal particle–
hole channel. Therefore, it comes as no surprise that it can be restored by expressing the
full vertex by

FGW := iℏw± + ΦGW [FGW ] w±→w= W ∼ δC(z1, z1′)δC(z2, z2′) . (3.65)

As discussed for the particle–hole T -matrix approximation, including exchange interactions
leads to a violation of energy conservation also in the GW case. Therefore, the traditional
GW approximation is defined without exchange effects (w± → w), resulting in FGW being
the W of GW . 

16
 Initially introduced by Hedin [  196 ], it is especially successful in describing

systems with long-range Coulomb interactions, where dynamical screening effects are of
particular importance. The advantage of the GW approximation compared to the T
matrices is its incredible numerical performance for general spatial bases like the PPP
model, cf. Tabs.  3.1 and  3.2 . Combined with its ability to describe dynamical screening
effects, it is tailor-made for describing solids and molecules within NEGF theory using
lattice models, as it is done in this work in section  7.2 and  7.3 . The explicit form of the
GW approximation for a diagonal basis is derived in appendix  A.5 .

Third-order approximation (TOA): The third-order approximation, per definition,
contains all self-energy diagrams up to the third order in the interaction and is thus a
direct successor of the Hartree–Fock and the second-order Born self-energies, which contain
diagrams up to the first and second order, respectively. Within the picture of the vertex
function, it can be expressed by taking all channels into account but replacing the full
vertex entering the two-particle reducible channels by the second-order one, cf. Eq. ( 3.62 ),

FTOA := iℏw± + Φpp[F 2B] + Φph[F 2B] + ΦGW [F 2B] . (3.66)

This breaks the self-consistency of Eqs. ( 3.48 ) to ( 3.50 ), resulting in a finite number of
diagrams. In practice, this approximation has shown good results, as it contains the
leading orders of all three channels [ 86 ]. Numerically, it behaves similarly to the two T
matrix approximations.

FLEX approximation: The FLEX approximation aims at combining the strong-coupling
effects included in the T matrix with the dynamical-screening description of GW by
simply adding up the contributions of the individual approximations [ 226 ,  237 ,  239 ,  240 ].
Therefore, its full vertex contains the contributions of all three channels, which are all
self-consistently solved on their own,

FFLEX := iℏw± + Φpp[FTPP] + Φph[FTPH] + ΦGW [FGW ] . (3.67)

As the cross-coupling between the channels is neglected, the FLEX approximation contains
all effects that are present in the individual T -matrices and GW approximations, but
16Looking at Eq. (  3.44 ), it might seem that this is wrong because the self-energy would be of the form

Σc = GwGGW . However, in the traditional definition, the GW self-energy also includes the Fock part,
i.e. Σxc = GW . Using Eqs. ( 3.65 ) and ( 3.60 ), it can be shown that both expressions are equivalent.
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it does not describe important combined processes. Still, due to this separation, the
numerical scaling of the FLEX approximation is equivalent to the T matrix or third-order
approximations, cf. Tabs.  3.1 and  3.2 . Importantly, like the TPH and GW approximation,
the FLEX approximation is not conserving when including exchange effects [ 159 ].

DSL approximation: The DSL approximation denotes the set of equations ( 3.57 ) to
( 3.60 ) in their fully self-consistent form. This can be formally expressed as

FDSL := iℏw± + Φpp[FDSL] + Φph[FDSL] + ΦGW [FDSL] . (3.68)

Due to the additional approximation of the irreducible vertices Γr, cf. Eq. ( 3.56 ), DSL does
not take all cross-coupling terms between the individual two-particle reducible channels into
account that are included in the full parquet approximation. However, it considers those
terms that originate from the self-consistent inclusion of FDSL in the Φr, cf. Eqs. (  3.58 )
to ( 3.60 ), which are not included in the FLEX approximation. 

17
 This improved description

of the combined effects of strong coupling and dynamical screening comes at the price
of an unfavorable numerical scaling, cf. Tabs.  3.1 and  3.2 . Among all approximations
discussed here, DSL is the only one whose computational effort scales with the fourth
power of the number of time steps Nt. This is a consequence of the cross-coupling, which
results in the reducible vertices Φr effectively being functions of three times, cf. Eqs. ( 3.58 )
to ( 3.60 ), instead of two times when cross-coupling is neglected, as in the case of the T
matrices or GW . This major downside makes the DSL approximation impractical within
NEGF theory. However, as is shown in section  6.2 , when combined with the HF-GKBA it
is possible to express the DSL approximation in the newly developed time-linear G1–G2
scheme, where it is equivalent to the pivotal, well-known Wang–Cassing (WC) [ 241 ] or
Valdemoro [ 242 ] approximation of the BBGKY hierarchy. In that context, the numerical
costs of the DSL approximation are greatly reduced, cf. Tab.  6.2 . Combining strong
coupling and dynamical screening along with a reasonable numerical complexity makes the
DSL approximation within the G1–G2 scheme the ideal method to describe moderately
coupled systems in nonequilibrium, like it is done within this work in section  7.4 for finite
graphene nanostructures.

3.4 Real-Time Components

The time-contour picture introduced in section  3.1 allowed for a compact representation
of the Kadanoff–Baym and Dyson equations in section  3.2 as well as the self-energy
approximations in section  3.3 . However, this representation is not suited for implementing
the NEGF approach numerically. To this end, one has to resort back to real-time arguments.
17Within parquet theory, the FLEX approximation is often expressed by setting Γr to the bare interac-

tion [ 234 ,  239 ], what effectively corresponds to Eq. ( 3.56 ). However, both approximations are not
equivalent since, in the former case, Γr is approximated in Eq. ( 3.47 ), whereas, here, it is done in the
definition of Φr.
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Figure 3.3 – Location of the contour times z1 (red) and z2 (blue) on the two branches
of the contour Cpure or CAS for the causal (c), anticausal (a), lesser (<) and greater
(>) components, cf. Eqs. (  3.69 ) to (  3.72 ). The real times t and t′ correspond to the
projection of z1 and z2 onto the real-time axis, respectively.

For a generic two-time function on the adiabatic-switching contour CAS, there are four
distinct ways to order the two time arguments on the causal and anticausal branches. 

18
 

This results in four different real-time components, which is illustrated in Fig.  3.3 : the
causal component (c) when both time arguments are located on the causal branch C+, the
anticausal component (a) when both time arguments are located on the anticausal branch
C−, the lesser component (<) when the first time argument lies on the causal and the second
on the anticausal branch, and the greater component (>) when the first time argument
lies on the anticausal and the second on the causal branch. For the single-particle Green
function, which from now on is simply denoted as G instead of G(1), these components are
defined as [ 194 ,  243 ]

Gc
ij(t, t′) := G++

ij (t, t′) := 1
iℏ
〈
T
{
ĉi(t)ĉ†

j(t′)
}〉

, (3.69)

G<
ij(t, t′) := G+−

ij (t, t′) := ± 1
iℏ
〈
ĉ†

j(t′)ĉi(t)
〉
, (3.70)

G>
ij(t, t′) := G−+

ij (t, t′) := 1
iℏ
〈
ĉi(t)ĉ†

j(t′)
〉
, (3.71)

Ga
ij(t, t′) := G−−

ij (t, t′) := 1
iℏ
〈
T̄
{
ĉi(t)ĉ†

j(t′)
}〉

, (3.72)

with the same time-ordering operators T and T̄ as defined for Eq. (  3.3 ).
Due to the transition from contour to real times, the variable notation introduced in

18This is an advantage of the adiabatic-switching method introduced in section  3.1 . When extending the
contour by a third imaginary time branch instead to generate an interacting ground state, the number
of possible ways to order the two time arguments increases to nine.
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section  3.2 , which combines the basis index with the time argument, is no longer suitable.
Instead, in the following all single-particle quantities such as G or Σ will be given in bold
matrix notation with only the time arguments written explicitly. This way, the relation
between the real-time components of the single-particle Green function can be expressed
as

Gc(t, t′) = Θ̃(t, t′)G>(t, t′) + Θ̄(t′, t)G<(t, t′) , (3.73)
Ga(t, t′) = Θ̃(t′, t)G>(t, t′) + Θ̄(t, t′)G<(t, t′) , (3.74)

where Θ̃ and Θ̄ are different definitions of the Heaviside step function with Θ̃(t, t′) = 1 if
t > t′ else Θ̃(t, t′) = 0 and Θ̄(t, t′) = 1 if t ≥ t′ else Θ̄(t, t′) = 0. In practice, it is useful to
introduce two additional (redundant) components called retarded (R) and advanced (A).
For the single-particle Green function, they are defined as

GR(t, t′) := 1
2 [Gc(t, t′) − G<(t, t′) + G>(t, t′) − Ga(t, t′)] , (3.75)

GA(t, t′) := 1
2 [Gc(t, t′) − G>(t, t′) + G<(t, t′) − Ga(t, t′)] . (3.76)

A more compact expression can be found by inserting Eqs. ( 3.73 ) and ( 3.74 ) into Eqs. ( 3.75 )
and (  3.76 ), leading to

GR(t, t′) = Θ(t, t′) [G>(t, t′) − G<(t, t′)] , (3.77)
GA(t, t′) = Θ(t′, t) [G<(t, t′) − G>(t, t′)] , (3.78)

containing the symmetric Heaviside step function with Θ(t, t′) = 1 if t > t′, Θ(t, t′) = 1
2 if

t = t′ and else Θ(t, t′) = 0. The real-time components of the single-particle Green function
obey the following useful symmetry relations  
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G≷(t, t′) = −
[
G≷(t, t′)

]†
, (3.79)

GR(t, t′) =
[
GA(t, t′)

]†
. (3.80)

These real-time components exist for any two-time contour function [  77 ]. In the case
of the self-energy, the lesser and greater components contain only the correlation part,
cf. Eq. ( 3.44 ),

Σ≷(t, t′) = Σ≷
c (t, t′) , (3.81)

while the retarded and advanced components carry the time-diagonal Hartree–Fock contri-
bution, cf. Eqs. ( 3.43 ) and ( 3.109 ), as an additional singular term

ΣR(t, t′) := δ(t, t′)ΣHF(t, t′) + Θ(t, t′) [Σ>(t, t′) − Σ<(t, t′)] , (3.82)
ΣA(t, t′) := δ(t, t′)ΣHF(t, t′) + Θ(t′, t) [Σ<(t, t′) − Σ>(t, t′)] . (3.83)

Products of contour-time quantities and integrals along the Keldysh contour can
be transferred into the real-time representation using the so-called Langreth–Wilkins
19The adjoint operation also transposes the time arguments, i.e. t ↔ t′.
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rules [ 244 ]. A list of all rules and how to apply them can be found in Ref. [ 77 ]. They allow
transforming the KBEs and the Dyson equation into real-time expressions that can be
implemented numerically. In practice, it is most common to formulate the KBEs for the
lesser and greater component,

iℏ ∂
∂t

G≷(t, t′) = h(1)(t)G≷(t, t′) +
∫ ∞

−∞
dt̄
{
ΣR(t, t̄)G≷(t̄, t′) + Σ≷(t, t̄)GA(t̄, t′)

}
(3.84)

−iℏ ∂

∂t′
G≷(t, t′) = G≷(t, t′)h(1)(t′) +

∫ ∞

−∞
dt̄
{
GR(t, t̄)Σ≷(t̄, t′) + G≷(t, t̄)ΣA(t̄, t′)

}
,

(3.85)

as the retarded and advanced component can be easily calculated via Eqs. ( 3.77 ) and (  3.78 ).
Here, the time-diagonal part δ(1, 1′) of the contour-time KBEs ( 3.29 ) and ( 3.30 ) has
vanished, since by definition the time-arguments of the lesser and greater component are
located on two different contour branches. Take note that all occurring quantities are
matrices, so products should be understood as matrix multiplications. More information
on how to solve these equations and expressions for different self-energy approximations
are presented in chapter  5 .

For the Dyson equations, it is beneficial to express them for the retarded and advanced
components,

GR/A(t, t′) = G
R/A
0 (t, t′) +

∫ ∞

−∞
dt̄
∫ ∞

−∞
d¯̄tGR/A

0 (t, t̄)ΣR/A(t̄, ¯̄t)GR/A(¯̄t, t′) , (3.86)

GR/A(t, t′) = G
R/A
0 (t, t′) +

∫ ∞

−∞
dt̄
∫ ∞

−∞
d¯̄tGR/A(t, t̄)ΣR/A(t̄, ¯̄t)GR/A

0 (¯̄t, t′) . (3.87)

This is because, in practice, they are often used to describe equilibrium systems in
the frequency domain. There, it is straightforward to calculate the lesser and greater
component from the retarded and advanced ones using the fluctuation–dissipation theorem,
cf. Eqs. ( 4.8 ) and ( 4.9 ), as is done in section  4.1 .

For four-time contour quantities like the two-particle Green function, the transition
to real times is a bit more cumbersome since there are 16 unique ways to assign the
time arguments to the causal and anticausal branches of the contour, which will not be
discussed here in detail. 

20
 The generalization of the lesser and greater component to the

two-particle Green function, cf. Eq. (  3.34 ), corresponds to the case that the four times are
in ascending (z1 < z2 < z2′ < z1′) and descending (z1 ≥ z2 ≥ z2′ ≥ z1′) order, respectively.
On the time diagonal they are given by

G
(2),<
ijkl (t) := G

(2),<
ijkl (t, t, t, t) = 1

(iℏ)2

〈
ĉ†

k(t)ĉ†
l (t)ĉj(t)ĉi(t)

〉
, (3.88)

G
(2),>
ijkl (t) := G

(2),>
ijkl (t, t, t, t) = 1

(iℏ)2

〈
ĉi(t)ĉj(t)ĉ†

l (t)ĉ
†
k(t)

〉
. (3.89)

The decomposition of the two-particle Green function into Hartree, Fock, and correlation
part introduced for contour times in Eq. (  3.40 ) can also be expressed in the real-time
20The 16 ways to assign the four time arguments to one of the two branches of the contour should not be

confused with the 24 ways to order the four times along the contour [ 221 ]. For comparison, in the case
of two times there are four ways to assign them to the contour (c,<,>,a) but only two ways to order
them (z1 > z2 and z1 < z2).
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+

−

z1z2 (>)

z2 (<)

∫
C d2G(1, 2)

Figure 3.4 – The first time argument z1 is located on the causal (+) branch while the
second time z2 is integrated over along the contour. Part of the contributions where
z1 < z2 cancel so that the integration can be split into two integrals over reduced
intervals, as discussed in the text for Eq. ( 3.91 ). The colors denote for which time
constellations the example quantity G(1, 2) corresponds to a lesser (orange) or greater
(blue) component.

picture,

G
(2),<
ijkl (t) = G<

ij(t, t)G<
kl(t, t) ±G<

il (t, t)G<
jk(t, t) + Gijkl(t) , (3.90)

where G is the lesser component of the correlation part of the two-particle Green function.
The respective superscript < was dropped in order to match the notation of Ref. [  95 ].
Finally, the concise derivation of the DSL approximation in the G1–G2 scheme in section  6.2 

requires the real-time representation of the integral expression for G defined in Eq. ( 3.41 ).
Even in the simplified case of the time-diagonal lesser component with only one distinct
time G<(t), the expression becomes cumbersome since the full vertex function F remains
a four-time quantity with 16 possible time-ordered components,

Gijkl(t) =
∑

α,β,γ,δ
∈{+,−}

∫
G+α

ip (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t) . (3.91)

For better readability, integration over all underlined indices and times is implied by the
integral

∫
. The Greek indices α, β, γ, δ corresponding to the times t1, t2, t3, t4, respectively,

represent the 16 possibilities to place the respective time arguments on the causal (+) or
anticausal (−) branch of the contour. Due to cancellation effects, which are illustrated in
Fig.  3.4 , the time integration can be performed on the reduced intervals (−∞, t] if the
respective time argument is on the causal branch (+) and [t,−∞) if it is on the lower
branch (−). 

21
 For these restricted times, the components of the single-particle Green

function, cf. Eqs. ( 3.69 ) to ( 3.72 ), reduce to

G+−(t, t′) = G<(t, t′) , (3.92)

G++(t, t′) = Gc(t, t′) t≥t′
= G>(t, t′) , (3.93)

G−−(t, t′) = Ga(t, t′) t≤t′
= G>(t, t′) , (3.94)

so that Eq. ( 3.91 ) effectively only contains G> and G<.
21In a complete picture, one would need to describe four-time quantities on a multi-loop contour [  245 ].

However, due to the integrals, all contributions of the additional loops cancel and a single-loop contour
remains that is sufficient to describe Eq. (  3.91 ) for the outer time structure of Eq. ( 3.88 ).
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3.4.1 Physical Observables

The real-time components of the single- and two-particle Green function give direct access
to a wide range of important physical observables.

On the time-diagonal, G< is related to the single-particle density matrix D(1) via

G<(t, t) =: G<(t) = ± 1
iℏD

(1)(t) , (3.95)

and with that to the local density ni(t) = D
(1)
ii (t). Likewise, G>(t) := G>(t, t) can be

associated with the density matrix for holes leading to the relation

G>(t) − G<(t) = 1
iℏ1 . (3.96)

In the same fashion, the lesser component of the two-particle Green function on the time
diagonal is related to the two-particle density matrix D(2) via  

22
 

G
(2),<
ijkl (t) = 1

(iℏ)2D
(2)
ijkl(t) , (3.97)

while the greater component G(2),> is associated with the density matrix of two holes and
can be expressed as

G
(2),>
ijkl (t) = G

(2),<
ijkl (t) + 1

iℏ
[
δikG

>
jl(t) + δjlG

<
ik(t) ± δjkG

>
il (t) ± δilG

<
jk(t)

]
(3.98)

( 3.96 )= G
(2),<
ijkl (t) +G>

ik(t)G>
jl(t) −G<

ik(t)G<
jl(t) ±G>

ilG
>
jk(t) ±G<

ilG
<
jk(t) . (3.99)

Therefore, the pair-distribution function (PDF) g, which describes the probability of
finding one particle in the spin orbital i and another in the spin orbital j, can be expressed
as

gij(t) := D
(2)
ijij(t) = (iℏ)2 G

(2),<
ijij (t) . (3.100)

In the literature, this quantity is often called density–density correlation function [ 249 ].
Although this term is correct, as g carries information about correlations, it is slightly
misleading, as g also contains uncorrelated contributions. The pure correlation part of
the pair-distribution function is denoted as pair-correlation function (PCF) δg, which is
defined as

δgij(t) := (iℏ)2 Gijij(t) . (3.101)

Both quantities, g and δg, are sometimes additionally normalized to the mean-field
contribution ni(t)nj(t).

An important observable in lattice systems is the double occupancy or doublon  

23
 

22Within this work, the density matrices are defined to match the index structure of the corresponding
Green functions, analogous to, e.g., Refs. [ 246 ,  247 ]. Take note that often in the literature an alternative
definition is used, e.g. D

(1)
ij := ⟨c†

i cj⟩ [ 242 ,  248 ].
23Doublons are bound electron pairs that can form in lattice systems, for instance, due to ion impacts [ 250 ,

 251 ].
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distribution d, which is a special case of the pair-distribution function and describes the
probability of finding two particles on the same lattice site,

di(t) := g↑↓
ii (t) . (3.102)

It is defined explicitly for two different spin orientations ↑↓ as the same-spin contributions
always vanish due to the Pauli exclusion principle.

Another important observable related to the single- and two-particle Green function is
the second local magnetic moment〈

m̂2
i

〉
(t) :=

〈
(n̂i,↑ − n̂i,↓)2

〉
(t) = ni(t) − 2di(t) , (3.103)

which provides information about the magnetization of the system that is typically not
included in single-particle observables alone, cf. section  4.2 .

The total energy of a system can be expressed by an ideal and an interaction part

Etot(t) = Eid(t) + Eint(t) , (3.104)

where the former contains one contribution corresponding to the kinetic and one corre-
sponding to the external potential energy, cf. Eq. ( 3.19 ),

Ekin(t) = ±iℏTr
[
h(0)G<(t)

]
, (3.105)

Epot(t) = ±iℏTr [f(t)G<(t)] . (3.106)

The interaction part can be divided in a similar fashion,

Eint(t) = EHF(t) + Ec(t) , (3.107)

with the Hartree–Fock contribution given by

EHF(t) = ± iℏ
2 Tr

[
ΣHF(t)G<(t)

]
, (3.108)

where the Hartree–Fock self-energy, cf. Eq. (  3.43 ), in real-time is defined as

ΣHF
ij (t) = ±iℏ

∑
kl

w±
ikjl(t)G<

lk(t) . (3.109)

The correlation energy is directly related to the correlation part of the two-particle Green
function

Ec(t) = (iℏ)2

2
∑
ijkl

wijkl(t)Gklij(t) . (3.110)

Importantly, as the single-particle Green function is defined as a two-time quantity,
cf. Eq. ( 3.28 ), it contains information about the spectral properties of a system. The
generalized time-resolved photoemission (PES) and inverse photoemission spectrum (IPES)
at time T are given by [ 157 ,  252 ]

A<
ij(ω, T ) = ±iℏ

∫
dt dt′ Sκ(t− T )Sκ(t′ − T )e−iω(t−t′)G<

ij(t, t′) , (3.111)

A>
ij(ω, T ) = ∓iℏ

∫
dt dt′ Sκ(t− T )Sκ(t′ − T )e−iω(t−t′)G>

ij(t, t′) , (3.112)
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which are basically Fourier transforms of the lesser and greater Green function, respectively,
combined with a convolution with Sκ. The latter is a Gaussian function,

Sκ(t) := 1
κ

√
2π

exp
(

− t2

2κ2

)
, (3.113)

which simulates the probe pulse with standard deviation κ that is used in experimental
measurements. The identification of A< as the PES, which measures the occupied states,
and A> as the IPES, which measures the unoccupied states, comes as no surprise, since it
was already established that the lesser component of the single-particle Green function is a
generalization of the single-particle density matrix, while the greater component is related
to the single-hole matrix in the same way. From Eqs. ( 3.111 ) and (  3.112 ) the time-resolved
local spectra,

A≷
i (ω, T ) = A≷

ii(ω, T ) , (3.114)

and the local DOS (LDOS), 

24
 

Di(ω, T ) = A>
i (ω, T ) + A<

i (ω, T ) , (3.115)

can be derived. Additionally, a Fourier transform of Eqs. ( 3.111 ) and (  3.112 ) to momentum
space results in the occupied (<) and unoccupied (>) parts of the time-resolved dispersion
relation

A≷
k (ω, T ) =

∑
ij

e−ik(i−j)A≷
ij(ω, T ) . (3.116)

The occupied part A<
k (ω, T ) is experimentally accessible through time- and angle-resolved

photoemission spectroscopy (trARPES).

24The total DOS, PES, and IPES are simply the sum over all local contributions.



53

4 Equilibrium Theory

The grass is always greener on the other side. This famous proverb describes
very well my relationship to the equilibrium theory. Having started my journey in
GF theory by solving the KBEs for systems in nonequilibrium, where instabilities,
overdamping and horrendous numerical costs were daily fare, cf. section  5.1.1 , I
thought that implementing and solving the Dyson equation for equilibrium systems
would be a welcome, refreshing experience. From my point of view, I had every
reason to be optimistic, since the numerical requirements for describing a steady-
state system are low. And anyway, what problems can there possibly be in solving
systems in equilibrium?

My euphoria did not last long, as I was quickly confronted with a list of new
challenges that I never encountered before when solving the KBEs. The iterative
nature of the procedure not only makes the method more costly than initially thought,
but it also requires a sensible choice of the initial state and for a fast convergence
one has to think of an effective way of mixing the intermediate iterative solutions.
Moreover, it turns out that the converged solution is not even unique, which is the
topic of Ref. [ 253 ] and summarized in section  4.2 . It depends, among other things,
on the choice of the initial state and the mixing parameter.

The moral of the story is that every approach has its own challenges, which one
often only fully understands once one experiences them firsthand. It turns out that
the grass isn’t always greener on the other side.

In chapter  3 the NEGF method was introduced in its general time-dependent form with the
KBEs as the central EOMs for the Green function. However, if one is only interested in sys-
tems in equilibrium or in a nonequilibrium steady state, as occurring in transport problems,
the most established approach involves the solution of the Dyson equation. Combined with
the GW self-energy approximation of Hedin [ 196 ], it is one of the most well-known and
successful methods for describing the optical properties of atoms and molecules [ 254 – 265 ]
as well as band structures, band gaps [ 266 – 271 ], and transport phenomena [  272 ] in solids.
Although, in principle, any of the self-energies presented in section  3.3 could be used,
the GW self-energy is typically chosen because it combines the correct description of
dynamical screening with an advantageous numerical scaling, as illustrated in Tab.  3.1 .
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Therefore, in the literature, the method as a whole is simply called GW [ 83 ,  84 ,  273 – 275 ].
However, as in this thesis it is also combined with the 2B self-energy approximation, the
approach will be referred to more generally as the equilibrium Green functions (EGF)
approach.

In this chapter, first, the numerical implementation of the EGF method is presented,
which is used in this work to calculate the ground-state properties of graphene nanos-
tructures in section  7.2 . Additionally, various solution procedures for solving the Dyson
equation iteratively with different degrees of self-consistency are discussed in section  4.1 .
Finally, the recent findings regarding the problem of solution multiplicity of the Dyson
equation and the question of whether Green functions theory is able to describe the Mott
transition of the Hubbard model, cf. section  2.2.2 , are presented in section  4.2 . These
results have been published in Ref. [ 253 ].

4.1 Equilibrium Green Functions Approach

When describing an equilibrium system, it is advisable to transform the time basis from
the two absolute times t and t′, used in section  3.4 , to a center-of-mass time T and a
relative time τ with

T := t+ t′

2 and τ := t− t′ . (4.1)

As the stationary system is constant with respect to T , the corresponding single-particle
Green function GR

σ (τ) only depends on the relative time. However, even for single-time
functions solving the Dyson equations ( 3.86 ) and (  3.87 ) remains a tedious task due to the
time integrals. Therefore, one proceeds to perform a Fourier transform to the frequency
domain,

GR
σ (ω) = F

[
GR

σ (τ)
]

:=
∫ ∞

−∞
dτ e−iωτGR

σ (τ) , (4.2)

GR
σ (τ) = F−1

[
GR

σ (ω)
]

:=
∫ ∞

−∞

dω
2π eiωτGR

σ (ω) , (4.3)

where the convolutions in the Dyson equation vanish, 

1
 

GR
σ (ω) = GR

0 (ω) + GR
0 (ω)ΣR

σ (ω)GR
σ (ω) (4.4)

=
[
1 − GR

0 (ω)ΣR
σ (ω)

]−1
GR

0 (ω) . (4.5)

In practice, it is solved in the explicit, non-iterative form given in the second line. The
spin-independent ideal Green function, 

2
 

GR
0,ij(ω) = ⟨i| (ω − Ĥ(1) + iη)−1 |j⟩ with η → 0+ , (4.6)

1The two Dyson equations (  3.86 ) and ( 3.87 ) are redundant and it is sufficient to solve one of them.
2The infinitesimal positive constant η originates from the Fourier representation of the Heaviside

function [ 78 ].
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is directly defined by the single-particle Hamiltonian Ĥ(1), cf. Eq. ( 3.19 ), which includes
the kinetic part and external potentials. More information on how to implement Eq. ( 4.6 )
numerically is given in appendix  A.3 . The value of η has to be chosen as small as possible
to not introduce an unphysical broadening of the spectrum but large enough to allow for
accurate numerical sampling of the features.

The Dyson equation (  4.5 ) is only needed for the retarded component, since the advanced
one can be easily calculated using the symmetry relation

GA
σ (ω) =

[
GR

σ (ω)
]†
. (4.7)

In the time domain, there exists a simple relation for generating the retarded and advanced
real-time components from the lesser and greater ones, cf. Eqs. (  3.77 ) and (  3.78 ). In the
frequency space, it is the other way around, the lesser and greater component can be
easily expressed by the retarded and advanced one employing the fluctuation–dissipation
theorem,

G<
σ (ω) = ±f∓(ω − µ)

[
GR

σ (ω) − GA
σ (ω)

]
, (4.8)

G>
σ (ω) = f̄∓(ω − µ)

[
GR

σ (ω) − GA
σ (ω)

]
, (4.9)

with µ being the chemical potential, f∓(ω) := 1/
(
eβω ∓ 1

)
the Bose/Fermi function for

the inverse temperature β, and f̄∓(ω) := 1 ± f∓(ω).
In order to solve the Dyson equation for the retarded Green function, Eq. (  4.5 ), one

has to determine ΣR
σ (ω). The most efficient way to do so is to calculate the self-energy in

the time domain via the single-time version of Eq. ( 3.82 ),

ΣR
σ (τ) = δ(τ)ΣHF

σ + Θ(τ) [Σ>
σ (τ) − Σ<

σ (τ)] , (4.10)

and transform it to frequency space using the Fourier transform defined in Eq. ( 4.2 ). Note
that ΣHF does not depend on the relative time τ and Σ≷ only contains the correlation
part as discussed for Eq. ( 3.81 ).

Next, explicit expressions will be given for the second-order Born and GW  

3
 self-energies,

which have the most favorable scaling among the correlated approximations for the PPP
model, cf. Tab.  3.1 . Before addressing the case of the two electronic lattice models directly,
the following relations are valid for general models with diagonal interactions of the form
wijkl ∼ δikδjl. In that case, the lesser and greater components of the self-energy are given
by

Σ≷
σ (τ) = iℏG≷

σ (τ) ◦ W ≷
σ (τ) + SOXΣ≷

σ (τ) , (4.11)

where ◦ denotes the Hadamard or element-wise product between two matrices. The first
term contains the direct diagrams of the second-order Born and GW approximation,
depending on the choice of W ≷, and the second term represents the second-order exchange
(SOX) diagram.

At this point, a few words are necessary regarding the screened interaction W . Typically,
3For the GW self-energy all exchange diagrams beyond the second order are neglected.
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in its contour definition, it includes the bare interaction w as a singular term, cf. Eq. (  3.65 ),
which generates the Fock diagram within the GW approximation. For the real-time
components, W ≷ does not contain the singular term, which is only present in the retarded
and advanced parts, similar to the self-energy, where Σ≷ only contains the correlation part.
However, for the sake of simplicity, in the following the retarded and advanced components
of the screened interaction are also defined without the singular part as W̃ R := W R − w

and

W̃ A
σ (ω) =

[
W̃ R

σ (ω)
]†
. (4.12)

From the structure of Eq. ( 4.11 ), it is clear that it is beneficial to calculate the self-
energy in the time domain, where the GW term is a simple time-local product ∼O(Nω). 

4
 

In contrast, in frequency space, G and W are connected by a numerically expensive
convolution ∼O(N2

ω). Therefore, it is cheaper to do the calculation in the time domain
and perform a fast Fourier transform ∼O(Nω · logNω). Changing between time and
frequency representation to always utilize the numerically optimal expressions is a central
idea of this approach, which is also applied for the calculation of W ≷

σ (τ). Since the
non-singular screened interaction, much like the single-particle Green function, obeys a
Dyson equation, cf. appendix  A.5 , it is beneficial to first obtain the retarded component
W̃ R

σ (ω) in frequency space and subsequently calculate the lesser and greater components
using the fluctuation–dissipation theorem

W<
σ (ω) = f−(ω)

[
W̃ R

σ (ω) − W̃ A
σ (ω)

]
, (4.13)

W>
σ (ω) = f̄−(ω)

[
W̃ R

σ (ω) − W̃ A
σ (ω)

]
, (4.14)

where on the two-particle level, in contrast to Eqs. (  4.8 ) and ( 4.9 ), always the Bose function
enters. Finally, W ≷

σ (τ) is obtained by performing a Fourier transform, cf. Eq. ( 4.3 ).
Before giving explicit expressions for the second-Born and GW self-energies within

the Hubbard and PPP model, it is useful to introduce the irreducible polarizability P in
the random-phase approximation (RPA), which is sometimes denoted as the reducible
polarizability or density-response function of the ideal system χ0, 

5
 

P ≷
σ (τ) := χ≷

0,σ(τ) := ∓iℏG≷
σ (τ) ◦

[
G≶

σ (τ)
]∗
, (4.15)

P R
σ (τ) := χR

0,σ(τ) := Θ(t)
[
χ>

0,σ(τ) − χ<
0,σ(τ)

]
. (4.16)

Again, it is advantageous to express Eq. ( 4.15 ) in the time domain and perform a Fourier
transform to avoid the convolution in frequency space.

4Assuming that in the practical implementation the time and frequency domains have the same size,
Nτ = Nω. This should be the case as they are connected by a Fourier transform.

5Schematically, the density–density response function of the interacting system is connected to the ideal
one by the Dyson equation χ = χ0 +χ0wχ and is therefore also directly accessible within this approach.
More information is given in appendix  A.4 .
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Model Hamiltonians

The expressions for the self-energy approximations in the lattice models are given
in the following. The most notable difference between the Hubbard and the PPP
model is with respect to the spin dependence of the screened interaction. While in
the PPP model the full summation of the bubble diagram series is spin independent,
i.e. W = W↑ = W↓, in the Hubbard model every other diagram (with an even
number of bubbles) vanishes, resulting in a spin-dependent screened interaction Wσ.

PPP Model

In the PPP model, the time-diagonal Hartree–Fock self-energy is given by

ΣHF
ij,σ = δij

∑
k

Vik (nkk,σ + nkk,σ̄) − Vijnij,σ , (4.17)

with the density matrix nσ given in Eq. ( 4.27 ). The notation σ̄ represents the
opposite spin of σ. As mentioned above, the screened interaction in this model is
spin independent. This is true also for the 2B approximation with

W ≷
2B(τ) := V

[
P ≷

σ (τ) + P ≷
σ̄ (τ)

]
V . (4.18)

The spin-dependent second-order exchange contribution is given by

SOXΣ≷
ij,σ(τ) = (iℏ)2∑

pq

VipG
≷
iq,σ(τ)G≶

qp,σ(−τ)G≷
pj,σ(τ)Vqj . (4.19)

For the GW approximation, the screened interaction can be obtained by solving
the following Dyson equation,

W R(ω) = W R
2B(ω) + V

[
P R

σ (ω) + P R
σ̄ (ω)

]
W R(ω) (4.20)

=
[
1 − V

(
P R

σ (ω) + P R
σ̄ (ω)

)]−1
W R

2B(ω) . (4.21)

Take note that, while the screened interaction is spin independent, the respective
self-energy term is not due to the G≷

σ entering Eq. (  4.11 ).

Hubbard Model

In the Hubbard model, the time-diagonal Hartree–Fock self-energy is given by

ΣHF
ij,σ = δijUnii,σ̄ , (4.22)

with the density matrix nσ defined in Eq. ( 4.27 ). The notation σ̄ represents the
opposite spin of σ. In the Hubbard case, the screened interaction is spin dependent
and for the 2B approximation it is given by

W ≷
2B,σ(τ) := UP ≷

σ̄ (τ)U , (4.23)

while the second-order exchange diagram vanishes,
SOXΣ≷

σ (τ) = 0 . (4.24)
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For the GW approximation, the screened interaction obeys the Dyson equation

W R
σ (ω) = W R

2B,σ(ω) + U2P R
σ̄ (ω)P R

σ (ω)W R
σ (ω) (4.25)

=
[
1 − U2P R

σ̄ (ω)P R
σ (ω)

]−1
W R

2B,σ(ω) . (4.26)

In the Hubbard model with explicit Pauli blocking, as defined in section  2.2.2 , every
other term in the screened interaction vanishes, giving rise to an additional factor
of UP R in the Dyson equation.

Since the equilibrium theory is formulated in frequency space, some observables have to
be expressed in a different way than shown in section  3.4.1 . The single-particle density
matrix is accessed by a Fourier transform of the single-particle Green function,

nσ = nσ(τ = 0) = ±iℏ
∫ ∞

−∞

dω
2πG

<
σ (ω) . (4.27)

With that, the total energy of the system can be expressed by the Galitskii–Migdal
formula [ 276 ]

Etot = 1
2Eid + EGM , (4.28)

which combines the single-particle part

Eid = Tr
[
h(1)nσ

]
, (4.29)

and the Galitskii–Migdal interaction energy [  78 ]

EGM = ± iℏ
2

∫ ∞

−∞

dω
2π ωTr

[
G<

σ (ω)
]
, (4.30)

where the trace Tr[ . ] also sums over the spin.
Naturally, this approach also grants direct access to various spectral properties [ 84 ] of

the system like the photoemission (PES) A< and inverse photoemission spectrum (IPES)
A>, which are just the lesser and greater component of the single-particle Green function,
respectively,

A>
σ (ω) = iℏG>

σ (ω) , (4.31)
A<

σ (ω) = −iℏG<
σ (ω) . (4.32)

The total spectral function A is then given by

Aσ(ω) = A>
σ (ω) + A<

σ (ω) = iℏ [G>
σ (ω) − G<

σ (ω)] = iℏ
[
GR

σ (ω) − GA
σ (ω)

]
, (4.33)

which is related to the total DOS

D(ω) = Tr [Aσ(ω)] . (4.34)

The generalized, time-dependent nonequilibrium versions of these quantities are discussed
in section  3.4.1 .
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4.1.1 Iterative Solution of the Dyson Equation

Since the self-energy is a functional of the single-particle Green function, the Dyson
equation ( 4.5 ) has to be solved iteratively until a converged, self-consistent solution for
GR

σ (ω) is obtained. In order to guarantee a fast and stable convergence of the procedure,
the solutions of consecutive iteration steps are mixed. Without any mixing, the output
(out) of iteration k − 1 would be directly used as input (in) for iteration k. When using a
mixing factor α instead, the input GR

k,in for iteration k is determined by  

6
 

GR
k,in(ω) = αGR

k−1,out(ω) + (1 − α)GR
k−1,in(ω) , (4.35)

where typically, a small mixing parameter of α = 0.05 is chosen so that the input of
consecutive iterations only differs slightly. After every iteration k an error,

ϵk := 1
αNb

∫ ∞

−∞

dω
2π

∣∣∣∣Dk(ω) −Dk−1(ω)
∣∣∣∣ , (4.36)

is calculated to determine if convergence is reached. It depends on the difference of the
DOSs of iteration k and k − 1 and is normalized to the mixing parameter α and the basis
size Nb to be independent of these parameters. If ϵk drops below a certain threshold,
ranging from 10−6 to 10−12, depending on the required accuracy, the solution is deemed to
be converged.

In summary, a self-consistent solution to the EGF approach can be obtained by the
following procedure:

0) Calculate the ideal solution GR
0 (ω) via Eq. ( 4.6 ) and choose an initial value to start

the iteration, e.g. GR
σ (ω) = GR

0 (ω).

1) Calculate the self-energy ΣR
σ (ω) from GR

σ (ω).

2) Solve the Dyson equation ( 4.5 ) for GR
σ (ω) using GR

0 (ω) and ΣR
σ (ω).

3) Obtain the new solution by mixing, cf. Eq. ( 4.35 ), and calculate the error ϵk,
cf. Eq. ( 4.36 ). If GR

σ (ω) is not yet converged, start a new iteration step at 1).

All steps of this scheme are shown in detail in Fig.  4.1 , where it becomes clear that the
computation of the self-energy, enclosed in the gray box, takes up the largest part of
the calculation. As discussed previously, the numerical scaling of the EGF approach is
crucially affected by the repeated Fourier transforms between the frequency and the time
domain. As a consequence, compared to the scaling reported for the NEGF approach in
Tabs.  3.1 and  3.2 , the CPU time and memory consumption are greatly reduced. For the
2B and GW approximations discussed here, they are:

CPU time: O (NiterNω [Nx
b +N2

b · logNω]) Memory consumption: O (N2
bNω)

6For readability the spin is dropped here. The mixing procedure has to be applied for all spin components
separately.
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Start GR
0,σ(ω)

GR
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0,σ(ω)
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σ (τ) = W≷
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Eq. (  4.5 )

PPP | Hubbard

Figure 4.1 – Diagram of the iterative solution of the Dyson equation within the EGF
approach. The gray box highlights the calculation of the self-energy. The equations
corresponding to each step (except the Fourier transforms) are given on the right.
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Figure 4.2 – Total DOS of the half-filled Hubbard dimer at U/J = 2. The exact so-
lution (black) is compared to restricted-spin HF (blue), one-shot G0W0 (red), and
self-consistent GW (orange).

The number of iterations is denoted as Niter and the exponent x is determined by

x =

4 for SOX in the PPP model
3 else

. (4.37)

In the following, if not mentioned otherwise, SOX is not included in the approximations.
When considering that typically Nω = Nt, the speedup of the EGF approach compared to
NEGF for the 2B and GW self-energies is approximately N2

ω, and the memory consumption
is reduced by a factor of Nω. Due to this numerical advantage, it is more affordable to
include vertex corrections to the self-energy when describing systems in equilibrium. Some
attempts to improve the GW approximation in this way can be found in Refs. [  277 – 280 ].

Finally, the EGF approach cannot be discussed without addressing the issue of self-
consistency. It is illustrated in Fig.  4.2 , where the total DOS of a half-filled Hubbard
dimer at U/J = 2 is compared between the exact diagonalization of the Hamiltonian
and several approximations. The exact solution possesses four peaks at ℏω ≈ ±1.2J and
ℏω ≈ ±3.2J , while the spin-restricted HF approach (RHF)  

7
 only produces two peaks

at ℏω = ±1J . While the fully self-consistent GW calculation correctly reproduces the
peaks at ℏω ≈ ±1.2J and at least predicts a second pair of peaks at ℏω ≈ ±5.1J , it also
incorrectly produces several high-energy satellites beyond ℏω = ±7J . This is a well-known
problem not only of the self-consistent solution of the Dyson equation but of the fully
self-consistent treatment of the NEGF approach in general. When solving the KBEs, the
same effect is known to lead to an overdamping of the nonequilibrium dynamics, which

7More information on spin symmetries is given in section  4.2 . For the GW and G0W0 methods, spin
symmetry is not broken at U/J = 2, so spin-restricted and spin-unrestricted calculations provide the
same results.
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will be discussed in section  5.1.1 . A solution to this problem is to reduce the amount
of self-consistency, which in the NEGF approach is typically done by introducing the
HF-GKBA, cf. section  5.2 . For the EGF approach, several alternative procedures to
the fully self-consistent solution of the Dyson equation were developed [ 281 – 285 ]. One
of the most prominent ones is the one-shot G0W0 method, which corresponds to only
performing a single iteration of the EGF scheme, making it very efficient numerically [ 286 ].
The result is shown in Fig.  4.2 and is very convincing, as it gets rid of the erroneous
satellite peaks of self-consistent GW and instead predicts the same number of peaks as the
exact solution. Still, G0W0 also has its disadvantages, as it violates conservation laws and
strongly depends on the initial value entering the Dyson equation. Therefore, the choice
of which approach to use, GW or G0W0, is often not straightforward and depends on the
system parameters and the observables one is interested in. The idea behind G0W0 to
only perform one iteration is, of course, not restricted to the GW approximation but can
be combined with any self-energy. Throughout this work, however, the EGF approach is
always solved fully self-consistently, which leads to the topic of multiple solutions discussed
in the following section.

4.2 Löwdin’s Symmetry Dilemma

When solving the Dyson equation in a non-self-consistent way like for one-shot G0W0, it is
evident that the solution depends on the initial choice of GR

σ (ω). However, in the case of a
fully self-consistent iteration, the question if multiple solutions exist or if the final solution
is unique is not as trivial. In recent years, a lot of progress on this topic was made and it
was found that, due to the self-energy being a functional of G, in general, the self-consistent
solution of the, therefore nonlinear, Dyson equation possesses multiple solutions [ 287 – 293 ].
This realization enabled the author and coworkers in Ref. [ 253 ] to answer the long-discussed
question whether the Green functions approach is able to produce the Mott transition,
the central feature of the Hubbard model, cf.  2.2.2 . The previous contradicting results
of the Bonitz group (Kiel University, Germany), who reported on a correlation-induced
gap in their NEGF calculations [  294 ,  295 ], and Verdozzi and coworkers (Lund University,
Sweden), who repeatedly observed a vanishing Hubbard gap [  296 ,  297 ], could be identified
as different solutions of the Dyson equation. Moreover, the presence of multiple solutions
could be associated with symmetries in the system, a finding that connects these more
recently discovered problems of MBPT to a dilemma that was mentioned by Löwdin in
1963 [ 298 ]. Going forward, this knowledge can be used to improve the performance of the
EGF approach by carefully choosing the imposed symmetry restrictions, as discussed in
the following.

Löwdin observed that a single Slater determinant, when required to meet the symmetries
of the system, leads to an energy that is high above the ground-state energy, and that
much better results are achieved when no such symmetry requirements are imposed. Here,
this effect shall be demonstrated for the half-filled 1D Hubbard model, where the exact
ground state is known to be spin-symmetric for systems with an even number of lattice
sites [  299 ,  300 ]. In Fig.  4.3 (a) the ground-state energy for open 1D Hubbard chains of
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Figure 4.3 – Half-filled Hubbard chains with open boundary conditions at various inter-
action strengths U . (a) Ground-state energy EGS for three finite Hubbard chains of
length L = 2, 4, 6 compared for rsHF, usHF, and the exact solution of the Hubbard
Hamiltonian. (b) Interaction dependence of the local magnetic moment ⟨m̂2

1⟩ on the
first site of finite Hubbard chains of length L = 2, . . . , 20 for usHF. (c) DOS for a finite
Hubbard chain of length L = 10 usHF. A sudden correlation-induced opening of the
gap occurs at U/J ≈ 2. Adapted from Ref. [ 253 ].

lengths L = 2, 4, 6 is compared between the exact diagonalization of the Hamiltonian and
two different HF solutions. In the restricted-spin (rs) case, the system is required to meet
the exact spin symmetry, whereas in the unrestricted-spin (us) variant, no restriction is
imposed. While for vanishing interaction U all three methods agree and predict a linearly
increasing ground-state energy, differences emerge for U/J ≳ 1, where in the exact case,
the energy is decreased due to correlation effects compared to the rsHF solution, which
continues to predict a linearly increasing ground-state energy. In contrast, breaking spin
symmetry for U/J ≳ 2 allows the usHF method to mimic the effect of correlations and
achieve lower energies that better fit the exact results. In the limit of U → ∞, the usHF
solution actually becomes exact, which is not shown in Fig.  4.3 (a), but can be easily
understood looking at the ground state of the Hubbard dimer, cf. appendix  A.2 . In the
limit of infinite interaction, it is described by a superposition of two antiferromagnetic
states,

|ψGS⟩ = 1√
2

(|↑, ↓⟩ + |↓, ↑⟩) , (4.38)

which, as a whole, corresponds to a homogeneous, spin-symmetric density distribution
but cannot be described by a spin-symmetric product state. The usHF solution, however,
randomly attains one of the two antiferromagnetic states, e.g.,∣∣∣ψusHF

GS

〉
= |↑, ↓⟩ , (4.39)
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without restrictions (black). (e)–(g) DOS of the three 2B solutions, represented by the
respective colors, compared to the exact result. (h) Comparison of the total ground-
state energy for the four cases. Adapted from Ref. [  253 ].

which has the same energy as |ψGS⟩. This phenomenon of the usHF solution spontaneously
falling into an unphysical antiferromagnetic state above a certain critical interaction Ucrit
is also observed in Fig.  4.3 (b) for open 1D Hubbard chains of L = 2, . . . , 20 sites. For low
interaction strengths, the system is in a paramagnetic state, which is indicated by the
value of the local magnetic moment on the first site being ⟨m̂2

1⟩ = 1
2 , cf. Eq. ( 3.103 ). For

increased interactions of U/J ≳ 1 to U/J ≳ 2, depending on the system size, the usHF
solution breaks spin symmetry, resulting in an antiferromagnetic state that is accompanied
by an increased local magnetic moment. However, disregarding exact symmetry rules does
not only result in better ground-state energies, but can describe completely new physics
as shown in Fig.  4.3 (c) for the DOS of the open 10-site Hubbard chain. As discussed in
section  2.2.2 , the rsHF method cannot explain the Mott transition, as the opening of the
Hubbard gap is a purely correlation-induced effect. It is, therefore, all the more surprising
that the mimicking of correlation effects by the symmetry breaking of usHF goes so far
that a band gap even opens up in the DOS as the interaction strength increases. However,
the size of the gap is vastly overestimated, so approximations that consistently take into
account correlation effects are still necessary.

Therefore, this analysis on the effects of imposing or relaxing symmetry restrictions
shall now be extended to approximations beyond HF, namely the 2B self-energy. The
system of interest is a finite eight-site Hubbard chain at U/J = 4 with periodic boundary



4.2 Löwdin’s Symmetry Dilemma 65

conditions, for which the exact ground state is known to not only be spin symmetric but
also translation invariant [ 156 ,  299 ,  300 ]. Therefore, besides the restricted-spin (rs2B) and
unrestricted-spin (rs2B), a third uniform method (uni2B) is considered where the system
is required to be translation invariant. In Fig.  4.4 the results are shown for the spin-up
density matrix in (a)–(d), the DOS in (e)–(g), and the ground-state energy in (h). In
the case of uni2B, the density matrix, as expected, nicely agrees with the exact result,
including the translation invariance along the diagonal direction. In contrast, the uniform
solution fails to reproduce the correct DOS but instead predicts a dominant zero-energy
peak. This explains why some previous studies observed that the NEGF approach was
not able to describe the Mott gap [ 296 ,  297 ], since in them, translation invariance was
enforced. When this restriction is dropped, as in the rs2B and us2B cases, unphysical
inhomogeneities in the odd minor diagonals of the density matrix occur. In turn, the DOS
of these two variants is significantly improved compared to the uniform result. Especially
the us2B method nicely reproduces the gap of the exact solution, while it is slightly
underestimated in the rs2B case. The same trend that the relaxation of exact symmetry
requirements can lead to an improved performance of approximations is observed for the
ground-state energy, where uni2B performs worst while us2B shows the best agreement
with the exact result.

Finally, it should be mentioned that while for the HF approximation spontaneous
symmetry breaking already occurs for relatively low Hubbard interactions of Ucrit/J ≲ 2, for
the 2B self-energy this critical interaction is around Ucrit/J ≳ 2.5. The above observations
are therefore most relevant for strongly interacting systems. A more in-depth discussion on
this topic can be found in Ref. [ 253 ] by the author and coworkers. Additionally, based on
that reference a similar study was conducted by Honet et al. for the GW approximation
where very similar results as for the 2B self-energy were reported [ 301 ].

While the discussion of Figs.  4.3 and  4.4 has shown that the quality of certain observables
can be greatly improved by a smart relaxation of symmetry restrictions, this possibility
is not further exploited for correlated approximations in the rest of this thesis. On the
one hand, the EGF calculations of graphene heterostructures in section  7.2 are performed
for an intermediate interaction of U/J = 2.5, where symmetry breaking does not occur
for the GW self-energy. On the other hand, within the NEGF approach applied in
section  7.3 , where the initial state is produced via adiabatic switching, the generation of
an interacting broken-symmetry state is troublesome and not advised due to the inevitable
phase transitions occurring during the switching process [  302 ].





67

5 Nonequilibrium I:
Two-Time Scheme

In the summer of 2022, I attended a workshop titled “New Trends in Nonequilibrium
Many-Body Systems: Methods and Concepts” in Dresden. While the name suggests
that the NEGF approach, a method to describe nonequilibrium many-body systems,
after all, would be heavily represented, the workshops’ website only listed “DMFT,
QMC, tensor network, DFT, semiclassical methods, etc.” as included topics. While
DMFT is also based on Green functions and thus certainly strongly related to NEGF
theory, it is still a separate approach that focuses on the description of impurity
problems. The NEGF approach itself had been grouped with other lesser-known
theories under “etc.”. Of course, this is not the whole truth and at the workshop
itself, there were a number of people working on and with NEGF theory and in
particular the HF-GKBA.

Still, this small anecdote should show that the NEGF approach, despite its
versatility, has only a relatively small community, especially compared to much
more popular theories like TDDFT. Some practical downsides that prevent greater
popularity are presented in this chapter. However, for the future, I have hope that
based on the findings on the G1–G2 scheme presented in chapter  6 , the role of
NEGF theory will become one of greater importance.

After the previous chapter focused on the solution of the Dyson equation for systems in
equilibrium, this chapter covers the nonequilibrium case, where the KBEs take center
stage. While the NEGF approach stands out for its rigorous handling of correlation effects
by various conserving self-energy approximations, the practical implementation of the
method is highly challenging and suffers from a number of problems such as the notoriously
expensive cubic scaling with the number of time steps, cf. Tab.  3.1 . 

1
 It, therefore, took

some time from the theoretical works of Keldysh [ 194 ], Kadanoff [ 211 ], and Baym [ 80 ] to
the first practical application of the approach by Danielewicz to nuclear matter [ 303 ,  304 ].
Since then, the NEGF approach has found application not only in nuclear physics [ 305 ,
 306 ] but also in the description of atoms and molecules [ 307 – 309 ], plasmas [ 310 ,  311 ],
solids [ 312 – 314 ] and various model systems [ 235 ,  315 – 317 ]. Today, several NEGF-based

1In the case of the DSL self-energy the scaling of O
(
N4

t
)

is even worse, which is why this approximation
is hardly ever used.
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software packages are available, such as YAMBO [ 318 ], CHEERS [ 319 ], and NESSi [ 320 ],
which significantly reduce the barrier towards own calculations for people new to NEGF
theory.

This chapter starts in section  5.1 with a quick discussion of the practical implementation
of the NEGF approach that is used in section  7.3 to describe the response of finite graphene
nanostructures to laser excitations. Moreover, several well-known issues of the method are
discussed through practical examples. Most of these drawbacks are tied to the memory
integrals occurring on the right-hand side of the KBEs ( 3.29 ) and ( 3.30 ). A popular
approach that takes advantage of this fact in order to partially mitigate some of the
problems is the HF-GKBA [ 85 ], which is discussed in section  5.2 . Although the HF-GKBA
achieves these goals only to a very limited extent, it is still widely used for lack of an
alternative [ 87 ,  313 ,  321 – 327 ]. This directly leads to the topic of chapter  6 , where the
newly developed G1–G2 scheme is presented, a reformulation of the HF-GKBA that
greatly reduces the numerical requirements of the NEGF approach without any additional
approximations.

5.1 Two-Time NEGF Approach

As established in chapter  3 , the single-particle Green function, in general, depends on two
times. To get access to its nonequilibrium time dynamics, it is therefore not sufficient to
propagate a single differential equation as is the case for single-time quantities such as the
wave function |ψ(t)⟩, which is described in its entirety by the time-dependent Schrödinger
equation ( 3.1 ). Instead, in the fully self-consistent case the KBEs, which were already
derived for the lesser and greater components of the single-particle Green function in
Eqs. ( 3.84 ) and ( 3.85 ), have to be solved for the first and the second time argument,
and along the time diagonal to populate the complete two-time plane, as illustrated in
Fig.  5.1 (a). Due to the symmetry relation given in Eq. (  3.79 ), the greater component is
only needed below the time-diagonal (t > t′), while the lesser component is propagated
above and on the time-diagonal (t ≤ t′). In practice, the corresponding KBEs have the
following form,

iℏ ∂
∂t

G>(t, t′) = hHF(t)G>(t, t′) + I>(t, t′) , (5.1)

−iℏ ∂

∂t′
G<(t, t′) = G<(t, t′)hHF(t′) + I<(t, t′) , (5.2)

iℏ ∂
∂t

G<(t, t) =
[
hHF(t),G<(t, t)

]
+ I>(t, t) − I<(t, t) , (5.3)

where the Hartree–Fock part of the self-energy is included in the effective single-particle
Hamiltonian

hHF(t) := h(1)(t) + ΣHF(t) , (5.4)
with h(1) and ΣHF being defined in Eqs. ( 3.25 ) and ( 3.109 ), respectively. The collision
integrals on the right-hand side of the KBEs are given by  

2
 

2The Σ≷ entering the collision integrals only contain the correlation part of the self-energy, cf. Eq. (  3.81 ).
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(a) two-time NEGF
t′

t
T T + ∆ts

T

T + ∆

t =
t
′

G<

G>

(b) GKBA
t′

t
T T + ∆ts

T

T + ∆

t =
t
′

G<

G>

Figure 5.1 – Illustration of the propagation scheme for (a) the fully self-consistent solution
of the KBEs, cf. Eqs. (  5.1 ) to (  5.3 ) and (b) the GKBA, cf. Eqs. ( 5.28 ), (  5.35 ) and
( 5.36 ). Blue points include correlations, while red points are propagated on the HF
level. The time step is denoted as ∆.

I>(t, t′) =
∫ t′

ts
dt̄
{
Σ>(t, t̄)G<(t̄, t′) − Σ<(t, t̄)G>(t̄, t′)

}
(5.5)

+
∫ t

t′
dt̄
{
Σ>(t, t̄)G>(t̄, t′) − Σ<(t, t̄)G>(t̄, t′)

}
(5.6)

and

I<(t, t′) =
∫ t

ts
dt̄
{
G>(t, t̄)Σ<(t̄, t′) − G<(t, t̄)Σ>(t̄, t′)

}
(5.7)

+
∫ t′

t
dt̄
{
G<(t, t̄)Σ<(t̄, t′) − G<(t, t̄)Σ>(t̄, t′)

}
, (5.8)

with ts being the starting time, typically ts = 0. On the time diagonal they simplify to

I>(t, t) =
∫ t

ts
dt̄
{
Σ>(t, t̄)G<(t̄, t) − Σ<(t, t̄)G>(t̄, t)

}
, (5.9)

I<(t, t) =
∫ t

ts
dt̄
{
G>(t, t̄)Σ<(t̄, t) − G<(t, t̄)Σ>(t̄, t)

}
. (5.10)

In contrast to the EGF approach discussed in section  4.1 , here all quantities are assumed
to be spin symmetric, which is why the spin is omitted. As mentioned in section  4.1.1 ,
the reason is that the interacting ground state in this implementation of the NEGF
approach is generated using the adiabatic-switching procedure, which performs badly
for symmetry-broken states [ 302 ]. Applying the findings of section  4.2 , regarding the
relaxation of symmetry restrictions, to the nonequilibrium case is an open challenge.

The only unknown quantity in the above system of equations is the self-energy Σ,
which has to be approximated to allow for a self-consistent numerical solution. In the
following, the 2B and GW self-energy will be presented explicitly, as they are applied later
in section  7.3 to study the nonequilibrium dynamics of finite graphene nanostructures.
Implementations of other approximations such as the T -matrix self-energy are presented
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in Ref. [ 79 ,  313 ,  328 ].
Like in section  4.1 , the following relations are valid for general models with diagonal

interactions of the form wijkl ∼ δikδjl. In this case, the self-energy corresponds to the
generalization of Eq. ( 4.11 ) to two times, resulting in

Σ≷(t, t′) = iℏG≷(t, t′) ◦ W ≷(t, t′) + SOXΣ≷(t, t′) , (5.11)

with the screened interaction obeying the symmetry relation  

3
 

W>(t, t′) = [W<(t, t′)]T . (5.12)

According to the procedure in equilibrium, it is convenient to introduce the irreducible
polarizability in RPA, whose lesser and greater components are

P ≷(t, t′) := χ≷
0 (t, t′) := ∓iℏG≷(t, t′) ◦

[
G≶(t, t′)

]∗
. (5.13)

From this, the retarded and advanced components are given by

P R(t, t′) := χR
0 (t, t′) := Θ(t, t′) [P>(t, t′) − P<(t, t′)] , (5.14)

P A(t, t′) := χA
0 (t, t′) := Θ(t′, t) [P<(t, t′) − P>(t, t′)] . (5.15)

Using these auxiliary quantities, the explicit procedure of calculating the screened interac-
tion W is presented, in the following, for the electronic lattice Hamiltonians.

Model Hamiltonians

Since spin symmetry is assumed in the formulation of the NEGF approach presented
here, a factor of two enters the equations for the PPP model at several points,
accounting for the contribution of both spin components. While in the PPP model,
also the screened interaction enters as a spin-independent quantity, in the Hubbard
model, the distinct spin components W↑↑ and W↑↓ occur due to the explicit Pauli
blocking discussed for Eq. (  2.11 ).

PPP Model

In the PPP model, the time-diagonal Hartree–Fock self-energy is given by

ΣHF
ij (t) = −2iℏ δij

∑
k

Vik(t)G<
kk(t, t) + iℏVij(t)G<

ij(t, t) . (5.16)

For the screened interaction, only the lesser component has to be calculated due to
the symmetry relation of Eq. ( 5.12 ). For the 2B approximation, is it defined as

W<
2B(t, t′) := 2V (t)P<(t, t′)V (t′) , (5.17)

which leads to the direct second-order contribution to the self-energy. The corre-
sponding exchange diagram is given by

SOXΣ≷
ij(t, t′) = (iℏ)2∑

pq

Vip(t)G≷
iq(t, t′)G≶

qp(t′, t)G≷
pj(t, t′)Vqj(t′) . (5.18)

3The transpose operation also exchanges the time arguments, i.e. t ↔ t′.
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For the GW approximation, the lesser component of the screened interaction is
determined by the Dyson equation

W<(t, t′) = W<
2B(t, t′) + 2V (t)

[∫ t

ts
dt̄P R(t, t̄)W<(t̄, t′) +

∫ t′

t
dt̄P<(t, t̄)W A(t̄, t′)

]
,

(5.19)

which is not closed in itself, but depends on the advanced component of the screened
interaction

W A(t, t′) = W A
2B(t, t′) + 2V (t)

∫ t′

t
dt̄P A(t, t̄)W A(t̄, t′) . (5.20)

In practice, first, P and W2B are determined, which in a second step allows the
calculation of W A and finally W ≷.

Hubbard Model

In the PPP model, the time-diagonal Hartree–Fock self-energy is given by

ΣHF
ij (t) = −iℏ δijU(t)G<

ij(t, t) . (5.21)

Again, for the screened interaction, only the lesser component is required, which for
the 2B approximation is defined as

W<
2B(t, t′) := U(t)P<(t, t′)U(t′) , (5.22)

while the second-order exchange diagram vanishes,
SOXΣ≷(t, t′) = 0 . (5.23)

The screened interaction entering the self-energy corresponds to the same-spin
component

W<(t, t′) = W<
↑↑(t, t′) (5.24)

= W<
2B(t, t′) + U(t)

∫ t

ts
dt̄P R(t, t̄)W<

↑↓(t̄, t′) + U(t)
∫ t′

t
dt̄P<(t, t̄)W A

↑↓(t̄, t′) ,

which couples to the different-spin screened interaction

W<
↑↓(t, t′) = U(t)

∫ t

ts
dt̄P R(t, t̄)W<

↑↑(t̄, t′) + U(t)
∫ t′

t
dt̄P<(t, t̄)W A

↑↑(t̄, t′) . (5.25)

Both depend on the advanced components

W A
↑↑(t, t′) = W A

2B(t, t′) + U(t)
∫ t′

t
dt̄P A(t, t̄)W A

↑↓(t̄.t′) , (5.26)

W A
↑↓(t, t′) = U(t)

∫ t′

t
dt̄P A(t, t̄)W A

↑↑(t̄, t′) , (5.27)

which together form a closed set of equations.
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5.1.1 Self-Consistent Solution of the KBEs

The entire procedure of propagating the KBEs, including the calculation of the self-energy
and the collision integrals, i.e. Eqs. (  5.3 ) to ( 5.27 ), is illustrated in Fig.  5.2 . Although
this fully self-consistent treatment of NEGF theory, as mentioned at the beginning, has
found widespread use over the years due to its bouquet of conserving self-energy approxi-
mations describing various correlation effects, it also has its drawbacks. Famously, the
self-consistent solution of the KBEs scales at least cubically with the number of time
steps Nt when correlations are included. This is caused by the need to propagate the
Green function on the entire two-time plane combined with the time integral over the
complete history of the system, which enters the collision term. These two steps have
to be performed independently of the chosen self-energy approximation except for the
HF case, where the collision term vanishes. This is the reason why even the efficient 2B
approximation, cf. Eqs. (  5.17 ) and ( 5.22 ), which does not contain a time integral itself,
cannot be solved in a faster time than O(N3

t ).
An overview of the numerical scaling for different combinations of self-energy approxi-

mations and basis choices of the NEGF approach is given in Tabs. ( 3.1 ) and ( 3.2 ). There,
it becomes apparent why the NEGF approach and lattice systems are such a good match.
While the choice of the single-particle basis has no influence on the scaling with the number
of time steps, it has all the more an effect on the scaling with respect to the basis size.
Especially the Hubbard model reduces the scaling for all approximations except for DSL
to at most O(N3

b). In the PPP model, the 2B and GW self-energy stand out as they are
the only correlated approximations that do not scale worse than in the Hubbard model. In
combination with its excellent treatment of dynamical screening effects, this is the reason
why the GW self-energy is so frequently used, including in this work.

Independent of the cubic time scaling, the memory integrals also pose a particularly
challenging numerical problem. On the one hand, they have the effect that numerical
errors accumulate over time, and on the other hand, it turns out that they are much harder
to solve accurately than the occurring differential equations due to problems like Runges’
phenomenon. 

4
 While for the solution of the differential KBEs a common fourth-order

Runge–Kutta method is sufficient, highly sophisticated algorithms are needed to precisely
solve the collision integrals, which is essential to keep the numerical error of the propagation
small. Failing to do so has led to wrong results and misleading conclusions in the past [ 329 ,

 330 ]. An efficient integration technique is introduced in appendix  A.6 . More information
on the numerical implementation of the equations can be found in Ref. [ 143 ].

Another drawback of the self-consistent solution is the incorrect additional peaks
emerging in the single-particle spectrum. This problem was addressed for the equilibrium
case in section  4.1.1 . However, it manifests itself even more strongly in two-time calcula-
tions, as is shown in Fig.  5.3 . There, the PES is shown for a half-filled Hubbard dimer at
U/J = 1 after it is excited with a Gaussian laser pulse of frequency ℏωL = 2J and standard
deviation σL = 1.8ℏJ−1. 

5
 These parameters are chosen to partially excite the system

4A comparison between the numerical errors of the differential equation and the time integral is given in
section  6.1.2 .

5More information on the implementation of laser excitations in the NEGF approach can be found in
section  7.3.3 .
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Figure 5.2 – Solution scheme of the KBEs within the NEGF approach with time step
∆. The gray box highlights the calculation of the self-energy. The notation (T, t′|t, T )
denotes that the quantities have to be calculated for the times (T, t′) and (t, T ).
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Figure 5.3 – PES of a laser-excited Hubbard dimer at half filling and U/J = 1. The
width of the probe pulse in Eq. ( 3.113 ) is set to κ = 12.5ℏJ . The parameters of the
laser pulse, cf. Eq. ( 7.20 ), are set to E0 = 0.5Je−1a−1, ℏωL = 2J and σL = 1.8ℏJ−1.
The full two-time propagation (green) and the GKBA (yellow) combined with the 2B
self-energy are compared to the exact solution (black).

from the ground state with energy E− into the states corresponding to the eigenenergies
EU and E+, cf. Fig.  2.6 and appendix  A.2 . The ground-state DOS, i.e. the sum of the
PES and IPES, of the same system but for U/J = 2 was discussed in Fig.  4.2 . In the
nonequilibrium case considered here, the peaks at positive energies are not part of the
IPES but are contributions of the PES due to the laser-excited states. While in the exact
solution six sharp peaks are observed, the spectrum of the two-time 2B approximation is
strongly broadened and an additional peak appears at ℏω = −5J . This artificial spectral
broadening is a well-known effect of the self-consistent solution of the KBEs [ 158 ] and has
the same origin as the additional peaks observed in equilibrium, cf. Fig.  4.2 .

As the width of quasiparticle peaks is directly correlated to the inverse lifetime of those
particles, the broadening of the spectral features has direct consequences for nonequilib-
rium dynamics observed in self-consistent NEGF calculations. One example is shown in
Fig.  5.4 for the expansion velocity of an initially confined cluster of 34 electrons doubly
occupying the 17 innermost sites of a 1D Hubbard chain of length L = 75. After the
confinement potential is turned off at tJ/ℏ = 0, the electrons expand with a velocity vexp.
In the DMRG solution, which can be considered exact for this kind of system, the velocity
starts to oscillate after some time. Especially for large interaction strengths like U/J = 5,
the oscillations have a high frequency and set in already at tJ/ℏ = 1. In contrast, the
result of the two-time particle–particle T matrix (TMA) is strongly damped and shows
no oscillations at all, which in general results in too high expansion velocities. More
information on the topic of artificial damping can be found in Ref. [ 158 ].

A lot of work is dedicated to finding ways to mitigate these two major deficiencies of
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Figure 5.4 – Expansion velocity of a cluster of 34 electrons that are initially confined
to the 17 innermost sites of a 1D Hubbard chain of length L = 75. The confinement
potential is turned off at tJ/ℏ = 0. The exact DMRG solution (full lines) is compared
to the two-time particle–particle T matrix (TMA, long dashed) and the HF-GKBA
variant of the same approximation (HF-GKBA+TMA, short dashes). Adapted from
Ref. [ 86 ]. © 2017 American Physical Society.

the practical application of NEGF theory, the numerical scaling on the one hand and the
artificial broadening of the spectral features accompanied by the artificial damping of the
nonequilibrium dynamics on the other. Promising attempts to reduce the numerical effort
include the introduction of an auxiliary Hamiltonian representation [ 331 ], the truncation
of the memory time [ 332 ,  333 ], the low-rank compression of the Green function and
the self-energy [ 334 ], and improved numerical algorithms [ 143 ,  328 ,  335 ,  336 ]. For the
solution of the artificial damping problem, as discussed for equilibrium in section  4.1.1 , the
self-consistency inherent in the KBEs has to be broken. The most well-known method to
achieve this is the generalized Kadanoff–Baym ansatz (GKBA), to which the next chapter
is dedicated due to its enormous practical importance.

5.2 Generalized Kadanoff–Baym Ansatz

The GKBA, which was proposed by Lipavský et al. in 1986 [  85 ], provides a partial solution
to the aforementioned problems of the full two-time NEGF approach. The general idea of
the GKBA is illustrated in Fig.  5.1 (b). Indeed, the propagation along the time-diagonal,
G<(t) := G<(t, t), is not modified and shall be repeated here,

iℏ d
dtG

<(t) =
[
hHF(t),G<(t)

]
+ I(t) +

[
I(t)

]†
, (5.28)



76 5 Nonequilibrium I: Two-Time Scheme

where the collision integral I := I< is defined as in Eq. ( 5.10 ). However, the propaga-
tion of the single-particle Green functions towards off-diagonal times is replaced by the
reconstruction,

G≷(t, t′) = iℏ
[
GR(t, t′)G≷(t′) − G≷(t)GA(t, t′)

]
. (5.29)

This corresponds to the propagation of the time-diagonal element G≷(t) by the retarded
and advanced components. To demonstrate this, one can introduce the single-particle
time-evolution operator as

U(t, t′) := GR(t, t′) − GA(t, t′) , (5.30)

with the time-diagonal initial value

U(t, t) = G>(t) − G<(t) = 1
iℏ1 . (5.31)

The time off-diagonal elements in Eq. ( 5.29 ) can then be expressed as

G≷(t ≥ t′) = iℏU(t, t′)G≷(t′) , (5.32)
G≷(t ≤ t′) = iℏG≷(t) U(t, t′) . (5.33)

Introducing the reconstruction of Eq. ( 5.29 ), in general, is not the only approximation
applied when using the GKBA. Typically, one also approximates the retarded and advanced
propagators GR and GA entering Eq. ( 5.30 ) to break the self-consistency of the solution.
In the most prominent variant, the HF-GKBA, these GR and GA are chosen to be on the
HF level, leading to

UHF(t, t′) := 1
iℏ exp

{ 1
iℏ

∫ t

t′
dt̄hHF(t̄)

}
. (5.34)

In that case, by differentiating Eqs. ( 5.32 ) and ( 5.33 ) the off-diagonal EOMs become

iℏ ∂
∂t

G>(t ≥ t′) = hHF(t)G>(t, t′) , (5.35)

−iℏ ∂

∂t′
G<(t ≤ t′) = G<(t, t′)hHF(t′) , (5.36)

which is indicated in Fig.  5.1 (b) by the red dots and arrows.

5.2.1 Breaking Self-Consistency

The uncorrelated off-diagonal time propagation of the HF-GKBA effectively breaks the
inherent self-consistency of the KBEs. This solves the problem of the full two-time approach
regarding the broadened spectral features and the overdamping of nonequilibrium dynamics.
The former effect is shown in Fig.  5.3 . While the fully self-consistent 2B approximation
exhibits strongly broadened peaks corresponding to too-short quasiparticle lifetimes, the
HF-GKBA result shows sharp major peaks with other spectral contributions being weak.
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Consequently, this has also an effect on the nonequilibrium dynamics as shown in Fig.  5.4 .
While the dynamics of the self-consistent solution are strongly damped, the HF-GKBA
nicely reproduces the frequency of the exact oscillations in the expansion velocity.

However, breaking self-consistency limits the approach in some aspects. On the one
hand, since the spectral information is contained in the off-diagonal time elements of
the single-particle Green function, the HF propagators introduced for the off-diagonal
propagation of the HF-GKBA also result in the spectral information only being on the
level of HF [ 337 ]. This deficit of the HF-GKBA is currently an active topic of research.
A possible solution is discussed in section  6.5 for the G1–G2 scheme. A related problem
is that the HF-GKBA cannot be expressed in the form of a Dyson equation or on the
imaginary Matsubara branch [ 338 ]. This prevents the correlated ground state from being
calculated with either of these methods and leaves adiabatic switching as the only option.
Unfortunately, it was found that in some cases the ground state generated for the HF-
GKBA via adiabatic switching is not a steady state but highly oscillating [ 302 ].

Regarding the numerical scaling, it has to be emphasized that the HF-GKBA does not
affect the calculation of the self-energy, as it only removes the necessity to calculate the
collision integral for the time-off-diagonal propagation. This results in a quadratic scaling
with the number of time steps when only considering the solution of the KBEs. However,
since all self-energy approximations beyond 2B contain time integrals, cf. e.g. Eqs. ( 5.19 )
and ( 5.24 ) for GW , their calculation scales at least cubically with the number of time
steps. Therefore, no numerical improvement is achieved for these approximations. As a
consequence, the HF-GKBA only reduces the CPU-time scaling of the 2B approximation
from O(N3

t ) to O(N2
t ) and the memory consumption from O(N2

t ) to O(N1
t ), cf. Tabs ( 3.1 )

and (  3.2 ). The scaling with respect to the basis size is not influenced by the HF-GKBA.
Although the reduction of the numerical costs seems small, in practice, it turns out to

be a considerable improvement, as the original cubic time scaling of the two-time NEGF
approach is a huge burden. As a consequence, the HF-GKBA has found broad application
in the description of atoms [ 87 ], molecules [ 88 ,  325 ,  326 ], semiconductors [  324 ], excitonic
insulators [ 89 ], and the uniform electron gas [ 323 ]. Beyond that, it is applied to describe
transport properties [ 327 ,  339 ] and the stopping of ions [ 250 ,  340 ]. Further improvements
of the HF-GKBA regarding the numerical scaling or any of the listed deficiencies would
therefore have an immediate, significant impact on the accurate simulation of quantum-
mechanical many-particle systems. One such major breakthrough is represented by the
G1–G2 scheme, which was developed by the author and coworkers and is presented in the
next chapter.
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6 Nonequilibrium II:
G1–G2 Scheme

The idea of the G1–G2 scheme originated during the KBEt2 workshop held in March
2019 in Kiel, which I had the pleasure to co-organize. There, Daniel Karlsson held
a talk titled “Speeding up GKBA calculations using initial correlations” about the
results of a paper he and coworkers published in the previous year [ 341 ]. They
developed a procedure to speed up the adiabatic switching process, which is needed to
calculate the initial state of a HF-GKBA calculation. Their method achieved linear
scaling with the number of time steps Nt at the cost of the introduction of rank-4
tensor quantities.

Niclas Schlünzen and myself were intrigued by this idea and sensed that it might
be applicable not only to the adiabatic switching process but during the complete
propagation. Thanks to Michael Bonitz’s expertise in RDO theory, it didn’t take
long for us to show just that, which marks the birth of the G1–G2 scheme [ 93 – 95 ].

The fully self-consistent NEGF approach, which was introduced in chapters  3 and  5 , has
access to a wide range of well-established conserving self-energy approximations based
on MBPT. However, in practice, the self-consistency inherent in the Martin–Schwinger
hierarchy gives rise to an overdamping of the dynamics in finite systems, and the occurring
memory integrals result in unfavorable cubic scaling with the number of time steps.
Especially the latter point is preventing the method from seeing widespread use. While
in equilibrium, the issue of self-consistency is solved, as discussed in section  4.1.1 , by
employing non-self-consistent methods like G0W0, in nonequilibrium, this is achieved
by introducing the HF-GKBA, see section  5.2 . However, the use of Hartree–Fock level
propagators, which break the self-consistency of the KBE, mainly tackles the problem
of damping, while a significant speedup to quadratic scaling is only achieved for the 2B
self-energy. Still, these benefits are of such significance that today the HF-GKBA is a
frequently used method [ 337 ].

This short introduction shall put into perspective the stellar breakthrough that has
been achieved by the author and coworkers by developing the time-linear G1–G2 scheme.
In a series of papers [ 93 – 95 ] it was shown that the HF-GKBA can be solved in linear
time for all relevant self-energy approximations by reintroducing, as the name suggests,
the correlated two-particle Green function in place of the self-energy. It is important
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to highlight that this scheme contains no further approximation beyond the HF-GKBA
but instead is a mere reformulation providing exactly the same numerical results. Yet it
allows for immense numerical speedups, greatly increasing the range of applicability of
the NEGF approach, and makes the use of advanced self-energy approximations beyond
2B feasible for the first time. As such, it constitutes a major step in the development of
NEGF theory, quickly finding practical applications [ 251 ,  342 ] as well as sparking new
theoretical developments [ 343 – 347 ].

In section  6.1 , the G1–G2 scheme is briefly introduced as it was initially derived by
the author and coworkers in Refs. [ 93 – 95 ], and the numerical speedup in relation to
the traditional HF-GKBA solution is highlighted. After that, the rest of the chapter
greatly extends on the previously published results. For as it turns out, in addition to
providing a stellar numerical speedup for NEGF theory, the G1–G2 scheme may have even
more significant consequences for the general understanding of the various approaches to
many-particle theory. While it was already shown in Ref. [ 95 ] that the G1–G2 scheme
(and thus the HF-GKBA) is closely related to reduced density-operator (RDO) theory,
some connections remained vague. For instance, no self-energy of MBPT could be found
to correspond to the most sophisticated DSL approximation of RDO theory.

In section  6.2 , a solution to this open problem is provided, where it is shown that within
the HF-GKBA, the DSL self-energy approximation  

1
 derived in section  3.3.2 meets the

needed requirements. This finding is especially important as the DSL approximation within
the G2–G2 scheme is shown to be fully equivalent to the most fundamental approximation
of time-dependent density-matrix theory (TDDM) and two-particle reduced density-
matrix (2RDM) theory, named the Wang–Cassing (WC) or Valdemoro approximation,
respectively, which neglects all three-particle correlations. For the first time, this well-
known approximation of the BBGKY hierarchy can now be directly related to a self-energy
approximation within MBPT. This one-to-one correspondence between the different theories
is further investigated for various other approximations in section  6.3 .

Moreover, it enables the improvement of the G1–G2 scheme beyond the scope of the
NEGF approach as it allows the introduction of well-known concepts of 2RDM theory such
as N -representability. For example, in section  6.4 , the ideas of contraction consistency and
purification are applied to increase the accuracy as well as the stability of the approximation
and in section  6.5 , the extended Koopmans’ theorem is used to extract improved spectral
information. Finally, in section  6.6 , a fluctuation approach is presented that is closely
related to the G1–G2 scheme. It allows direct access to two-time quantities, such as the
dynamical structure factor, and might further reduce the numerical costs.

6.1 Time-Linear HF-GKBA

The goal of the G1–G2 scheme is to find a representation of the HF-GKBA that can
be solved in linear time. In the traditional ansatz by Lipavský et al. [  85 ] presented in
chapter  5 , this is prevented by the occurrence of two-time quantities and the need to solve

1The self-energy approximation was named due to this correspondence.
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a memory integral in the collision term, cf. Eq. ( 5.9 ),

I(t) =
∫ t

ts
dt̄
[
Σ>(t, t̄)G<(t̄, t) − Σ<(t, t̄)G>(t̄, t)

]
, (6.1)

of the single-particle equation of motion, cf. Eq. ( 5.28 ),

iℏ d
dtG

<(t) =
[
hHF(t),G<(t)

]
+ I(t) + [I(t)]† . (6.2)

The general idea is to revert the introduction of the self-energy in Eqs. ( 3.36 ) and (  3.37 ),
and proceed with the original expression using the two-particle Green function. This way
the collision term

Iij(t) = ±iℏ
∑
klp

wiklp(t)Glpjk(t) (6.3)

contains no memory integral and depends only on single-time quantities, namely the
pair-interaction w and the time-diagonal lesser component of the correlation part of the
two-particle Green function G. One can show that within the HF-GKBA, this G obeys
an ordinary linear differential equation for all self-energy approximations presented in
section  3.3.2 , resulting in a numerical scheme that scales linearly with the number of
time steps. Such derivations were presented by the author and coworkers for the 2B and
GW approximation in Ref. [ 93 ] and for the TPP and TPH approximations in Ref. [ 94 ].
Additionally, motivated through the relation to reduced density operators, the DSL
approximation was first introduced within the same work by combining the contributions
of all the above approximations and subsequently further analyzed in Ref. [ 95 ]. In the
following the essential aspects of the G1–G2 scheme are presented.

6.1.1 Equations of Motion and Approximations

The differential equation of the single-particle Green function, Eq. (  6.2 ), couples to G via
the collision integral, Eq. ( 6.1 ). In general, the differential equation for G has the form  

2
 

iℏ d
dtGijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ I
(2)
ijkl(t) + I

(2)
jilk(t) −

[
I

(2)
klij(t)

]∗
−
[
I

(2)
lkji(t)

]∗
, (6.4)

where the first term on the right-hand side denotes the commutator  

3
 with the effective

two-particle Hartree–Fock Hamiltonian

h
(2),HF
ijkl (t) := δjlh

HF
ik (t) + δikh

HF
jl (t) . (6.5)

The newly introduced quantity I(2) contains all terms beyond the Hartree–Fock contribution
and is thus the three-particle equivalent to the two-particle collision integral I in the

2This notation slightly deviates from the one used in Refs. [ 93 – 95 ] to allow for a more concise notation
within the context of this work.

3The two-particle commutator is defined as [A, B]ijkl =
∑

pq (AijpqBpqkl − BijpqApqkl)
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Approximation Collision term

2B I(2) = Ψ

TPP I(2) = Ψ + Lpp

TPH I(2) = Ψ + P ph (w± → w)

GW I(2) = Ψ + PGW (w± → w)

TOA I(2) = Ψ + Lpp[G2B] + P ph[G2B] + PGW [G2B]

FLEX I(2) = Ψ + Lpp[GTPP] + P ph[GTPH] + PGW [GGW ]

DSL I(2) = Ψ + Lpp + P ph + PGW

Table 6.1 – Explicit form of the collision term I(2) entering Eq. ( 6.4 ) for different
approximations of the G1–G2 scheme. The definition of the individual contributions is
given in Eqs. ( 6.7 ) to ( 6.10 ).

single-particle EOM, cf. Eq. ( 6.2 ). Its specific definition depends on the choice of the
approximation. In the special case of ignoring three-particle correlations it has the form,

I
(2)
ijkl(t) = Ψijkl(t) + Lpp

ijkl(t) + P ph
ijkl(t) + PGW

ijkl (t) . (6.6)

The individual terms can be identified as the 2B,

Ψijkl(t) := 1
2
∑
pq

w±
ijpq(t)G<

pk(t)G<
ql(t) + iℏ

∑
pqr

w±
ipqrG

<
jp(t)G<

qk(t)G<
rl(t) , (6.7)

the particle–particle T -matrix,

Lpp
ijkl(t) := 1

2
∑
pq

wijpq(t)Gpqkl(t) + iℏ
∑
pqr

wipqr(t)G<
jp(t)Gqrkl(t) , (6.8)

the particle–hole T -matrix,

P ph
ijkl(t) := iℏ

∑
pqr

w±
ipqr(t)G<

rl(t)Gqjkp(t) , (6.9)

and the GW contribution,

PGW
ijkl (t) := ±iℏ

∑
pqr

w±
ipqr(t)G<

qk(t)Grjpl(t) . (6.10)

Adding all these contributions to the three-particle collision integral I(2) results in the DSL
approximation, which combines the dynamical screening of GW with scattering effects
of the particle–particle and particle–hole ladders. In section  6.2 , it will be shown that
this approximation in fact corresponds to the DSL self-energy approximation derived in
section  3.3.2 within the HF-GKBA. In order to reproduce other approximations like 2B
or TPP, specific combinations of the above terms are required, which are presented in
Tab.  6.1 . The TPH and GW approximations require to only include the direct contribution
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of the (anti)symmetrized pair-interaction (w± → w) in order to be energy conserving, as
was shown in Ref. [ 159 ]. The TOA and FLEX approximations are special variants of DSL
where the G does not self-consistently enter Eqs. ( 6.8 ) to ( 6.10 ), but instead, additional
independent calculations have to be performed on the level of the approximations given in
Tab.  6.1 . The interested reader can find more information on this topic in Ref. [ 159 ].

Notably, the approximations in the G1–G2 scheme have a very similar structure to the
self-energy approximations of MBPT presented in section  3.3.2 , cf. Eqs. ( 3.62 ) to ( 3.68 ),
with the three-particle collision integral I(2) of Eq. ( 6.6 ) being the equivalent to the
reducible four-point vertex F of Eq. (  3.57 ). Moreover, the individual constituents Lpp, P ph

and PGW obey the same symmetry relations as the reducible vertices Φpp, Φph and ΦGW ,
cf. Eqs. ( 3.51 ) to ( 3.54 ). In particular, the particle–hole and GW terms are connected via
P ph

ijkl = ±PGW
ijlk .

Model Hamiltonians

The explicit form of the G1–G2 equations for the PPP and Hubbard model are
given in the following. In general, two spin components have to be considered, G↑↓↑↓

and G↑↑↑↑. However, here spin symmetry is assumed, i.e. G↑↑ = G↓↓, which is why
the only relevant spin component of the two-particle Green function for the lattice
Hamiltonians is G := G↑↓↑↓ with G↑↑↑↑

ijkl = G↑↓↑↓
ijkl − G↑↓↑↓

ijlk . It should be noted that
this symmetry relation breaks down when choosing specifically the TPH or GW
approximation. Therefore, in these cases, additionally, the spin component G↑↑↑↑

has to be propagated. A detailed discussion on the spin symmetries of the G1–G2
scheme can be found in Ref. [ 348 ].

PPP Model

In the PPP model, the Hartree–Fock Hamiltonian entering in Eqs. ( 6.2 ) and ( 6.5 ) is
given by Eq. ( 5.16 ). The two-particle collision integral I of Eq. ( 6.3 ) takes the form,

Iij(t) = −iℏ
∑

k

Vik(t) [2Gikjk(t) − Gikkj(t)] . (6.11)

Finally, the terms entering the three-particle collision integral I(2) in Eq. ( 6.6 ) are
given by

Ψijkl(t) = 1
2Vij(t)G<

ik(t)G<
jl(t) + iℏ

∑
p

Vip(t)G<
jp(t)G<

ik(t)G<
pl(t) , (6.12)

Lpp
ijkl(t) = 1

2Vij(t)Gijkl(t) + iℏ
∑

p

Vip(t)G<
jp(t)Gipkl(t) , (6.13)

P ph
ijkl(t) = iℏ

∑
p

Vip(t)G<
pl(t)Gijkp(t) , (6.14)

PGW
ijkl (t) = iℏ

∑
p

Vip(t)
{
G<

pk(t)Gijpl(t) −G<
ik(t) [2Gpjpl(t) − Gpjlp(t)]

}
. (6.15)
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Hubbard Model

In the Hubbard model, the Hartree–Fock Hamiltonian entering in Eqs. ( 6.2 ) and ( 6.5 )
is given by Eq. (  5.21 ). The two-particle collision integral I of Eq. ( 6.3 ) takes the
form,

Iij(t) = −iℏU(t)Giiji(t) . (6.16)

Finally, the terms entering the three-particle collision integral I(2) in Eq. ( 6.6 ) are
given by

Ψijkl(t) = 1
2δijU(t)G<

ik(t)G<
jl(t) + iℏU(t)G<

ji(t)G<
ik(t)G<

il (t) , (6.17)

Lpp
ijkl(t) = 1

2δijU(t)Gijkl(t) + iℏU(t)G<
ji(t)Giikl(t) , (6.18)

P ph
ijkl(t) = iℏU(t)G<

il (t)Gijki(t) , (6.19)

PGW
ijkl (t) = −iℏU(t)G<

ik(t) [Gijil(t) − Gijli(t)] . (6.20)

6.1.2 Numerical Advantages

In the G1–G2 scheme, a coupled system of ordinary linear differential equations (  6.2 ) and
( 6.4 ) has to be solved. As there are no memory integrals left in the collision terms of
Eqs. (  6.1 ) and ( 6.6 ), the numerical implementation of the complete set of equations ( 6.2 ) to
( 6.10 ) indeed scales linearly with the number of time steps Nt. This is illustrated in Fig.  6.1 ,
where for a 10-site Hubbard chain the numerical performance of the G1–G2 scheme is
compared to the traditional implementation of the HF-GKBA, which was outlined in
section  5.2 , for various self-energy approximations. While the ordinary HF-GKBA exhibits
quadratic (2B) and cubic (GW ) scaling with the number of time steps, the G1–G2 scheme
confirms a linear scaling for all approximations. For the small system at hand, the G1–G2
scheme reaches the break-even point for 2B well below Nt = 100 and in the case of GW is
favorable practically from the start.

However, this improvement in the time-step scaling is paid for by the introduction of
the rank-4 tensor G in the approach, which can potentially lead to a higher computation
time and memory consumption with respect to the basis size Nb. A detailed overview for a
general basis and the Hubbard and PPP model is given in Tab.  6.2 . The numerical speedup
compared to the traditional implementation of the HF-GKBA, outlined in section  5.2 ,
is expressed as the quotient of the improvement in Nt and the additional burden gained
with respect to Nb. For the vast majority of combinations between approximation and
interaction, the G1–G2 scheme results in a net speedup and reduced memory consumption
(green). Even the balanced cases (yellow), where the gain in Nt is compensated by
the additional cost in Nb, in practice, are often more favorable in the G1–G2 scheme.
This is because, typically, the number of time steps Nt ∼ 103–105 is several orders of
magnitude larger than the basis size Nb ∼ 101–103. Therefore, the only case where the
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Figure 6.1 – Comparison of the CPU time scaling between the ordinary implementation
of the HF-GKBA, cf. section  5.2 , and the G1–G2 scheme with respect to the number
of time steps Nt. Calculations were performed for a 10-site Hubbard chain. The linear
time scaling of G1–G2 is confirmed across all approximations, while the standard
HF-GKBA scales as N2

t , for 2B, and N3
t , for GW . Adapted from Ref. [ 94 ].

Nx
t /N

y
b 2B TPP TPH GW TOA FLEX DSL

C
PU

T
im

e wijkl [O (N6
bNt)] 1/0(∗) 2/0 2/0 2/0 2/0 2/0 3/0

Vij [O (N5
bNt)] 1/1 2/0 2/0 2/0 2/0 2/0 3/0

V
(∗∗)

ij [O (N5
bNt)] 1/2 2/0 2/0 2/2 2/0 2/0 3/0

U [O (N4
bNt)] 1/1 2/1 2/1 2/1 2/1 2/1 3/0

M
em

or
y

wijkl [O (N4
b)] 1/0 2/0 2/0 2/0 2/0 2/0 2/0

Vij [O (N4
b)] 1/2 2/0 2/0 2/0 2/0 2/0 2/0

V
(∗∗)

ij [O (N4
b)] 1/2 2/0 2/0 2/2 2/0 2/0 2/0

U [O (N4
b)] 1/2 2/2 2/2 2/2 2/2 2/2 2/2

Table 6.2 – Improvement of the G1–G2 scheme compared to the original HF-GKBA,
cf. Tabs  3.1 and  3.2 and section  5.2 , regarding CPU time and memory consumption
for various self-energy approximations and types of pair interactions (general basis w,
PPP V , Hubbard U). The entries resemble the exponents x and y of the speedup factor
Nx

t /N
y
b . The background color from red over yellow to green highlights an increasing

level of improvement. The total scaling of the method for each row is given in brackets
on the left. (*) The total scaling is O (N5

bNt). (**) PPP model without exchange.
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Figure 6.2 – Comparison of the numerical accuracy between the ordinary implementation
of the HF-GKBA, cf. section  5.2 , and the G1–G2 scheme for the example of the 2B
approximation. Calculations were performed for a half-filled four-site Hubbard chain
with U/J = 1.5 that, initially in the correlated ground state, is excited by a rapid
potential change of amplitude w0 = 0.1J on the first site. (a) Time evolution of the
density on the first lattice site, n1(t). (b) Difference of the local densities between
both methods, ∆n1(t) = nG1−G2

1 (t) − nordinary
1 (t). (c) Deviation from total-energy

conservation for two time steps. Adapted from Ref. [  93 ]. © 2020 American Physical
Society.

traditional HF-GKBA remains numerically competitive is the 2B approximation for the
lattice Hamiltonians, where the G1–G2 scheme suffers from increased memory consumption
(red). In total, Tab.  6.2 nicely illustrates the tremendous achievement of the G1–G2 scheme
making high-order approximations such as TPP, GW or DSL numerically feasible for
the first time. However, it has to be emphasized that the original way of solving the
HF-GKBA still remains valuable. Especially in the case of homogeneous systems such
as the uniform electron gas, it remains the method of choice as the introduction of the
rank-4 tensor G results in considerably larger overheads for the G1–G2 scheme than in the
models presented here [ 349 ].

Besides the favorable numerical scaling, the G1–G2 scheme has another unexpected
advantage over the original HF-GKBA implementation. In Fig.  6.2 the numerical accuracy
of both approaches is compared at equal time steps using the 2B approximation for a
four-site Hubbard system that is suddenly excited by a rapid potential change of amplitude
w0 = 0.1J at site one. In both cases, a fourth-order Runge–Kutta solver is used to
propagate the equations of motion, while the memory integrals for the original HF-GKBA
are solved using a seventh-order integrator [ 143 ]. The density evolution between both
methods agrees perfectly, as shown in Fig.  6.2 (a) and (b), confirming that the HF-GKBA
and the G1–G2 scheme describe identical dynamics. However, the latter has a clear
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Figure 6.3 – Dynamics of the PCF, cf. Eq. ( 3.101 ), relative to the first lattice site of
a spin-symmetric half-filled 20-site Hubbard chain following an interaction quench
U/J = 0 → 2 at t = 0. The inset shows the different-spin PCF δg↑↓

ij of the correlated
ground state at U = 2, which is computed via adiabatic switching. The dashed line
indicated the local part δg↑↓

i1 corresponding to the data in the main figure. Adapted
from Ref. [ 93 ]. © 2020 American Physical Society.

advantage when it comes to numerical accuracy, as is demonstrated in Fig.  6.2 (c). For the
same time step the energy conservation, which is violated due to numerical inaccuracies,
is better maintained by two to three orders of magnitude in the G1–G2 scheme. Solving
integrals is notoriously difficult due to problems such as Runge’s phenomenon, which is the
reason for the bad performance of the original HF-GKBA. Thus, getting rid of memory
integrals results not only in better scaling behavior of the G1–G2 scheme but also benefits
its numerical accuracy.

While the introduction of G can potentially result in a worse scaling with the basis
size Nb, as discussed above, it has the advantage that it grants direct access to (time-
diagonal)  

4
 two-particle observables such as the pair-distribution or pair-correlation function,

cf. section  3.4.1 . As an example, in Fig.  6.3 , the time evolution of the different-spin PCF is
shown for a 20-site Hubbard chain after an interaction quench U/J = 0 → 2 at the initial
time. It provides information on both the local as well as the long-range magnetic order
in the system. For the U/J = 2 ground state, which is shown in the inset, the diagonal
δg↑↓

ii is negative, which indicates that the probability of finding two electrons with different
spins on the same site is reduced by correlations. At the same time, the chance of two
opposing-spin electrons appearing on neighboring sites is increased due to correlations,
δg↑↓

⟨i,i⟩ > 0. This indicates the onset of a correlation-induced antiferromagnetic ordering,
which is very much in agreement with the finding that the Hubbard dimer attains an

4Spectral two-particle observables can be accessed through the fluctuation approach discussed in sec-
tion  6.6 .
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antiferromagnetic ground state in the limit of infinite interaction, as discussed in section  4.2 

and appendix  A.2 . The dynamics of the PCF are shown in Fig.  6.3 with respect to the
first lattice site, δg↑↓

i1 (t). Interestingly, correlations spread throughout the system with a
constant speed of 4–5 lattice sites per time unit, modifying the long-range magnetic order,
and are reflected at the open end of the chain.

In general, these magnetic properties cannot be observed through single-particle
quantities such as the spin density, since the corresponding wave function is often a
superposition of spin-mirrored states, as seen for the ground state of the Hubbard dimer.
This makes the PDF and PCF crucial observables for studying magnetic order in physical
systems.

6.2 Time-Linear DSL Approximation

While most of the approximations of the G1–G2 scheme such as 2B, GW or the T

matrices could be derived from the respective self-energies of MBPT by applying the
HF-GKBA [ 93 ,  94 ], a similar feat has not been achieved for the DSL approximation.
Instead, in Ref. [ 95 ] its introduction was motivated by comparing to RDO theory, where it
is a well-known approximation [ 76 ]. This missing relation has been deeply dissatisfying,
as DSL is considered as the most sophisticated approximation within the G1–G2 scheme.
Thus, finding an expression for the corresponding DSL self-energy in MBPT has remained
one of the most important open problems until now. In the following, a solution to this
problem will be presented by showing that the DSL self-energy introduced in section  3.3.2 ,
in fact, leads to the time-linear DSL approximation of the G1–G2 scheme when applying
the HF-GKBA.

The following steps of calculating a time derivative of G can be understood as a
generalization of the derivations performed for the self-energies in Refs. [ 93 ,  94 ]. A general
real-time expression for the lesser component of the correlated two-particle Green function
was already derived in Eq. ( 3.91 ) and shall be repeated here,

Gijkl(t) =
∑

α,β,γ,δ
∈{+,−}

∫
G+α

ip (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t) . (6.21)

Much like in section  3.4 , integration over all underlined indices and times is implied by
the integral

∫
, the Greek indices indicate the placement of the respective time arguments

on the causal (+) or anticausal (−) branch of the contour, and the time integration is
performed over the interval (−∞, t] in the former case and over the interval [t,−∞) in
the latter. Due to these restricted times, Eq. (  6.21 ) effectively only contains the lesser and
greater components of the single-particle Green function, since

G+−(t, t′) = G<(t, t′) , (6.22)

G++(t, t′) = Gc(t, t′) t≥t′
= G>(t, t′) , (6.23)

G−−(t, t′) = Ga(t, t′) t≤t′
= G>(t, t′) . (6.24)
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In order to calculate the time derivative of G(t), one can apply the Leibniz integral
rule [  350 ],

d
dt

[∫ b(t)

a(t)
f(x, t) dx

]
=
[
f
(
a(t), t

) d
dta(t) − f

(
b(t), t

) d
dtb(t)

]
+
∫ b(t)

a(t)

∂

∂t
f(x, t) dx , (6.25)

which leads to the following expression,

iℏ d
dtGijkl(t) = (6.26)

iℏ
∑

α,β,γ,δ
∈{+,−}

[
d
dt

∫ ]
G+α

ip (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t)

+ iℏ
∑

α,β,γ,δ
∈{+,−}

∫ [
∂

∂t
G+α

ip (t, t1)
]
G+β

jq (t, t2)Fαβγδ
pqrs (t1, t2, t3, t4)Gγ−

rk (t3, t)Gδ−
sl (t4, t)

+ iℏ
∑

α,β,γ,δ
∈{+,−}

∫
G+α

ip (t, t1)
[
∂

∂t
G+β

jq (t, t2)
]
Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t)

+ iℏ
∑

α,β,γ,δ
∈{+,−}

∫
G+α

ip (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)
[
∂

∂t
Gγ−

rk (t3, t)
]
Gδ−

sl (t4, t)

+ iℏ
∑

α,β,γ,δ
∈{+,−}

∫
G+α

ip (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)

[
∂

∂t
Gδ−

sl (t4, t)
]
,

where the notation
[

d
dt

∫ ]
includes all contributions arising from the integration limits, i.e.

the first term on the right-hand side of Eq. ( 6.25 ). Each of the four time variables t1 to t4
contributes two integrals to differentiate, one along the causal branch, where the upper
bound is t, and one along the anticausal branch, where the lower bound is t. In the last
four lines, one can employ the equations of motion ( 5.35 ) and ( 5.36 ) for the HF-GKBA,
which will be repeated here,

iℏ d
dtG

≷(t, t′) = hHF(t)G≷(t, t′) , (6.27)

−iℏ d
dt′G

≷(t, t′) = G≷(t, t′)hHF(t′) , (6.28)

with the Hartree–Fock Hamiltonian hHF(t) = h(1)(t)+ΣHF(t). This leads to a commutator
contribution with an effective two-particle Hartree–Fock Hamiltonian, cf. Eq. ( 6.5 ),

h
(2),HF
ijkl (t) = δjlh

HF
ik (t) + δikh

HF
jl (t) , (6.29)

and the equation of motion for G(t), Eq. ( 6.26 ), simplifies to

iℏ d
dtGijkl(t) =

[
h(2),HF(t),G(t)

]
ijkl

+ Ξ2B
ijkl(t) +

∑
r∈{pp,ph,GW }

Ξr
ijkl(t) . (6.30)
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The contributions of the integration limits are included in the latter two terms,

Ξ2B
ijkl(t) := (iℏ)2 ∑

ϵ∈{+,−}

[
d
dt

∫ ]
G+ϵ

ip (t, t1)G+ϵ
jq (t, t1)w±

pqrs(t1)Gϵ−
rk (t1, t)Gϵ−

sl (t1, t) , (6.31)

Ξr
ijkl(t) := iℏ

∑
α,β,γ,δ
∈{+,−}

[
d
dt

∫ ]
G+α

ip (t, t1)G+β
jq (t, t2)rΦαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t) ,

(6.32)

which emerge in this form from the first line of Eq. ( 6.26 ) by inserting the definition of
the full (reducible) four-point vertex F for the DSL self-energy given in Eq. (  3.68 ). 

5
 Its

real-time components can be expressed as,

Fαβγδ
ijkl (t1, t2, t3, t4) = iℏ δ̃αβ δ̃αδ δ̃αγδ(t1, t2)δ(t1, t4)δ(t1, t3)w±

ijkl(t1)
+

∑
r∈{pp,ph,GW }

rΦαβγδ
ijkl (t1, t2, t3, t4) , (6.33)

where the original contour delta distributions are replaced by delta distributions on the
real-time axis and special Kronecker deltas for the contour branches that are defined as  

6
 

δ̃αβ :=


1 if α = β = +

−1 if α = β = −
0 else

. (6.34)

This involved notation is needed in order to express F as one single four-time quantity,
which allows for the following concise and elegant derivation. In particular, the minus
sign for the lower contour branch is needed to correctly translate the contour-time delta
distributions to real times. More information can be found in appendix  A.7 .

The second-Born term in Eq. ( 6.31 ) only contains one time variable t1 to integrate.
This results in two contributions for the time derivative, one, where the upper integration
bound is equal to t, and one, where this is the case for the lower integration bound, which
corresponds to ϵ = + and ϵ = −, respectively. Therefore, Eq. ( 6.31 ) simplifies to

Ξ2B
ijkl(t) = (iℏ)2 ∑

ϵ∈{+,−}
δ̃ϵϵ

∫
G+ϵ

ip (t, t)G+ϵ
jq (t, t)w±

pqrs(t)Gϵ−
rk (t, t)Gϵ−

sl (t, t)

= (iℏ)2
∫ [

G>
ip(t)G>

jq(t)w±
pqrs(t)G<

rk(t)G<
sl(t) −G<

ip(t)G<
jq(t)w±

pqrs(t)G>
rk(t)G>

sl(t)
]
,

(6.35)

where no time integral is left as the
∫

only denotes summation over basis indices. Finally,
eliminating the greater components of the Green function by utilizing Eq. ( 3.96 ),

G>
ij(t) = G<

ij(t) + 1
iℏδij , (6.36)

5Formally, this is actually done before taking the derivative in Eq. ( 6.26 ).
6In his original work on the contour, Keldysh introduced a quantity with similar properties, which he

called the vertex matrix γ, containing the third Pauli matrix σz [ 194 ].
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reveals that Eq. ( 6.35 ) is fully equivalent to the 2B contribution of the G1–G2 scheme,
Eq. (  6.7 ), when considering all four symmetry contributions of I(2) in Eq. ( 6.4 ).

The term Ξr in Eq. ( 6.32 ), which resembles the three two-particle reducible channels, is
harder to evaluate. As a first step, it is convenient to introduce the following notation,

Ξr
ijkl(t) = rΞI

ijkl(t) + rΞII
ijkl(t) + rΞIII

ijkl(t) + rΞIV
ijkl(t) with r ∈ {pp, ph, GW} , (6.37)

where the ΞI—ΞIV denote the contributions of the integral boundaries associated with
the integration variables t1—t4, respectively. Following the Leibniz integral rule for the
integral limits, cf. the first term of Eq. (  6.25 ), these are given by

rΞI
ijkl(t) = iℏ

∑
ϵ,β,γ,δ

∈{+,−}

δ̃ϵϵ

∫
G+ϵ

ip (t, t)G+β
jq (t, t2)rΦϵβγδ

pqrs (t, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t) , (6.38)

rΞII
ijkl(t) = iℏ

∑
α,ϵ,γ,δ

∈{+,−}

δ̃ϵϵ

∫
G+α

ip (t, t1)G+ϵ
jq (t, t)rΦαϵγδ

pqrs (t1, t, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t) , (6.39)

rΞIII
ijkl(t) = iℏ

∑
α,β,ϵ,δ

∈{+,−}

δ̃ϵϵ

∫
G+α

ip (t, t1)G+β
jq (t, t2)rΦαβϵδ

pqrs (t1, t2, t, t4)Gϵ−
rk (t, t)Gδ−

sl (t4, t) , (6.40)

rΞIV
ijkl(t) = iℏ

∑
α,β,γ,ϵ
∈{+,−}

δ̃ϵϵ

∫
G+α

ip (t, t1)G+β
jq (t, t2)rΦαβγϵ

pqrs (t1, t2, t3, t)Gγ−
rk (t3, t)Gϵ−

sl (t, t) . (6.41)

Each term only has three time integrals left, since the respective fourth time argument is
set to the integral limit t by performing the time derivative. The newly introduced contour
index ϵ again accounts for the fact that two contributions emerge, one from the upper and
one from the lower integration bound.

Now, one can utilize the symmetry relations for the two-particle reducible vertices
given in Eqs. ( 3.51 ) and ( 3.52 ). For the real-time components, they are of the form,

rΦαβγδ
ijkl (t1, t2, t3, t4) = rΦβαδγ

jilk (t2, t1, t4, t3) = −
[

rΦδ̄γ̄β̄ᾱ
lkji (t4, t3, t2, t1)

]∗
, (6.42)

where the notation ᾱ implies the opposite contour branch of α, which is needed because
under complex conjugation, contour times from the upper branch move to the lower
branch, and vice versa. Using these symmetry relations, one can easily show that all four
contributions of Eqs. ( 6.38 ) to ( 6.41 ) can be expressed by one another,

rΞI
ijkl(t) = rΞII

jilk(t) = −
[

rΞIII
klij(t)

]∗
= −

[
rΞIV

lkji(t)
]∗
. (6.43)

Hence, it is sufficient to only consider rΞI in the following and, in the end, express the
total two-particle reducible quantity as

Ξr
ijkl(t) = rΞI

ijkl(t) + rΞI
jilk(t) −

[
rΞI

klij(t)
]∗

−
[

rΞI
lkji(t)

]∗
with r ∈ {pp, ph, GW} .

(6.44)

Continuing with Eq. (  6.38 ), one now has to insert the definition of the two-particle
reducible vertices rΦ, which will be done for each channel separately, starting with the
particle–particle one. This channel has a contour delta distribution for the first two time
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arguments, cf. Eq. (  3.58 ), so that only the real-time components ppΦ++γδ and ppΦ−−γδ

have to be considered here. They are given by

ppΦ++γδ
ijkl (t1, t2, t3, t4) (6.45)

= iℏδ̃++δ(t1, t2)
∑
α,β

∈{+,−}

∫
wijpq(t1)G+α

pr (t1, t5)G+β
qs (t1, t6)Fαβγδ

rskl (t5, t6, t3, t4) (6.46)

= −iℏδ̃−−δ(t1, t2)
∑
α,β

∈{+,−}

∫
wijpq(t1)G−α

pr (t1, t5)G−β
qs (t1, t6)Fαβγδ

rskl (t5, t6, t3, t4) (6.47)

= −ppΦ−−γδ
ijkl (t1, t2, t3, t4) . (6.48)

In the step from the second to the third line, again, knowledge about the limits of
integration was utilized. In Eq. ( 6.38 ) the time integral variables t3 and t4 are bounded by
t, which means that in Eq. (  6.46 ) t1 ≥ t3 and t1 ≥ t4. Due to similar cancellation effects
as discussed for Eq. ( 3.91 ), this implies that the integrals over t5 and t6 are again bounded
by t1. Therefore, one can do the following replacement,

G+−(t, t′) = G<(t, t′) t≥t′
= Ga(t, t′) = G−−(t, t′) , (6.49)

G++(t, t′) = Gc(t, t′) t≥t′
= G>(t, t′) = G−+(t, t′) , (6.50)

to transform Eq. (  6.46 ) into Eq. ( 6.47 ). Inserting the former for both ppΦ++γδ and ppΦ−−γδ

into Eq. ( 6.38 ) results in

PPΞI
ijkl(t) = (iℏ)2 ∑

ϵ∈{+,−}

∫
G+ϵ

iu (t, t)G+ϵ
jv (t, t5)δ(t, t5)wuvxy(t) (6.51)

×
∑

α,β,γ,δ
∈{+,−}

∫
G+α

xp (t, t1)G+β
yq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sl (t4, t) (6.52)

=(iℏ)2

2

∫ [
G>

iu(t)G>
jv(t) −G<

iu(t)G<
jv(t)

]
wuvxy(t)Gxykl(t) , (6.53)

where in the second line, one can easily identify G by comparing to Eq. ( 6.21 ). Importantly,
the integral in the first line contributes a factor of 1

2 , originating from the delta distribution
evaluated at the integral boundary t, as explained in appendix  A.7 . Similar to the
expression for 2B in Eq. (  6.35 ), the

∫
here denotes only summation over basis indices, as

no time integral remains. Utilizing Eq. ( 6.36 ) to eliminate the greater Green functions
and comparing to Eq. (  6.8 ), it turns out that

ppΞI
ijkl(t) = 1

2L
pp
ijkl(t) + 1

2L
pp
jilk(t) . (6.54)

Therefore, the total contribution of Eq. ( 6.44 ) entering Eq. ( 6.30 ) is identical to the TPP
approximation of Eq. ( 6.8 ) when considering all four symmetry contributions of I(2) in
Eq. ( 6.4 ). The derivation for the other two channels works very much the same way and
will be quickly outlined in the following.

In the particle–hole case, the reducible vertex has a delta distribution for the first and
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fourth time argument, cf. Eq. ( 3.59 ), and is given by

phΦ+βγ+
ijkl (t1, t2, t3, t4) (6.55)

= iℏδ̃++δ(t1, t4)
∑
α,δ

∈{+,−}

∫
w±

ipql(t1)G+α
qr (t1, t5)Fαβγδ

rjks (t5, t2, t3, t6)Gδ+
sp (t6, t1) (6.56)

= iℏδ̃++δ(t1, t4)
∑
α,δ

∈{+,−}

∫
w±

ipql(t1)G+α
qr (t1, t5)Fαβγδ

rjks (t5, t2, t3, t6)Gδ−
sp (t6, t1) (6.57)

= −iℏδ̃−−δ(t1, t4)
∑
α,δ

∈{+,−}

∫
w±

ipql(t1)G−α
qr (t1, t5)Fαβγδ

rjks (t5, t2, t3, t6)Gδ−
sp (t6, t1) (6.58)

= −phΦ−βγ−
ijkl (t1, t2, t3, t4) , (6.59)

where again the same arguments as for Eq. ( 6.46 ) are used. Thus, for both real-time
components phΦ+βγ+ and phΦ−βγ− the expression in Eq. ( 6.57 ) can be inserted into
Eq. (  6.38 ), which leads to

phΞI
ijkl(t) = (iℏ)2 ∑

ϵ∈{+,−}

∫
G+ϵ

iu (t, t)Gϵ−
vl (t5, t)δ(t, t5)w±

uxyv(t) (6.60)

×
∑

α,β,γ,δ
∈{+,−}

∫
G+α

yp (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rk (t3, t)Gδ−

sx (t4, t) (6.61)

=(iℏ)2

2

∫ [
G>

iu(t)G<
vl(t) −G<

iu(t)G>
vl(t)

]
w±

uxyv(t)Gyjkx(t) . (6.62)

The general structure of this expression is similar to that of the particle–particle channel in
Eq. ( 6.53 ) with products of two single-particle Green functions coupling to the correlated
two-particle Green function via the pair interaction. However, in detail, they differ in
the index structure and the specific combination of the lesser and greater components of
the single-particle Green function. Again, the greater Green functions can be eliminated
employing Eq. ( 6.36 ). By comparing to Eq. ( 6.9 ), one finds the relation

phΞI
ijkl(t) = 1

2P
ph
ijkl(t) − 1

2
[
P ph

lkji(t)
]∗
. (6.63)

Consequently, the total contribution of Eq. (  6.44 ) for the particle–hole channel reproduces
the TPH approximation of Eq. (  6.9 ) when including all symmetries of I(2) in Eq. ( 6.4 ).

Finally, for the GW channel with a delta distribution for the first and third time



94 6 Nonequilibrium II: G1–G2 Scheme

argument, cf. Eq. (  3.60 ), the real-time components of the reducible vertex are given by
GW Φ+β+δ

ijkl (t1, t2, t3, t4) (6.64)

= ±iℏδ̃++δ(t1, t3)
∑
α,γ

∈{+,−}

∫
w±

ipkq(t1)G+α
qr (t1, t5)Fαβγδ

rjsl (t5, t2, t3, t6)Gδ+
sp (t6, t1) (6.65)

= ±iℏδ̃++δ(t1, t3)
∑
α,γ

∈{+,−}

∫
w±

ipkq(t1)G+α
qr (t1, t5)Fαβγδ

rjsl (t5, t2, t3, t6)Gδ−
sp (t6, t1) (6.66)

= ∓iℏδ̃−−δ(t1, t3)
∑
α,γ

∈{+,−}

∫
w±

ipkq(t1)G−α
qr (t1, t5)Fαβγδ

rjsl (t5, t2, t3, t6)Gδ−
sp (t6, t1) (6.67)

= −GW Φ−β−δ
ijkl (t1, t2, t3, t4) . (6.68)

Using Eq. ( 6.66 ) in Eq. ( 6.38 ) gives the contribution of the GW self-energy,

GW ΞI
ijkl(t) = ± (iℏ)2 ∑

ϵ∈{+,−}

∫
G+ϵ

iu (t, t)Gϵ−
vk (t5, t)δ(t, t5)w±

uxvy(t) (6.69)

×
∑

α,β,γ,δ
∈{+,−}

∫
G+α

yp (t, t1)G+β
jq (t, t2)Fαβγδ

pqrs (t1, t2, t3, t4)Gγ−
rx (t3, t)Gδ−

sl (t4, t) (6.70)

= ± (iℏ)2

2

∫ [
G>

iu(t)G<
vk(t) −G<

iu(t)G>
vk(t)

]
w±

uxvy(t)Gyjxl(t) , (6.71)

which again contains no more time integral and upon closer inspection can be identified
as

GW ΞI
ijkl(t) = ±phΞI

ijlk(t) . (6.72)

In particular, it follows that

GW ΞI
ijkl(t) = 1

2P
GW
ijkl (t) − 1

2
[
PGW

klij (t)
]∗
, (6.73)

which implies that the GW approximation of the G1–G2 scheme is reproduced by the
total contribution of Eq. ( 6.44 ) for the GW channel.

In conclusion, it was found that Eq. ( 6.30 ) with the 2B contribution of Eq. ( 6.35 ) and
the three two-particle reducible channels, which are obtained by inserting Eqs. ( 6.53 ),
( 6.62 ) and (  6.71 ) in Eq. ( 6.44 ), is, in fact, equivalent to the DSL approximation of the
G1–G2 scheme introduced in section  6.1.1 . Thus, the expression defined in Eq. ( 3.68 )
of section  3.3.2 is the corresponding self-energy when combined with the HF-GKBA.
In the NEGF scheme, this approximation deviates from an exact description at three
points. First, the fully irreducible vertex Λ is replaced by the (anti)symmetrized pair
interaction w±, cf. Eq. ( 3.55 ), which is equivalent to the famous parquet approximation.
Second, the coupling between the two-particle reducible channels is reduced by also
replacing the partially irreducible vertices Γr by the (anti)symmetrized pair interaction w±,
cf. Eq. ( 3.56 ). And third, the self-consistency of the Martin–Schwinger hierarchy is broken
by the introduction of the HF-GKBA. In the G1–G2 scheme, this very same approximation
is achieved by simply neglecting all three-particle correlations. The significant implications
of this finding are the topic of the following section.
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6.3 Connecting Many-Particle Theories

In section  6.1.2 , it was established that the G1–G2 scheme promises incredible numerical
improvements for the HF-GKBA. And from the perspective of NEGF theory, this fact is
certainly the most significant impact of this new approach. However, when looking at it
from a neutral point of view, the derivation of the G1–G2 scheme from the HF-GKBA
reveals itself rather as an epistemological bridge between NEGF theory with its Martin–
Schwinger hierarchy on one side and RDO theory with its BBGKY hierarchy on the
other. In the previous sections, the relation between these two theories was only remotely
addressed, to the point that the derivation of the DSL approximation in section  6.2 might
appear of little significance to a reader who has not previously read Ref. [ 95 ] for more
background information. The current section is designed to remedy this situation. It shall
highlight the vital role of the G1–G2 scheme in understanding the connections between
the Martin–Schwinger and the BBGKY hierarchy and emphasize the crucial significance
of the DSL approximation. Additionally, it tries to answer the ongoing question about
the physical meaning of the HF-GKBA, which is a rather peculiar approximation within
NEGF theory compared to the usual ways to choose the self-energy within MBPT.

6.3.1 RDM Theory and the BBGKY Hierarchy

This work builds on the NEGF theory, whose foundations were presented in chapter  3 .
In the following chapters  4 and  5 , the practical implementations in (non)equilibrium
were introduced. Coming from this background, the G1–G2 scheme was derived as a
time-linear reformulation of the HF-GKBA. From this point of view, it seems that this
newly developed method explores vast uncharted territory within many-particle physics.
However, it turns out that these lands have been cultivated for decades by physicists and
chemists working on the reduced-density-matrix (RDM) theory.

The density matrix due to Landau [ 351 ] and von Neumann [ 352 ] is directly related to
the wave function of the system. For a mixed state, it is given by  

7
 

ρ
(N)
1,...,N ;1′,...,N ′(t) :=

∑
k

pk

〈
1, . . . , N

∣∣∣∣Ψ(N)
k (t)

〉〈
Ψ(N)

k (t)
∣∣∣∣1′, . . . , N ′

〉
, (6.74)

with the normalized pk determining the probability of the system to be in state
∣∣∣Ψ(N)

k

〉
and {|1, . . . , N⟩} a complete orthonormal basis of N -particle product states. The reduced
S-particle density matrices are then given by traces over the remaining N − S indices,
leading to,

D
(S)
1,...,S;1′,...,S′(t) := N !

(N − S)!
∑

S+1,...,N

ρ
(N)
1,...,S,S+1,...,N ;1′,...,S′,S+1,...,N(t) , (6.75)

7The index notation is adapted from chapter  3 . However, here all quantities are assumed to depend only
on a single time.
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which are no longer normalized to one but to the prefactor N !
(N−S)! .

Interest in reduced density matrices for equilibrium systems started as early as in the
1950s, when Löwdin [ 353 ], Mayer [ 354 ], and Coulson [ 355 ] promoted the idea that the
total energy of a quantum many-body system with pair-wise interaction,

E(t) =
∑

1,2,3,4
H

(2)
1,2;3,4(t)D

(2)
4,3;2,1(t) , (6.76)

can be expressed by knowledge of the two-particle reduced density matrix (2RDM) and
Hamiltonian,

D
(2)
1,2;1′,2′(t) = N(N − 1)

∑
3,...,N

ρ
(N)
1,2,3...,N ;1′,2′,3...,N(t) , (6.77)

H
(2)
1,2;1′,2′(t) = 1

2(N − 1)
[
δ2;2′h

(1)
1;1′(t) + δ1;1′h

(1)
2;2′(t)

]
+ w1,2;1′,2′(t)

2 , (6.78)

alone, without the need for an N -particle wave function. The realization even prompted
John Coleman to claim in 1951 that the N -particle problem has been solved by reducing
it to a two-particle one [  356 ]. However, the initial euphoria did not last long, as soon
after, Tredgold [ 357 ] and Coleman himself [ 358 ] realized that the 2RDM-based method
yielded energies that were lower than the ground state one. It turned out that the
2RDM has to follow certain constraints, called N -representability conditions [ 359 – 361 ], to
represent an N -particle wave function. This problem continues to preoccupy researchers
to this day [ 348 ,  362 – 365 ] and prevents the simplification of the N -particle problem. 

8
 The

equilibrium 2RDM theory, however, did not suffer from this setback, and a successful
community around Valdemoro [ 242 ], Nakatsuji and Yasuda [ 366 – 369 ], Mazziotti [ 370 – 373 ],
and others [  374 – 384 ] developed various methods for finding the ground state 2RDM,
including the variational approach of semidefinite programming [ 385 ] and the solution of
the (anti-Hermitian) contracted Schrödinger equation [ 386 ,  387 ].

At the same time, the description of systems in nonequilibrium was also advanced
within the framework of reduced density matrices. In contrast to the equilibrium situation,
however, the efforts here were not as unified. Instead, a number of groups in nuclear
(ETDHF or TDDM) [  241 ,  247 ,  388 – 394 ], atomic and molecular (TD-2RDM) [ 348 ,  395 – 397 ],
condensed matter [ 82 ,  398 ], and plasma physics (RDO) [ 76 ,  399 – 401 ] developed the same
approach, for the most part completely independently of each other, and gave it different
names (here provided in the parenthesis). However, at least everyone agreed that the
central infinite hierarchy of equations is called BBGKY [ 76 ]. This coupled system of
equations can be understood as the one-time equivalent of the Martin–Schwinger hierarchy
of NEGF theory introduced in section  3.2 . Traditionally, it is defined for the reduced
density matrices D(S), but in the following, will be expressed using single-time lesser
Green functions denoted as G(S)(t) := G(S),<(t). 

9
 Both are connected via the relation

D(S)(t) = (±iℏ)S G(S)(t). The EOM on the single-particle level,

iℏ d
dtG

<
ij(t) =

[
h(1)(t), G<(t)

]
ij

+ Ĩij(t) +
[
Ĩji(t)

]∗
, (6.79)

8The topic of N -representability is further discussed in section  6.1.2 

9In the special case S = 1, the notation G< is used as in the rest of this work.



6.3 Connecting Many-Particle Theories 97

with the collision integral

Ĩij(t) := ±iℏ
∑
klp

wiklp(t)G(2)
lpjk(t) , (6.80)

couples to the two-particle EOM,

iℏ d
dtG

(2)
ijkl(t) =

[
h(2)(t), G(2)(t)

]
ijkl

+ Ĩ
(2)
ijkl(t) + Ĩ

(2)
jilk(t) −

[
Ĩ

(2)
klij(t)

]∗
−
[
Ĩ

(2)
lkji(t)

]∗
, (6.81)

where the total two-particle Green function G(2) consists of the Hartree-, Fock and
correlation part, cf. Eq. ( 3.90 ),

G
(2)
ijkl(t) = G<

ik(t)G<
jl(t) ±G<

il (t)G<
jk(t) + Gijkl(t) . (6.82)

At first sight, the above equations bear a striking resemblance to the G1–G2 scheme of
Eqs. ( 6.2 ) to ( 6.4 ). The main difference between both representations lies in the treatment
of the Hartree–Fock part of G(2). While in the G1–G2 scheme, it is included in the
single-particle Hamiltonian hHF, leaving only G to be propagated, here, it remains as part
of the collision integral Ĩ resulting in the ideal single-particle Hamiltonian h(1) entering
Eq. ( 6.79 ). The two-particle equation also shows some differences. First, the effective
two-particle Hamiltonian h(2) is defined as

h
(2)
ijkl(t) := δjlh

(1)
ik (t) + δikh

(1)
jl (t) + wijkl(t) , (6.83)

and second, Eq. ( 6.82 ), unlike Eq. ( 6.4 ), which is a closed equation in G< and G, couples
to the three-particle Green function G(3) via  

10
 

Ĩ
(2)
ijkl(t) := ±iℏ

∑
pqr

wipqr(t)G(3)
qrjkpl(t) . (6.84)

This indicates the infinite nature of the BBGKY hierarchy, as the EOM of G(3) will
couple to G(4) and so on. A certain similarity to the Martin–Schwinger hierarchy becomes
immediately clear when the above equations are compared to Eqs. ( 3.29 ) and (  3.35 ). Both
hierarchies, in principle, are able to describe the exact nonequilibrium dynamics of quantum
many-body systems. In practice, however, a direct solution of infinitely many coupled
equations proves to be impossible, which is why approximations have to be employed.

In this regard, the two approaches differ quite significantly. While for the Martin–
Schwinger hierarchy, approximations are developed within MBPT, as outlined in section  3.3 ,
the prevailing technique for the BBGKY hierarchy is called cluster expansion. Within
this framework, the three-particle Green function can, just like the two-particle one in
Eq. ( 6.82 ), be expressed using products of fewer-particle Green functions. Specifically,
G(3) contains products of three single-particle green functions, products of one single-
particle and one correlated two-particle green function, and a residual term G(3) containing

10Note that the different definition of the collision integrals is highlighted by the tilde.
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three-particle correlations,

G
(3)
ijklpq(t) =G<

kq(t)
[
G<

il (t)G<
jp(t) ±G<

ip(t)G<
jl(t) + Gijlp(t)

]
︸ ︷︷ ︸

G(2),H

±G<
kl(t)

[
G<

iq(t)G<
jp(t) ±G<

ip(t)G<
jq(t) + Gijpq(t)

]
︸ ︷︷ ︸

G(2),F

+G<
jp(t)Giklq(t) ±G<

ip(t)Gjklq(t)︸ ︷︷ ︸
h(2),HF

±G<
il (t)G<

jq(t)G<
kp(t) +G<

iq(t)G<
jl(t)G<

kp(t)︸ ︷︷ ︸
Ψ̃

±G<
kp(t)Gijlq(t)︸ ︷︷ ︸

L̃pp

±G<
jq(t)Giklp(t) +G<

iq(t)Gjklp(t)︸ ︷︷ ︸
P ph

+G<
il (t)Gjkpq(t) ±G<

jl(t)Gikpq(t)︸ ︷︷ ︸
P GW

+ G(3)
ijklpq(t) . (6.85)

Using this cluster expansion of G(3), the apparent differences between the first two
equations of the BBGKY hierarchy, Eqs. ( 6.79 ) and ( 6.81 ), and the G1–G2 scheme,
Eqs. ( 6.2 ) and ( 6.4 ), can be resolved. The first two lines, labeled G(2),H and G(2),F, account
for the contribution of the Hartree and Fock part in Eq. ( 6.82 ) when differentiating G(2)

instead of G. All other terms can be associated with a specific contribution of the EOM of
G, cf. Eq. ( 6.4 ). The term labeled as h(2),HF adds the missing Hartree–Fock contribution to
the effective two-particle Hamiltonian in Eq. ( 6.83 ), while the terms labeled P ph and PGW

correspond to Eqs. ( 6.9 ) and (  6.10 ). Finally, the expressions Ψ̃ and L̃pp only reproduce the
respective second terms of Eqs. ( 6.7 ) and ( 6.9 ), as the leading ones containing the factor
of 1

2 are already accounted for in Eq. ( 6.83 ) by the commutator with the pair interaction
w, cf. Eq. ( 6.83 ). This leaves G(3) as the only term that cannot be identified in the G1–G2
scheme. Thus it is proven that the DSL approximation of the G1–G2 scheme is equivalent
to neglecting all three-particle correlations G(3).

In summary, there are two equivalent ways to express the BBGKY hierarchy, the
traditional one using the full density matrices or Green functions, and the G1–G2 or
cumulant version [ 380 ], where the correlation parts are propagated.

Model Hamiltonians

The explicit form of the cluster expansion for the PPP and Hubbard model is given in
the following. Again, the spin is separated from the basis indices and spin symmetry
is assumed, i.e. G↑↑ = G↓↓. Therefore, only the spin-components G := G↑↓↑↓ and
G(3) := G(3),↑↓↓↑↓↓ have to be considered, resulting in the following expression of the
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cluster expansion,

G
(3)
ijklpq(t) =G<

kq(t)
[
G<

il (t)G<
jp(t) + Gijlp(t)

]
︸ ︷︷ ︸

G(2),H

+G<
jp(t)Giklq(t)︸ ︷︷ ︸

h(2),HF

−G<
il (t)G<

jq(t)G<
kp(t)︸ ︷︷ ︸

Ψ̃

−G<
kp(t)Gijlq(t)︸ ︷︷ ︸

L̃pp

−G<
jq(t)Giklp(t)︸ ︷︷ ︸

P ph

+G<
il (t) [Gjkpq(t) − Gjkqp(t)]︸ ︷︷ ︸

P GW

+ G(3)
ijklpq(t) . (6.86)

PPP Model

The collision term Ĩ(2) in the PPP model is given by

Ĩ
(2)
ijkl = −iℏ

∑
p

Vip(t)
[
G

(3)
ipjkpl(t) +G

(3)
jpilpk(t)

]
. (6.87)

Hubbard Model

The collision term Ĩ(2) in the PPP model is given by

Ĩ
(2)
ijkl = −iℏU(t)G(3)

iijkil . (6.88)

6.3.2 Identifying Approximations

After introducing the BBGKY hierarchy and showing the equivalence of its first two
equations to the G1–G2 scheme, in this section, its relation to MBPT approximations of
the Martin–Schwinger hierarchy will be analyzed.

Early attempts to close the BBGKY hierarchy in 1979 by Boercker [ 402 ], and Wong and
Tang [ 388 ,  389 ] were actually based on the T matrix and second-Born approximation of the
Martin–Schwinger hierarchy, respectively. In the latter case, much like in the derivation
of the G1–G2 scheme today, uncorrelated propagators were used [  390 ], well before the
introduction of the GKBA by Lipavský et al. in 1986 [ 85 ]. However, this connection to
NEGF theory subsequently faded into the background until it was later reestablished
and refined by Bonitz et al. [ 76 ,  401 ] and recently by the author and coworkers [ 93 – 95 ].
Instead, in 1985 Wang and Cassing [  241 ] for the first time introduced an approximation to
the BBGKY hierarchy motivated by neglecting all three-particle correlations, which they
denoted by NQCD (Nuclear Quantum Correlation Dynamics) [ 403 ]. Subsequently, this
approximation found widespread use under the names TDDM [ 404 ,  405 ] and occasionally
WC [  82 ,  398 ] approximation. It was also independently derived in equilibrium 2RDM
theory [ 378 ,  379 ] and is known as the Valdemoro approximation in the context of the
(anti-Hermitian) contracted Schrödinger equation [ 242 ]. Under this name, it also found its
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Figure 6.4 – Dynamics of the density on the first site of a half-filled four-site Hubbard
chain at U/J = 0.1. In the ideal initial state, the first two sites are doubly occupied.
The DSL approximation in the G1–G2 scheme is compared to the WC approximation
of Ref. [ 82 ] and to the result of exact diagonalization. Adapted from Ref. [ 94 ].

way into the field of TD-2RDM theory for the description of atoms and molecules [ 348 ,
 395 ,  396 ,  406 ]. Last, the very same approximation can be found in plasma physics under
the name DSL [ 76 ], which is also the case in this work. To confirm that the different names
indeed describe the same approximation, in Fig.  6.4 , a comparison is shown between the
DSL and the WC approximation for a four-site Hubbard chain, where perfect agreement
is achieved.

Overall, the DSL approximation is probably the most used option to truncate the
BBGKY hierarchy [ 247 ,  391 – 394 ,  397 ,  407 – 414 ]. In this context, it is even more important
that in section  6.2 , for the first time, it could be shown precisely which approximation in
MBPT theory corresponds to this truncation or, more specifically, how it can be reproduced
in the framework of the Martin–Schwinger hierarchy using the HF-GKBA. To recap, the
DSL self-energy derived in section  3.3.2 is related to the well-known parquet approximation
but imposes further restrictions on the connections between the three two-particle reducible
channels, see Eq. ( 3.56 ). However, it is still far more sophisticated than the traditional
FLEX self-energy of NEGF theory, which ignores all coupling between the three channels.

Besides DSL, there are also other approximations that are easily expressed in MBPT,
as well as in the G1–G2 scheme and the cluster expansion. One of them is the TPP
approximation, where the NEGF version is given in Eq. ( 3.63 ) and the G1–G2 variant
is outlined in Tab.  6.1 . In the cluster expansion of Eq. ( 6.85 ), it is easily obtained by
removing the terms of P ph and PGW in addition to G(3).

There are, however, also approximations that are not as easily expressed in all theories.
Among those are, for instance, the 2B, TPH and GW approximations. While in MBPT
and the G1–G2 scheme, they are straightforwardly written down, see sections  3.1 and  6.1.1 ,
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respectively, within the cluster expansion, this is a little more bothersome. All of these
approximations are missing the TPP contribution of Eq. ( 6.8 ) and thus, in particular,
have to get rid of the first term on the right-hand side of this equation that does not
originate from the cluster expansion of G(3) but emerges from the commutator with the
pair interaction in Eq. ( 6.81 ). This means that, in addition to choosing the correct terms
in Eq. ( 6.85 ), one has to replace the G(2) in the commutator of Eq. (  6.81 ) with only the
Hartree–Fock part, cf. Eq. (  6.82 ).

It should be noted that for the BBGKY hierarchy, apart from a few exceptions [ 402 ,
 405 ,  415 ], all these approximations have been much less frequently used than the DSL
truncation. Looking at the numerical scaling in the left column of Tab.  6.2 , which is equal
for all approximations, one of the reasons might be that, in this approach, there is no real
incentive to use any other approximation than DSL, which describes the most physical
effects and should thus on paper perform the best. However, this is a fallacy, because in
systems with a finite number of particles, taking into account more terms or diagrams
does not automatically result in a better approximation. Indeed, when it comes to the
stability of the propagation, 2B and TPP perform much better than DSL, as is discussed
in section  6.4.2 .

6.3.3 The Two-Particle Approximation

Finally, an approximation will be presented that has little practical relevance but on the
one hand, illustrates very well the above concept of “sometimes less is more” when it
comes to approximations and on the other hand, is an example of an approximation that
is easy to represent in the cluster expansion but very complex in MBPT. It neglects all
three-particle effects instead of only their correlation contribution, as in the case of DSL,
resulting in an exact description of all systems that contain at most two particles. This
approximation was previously discussed in the literature in Refs. [ 82 ,  398 ,  413 ], among
others, and in the following will be called the two-particle (2P) approximation. Within
the cluster expansion, it is achieved by simply setting G(3) = 0, cf. Eq. ( 6.85 ).

Realizing this approximation within the G1–G2 scheme is more complicated since,
as discussed in section  6.3.1 , G(3) not only contains terms corresponding to the collision
integral I(2) of Eq. ( 6.6 ) but affects contributions to the effective single- and two-particle
Hamiltonians in Eqs. ( 6.2 ) and ( 6.4 ). First, the ideal single-particle Green function G0
has to be calculated separately,

iℏ d
dtG

<
0 (t) =

[
h(1)(t),G<

0 (t)
]
, (6.89)

which then enters the collision integral

Ĩ2P
ij (t) := ±iℏ

∑
klp

wiklp(t)
[
G<

0,lj(t)G<
0,pk(t) ±G<

0,lk(t)G<
0,pj(t) + Glpjk(t)

]
, (6.90)

of the proper single-particle equation of motion,

iℏ d
dtG

<
ij(t) =

[
h(1)(t), G<(t)

]
ij

+ Ĩ2P
ij (t) +

[
Ĩ2P

ji (t)
]∗
. (6.91)
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This corresponds to neglecting the two terms G(2),H and G(2),F in G(3). Further, the
differential equation for G in the 2P approximation has the following form,

iℏ d
dtG

2P
ijkl(t) =

[
h(2),2P(t),G2P(t)

]
ijkl

+ I
(2),2P
ijkl (t) + I

(2),2P
jilk (t) −

[
I

(2),2P
klij (t)

]∗
−
[
I

(2),2P
lkji (t)

]∗
,

(6.92)

where the new effective two-particle Hartree–Fock Hamiltonian h(2),2P only contains the
ideal single-particle Hamiltonian,

h
(2),2P
ijkl (t) := δjlh

(1)
ik (t) + δikh

(1)
jl (t) , (6.93)

to account for the neglected term labeled h(2),HF in G(3). The absence of all other terms is
realized by the new collision integral I(2),2P. It is defined as

I
(2),2P
ijkl (t) := Ψ2P

ijkl(t) + L2P
ijkl(t) , (6.94)

and contains only the leading  

11
 2B term,

Ψ2P
ijkl(t) := 1

2
∑
pq

w±
ijpq(t)G<

pk(t)G<
ql(t) , (6.95)

and the leading TPP term,

L2P
ijkl(t) := 1

2
∑
pq

wijpq(t)G2P
pqkl(t) , (6.96)

of Eqs. ( 6.7 ) and ( 6.8 ), respectively.
While this representation of the 2P approximation within the G1–G2 is quite intricate,

it amazingly allows finding a corresponding 2P self-energy within in NEGF approach
through reverse engineering. The details of this derivation are skipped at this point and
only the final result will be given. First, similar to the G1–G2 case, an independent ideal
calculation has to be performed, cf. Eq. ( 6.89 ), but this time on the complete two-time
plain to get G0(t, t′). The full single-particle equation of motion has to be propagated only
along the time-diagonal and is equivalent to Eq. ( 6.91 ). However, the collision integral is
given by

Ĩ2P
ij (t) = ± iℏ

∑
klp

wiklp(t)
[
G<

0,lj(t)G<
0,pk(t) ±G<

0,lk(t)G<
0,pj(t)

]
(6.97)

+
∑

k

∫ t

ts
dt̄
[
Σ>,2P

ik (t, t̄)G<
0,kj(t̄, t) − Σ<,2P

ik (t, t̄)G>
0,kj(t̄, t)

]
. (6.98)

The most challenging part in the transition from the G1–G2 to the NEGF scheme is
that the collision term I(2),2P in Eq. ( 6.92 ) does not contain all terms of the 2B and TPP
contributions, cf. Eqs. (  6.7 ) and ( 6.95 ), and Eqs. ( 6.8 ) and ( 6.96 ), respectively. This
requires a very unique structure of the self-energy in Eq. ( 6.97 ). As can be shown via
reverse engineering, it has to be of the form

Σ≷,2P
ij (t, t′) = iℏ

∑
kl

[
T≷

ikjl(t, t′)G
≶
lk(t′, t) − 2T<

ikjl(t, t′)G<
lk(t′, t) + T<

ikjl(t, t′)G
≷
lk(t′, t)

]
,

(6.99)
11This refers to the terms with the factor 1

2 in Eqs. ( 6.7 ) and ( 6.8 ).
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where T≷ is the particle–particle T matrix, which is defined as [  94 ]

T≷
ijkl(t, t′) := ±iℏ

∑
pqrs

wijpq(t)GH,≷
pqrs(t, t′)w±

rskl(t′) + iℏ
∑
pqrs

wijpq(t)× (6.100){∫ t

t0
dt̄
[
GH,>

pqrs(t, t̄) − GH,<
pqrs(t, t̄)

]
T≷

rskl(t̄, t′) +
∫ t′

t0
GH,≷

pqrs(t, t̄)
[
T<

rskl(t̄, t′) − T>
rskl(t̄, t′)

]}
.

(6.101)

The final modification required is to set the Hartree-like two-particle Green functions to

GH,≷
ijkl (t, t′) = G≷

ik(t, t′)G≷
jl(t, t′) + 2G<

ik(t, t′)G<
jl(t, t′) −G≷

ik(t, t′)G<
jl(t, t′) −G<

ik(t, t′)G≷
jl(t, t′) .
(6.102)

In the traditional T -matrix approximation, only the respective first term of Eqs. ( 6.99 )
and ( 6.102 ) appears. The other terms are needed to guarantee that only the leading
contributions of the 2B and TPP terms enter in Eq. ( 6.94 ). For the 2B term, one
can confirm that Eq. ( 6.102 ) achieves this, by looking back at Eq. ( 6.35 ). The leading
contribution emerges by replacing the greater components of the single-particle Green
function by Eq. ( 6.36 ), which results in

G>
ik(t)G>

jl(t) = G<
ik(t)G<

jl(t) + 1
iℏδikG

<
jl(t) + 1

iℏδjlG
<
ik(t) + 1

(iℏ)2 δikδjl . (6.103)

The first term cancels with the remaining one in Eq. ( 6.35 ), the final term provides the
leading contribution, and the second and third term provide the remaining contribution of
Eq. ( 6.7 ). For the 2P approximation, those two last named terms have to vanish, which is
exactly the case when defining GH,> as in Eq. (  6.102 ) and inserting it in the first term of
Eq. ( 6.100 ), which spawns the 2B contribution. Note that the lesser component GH,< is
not modified, since the last three terms cancel each other out. The very same arguments
also result in the definition of Σ≷ in Eq. ( 6.99 ). Meanwhile, the general structure of the
2P approximation in the G1–G2 and NEGF formulation, being a special variant of the
particle–particle T -matrix approximation, is not particularly surprising, as the latter is
well known for becoming exact in the small-density limit [  78 ].

The one-to-one agreement of the 2P approximation in the G1–G2 scheme, cf. Eqs. ( 6.89 )
to ( 6.96 ), and the NEGF formalism, cf. Eqs. ( 6.97 ) to ( 6.103 ), is shown for the correlation
energy of a two-site (a) and four-site (b) Hubbard chain at U/J = 4 in Fig.  6.5 . In the
ideal initial state, only the first site is doubly occupied. The two different implementations
of the 2P approximation perfectly agree with the exact dynamics obtained by diagonalizing
the Hamiltonian, confirming the correct description of two-particle systems. Until now, the
connection between approximations to the Martin–Schwinger and the BBGKY hierarchy
seemed like a one-way street. The well-established, conserving self-energy approximations
of MBPT were used as a starting point to transform them to the time-linear G1–G2 scheme
by applying the HF-GKBA. Now, the 2P approximation constitutes the first elemental
approximation within the cluster expansion of the BBGKY hierarchy that is shown to be
expressible in the NEGF formalism. While this finding emphasizes the close connection of
approximations in these two distinct representations, it should again be pointed out that
the 2P approximation has little practical relevance, as two-particle systems are easy to
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Figure 6.5 – Time-dependent correlation energy of (a) a Hubbard dimer and (b) a four-site
Hubbard chain, both at U/J = 4 and containing one spin-up and one spin-down electron.
In the ideal initial state, the first site is doubly occupied. The DSL approximation in
the G1–G2 scheme is compared to the implementation of the 2P approximation in the
NEGF and G1–G2 scheme, which becomes exact in the two-particle limit.

solve exactly thanks to their small Hilbert space.
Nevertheless, it allows for another important insight that will be discussed in the

following. In Fig.  6.5 additionally the result of the DSL approximation within the G1–G2
scheme is shown. 

12
 Despite being the more sophisticated approximation on paper, it cannot

reproduce the exact dynamics of the 2P approximation. This phenomenon is well-known
in NEGF theory [ 158 ] and is closely connected to the problems of spectral broadening,
cf. section  4.1.1 , and damping of nonequilibrium dynamics, cf. section  5.1.1 . It naturally
occurs within MBPT when an approximation contains only a portion of the high-order
diagrams and is nicely illustrated by the example of the 2P approximation. All diagrams
it contains are sufficient to describe the exact two-particle dynamics, which, conversely,
implies that the sum of all remaining diagrams must disappear. Notably, this applies only
to the sum but not to each diagram individually. Thus, for an approximation that includes
contributions beyond the 2P approximation to provide an exact description of two-particle
dynamics, the sum of these additional diagrams has to vanish. For the DSL approximation,
this is not the case. 

13
 It includes only part of the infinite amount of diagrams beyond

the 2P approximation and the sum of this portion of diagrams obviously does not vanish,
resulting in the underwhelming performance shown in Fig.  6.5 .

12For these results, the purification scheme presented in section  6.4.2 was employed.
13In fact, none of the approximations presented in this work, other than the 2P one, is able to exactly

describe two-particle dynamics. All of them contain diagrams that in the two-particle case should at
least partially cancel with other excluded diagrams.
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6.3.4 Closing Thoughts

As mentioned in the beginning of the section, the reformulation of the HF-GKBA into
the G1–G2 scheme proved to be the missing link between approximations in the Martin–
Schwinger and BBGKY hierarchy. While both hierarchies in their entirety are exact
representations of the time-dependent Schrödinger equation, in practice, truncation schemes
are essential for finding numerical solutions. Due to their unique structure, however, the
development of approximations is very different in both cases, and an approximation that
emerges naturally in one hierarchy can require a great effort in the other, as seen for the
2P approximation in section  6.3.3 . A major achievement of this work is to show that
popular approximations of both individual hierarchies are in fact fully identical.

One important realization in that regard is that neglecting three-particle correlations
in the BBGKY hierarchy is directly connected, among other things, to breaking the
self-consistency in the NEGF approach by introducing the HF-GKBA. In fact, all effects
of three-particle correlations and beyond can be pinpointed to exactly three contributions
thanks to the derivation of the DSL approximation in section  6.2 . These are, first, the
correlation part of the propagators in the off-diagonal time propagation of the KBEs,
cf. Eqs. ( 5.32 ) and ( 5.33 ), which is neglected within the HF-GKBA, second, all terms
beyond the (anti)symmetrized pair-interaction w± of the fully irreducible vertex Λ, cf.
Eq. ( 3.55 ), which are ignored in the parquet approximation, and third, all inter-channel
contributions in the two-particle reducible vertices rΦ, cf. Eq. ( 3.56 ), leading to the DSL
approximation. Therefore, within the NEGF approach, applying the HF-GKBA alone
is a necessary but not a sufficient condition to craft an approximation that corresponds
to a truncation scheme of the BBGKY hierarchy that is decoupled on the level of the
two-particle EOM. Likewise, the fully self-consistent 2B approximation, cf. Eq. ( 3.62 ),
which fulfills the latter two conditions but not the first one, leads to a time-linear system of
equations that includes three-particle correlations. The same applies to the vast majority
of self-energy approximations used in NEGF theory, since vertex corrections beyond
the parquet or DSL approximation are perceived as rather intricate and are, therefore,
rarely used. Thus, the HF-GKBA was the only missing link to transform all self-energy
approximations listed in section  3.3.2 to the G1–G2 scheme.

The 2P approximation was introduced in section  6.3.3 to show that it is equally
possible to express approximations developed for the BBGKY hierarchy within NEGF
theory. This free choice between the two representations makes it possible to always choose
the best-scaling numerical formalism for the basis and system size at hand. For lattice
Hamiltonians like in this work, the optimal choice is most of the time the G1–G2 scheme,
whereas for homogeneous systems like the uniform electron gas, the traditional HF-GKBA
can be beneficial [ 349 ]. Going forward, it appears promising to extend this analysis to
approximations beyond DSL. On the side of NEGF theory, vertex corrections beyond the
parquet approximations such as DΓA are widely used within the framework of DMFT [ 224 ,
 225 ,  233 ], while for the 2RDM, attempts to include three-particle correlations were made
by Mazziotti [ 372 ], Nakatsuji and Yasuda [  367 ,  368 ], Tohyama and Schuck [ 416 – 420 ], and
very recently by Pavlyukh et al. [ 344 ,  345 ] based on the Faddeev treatment of three-particle
effects. It is enticing to find out how these approximations could be expressed in the
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respective other formalism.
Moreover, next to the approximations, there is some knowledge about certain properties,

procedures, and conditions of the two connected approaches that was only acquired within
one theory and not the other. The newly established connection between them now
allows combining these insights in the justified hope to solve some pressing problems.
One example is the generation of a correlated ground state. For the HF-GKBA, the
only reliable procedure known to achieve this is adiabatic switching, cf. section  3.1 and
appendix  A.3.2 . In 2RDM theory, however, other alternative methods were proposed based
on a steady state formalism [ 421 – 427 ], and on the antihermitian contracted Schrödinger
equation [  386 ,  387 ]. The same goes for the issue of poor, HF-level spectral information
when using the HF-GKBA, cf. section  5.2 , where within 2RDM theory the extended
Koopmans’ theorem was developed to achieve much better results. More details are
given in section  6.5 . Further, in the context of the single-time theory, the problem of
unstable dynamics was related to the N -representability of the 2RDM, which will be
further explained in section  6.4 , while in NEGF theory it was shown to be connected
to the PSD property of the self-energy [ 428 – 430 ]. In the future, it might be possible to
establish a connection between the two concepts to further increase the understanding of
how both theories are connected.

6.4 N -Representability

The problem that certain approximations are prone to instabilities has been studied
intensively in both NEGF and 2RDM theory. Within the former, this undesirable behavior
is attributed to the self-energy Σ not being PSD [ 428 – 430 ], while in the latter, the
corresponding two-particle density matrix D(2) is observed to not be N -representable. The
following discussion focuses on instabilities occurring within the G1–G2 scheme. A typical
example is presented in Fig.  6.6 , where the time evolution of various observables in a
moderately coupled 6-site Hubbard chain with U/J = 4 is shown. While the exact solution
(black) shows stable dynamics, the TOA (green) and DSL (brown) approximations of
the G1–G2 scheme become unstable already after a short time interval of about 6 and
4 time units, respectively. Empirical studies suggest that there is a negative correlation
between the complexity of an approximation and its stability, meaning that from the
approximations listed in Tab.  6.1 , 2B is the most stable and DSL is the most unstable.
Notably, this is not caused by numerical inaccuracies such as a too-large time step. Instead,
it can be related to the aforementioned violation of N -representability, which will be
discussed in the following.

As mentioned previously in section  6.3.1 , the concept of N -representability was initially
introduced in the context of ground state 2RDM theory by John Coleman in 1961 [  359 ,

 360 ]. At that time, it was found that the variational ansatz of the 2RDM produces
unphysical energies below the ground state energy. This observation led to the conclusion
that the 2RDM, like all S-particle reduced density matrices, cf. Eq. ( 6.75 ), has to meet
certain N -representability conditions to ensure its derivability from an N -particle wave
function. Moreover, it was found that violating these requirements also results in unstable,
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Figure 6.6 – Instability issue of the G1–G2 scheme illustrated for a half-filled six-site
Hubbard chain at U/J = 4. In the ideal initial state, the first three sites are doubly
occupied. The TOA and DSL approximations, which become unstable at times tJ/ℏ ≈ 4
and tJ/ℏ ≈ 6, respectively, are compared to the exact solution. Additionally, the stable
DSL* method is shown, which employs the concepts of contraction consistency and
purification introduced in sections  6.4.1 and  6.4.2 . (a) Density on the first site. (b)
and (c) Correlation and kinetic energy, respectively. (d) Largest eigenvalue of the
two-particle Green function. Adapted from Ref. [ 95 ]. © 2022 American Physical Society.

diverging solutions when iterating the contracted Schrödinger equation [  431 ,  432 ]. In
general, the issue of N -representability was studied in great detail. The interested reader
can find an excellent overview of the topic in Ref. [ 361 ].

Lackner et al. [ 348 ,  395 ,  396 ] were the first to extend the concept of N -representability
to solve the instability problems of time-dependent 2RDM theory, which can be directly
applied to the G1–G2 scheme. 

14
 Based on ideas from equilibrium 2RDM theory, they

developed two procedures, which were subsequently refined by the author and coworkers [  95 ].
First, because Eq. ( 6.75 ) holds for any S-particle reduced density matrix, it follows that
similar trace relations have to exist between the individual reduced density matrices of

14In fact, the TD-2RDM theory used by Lackner et al. is fully equivalent to the G1–G2 scheme combined
with the DSL approximation. However, they also studied approximations beyond DSL.
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adjacent particle numbers. The first three are connected by  

15
 

N = ±iℏ
∑

p

G<
pp(t) , (6.104)

(N − 1)G<
ij(t) = ±iℏ

∑
p

G
(2)
ipjp(t) , (6.105)

(N − 2)G(2)
ijkl(t) = ±iℏ

∑
p

G
(3)
ijpklp(t) . (6.106)

Due to the symmetry properties of the Green functions, the latter two relations directly
imply further trace relations over different index pairs, which are not explicitly given here.
The correct fulfillment of these relations during the entire nonequilibrium propagation is
called contraction consistency and will be discussed in section  6.4.1 .

The second aspect that follows from N -representability is the 1-positivity conditions
for the single-particle (p) and single-hole (h) density matrices  

16
 

±iℏG<
ij(t)=±iℏGp

ij(t):=⟨Ψ| ĉ†
j(t)ĉi(t) |Ψ⟩ ⪰ 0 , (6.107)

iℏG>
ij(t)= iℏGh

ij(t):=⟨Ψ| ĉi(t)ĉ†
j(t) |Ψ⟩ ⪰ 0 , (6.108)

and the 2-positivity conditions for two-particle (pp), two-hole (hh) and particle–hole (ph)
density matrices  

17
 

(iℏ)2 G
(2)
ijkl(t) = (iℏ)2 Gpp

ijkl(t) := ⟨Ψ| ĉ†
k(t)ĉ†

l (t)ĉj(t)ĉi(t) |Ψ⟩ ⪰ 0 , (6.109)
(iℏ)2 G

(2),>
ijkl (t) = (iℏ)2 Ghh

ijkl(t) := ⟨Ψ| ĉi(t)ĉj(t)ĉ†
l (t)ĉ

†
k(t) |Ψ⟩ ⪰ 0 , (6.110)

± (iℏ)2 Gph
ijkl(t) := ⟨Ψ| ĉ†

k(t)ĉj(t)ĉ†
l (t)ĉi(t) |Ψ⟩ ⪰ 0 , (6.111)

meaning that these quantities have to be positive semidefinite. In fact, in the literature,
also positivity conditions for higher-order RDMs are discussed, which will not be considered
here. The process of enforcing these positivity conditions is called purification and proves
to be particularly effective in stabilizing the G1–G2 dynamics. It will be presented in
section  6.4.2 .

Traditionally, N -representability is associated with the above positivity conditions,
whereas contraction consistency is viewed separately. In principle, one could create a single-
particle density matrix and a two-particle density matrix that are both N -representable,
i.e. they meet the above positivity conditions, but belong to different N -particle wave
functions. In that case contraction consistency between them might be violated. However,
if they both were derivable from the same wave function, also the trace relation between
them would be fulfilled. Therefore, in this work, also the issue of contraction consistency
is treated within the framework of N -representability. Applying both above-mentioned
methods to the DSL approximation within the G1–G2 scheme leads to a stable variant,
which is called DSL*. Its improved performance is confirmed in Fig.  6.6 , where it shows
much better agreement with the exact solution.
15In the following, Green functions are used instead of density matrices. They are connected by D(S)(t) =

(±iℏ)S
G(S)(t).

16Take note that the pure-state notation is used here. Information on the more general mixed-state
N -representability can be found in Refs. [ 433 ,  434 ].

17Take note that due to the factor of (iℏ)2 the Green functions have to be negative semidefinite. The
notations Gpp and Gph are used, instead of G(2) and G(2),> in section  6.4.2 , to emphasize the connection
to the particle–particle, and particle–hole positivity condition.
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6.4.1 Enforcing Contraction Consistency

Of the trace relations given in Eqs. ( 6.104 ) to (  6.106 ), the one between the two-particle
and the three-particle Green function is the most relevant, since it was shown [ 348 ] that
enforcing the trace relation between an S and S + 1 Green function automatically guaran-
tees contraction consistency also for all K-particle Green functions with K ≤ S. Therefore,
in the following, only this relation is considered.

To apply the concept of contraction consistency to the G1–G2 scheme each, approxi-
mation listed in Tab.  6.1 can be related to a certain expression of the cluster expansion of
G(3) in Eq. ( 6.85 ), as was shown in section  6.3.2 . However, numerical tests have confirmed
that in general none of the approximations inherently satisfies the relation of Eq. ( 6.105 ).
The idea behind the process of fixing this deficiency and ensuring contraction consistency
is to extend the collision integral I(2) → I(2) + I(2),CC in the EOM of G, Eq. ( 6.4 ), by a
correction term

I
(2),CC
ijkl (t) := ±iℏ

∑
pqr

wipqr(t)G(3),CC
qrjkpl (t) . (6.112)

At first glance, the existence of such a correction term, which fixes the contraction relation
Eq. (  6.105 ), sounds like wishful thinking. After all, one would imagine that developing such
a contribution would require knowledge of the terms neglected in the given approximation.
As it turns out, however, constructing such a correction term is perfectly possible even
without any knowledge of, for instance, three-particle correlations in the case of the DSL
approximation. This should be illustrated by the following example from Ref. [ 95 ], which
focuses on the contraction relation between the two-particle and the single-particle density
matrix, Eq. ( 6.104 ).

Let Yijkl be a two-particle quantity that, due to symmetry relations, possesses two
contraction relations to the single-particle level, Xij = ∑

k Ykikj and Xij = ∑
k Yikjk, with

N = ∑
k Xkk. Assuming no further knowledge about Y , one now wants to construct a

second two-particle quantity Y CC, which possesses the same trace relations as Y . This
can be achieved by expanding the single-particle property X using Kronecker deltas to
obtain

Y CC
ijkl := 1

N
δikXjl + 1

N
δjlXik − 1

N2 δikδjl

∑
p

Xpp . (6.113)

The first and second terms on the right-hand side reproduce the first and second trace
relation, respectively. To negate the respective redundant contribution for each case, an
additional third term is needed. Importantly, in the reconstruction of Eq. (  6.113 ), only
known quantities are used, namely X and its trace N .

The solution to the problem of contraction consistency in the G1–G2 scheme can be
deduced by following this example. In the DSL approximation, the unknown quantity Y
corresponds to  

18
 

G(3)(t) = G(3)(t) −G(3),DSL(t) =: M (3)(t) , (6.114)

18For other approximations, G(3),DSL has to be replaced accordingly, cf. section  6.3.2 .
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while X is replaced by M (2), which is defined as the partial trace of M (3). Unfortunately,
repairing the contraction relation between the three-particle and two-particle levels leads
to a lot more terms than in the example above. The explicit form of the correction term
entering Eq. (  6.112 ) is [ 95 ,  348 ]

G
(3),CC
i1i2i3j1j2j3(t) =

6∑
k=1

∑
τ∈S3

ak
τ δiτ(1)j1 δiτ(2)j2 δiτ(3)j3

kM (0)(t) (6.115)

+
18∑

k=1

∑
σ,τ∈S3

σ(1)<σ(2)

bk
τσ δiτ(1)jσ(1) δiτ(2)jσ(2)

kM
(1)
iτ(3)jσ(3)

(t) (6.116)

+
9∑

k=1

∑
σ,τ∈S3

ck
τσ δiτ(1)jσ(1)

kM
(2)
iτ(2)iτ(3)jσ(2)jσ(3)

(t) , (6.117)

where S3 denotes the permutation group of three elements. The terms in the last line
containing M (2) mainly ensure the correct trace relations and thus correspond to the first
two terms of Eq. ( 6.113 ). The main purpose of the terms in the first two lines containing
M (1) and M (0), defined as (partial) traces over M (2), is to cancel abundant contributions
similar to the third term in Eq. ( 6.113 ). Explicit expressions for the quantities M (0),M (1),
M (2) and for the coefficients a, b, c, as well as a discussion regarding the numerical scaling
of the procedure, are given in appendix  A.8 .

In practice, enforcing contraction consistency alone does not fix the instability issue, see
the discussion on Fig.  6.7 in section  6.4.2 . Nonetheless, it does lead to a number of slight
improvements. First, in the case of DSL, it partially includes three-particle correlations,
which results in a qualitatively better approximation. Second, it allows to calculate G< as
the trace of G(2), via Eq. ( 6.104 ), which renders the solution of the single-particle EOM,
Eq. ( 6.2 ), obsolete. Without contraction consistency in place, both approaches provide
different results [ 82 ]. And third, in close connection to the second point, it ensures that
both expressions for the total energy of the system,

E(t) =
∑
ijkl

H
(2)
ijkl(t)D

(2)
klij(t) and (6.118)

E(t) =
∑
ij

h
(1)
ij (t)D(1)

ji (t) + 1
2
∑
ijkl

wijkl(t)D(2)
klij(t) , (6.119)

provide the same conserved result as shown in Ref. [  95 ]. The two expressions above
correspond to Eq. ( 6.76 ) with the two-particle Hamiltonian Eq. ( 6.78 ) and to Eq. (  3.104 ),
respectively. When contraction consistency is violated, only Eq. ( 6.119 ) in combination
with the explicit solution of the single-particle EOM yields a conserved total energy.

6.4.2 Purification

Meeting the 2-positivity conditions given in Eqs. (  6.109 ) to ( 6.111 ) turns out to be
an essential, albeit neither a necessary nor a sufficient, condition of ensuring a stable
propagation in the G1–G2 scheme. In Fig.  6.6 (d) the largest eigenvalue of the two-particle
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DSL*). Additionally, the result of the stochastic polarization approximation (see
section  6.6 ) and exact diagonalization are shown.

Green function is shown, which, due to the factor of (iℏ)2, should always be negative.
However, for both approximations of TOA and DSL, the instability of the dynamics is
accompanied by a sharp positive increase in the eigenvalue. A similar observation can be
made in Fig.  6.7 for a half-filled eight-site Hubbard chain at U/J = 4, where in the ideal
initial state only the first four sites are doubly occupied. In this case, all 64 eigenvalues of
the two-particle density matrix are shown, which, following the 2-positivity conditions,
are not allowed to become negative. While this is the case for the exact result, the
pure DSL approximation and DSL combined with contraction consistency (DSL+CC)
experience negative eigenvalues that quickly lead to instabilities and the termination of the
calculation. In contrast, the second-Born (SOA) and polarization approximation, which
will be introduced later in section  6.6 , both remain stable despite their notable negative
eigenvalues. Nonetheless, the observation that instabilities go along with a violation of the
2-positivity conditions is reason enough to assume that enforcing the latter by the means
of purification, i.e. (partially) neglecting negative eigenvalues, will increase the stability of
the G1–G2 approach.

Although there are recent developments [ 365 ], where the purification procedure is
integrated into a modified two-particle EOM similar to enforcing contraction consistency,
cf. Eq. ( 6.112 ), it is typically applied subsequently, after completing the propagation step.
As a consequence, important properties of the approximation, such as energy conservation
or contraction consistency, which was tediously enforced by the additional correction term



112 6 Nonequilibrium II: G1–G2 Scheme

in Eq. (  6.112 ), can be violated retroactively if not done correctly. Therefore, the following
purification procedure, initially presented by the author and coworkers in Ref. [ 95 ] based
on the one proposed by Lackner et al. in Ref. [ 395 ], is specifically designed to preserve
both contraction consistency and the conservation of particles and energy.

Following the empirical observation that the 2-positivity conditions for the full particle–
particle Green function Gpp and the full particle–hole Green function Gph are the most
crucial [ 348 ], only those two are considered here. Since in the G1–G2 scheme the correlation
part of the two-particle Green function G is propagated, in the first step, both full quantities
have to be calculated via Eqs. ( 3.90 ) and (  3.98 ). To access their eigenvalues, the rank-
4 tensors are mapped to N2

b × N2
b matrices, Gpp

ij,kl → Gpp
x,y, in order to perform the

eigendecomposition  

19
 

Gpp = V λV † , (6.120)

with λ being a diagonal matrix holding the eigenvalues of Gpp and V containing the
respective eigenstates. In the next step, the unphysical (positive) part of Gpp is constructed
by setting all negative eigenvalues to zero and performing the back transformation  

20
 

Gpp
pos := V λposV

† . (6.121)

For a straightforward purification, one could now subtract Gpp
pos from G(2) to eliminate

all contributions from positive eigenvalues. However, doing so can potentially violate
energy conservation and contraction consistency between the single- and two-particle
Green function, cf. Eq. ( 6.104 ). To avoid this, Gpp

pos is further modified. Since, here, the
correction for the contraction consistency is applied on the two-particle instead of the
three-particle level, as in Eq. (  6.117 ), the procedure is less cumbersome. Analogous to
the quantities M (1) to M (2) in Eq. ( 6.117 ), the symmetrized (S) and antisymmetrized (A)
auxiliary quantities

A
(1)
ij := 1

2
∑

k

(
Gpp,pos

ikjk −Gpp,pos
ikkj

)
, A(0) :=

∑
k

A
(1)
kk , (6.122)

S
(1)
ij := 1

2
∑

k

(
Gpp,pos

ikjk +Gpp,pos
ikkj

)
, S(0) :=

∑
k

S
(1)
kk , (6.123)

and

A
(2)
ijkl := δik

A
(1)
jl

Nb − 2 + δjl
A

(1)
ik

Nb − 2 − δjk
A

(1)
il

Nb − 2 − δil

A
(1)
jk

Nb − 2 (6.124)

− δikδjl
A(0)

(Nb − 1) (Nb − 2) + δilδjk
A(0)

(Nb − 1) (Nb − 2) , (6.125)

S
(2)
ijkl := δik

S
(1)
jl

Nb + 2 + δjl
S

(1)
ik

Nb + 2 + δjk
S

(1)
il

Nb + 2 + δil

S
(1)
jk

Nb + 2 (6.126)

− δikδjl
S(0)

(Nb + 1) (Nb + 2) − δilδjk
S(0)

(Nb + 1) (Nb + 2) , (6.127)

19The following procedure is only shown for Gpp. It has to be applied in the same way for Gph.
20Remember that the two-particle Green function has to be negative semidefinite.
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are calculated. 

21
 They are constructed in such a way that the sum of A(2) and S(2) fulfills

exactly the same trace relation as Gpp
pos. Therefore, the contraction-free part of the positive

two-particle Green function is given by

Gpp
pos,CC := Gpp

pos − A(2) − S(2) . (6.128)

Ensuring contraction consistency from the two-particle to the single-particle level in this
way guarantees that the single-particle Green function is not modified by the purification
procedure. Consequently, all single-particle observables are conserved. However, the total
energy contains a correlation part, cf. Eq. (  3.110 ), a two-particle observable that, in general,
depends on all entries of G. Preventing the purification to change the correlation energy
is, therefore, a challenging task for which multiple solutions were developed [ 95 ,  397 ]. In
the lattice models considered in this thesis, one can exploit that, due to the diagonal
interactions, the correlation energy in the PPP and Hubbard model is given by

EPPP
c (t) = (iℏ)2∑

pq

Vpq(t)
[
2 G↑↓↑↓

pqpq (t) − G↑↓↑↓
pqqp (t)

]
and (6.129)

EHU
c (t) = (iℏ)2 U(t)

∑
p

G↑↓↑↓
pppp(t) , (6.130)

respectively. Thus, the conservation of total energy can be ensured by setting

Gpp,pos
ijkl = 0 for (i = k and j = l) or (i = l and j = k) (6.131)

in the PPP model, and

Gpp,pos
ijkl = 0 for (i = k = j = l) (6.132)

in the Hubbard model, before calculating Gpp
pos,CC. This way, the parts of G that enter

the correlation energy (∼N2
b and Nb of the N4

b entries for the PPP and Hubbard model,
respectively) are not modified by the purification procedure. 

22
 After repeating the above

procedure for the two-hole Green function, the purified two-particle Green function can be
constructed as

G(2)
pur := G(2) − Gpp

pos,CC − Gph
pos,CC . (6.133)

Finally, in the G1–G2 scheme the correlation part has to be calculated via

G↑↓↑↓
ijkl = G

(2),↑↓↑↓
ijkl −G<,↑↑

ik G<,↓↓
jl . (6.134)

However, while all the modifications that were done to Gpp
pos,CC and Gph

pos,CC guarantee
energy conservation and contraction consistency between the single- and two-particle
Green function, they also reduce the amount of information about the positive eigenvalues
that was initially contained in Gpp

pos of Eq. ( 6.121 ). Therefore, a single purification step
might not be enough to sufficiently reduce the positive eigenvalues in G(2), and instead,
21Note that due to the denominators of the form Nb − 2 and Nb − 1 this step cannot be applied for

system with Nb ≤ 2.
22It might seem that applying Eqs. ( 6.131 ) and ( 6.132 ) to Gpp,pos instead of Gpp

pos,CC would be a mistake.
However, one can easily verify that Eqs. (  6.122 ) to ( 6.127 ) do not modify the zero entries.
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Figure 6.8 – Largest eigenvalue of G(2) for a half-filled six-site Hubbard chain at U/J = 4,
where in the ideal initial state the first three sites are doubly occupied. (a) Comparison
of three versions of DSL, one without purification, one with a single purification step,
and one with 20 iterations. (b) Largest eigenvalue after each purification step for the
calculation with 20 iterations. The red crosses correspond to the red line in (a). The
time step of the calculation is ∆ = 0.01ℏJ−1. The data points are shifted in time and
plotted between the actual time steps of the calculation for illustrative purposes.

the above scheme has to be repeated iteratively until the eigenvalues are reduced below
a given threshold. However, in practice, it was found that a single iteration is often
enough to guarantee a stable propagation, which is illustrated in Fig.  6.8 for a half-filled
six-site Hubbard chain at U/J = 4, where in the ideal initial state the first three sites are
doubly occupied. In Fig.  6.8 (a) the largest eigenvalue of G(2) is compared between a DSL
calculation without purification, one where a single purification step is performed after
each time step, and one where 20 iterations are conducted. While the pure DSL calculation
quickly becomes unstable, a single purification step is enough to ensure small eigenvalues
and a stable propagation. In Fig.  6.8 (b) this is illustrated in more detail. Again, the
largest eigenvalue of G(2) is shown, this time after each step of the purification for the
calculation that performs 20 iterations and only for the time interval around one time unit.
It stands out that the first iteration reduces the eigenvalue by the largest amount from
∼0.0011 to ∼0.0003, while subsequent iterations are less effective.

As, from the physical perspective, the purification procedure is a somewhat arbitrary
modification of the two-particle Green function, it should be applied only as much as
necessary to ensure a stable propagation. Therefore, in the calculations performed in this
thesis, only one iteration of the purification scheme is applied. 

23
 

23It should be noted, that the performance of the purification procedure effectively is influenced by the
size of the time step of the calculation, as a smaller time step results in more purification iterations
being executed per unit time.
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Figure 6.9 – (a) Correlation energy and (b) kinetic energy of the same system as in
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(including contraction consistency and purification) results remain stable, while the TOA
calculations become increasingly unstable (diverge earlier) for increasing interaction
strength. Adapted from Ref. [ 95 ]. © 2022 American Physical Society.

The numerical scaling of the purification procedure does not depend on the choice of
the model as it is mainly determined by the eigendecomposition of Eq. ( 6.121 ), which does
not contain the pair interaction. Solving an eigenvalue problem for a N2

b ×N2
b matrix, in

general, scales as O(N6
b), but more efficient algorithms such as the Lanczos method can

be applied.
The combination of DSL with enforced contraction consistency and purification will

be called DSL*. A first result was already presented in Fig.  6.6 , where this new method
clearly outperforms the TOA and standard DSL approximation. Not only does DSL*
remain stable throughout the whole propagation, it also better fits the exact results for
the kinetic and correlation energy in the time before the other two methods diverge. A
more detailed analysis of the performance of DSL* is conducted in Fig.  6.9 for the same
setup. While the TOA calculations exhibit severe instability problems, especially for strong
interactions, the DSL* method nicely reproduces the broad oscillations of the correlation
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energy as well as the high-frequency dynamics of the kinetic energy present in the exact
solution. Small deviations occur for strong coupling where DSL* slightly underestimated
the oscillation frequency of the correlation energy and predicts a slight increase in the
kinetic energy. Nonetheless, DSL*, i.e. the DSL approximation in combination with
both enforced contraction consistency and purification, is by far the best-performing
method used in this thesis. The already excellent DSL approximation, which combines
dynamical screening with strong coupling, is enhanced by partially including three-particle
correlation effects through the contraction consistency term, cf. Eq. ( 6.112 ). Additionally,
the purification scheme prevents instabilities and allows for long propagation times.

6.5 Spectral Information from Reduced Density Matrices

In principle, the NEGF method is the ideal tool to study the spectral properties of a system.
After all, the lesser and greater real-time components of the two-time single-particle Green
function contain the information about the PES and IPES, respectively, cf. Eqs. ( 3.111 )
and ( 3.112 ). However, in practice, various problems arise. While in equilibrium, artificial
peaks appear in the self-consistent solution, cf. section  4.1.1 , in nonequilibrium, spectral
features are excessively broadened, cf.  5.1.1 . Although both problems can be overcome by
breaking self-consistency, doing so can reduce the general quality of the spectral information.
For instance, when using the HF-GKBA, all single-particle Green functions at off-diagonal
times are assumed to be uncorrelated. Since these carry the spectral information, this has
the consequence that the PES and IPES of HF-GKBA calculations are on the level of a
HF description. This is also the case for the G1–G2 scheme, as it is a direct reformulation
of the HF-GKBA. Here, however, it is aggravated by the fact that in the G1-G2 scheme,
all propagations along off-diagonal times have been discarded to allow for a time-linear
scaling. Hence, to get access to spectral information in the same way as in the HF-GKBA,
additional off-diagonal propagations had to be performed in the G1–G2 scheme, potentially
spoiling its numerical advantage. 

24
 

Thankfully, within 2RDM theory, there not only exist ways to access HF-level spectral
information from only knowledge of the time-diagonal density matrix but also to include
correlation effects in the spectra via the two-particle density matrix. Both methods are
known as Koopmans’ theorem (KT) and extended Koopmans’ theorem (EKT), respectively.
Koopmans stated in 1934 that the ionization energies of an atom can be approximated
by the eigenenergies of the Hartree–Fock Hamiltonian [  435 ]. By solving the respective
Schrödinger equation,

∑
j

hHF
ij ϕ

j
ν = Eνϕ

i
ν , (6.135)

24However, even in the worst case the additional costs would be comparable to Nt HF calculations,
cf. Tab.  3.1 .
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where ϕν are the respective uncorrelated eigenstates to the eigenenergies Eν , the lesser
component of the single-particle Green function can be expressed as  

25
 

G<
ij(ω) = ±2π

iℏ
∑

ν

pν

(
ϕj

ν

)∗
ϕi

ν δ (ℏω − Eν) . (6.136)

The spectral weights pν are given by the single-particle density matrix in the eigenbasis of
the Hartree–Fock Hamiltonian,

pν :=
∑
kl

(
ϕk

ν

)∗
D

(1)
kl ϕ

l
ν . (6.137)

Since the KT method is based on the diagonalization of a single-particle Hamiltonian of
dimension Nb ×Nb, the ionization spectra, or PES, cf. Eq. ( 6.136 ), has exactly Nb peaks,
which are shared with the IPES,

G>
ij(ω) = ±2π

iℏ
∑

ν

(1 − pν)
(
ϕj

ν

)∗
ϕi

ν δ (ℏω − Eν) . (6.138)

In summary, KT enables one to calculate HF-level ionization spectra, or PES, with only
knowledge of the single-particle density matrix.

A lot of effort was put into extending KT by including correlation effects [ 436 – 445 ].
The most common version, known as EKT-1 or often simply EKT, 

26
 treats the initial

state as fully correlated but approximates the ionization process to be of single-particle
nature [ 436 ], see also appendix  A.9 . The Schrödinger equation in that case takes the form
of a generalized eigenvalue problem (GEP),∑

k

F<
ikϕ

k
ν = Eν

∑
k

Sikϕ
k
ν , (6.139)

with the generalized HF potential,

F<
ij :=

∑
k

h
(1)
ik D

(1)
kj +

∑
klp

wiklpD
(2)
lpjk , (6.140)

and the overlap matrix S = D(1). Information on how to solve a GEP can be found in
appendix  A.1 . The lesser component of the Green function is again given by Eq. ( 6.136 ),
where Eν and ϕi

ν now have to be obtained from Eq. ( 6.139 ). Notably, these Nb eigenvalues
and eigenstates now exclusively describe the PES, while for the IPES a separate Schrödinger
equation has to be solved [ 436 ,  437 ]. Therefore, the total DOS in the EKT has 2Nb peaks,
while in the KT it only has Nb. To summarize, the EKT method includes correlation
effects through the two-particle density matrix in Eq. ( 6.140 ), while still depending solely
on single-time quantities, all of which are readily available within the G1-G2 scheme.

The performance of both approaches for the ground state of a half-filled six-site Hubbard
chain at U/J = 4 is illustrated in Fig.  6.10 . The exact PES is compared to the spectra
given by Eq. ( 6.136 ) for both the KT and EKT based on the exact single- and two-particle
25The derivation of these equations is presented in appendix  A.9 .
26Other popular variants are EKT-2, which describes neutral excitations similar to the density–density

response function, cf. section  6.6.2 , and EKT-3, which combines the effects of EKT-1 and EKT-2 [ 442 ,
 443 ,  445 ].
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Figure 6.10 – Photoemission spectrum for the ground state of a half-filled six-site Hub-
bard chain for U/J = 4. The KT and EKT results are obtained for the exact single-
and two-particle density matrix.

density matrix. All deviations are, therefore, solely caused by the assumptions of the KT
and EKT method and not due to approximations included in D(1) and D(2). As a result
of the strong coupling, the exact solution shows a considerable Mott gap, as the highest
energy peak is at ∼ − 1J . 

27
 Additionally, many smaller satellites are observed at high

negative energies. As discussed above, the KT method only contains Nb peaks, which are
shared between the upper and lower band. In this case, this leaves only Nb

2 = 3 peaks
below the Fermi level, which prevents the description of satellites. Instead, peaks above
the Fermi level are excited corresponding to a finite electron temperature in the ground
state. Additionally, the small gap in the spectrum is exclusively due to finite-size effects,
as the description is on HF level, which is known to not reproduce the Mott transition
in the Hubbard model, cf. Fig.  2.5 . The EKT method, on the other hand, well describes
the correlation-induced shift of the highest energy peaks and even overestimates the gap
slightly. Furthermore, even some of the exact satellites can be described, as the PES in
this approach has Nb = 6 peaks.

Since the KT and EKT method give access to the full Nb ×Nb lesser Green function,
cf. Eq. ( 6.136 ), one can calculate the momentum-resolved PES, which is experimentally
accessible through (tr)ARPES measurements. An example is shown in Fig.  6.11 for the
ground state of a half-filled 54-site Hubbard chain at U/J = 4. Three different calculations
were performed. In the first, the interacting ground state was generated with the EGF
approach of section  4 using the 2B approximations. The other two used the G1–G2 scheme
with adiabatic switching combined with the 2B and the DSL* approximation. While in
the EGF case, the spectrum is calculated directly, for the G1–G2 results, the KT (for 2B)
and the EKT (for 2B and DSL*) methods are used. The red lines serve as a guide for

27The gap itself is not visible here, since only the PES and not the total DOS is shown.
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Figure 6.11 – Momentum-resolved photoemission spectrum for the ground state of a
half-filled 54-site Hubbard chain. Compared are the 2B approximation in the EGF
approach (top left), the 2B approximation in the G1–G2 scheme with the spectrum
being calculated with the KT (top right) and EKT (bottom left) method, and the EKT
spectrum for the DSL* approximation in the G1–G2 scheme (bottom right). The red
lines mark the exact Bethe solution for the infinite Hubbard chain, cf. section  2.2.2 .

the eye as they mark the exact Bethe solution for the infinite Hubbard chain but do not
indicate the intensity of the spectral features, cf. Fig.  2.5 . The EGF result qualitatively
reproduces important parts of the exact solution. While the size of the gap at k = ±π

2 is
slightly underestimated, the main cosine dispersion and the satellite bands between k = ±1
are in good agreement. The quality of the G1–G2 results depends strongly on both the
chosen approximation and the use of the KT or EKT method. The spectrum calculated
for 2B with the KT approach nicely reproduces the main cosine dispersion of the exact
solution around k = 0 but does not describe the Mott gap or satellites and instead predicts
excitations beyond the Fermi level, similar to Fig.  6.10 . The EKT spectrum that is based
on the same G1–G2 calculation with 2B approximation looks completely different. As
already observed in Fig.  6.10 , EKT slightly overestimates the Hubbard gap, which here
applies to the whole cosine dispersion. Compared to the EGF solution, this result does
not describe the satellite bands around k = 0 but the ones beyond k = ±π

2 . The EKT
spectrum based on the DSL* calculation is very similar to the 2B one but contains even
more contributions of the scattering continuum between the satellite bands of the exact
Bethe solution, cf. Fig.  2.5 .

The KT and EKT methods provide a straightforward way to calculate spectra within
the time-diagonal G1–G2 scheme. While the results of the KT method are qualitatively
comparable to the spectra of the HF-GKBA, the EKT approach allows the inclusion of
additional correlation effects. However, in Figs.  6.10 and  6.11 , only ground-state results
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were discussed. While the generalization of KT to nonequilibrium is straightforward, 

28
 for

EKT, this turns out to be an intricate problem, which is yet to be solved. Therefore, in
section  7.4 , the spectra of the G1–G2 scheme are calculated using the KT method. For
the PPP model used there, the HF-level description of KT performs much better than for
the Hubbard model used for the benchmarks in this section, cf. Fig.  2.8 .

6.6 Fluctuation Approach

Over the last decades, an alternative approach to express the BBGKY hierarchy has
been developed based on quantum fluctuations [ 405 ,  446 – 450 ]. 

29
 Recently, the author and

coworkers were able to further advance the method and achieve important breakthroughs
that could make the fluctuation approach a serious competitor to the G1–G2 scheme [ 453 ].
It could be shown that the new method not only allows for a numerically efficient way
to solve the GW approximation  

30
 but it also allows direct access to two-particle spectral

observables like the dynamic structure factor. In the following, this approach will be briefly
outlined.

6.6.1 Fluctuations and Equations of Motion

Single-particle fluctuations are defined as the deviation of an operator from its expectation
value. For the fluctuations of the single-particle Green function δĜ this means, 

31
 

Ĝ<
ij(t) = G<

ij(t) + δĜij(t) . (6.141)

This relation directly implies that the ensemble average of single-particle fluctuations has
to vanish, 〈

δĜij(t)
〉

= 0 . (6.142)

Using the canonical commutator relations of Eq. ( 2.2 ), the two-particle Green function
can be expressed as

G
(2)
ijkl(t) = 1

(iℏ)2

〈
ĉ†

k(t)ĉ†
l (t)ĉj(t)ĉi(t)

〉
(6.143)

= 1
(iℏ)2

〈
ĉ†

k(t)ĉi(t)ĉ†
l (t)ĉj(t) − δilĉ

†
k(t)ĉj(t)

〉
(6.144)

=
〈
Ĝ<

ik(t)Ĝ<
jl(t) ∓ 1

iℏδilĜjk(t)
〉
. (6.145)

28One can simply use the time-dependent density matrix and Hartree–Fock Hamiltonian.
29For classical systems this idea was already proposed in the 1950 by Klimontovich [ 451 ,  452 ].
30The approximation in the fluctuation approach deviates slightly from the GW approximation by a

residual term, cf. Eq. ( 6.165 ).
31Due to Eq. ( 3.96 ), the fluctuations of the lesser and greater component are equal, i.e. δĜ := δĜ< = δĜ>.
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Inserting Eq. ( 6.141 ) and using Eq. ( 6.142 ) results in the fluctuation expression of the
two-particle Green function

G
(2)
ijkl(t) = G<

ik(t)G<
jl(t) ∓ 1

iℏδilG
<
jk(t) +

〈
δĜik(t)δĜjl(t)

〉
(6.146)

= G<
ik(t)G<

jl(t) ±G<
il (t)G<

jk(t) ∓G>
il (t)G<

jk(t)︸ ︷︷ ︸
−L

(0)
ijkl

(t)

+
〈
δĜik(t)δĜjl(t)

〉
︸ ︷︷ ︸

Lijkl(t)

. (6.147)

While the traditional BBGKY hierarchy couples EOMs for the full S-particle Green
functions, cf. Eqs. ( 6.79 ) to ( 6.81 ), the G1–G2 scheme employed the idea of the cluster
expansion to separate and propagate only their correlation parts, cf. Eqs. ( 6.2 ) to (  6.4 ).
In contrast, in this approach, S-particle fluctuations are isolated. Like in the other two
cases, in theory, the infinite hierarchy is capable of describing the exact nonequilibrium
dynamics. In practice, however, approximations have to be used. The labeling of the
two-particle fluctuations and the corresponding source term as L and L(0), respectively,
is no coincidence. 

32
 In appendix  A.4 , it is shown that two-particle fluctuations indeed

correspond to the exchange–correlation function L, which is related to the correlation part
of the two-particle Green function by  

33
 

Lijkl(t) = L
(0)
ijkl(t) + Gijkl(t) . (6.148)

Therefore, the EOM for the time-diagonal lesser component of the single-particle Green
function can be expressed in three distinct ways,

iℏ d
dtG

<
ij(t) =

[
h(1)(t), G<(t)

]
ij

+ I
(G(2))
ij (t) +

[
I

(G(2))
ji (t)

]∗
(6.149)

=
[
hHF(t), G<(t)

]
ij

+ I
(G)
ij (t) +

[
I

(G)
ji (t)

]∗
(6.150)

=
[
hH(t), G<(t)

]
ij

+ I
(L)
ij (t) +

[
I

(L)
ji (t)

]∗
, (6.151)

where the first two lines are identical to Eqs. ( 6.79 ) and (  6.2 ) with I(G(2)) := Ĩ and I(G) := I,
respectively. The third line corresponds to the new fluctuation approach, where the
single-particle Hamiltonian only contains the Hartree but not the Fock contribution of
Eq. (  3.43 ) and the collision integral is defined as

I
(L)
ij (t) := ±iℏ

∑
klp

wiklp(t)Llpjk(t) , (6.152)

with

Lijkl(t) =
〈
δĜik(t)δĜjl(t)

〉
. (6.153)

The reason why it is favorable to express the collision integral using L instead of G(2) or
G is that the former can be expressed by a product of the single-particle operator δĜ.
32The exchange–correlation function L used here should not be confused with the particle–particle ladder

term Lpp introduced for the G1–G2 scheme in Eq. ( 6.8 ).
33Within 2RDM theory, the time-diagonal exchange–correlation function L is known as two-body correla-

tion matrix (2-CM) denoted as C or C [ 248 ,  373 ].
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Consequently, the EOM of the latter gives direct access to the time evolution of L, which
makes solving a two-particle EOM unnecessary in this approach. Following Ref. [ 453 ], the
differential equation for single-particle fluctuations is

iℏ d
dtδĜij(t) =

[
hH(t), δĜ(t)

]
ij

+
[
δΣ̂H(t), G<(t)

]
ij

+ δÎ
(L)
ij (t) +

[
δÎ

(L)
ji (t)

]∗
, (6.154)

with the Hartree fluctuations, cf. Eq. ( 3.109 ),

δΣ̂H
ij(t) := ±iℏ

∑
kl

wikjl(t)δĜlk(t) , (6.155)

and the fluctuations of the collision integral

δÎ(L)(t) := ±iℏ
∑
klp

wiklp(t)
[
L̂lpjk(t) − Llpjk(t)

]
, (6.156)

where the operator L̂ is defined as

L̂ijkl(t) := δĜik(t)δĜjl(t) . (6.157)

In line with the theme of this chapter, Eq. ( 6.154 ) represents the beginning of an infinite
hierarchy of fluctuations, which in the following will be decoupled by setting δÎ(L) = 0.
However, to obtain a conserving approximation, see appendix  A.10 , two additional steps
have to be taken. First, the Fock component has to be artificially added to the singe-particle
Hamiltonian and the fluctuation-induced Hartree potential, resulting in the following EOM
for the single-particle fluctuations,

iℏ d
dtδĜij(t) =

[
hHF(t), δĜ(t)

]
ij

+
[
δΣ̂HF(t), G<(t)

]
ij
. (6.158)

One can show that the L defined by the fluctuations given by Eq. ( 6.158 ) does not fulfill
the exact symmetry relation of the exchange–correlation function, cf. Eq. ( A.57 ), which
is essential for an energy conserving approximation. Therefore, in the second step, one
introduces a new symmetrized version of L and L(0) as

L̃ijkl(t) = 1
2 [Lijkl(t) + Ljilk(t)] = 1

2
〈
δĜik(t)δĜjl(t) + δĜjl(t)δĜik(t)

〉
, (6.159)

L̃
(0)
ijkl(t) = 1

2
[
L

(0)
ijkl(t) + L

(0)
jilk(t)

]
= ±1

2
[
G>

il (t)G<
jk(t) +G>

jk(t)G<
il (t)

]
, (6.160)

with

L̃ijkl(t) = L̃
(0)
ijkl(t) + Gijkl(t) . (6.161)

The new single-particle EOM, in this case, is

iℏ d
dtG

<
ij(t) =

[
hH(t), G<(t)

]
ij

+ I
(L̃)
ij (t) +

[
I

(L̃)
ji (t)

]∗
+ Sij +

[
Sji(t)

]∗
, (6.162)

with the collision integral

I
(L̃)
ij (t) := ±iℏ

∑
klp

wiklp(t)L̃lpjk(t) , (6.163)
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and an additional term originating from the symmetrization,

Sij(t) := 1
2
∑
kl

wkljk(t)G<
il (t) . (6.164)

This polarization approximation (PA), defined by the closed set of equations ( 6.158 ) to
( 6.163 ), is energy conserving for all models considered in this thesis, cf. appendix  A.10 . It
was shown in Ref. [ 453 ] by the author and coworkers that the PA is closely related to the
GW approximation within the G1–G2 scheme (including exchange corrections) and only
differs by an additional residual term

Rijkl(t) := ∓G>
il (t)

{
I

(G)
jk (t) +

[
I

(G)
kj (t)

]∗}
∓
{
I

(G)
il (t) +

[
I

(G)
li (t)

]∗}
G<

jk(t) , (6.165)

entering in the EOM ( 6.4 ) for G. Further comparisons to the G1–G2 scheme, for instance
regarding the numerical scaling, are futile, since the operator representation of Eq. ( 6.4 )
prevents the PA from being implemented numerically. Instead, the operators have to be ex-
pressed by classical stochastic samples leading to the stochastic polarization approximation
(SPA) discussed in the following section.

6.6.2 Stochastic Polarization Approximation

The coupled system of equations ( 6.158 ) to ( 6.163 ) contains the single-particle fluctuation
operator δĜij, which renders a numerical solution impossible. To solve this problem,
the quantum mechanical operator can be expressed using a distribution of classical,
complex-valued ensembles ∆Gij , which obeys the same equation of motion as the operator,
Eq. ( 6.158 ), and fulfills the same initial conditions. Additionally, one has to account for the
fact that complex samples cannot mimic the commutator relations of quantum mechanical
operators. This can be illustrated for the retarded part of the density–density response
function, which is introduced in Eq. ( A.54 ) of appendix  A.4 ,

χR
ij(t, t′) = iℏΘ(t, t′)

〈
δĜii(t)δĜjj(t′) − δĜjj(t′)δĜii(t)

〉
. (6.166)

Simply replacing the fluctuation operators by a classical ensemble, i.e. δĜ → ∆G, would
result in χR to vanish, since ∆Gii(t)∆Gjj(t′) = ∆Gjj(t′)∆Gii(t) due to the commutative
property of complex multiplication. As a consequence, one defines two distinct classical
ensembles ∆GI and ∆GII for the first and second factor of all two-particle fluctuations,
respectively, so that

χR
ij(t, t′) = iℏΘ(t, t′)E

[
∆GI,λ

ii (t)∆GII,λ
jj (t′) − ∆GI,λ

jj (t′)∆GII,λ
ii (t)

]
, (6.167)

where the quantum mechanical average is replaced by the stochastic expectation value E[·]
of a classical ensemble. In practical applications, this is approximated by the arithmetic
mean over Nλ classical samples λ.

With that, the SPA can be expressed by the following set of coupled equations. The
EOM of the single-particle Green function is identical to Eq. ( 6.162 ),

iℏ d
dtG

<
ij(t) =

[
hH(t), G<(t)

]
ij

+ ISPA
ij (t) +

[
ISPA

ji (t)
]∗

+
[
I

(L̃)
ji (t)

]∗
+ Sij +

[
Sji(t)

]∗
,

(6.168)
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with the collision integral

ISPA
ij (t) := ±iℏ

∑
klp

wiklp(t)L̃SPA
lpjk (t) . (6.169)

The symmetrized exchange–correlation function is now defined as

L̃SPA
ijkl (t) := 1

2E
[
∆GI,λ

ik (t)∆GII,λ
jl (t) + ∆GI,λ

jl (t)∆GII,λ
ik (t)

]
, (6.170)

where both ensembles ∆GI and ∆GII enter. The EOMs for the samples of the latter two
are only coupled indirectly through G< and are otherwise independently given by

iℏ d
dt∆G

I,λ
ij (t) =

[
hHF(t),∆GI,λ(t)

]
ij

+
[
∆ΣI,λ(t), G<(t)

]
ij
, (6.171)

iℏ d
dt∆G

II,λ
ij (t) =

[
hHF(t),∆GII,λ(t)

]
ij

+
[
∆ΣII,λ(t), G<(t)

]
ij
, (6.172)

with the respective Hartree–Fock fluctuations

∆ΣI,λ
ij (t) := ±iℏ

∑
kl

w±
ikjl(t)∆G

I,λ
lk (t) , (6.173)

∆ΣII,λ
ij (t) := ±iℏ

∑
kl

w±
ikjl(t)∆G

II,λ
lk (t) . (6.174)

In the form given by Eqs. ( 6.168 ) to ( 6.174 ), the SPA no longer contains quantum-
mechanical operators and thus now allows for a straightforward numerical implementation.
As mentioned before, the fundamental advantage of this approach is the fact that no
two-particle EOM has to be solved, and instead, only single-particle samples have to be
propagated, which reduces the numerical costs. For the example of the Hubbard model,
this leads to the following scaling behavior for the number of samples Nλ:

CPU time: O (NλN
2
bNt) Memory consumption: O (NλN

2
b)

Comparing with the scaling of the GW approximation in the G1–G2 scheme for the
Hubbard model, cf. Tab.  6.2 , reveals that for Nλ < N2

b the SPA provides a speed-up
compared to the G1–G2 scheme. It is, therefore, essential to address the sampling of the
introduced classical ensembles.

In practice, the complex-valued samples have to be chosen in such a way that the
initial conditions of the original PA are fulfilled. For the single-particle fluctuation, it
is given in Eq. ( 6.142 ). On the two-particle level, the initial condition can be derived
from Eqs. ( 6.159 ) to ( 6.161 ). Since the interacting ground state is generated via adiabatic
switching, cf. appendix  A.3 , the initial state of the system can always be assumed to be
ideal, i.e. Gijkl(t0) = 0. In the natural orbital basis, the single-particle Green functions
are given by G<

ij(t0) = ± 1
iℏδijni and G>

ij(t0) = ± 1
iℏδij(ni ± 1), where ni is the occupation of

the i-th natural orbital. This leads to

L̃SPA
ijkl (t0) = L̃

(0)
ijkl(t0)

= ±1
2
[
G>

il (t0)G<
jk(t0) +G>

jk(t0)G<
il (t0)

]
= ± 1

2 (iℏ)2 δilδjk [(ni ± 1)nj + (nj ± 1)ni] . (6.175)
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In summary, the initial conditions for the first two moments of the classical distributions
are given by

E
[
∆GI,λ(t0)

]
= E

[
∆GII,λ(t0)

]
= 0 , (6.176)

E
[
∆GI,λ

ik (t0)∆GII,λ
jl (t0) + ∆GI,λ

jl (t0)∆GII,λ
ik (t0)

]
= ± 1

(iℏ)2 δilδjk [(ni ± 1)nj + (nj ± 1)ni] .

(6.177)

The actual procedure of how to generate ensembles that satisfy these conditions will not be
discussed in detail here and the interested reader is referred to Ref. [ 453 ]. In short, there
are two general approaches. In the first, the system of equations given by Eqs. ( 6.176 )
and ( 6.177 ) is solved directly, which deterministically generates O(N2

b) samples that exactly
reproduce the initial conditions of the first two moments. As discussed above, this would
result in the same numerical scaling as for the G1–G2 scheme. In the second approach,
the initial conditions are approximated by sampling from a distribution function, whose
first two moments are determined by Eqs. ( 6.176 ) and (  6.177 ). 

34
 This way, the number

of required samples can be greatly reduced, while still reproducing the initial conditions
accurately. This second approach is especially suited for large systems, where Nλ ≪ N2

b ,
resulting in a considerable numerical advantage of the SPA method compared to the
G1–G2 scheme.

To summarize, the fluctuation approach represents a third, unique way to express the
BBGKY hierarchy. The central quantity is not the full two-particle Green function G(2),
as in Eq. ( 6.81 ), or its correlation part G, as in Eq. ( 6.4 ). Instead, it is the exchange–
correlation function L, which is closely related to the density–density response of the
system, cf. Eq. ( A.48 ). The unique property of L compared to G(2) and G is that it can
be expressed as the product of single-particle quantities, the single-particle fluctuations
δĜ. This not only results in numerical benefits, as outlined above. Potentially even
more important, it allows direct access to two-time observables in nonequilibrium as a
simple product of single-particle fluctuations at different times, such as the density–density
response or the dynamic structure factor, cf. Eqs. ( A.51 ) and ( A.50 ), respectively. The
fluctuation approach, including the SPA, is still in its infancy but already promises great
potential as an alternative method to the G1–G2 scheme.

34Finding a classical distribution, which fulfills all initial conditions of the quantum fluctuations, is only
possible since, due to the decoupling of the hierarchy introduced in Eq. ( 6.158 ), only conditions for
the first two moments remain. For an infinite hierarchy, as it is intrinsically solved in the stochastic
mean-field (SMF) approach [ 449 ], infinite initial conditions have to be matched.





127

7 Correlated Topological States in
Graphene Nanostructures

In physics, it commonly goes like this: there are burning, unanswered questions
about an insufficiently understood effect or a new supermaterial, and the challenge
for scientists is now to develop and perform suitable experiments and simulations
to answer them.

The origin story of my work on graphene nanostructures looks a little different.
During my master’s studies, I was searching the literature for physical systems that
were both well suited to be described by the NEGF approach, I was familiar with,
and of high current interest to make for a high-impact topic for my master’s thesis.
The advantages of the NEGF compared to other approaches lie in the accurate
description of correlated finite systems in nonequilibrium. Basically, I only had to
find an electron system that is small, strongly correlated, and, most importantly, in
vogue.

In practice, this meant that I sat in front of Google Scholar for days and
clicked through the most cited papers that were spat out after search queries like
“strongly correlated finite system”, “correlated lattice electrons” or “ultrafast electron
dynamics”. It quickly became apparent that finite graphene nanostructures, which
were increasingly attracting interest, would be a perfect match for the NEGF
approach. A master’s thesis and several papers later, one can only conclude that
this assumption was, and is still, true.

For a very long time, theoretical understanding of graphene systems was ahead of compa-
rable experimental studies [ 67 ,  454 – 460 ]. However, while the semimetal band structure,
including the linear dispersion around the Dirac cones of a single sheet of carbon, cf. Fig.  7.1 ,
was understood well before Geim and Novoselov famously Scotch-taped their way to a
Nobel prize [ 461 ,  462 ], their groundbreaking first measurements of graphene’s electronic
properties [ 463 ] were what sparked the unprecedented gold rush that should follow [ 464 ,
 465 ].
However, while the high mobility of charge carriers justifies the application of graphene in
nanoelectronics, the lack of a band gap was quickly identified as a crucial problem [ 111 ].
Again, a theoretical solution to this problem was already proposed in advance [ 466 ]: finite
band gaps were predicted to emerge in graphene nanoribbons (GNR), which can be viewed
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Figure 7.1 – (a) Momentum-resolved band structure of graphene within the tight-binding
approximation for only nearest neighbor hopping, cf. Eq. ( 2.10 ). The data is shown for
k ≤ 8π

5
√

3 , i.e. slightly more than the first BZ, to show the Dirac cones at the symmetry
points K and K ′. (b) Cut through the band structure along the momenta marked by
the dashed line in (a). Adapted from Ref. [ 143 ].

as quasi-1D cutouts of graphene, due to quantum confinement [  17 – 19 ]. However, the
early synthetization of GNRs was based on the etching of graphene [ 467 ,  468 ] or the
unzipping of carbon nanotubes [ 469 – 471 ], which provided little control over the geometry
and thus resulted in low-quality samples with irregular edges. Still, first FETs based on
semiconducting GNRs could be quickly realized [ 472 – 474 ].

Since then, the capabilities of synthesizing GNRs have grown tremendously [ 475 ,  476 ].
The close connection of these finite graphene systems to PAHs, as outlined in chapter  2 , has
allowed the development of a sophisticated bottom-up approach based on knowledge of the
chemistry of hydrocarbon molecules [ 27 ,  112 ]. By choosing distinct molecular precursors,
it is possible to reliably create not only pristine GNRs of well-defined dimensions but also
intricate heterostructures of special edge geometries with atomic precision [ 16 ,  26 ,  28 ]. This
increased level of control allows to fine-tune the band structure and electronic properties
of graphene nanostructures for not only logic transistors [ 32 ,  477 ] but optoelectronics [  478 ,

 479 ], spintronics [ 480 ,  481 ], and biomedical applications [ 482 ,  483 ]. Of particular interest
are GNR heterostructures, made up of different types of GNRs, which host symmetry-
protected topological edge states [  24 ,  25 ,  484 ]. Enabled by the precise synthetization
procedure, they provide a platform to generate tailor-made exotic topological phases for
the application in quantum information processing [ 29 ]. However, this requires that the
properties and behavior of these states, especially in nonequilibrium, are understood in
sufficient detail.

It is at this point that theory has used up its lead on the experiments, which it had
for the longest time during the graphene era. While the new experimental technique of
lightwave-driven spectroscopy allows measuring the ultrafast electron dynamics in these sys-
tems simultaneously in sub-Ångström and sub-picosecond spatio-temporal resolution [ 34 ],
simulations struggle, as the precise description of GNR heterostructures includes major
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challenges. First, in the strongly localized edge states, the effect of Coulomb screening
is reduced, effectively boosting electron correlations [  46 ]. 

1
 Second, heterostructures per

definition are non-uniform systems, so a theory can not rely on a simplified homogeneous
description but has to take the finite geometry into account. Last, the ultrafast carrier
dynamics in these systems are reported to happen on a timescale of few femtoseconds,
while phonon-mediated cooling can take up to several picoseconds [ 485 ,  486 ]. Thus, a
coherent theory must be able to describe the finite, two-dimensional correlated π-electron
systems in equilibrium as well as in nonequilibrium over several orders of magnitude in
time.

The proceeding chapters showed that NEGF theory offers just that. It naturally
includes electronic correlation effects through the self-energy and is equally applicable
in equilibrium as well as in nonequilibrium. Numerically, it greatly benefits from being
combined with lattice Hamiltonians such as the Hubbard and PPP model, which are both
proven to be well suited to describe finite hydrocarbon systems [  56 ]. Historically, the latter
was even exclusively developed for this purpose. Finally, the newly developed time-linear
G1–G2 scheme paves the way for large-scale NEGF calculations up to long simulation
times. In this chapter, all these aspects of NEGF theory are applied in a combined effort
to get important insight into the topological edge states of GNR heterostructures.

Before that, in section  7.1 , a quick general introduction to the classification and basic
properties of GNRs is given. Additionally, the fundamental aspects of topological phases
are discussed to get a basic understanding of the origin of the topological edge states in
GNR heterostructures. In section  7.2 , the equilibrium properties of a 7–9-armchair GNR
(AGNR) are studied and compared to experimental results of Rizzo et al. [ 24 ]. This section
is based on Ref. [  295 ] by the author and coworkers. In section  7.3 , the ultrafast response of
finite graphene nanoclusters to a laser pulse is studied using the two-time NEGF approach.
Part of the results has been published in Ref. [ 294 ] by the author and coworkers. The
observed scattering processes are then used to interpret the results of the final section. In
that section  7.4 , the G1–G2 scheme with the DSL* approximation is applied to describe
the electron dynamics of one unit cell of the 7–9-AGNR system from section  7.2 after laser
excitation.

7.1 GNR Heterostructures and Topological States

GNRs are quasi-1D strips of graphene that are typically only around one nanometer wide
with a length that can reach ten to one hundred times that size [  487 ]. In most cases,
the dangling bonds at the edges of the carbon lattice are hydrogen-passivated, which
stabilizes the structure [ 108 ]. Thus, GNRs can be considered as large members of the class
of PAHs [  112 ], which were discussed in detail in chapter  2 . Consequently, the electronic
properties of GNRs are mainly determined by the π-bonds between the carbon atoms,
which are accurately described within the Hubbard or PPP model.

1In flat, essentially dispersionless bands the kinetic energy is low. Therefore, even intermediate interactions
result in a large ratio of interaction to kinetic energy.
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Figure 7.2 – Illustration of a 7-ANGR (left) and a 4-ZGNR (right). The width of the
ribbons Nw, which is defined as the number of dimer and zigzag lines for AGNRs and
ZGNRs, respectively, is indicated by the shaded background. The dashed rectangles
define possible unit cells. Adapted from Ref. [ 143 ].

Based on the shape of the longer edges, one typically distinguishes between armchair
GNRs (AGNR) and zigzag GNRs (ZGNR). Examples of a 7-AGNR and a 4-ZGNR are
shown in Fig.  7.2 , where the leading number represents the width of the ribbon Nw, which
is defined as the number of dimer or zigzag lines for AGNRs and ZGNRs, respectively.
Both types of nanoribbons were found to possess unique properties that are determined
by their edge structure. AGNRs, in general, are semiconducting with a precisely tunable
band gap in the range of 0 and 4 eV [ 488 ], decreasing with the width of the ribbon. 

2
 An

exception to this is the special case of Nw = 3M − 1, with M being an integer, where even
very narrow ribbons are nearly metallic [ 21 ]. Due to their variable band gap, AGNRs are
predominantly used in nanoelectronics to realize GNR-based FETs [ 490 ,  491 ]. ZGNRs, on
the other hand, are known to have zero-level spin-polarized edge states, which are ordered
ferromagnetically along the same zigzag edge, with antiparallel spin orientations between
opposing edges [ 492 ]. This makes them promising candidate materials for applications in
spintronics [ 493 – 495 ].

Today, a whole library of precursor molecules exists to synthesize various types of GNRs,
including chevron and chiral edge geometry [ 20 ], with atomic precision in a bottom-up

2In practice, the size of the band gap also depends on the length of the ribbon. Very short systems
experience an increased band gap due to the additional confinement [ 489 ].
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way [ 16 ,  27 ,  28 ]. In the past, this had to be done on metallic substrates such as Au(111),
which strongly affects the electronic and optical properties of the finite graphene systems,
so that they had to be moved to insulating surfaces afterwards [ 489 ,  490 ,  495 – 499 ]. How-
ever, recently the direct synthetization on an insulating substrate was reported [ 500 ,  501 ].
Depending on the environment, theoretical models have to take the metallic screening of
the surface electrons into account.

Already shortly after the first successful synthetization of GNRs, the idea emerged
to combine them into complex heterostructures with even more diverse, tunable prop-
erties [ 150 ,  151 ,  502 – 504 ]. However, only recently the origin of the unique edge states
spawning at the junctions of these heterostructures was connected to the topological
properties of the individual GNRs [ 23 ]. This realization sparked an overwhelming interest
in these systems and within a short period of time, various types of GNR heterostructures
were proposed and realized. The effects of the tailor-made topological edge states range
from inducing metallicity in otherwise superconducting AGNRs [ 30 ] to the formation
of topologically protected spin states that form 1D spin chains with tunable exchange
interactions [ 505 – 508 ]. In the following, the topological phases emerging in GNRs are
discussed within the noninteracting TB picture.

7.1.1 Topological Phases in AGNRs

The development of the band theory of solids, originating from the work of Bloch in
1929 [ 125 ], has led to the understanding of the physics behind metals, insulators, and
semiconductors. While in the former, partially filled band exist where electrons can move
freely, insulating materials contain only completely filled and completely empty bands,
which are separated by a band gap. With the discovery of the integer quantum Hall
effect (QHE) in 1980 by von Klitzing et al. [ 509 ], it became apparent that this simple
categorization does not include all effects than can emerge within band theory. When
exposed to a strong perpendicular magnetic field, the bulk of a 2D electron gas becomes
insulating due to the confined motion of the electrons. On the edges, however, conducting
surface states lead to a quantized Hall conductivity,

σHall := C

RK
, (7.1)

where C is an integer and RK := h/e2 the von Klitzing constant [ 510 ]. The question arises
why a conventional band insulator does not possess these edge-state channels. What is
the difference to the bulk-insulator of an integer quantum Hall state? The answer lies in
the different topologies of both systems.

In the quantum Hall effect, the magnetic field leads to quantized Landau levels, which
are strongly connected to a topological invariant, the Chern invariant or (first) Chern
number C. 

3
 It is equivalent to the number of occupied Landau levels and, therefore, robust

against adiabatic changes to the Hamiltonian. The Chern number is the sum of the Berry
3C is sometimes called TKNN invariant after Thouless, Kohmoto, Nightingale, and den Nijs [ 511 ].
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phases γn [ 512 ] of the complete first Brillouin zone (BZ) related to all occupied bands n,

C :=
∑

n∈occ
γn . (7.2)

Following Stokes’ theorem, the Berry phase is calculated either by the line integral of the
Berry connection A [ 149 ],

γn = 1
2π

∮
C,BZ

dkAn(k) , (7.3)

An(k) := i ⟨un(k)| ∇k |un(k)⟩ , (7.4)

with the periodic part of the Bloch states |un(k)⟩, or by the surface integral of the Berry
flux F ,

γn = 1
2π

∫
S,BZ

d2kFn(k) , (7.5)

Fn(k) := ∇ × An(k) . (7.6)

A key concept of topological materials is the bulk–boundary correspondence, which connects
the Chern number of the bulk to the presence of topological states at the boundary [  513 ].
More precisely, the number of boundary modes at the interface between two regions of
different topologies is given by the difference in their respective Chern numbers. In the case
of the QHE, the boundary region connects the magnetic field-induced bulk insulator with
the vacuum. As the latter is topologically trivial, the number of boundary states is directly
equivalent to C. Each edge-state channel contributes exactly 1

RK
to the conductivity,

leading to the famous quantized Hall conductivity of the integer QHE, cf. Eq. ( 7.1 ).
Later, Haldane [ 457 ] realized that the essential cause of the QHE is not the external

magnetic field but rather the broken time-reversal symmetry that it invokes. Instances,
where this is achieved by other means, are referred to as quantum anomalous Hall effect
(QAHE) [ 514 ]. An impressive experimental verification of the effect was demonstrated by
McIver et al. [  515 ] who observed a light-induced QAHE in graphene, where topological
Floquet bands take the role of the Landau levels in the magnetic-field-induced QHE. In
general, systems where a broken time-reversal symmetry induces an insulating bulk as
well as topological edge states, are called Chern insulators [ 168 ].

While these effects, based on broken symmetries, sparked the initial interest in topo-
logical states in solid state physics, more recently, symmetry-protected topological (SPT)
phases have received increased attention [ 516 ,  517 ]. A prominent example that is protected
by time-reversal symmetry is the quantum spin Hall effect (QSHE) in 2D semiconductors,
which causes spin-polarized Hall currents in opposite directions, resulting in a vanishing
total Hall conductance [ 518 – 520 ]. Within the concept of SPT, it has proven useful to
introduce a simple topological Z2 invariant ν that allows classifying band insulators as
topologically trivial (ν = 0) or topologically non-trivial (ν = 1) [ 513 ]. Analogous to
the bulk–boundary correspondence for Chern insulators, topologically protected states
emerge at the boundary between regions of trivial and non-trivial topology. Conventional
band insulators are topologically trivial just like vacuum. This explains why there are
no conducting edge states at the conventional insulator–vacuum boundary. In contrast,
materials with non-trivial topological phases, such as the QSHE, are called Z2 topological
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ν
unit cell shape

zigzag zigzag’
N

w
m

od
1
2 1, 3, 11 0 1

5, 7, 9 1 0

Table 7.1 – Values of the Z2 topological in-
variant ν, see Eq. (  7.9 ), for AGNRs of differ-
ent unit cell shape, see Fig.  7.3 , and width
Nw, see Fig.  7.2 , according to Ref. [ 23 ]. Sys-
tems are classified as either topologically
trivial (ν = 0) or non-trivial (ν = 1).

insulators [  168 ,  513 ].
The idea of SPT phases was first applied to GNRs by Cao et al. [ 23 ]. They showed that

the Z2 invariant ν, and with that the topology of the GNRs, depends both on their width
and the shape of their unit cell, which defines their termination. For quasi-1D systems,
such as GNRs, the Berry phase is known as Zak phase [  521 ] and the line integral around
the 2D BZ in Eq. ( 7.3 ) becomes a simple integral across the 1D BZ,

γn = i
∫ π/d

−π/d
dk ⟨un(k)| ∂

∂k
|un(k)⟩ , (7.7)

where d is the unit cell size. In a system with inversion and/or mirror symmetry, which is
the case for conventional AGNRs, the Zak phase can be 0 or π only [ 521 ]. Then the Z2
invariant ν can be defined as [ 23 ]

(−1)ν = eiC , (7.8)

where C is the Chern number, cf. Eq. ( 7.2 ), calculated for the Zak phases of the occupied
bands n given in Eq. ( 7.7 ). In practice, one can avoid calculating the Zak phase to
determine ν by again exploiting the mirror and inversion symmetry of the GNRs. In that
case, the Z2 invariant can be determined as the product of the parity eigenvalues pn of the
occupied Bloch states at the center (Γ) and the endpoint (X) of the 1D BZ [ 23 ,  522 ], 

4
 

(−1)ν = Πn∈occ [pn(Γ)pn(X)] . (7.9)

Using this approach, GNRs of various geometries have been classified as either topologically
trivial (ν = 0) or topologically non-trivial (ν = 1) [ 23 ,  523 – 525 ]. In a different approach,
even the topological phases of GNRs without spatial symmetry could be identified [ 508 ].
A summary of these results would go beyond the scope of this thesis, which is why only
the topology of the systems relevant to the following chapters will be discussed.

In Fig.  7.2 one possible unit cell shape for an AGNR was shown. However, other
shapes are possible, which in the case of ribbons with a finite length leads to different
terminations. Two relevant AGNR unit cells are shown in Fig.  7.3 , which, according to
Ref. [ 23 ], are labeled as zigzag and zigzag’. 

5
 The values of the topological invariant ν for

4In this case, the parity eigenvalue pn indicates if the state |un(k)⟩ switches sign when the system is
mirrored (pn = −1) or not (pn = 1).

5Following Ref. [ 23 ], the unit cells are labeled zigzag and zigzag’ according to their longer side, which
results in a zigzag edge termination at the end of ribbons with finite length.
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ν = 0 ν = 1

zigzag’ zigzag

7-
A

G
N

R

9-A
G

N
R

Figure 7.3 – Illustration of the 7–9-AGNR heterojunction between a topologically trivial
(ν = 0) 7-AGNR with a zigzag’-type unit cell on the left and a topologically non-trivial
(ν = 1) 9-AGNR with zigzag-type unit cell on the right, cf. Tab.  7.1 . Localized
topological edge states emerge at the boundary highlighted by the dashed line.

both cases depending on the width of the ribbon Nw are given in Tab.  7.1 . The fact that
AGNRs, depending on their width and unit cell shape, can be either topologically trivial
or non-trivial opens up the possibility to design heterojunctions and large heterostructures
with hand-picked topological states localized at the boundary between GNRs of different
topological phases [ 526 ]. An example is shown in Fig.  7.3 for the 7–9-AGNR heterojunction
between a topologically trivial 7-AGNR (Nw = 7) with a zigzag’-type unit cell on the left
and a topologically non-trivial 9-AGNR (Nw = 9) with a zigzag-type unit cell on the right.
Based on the bulk–boundary correspondence principle, localized topological edge states
are expected to emerge at the boundary region highlighted by the dashed line. Chaining
multiple of these heterojunctions together forms a periodic superlattice, a 7–9-AGNR
heterostructure, which is studied in detail in section  7.2 .

While this simple non-interacting picture can reliably predict if a heterojunction of
a certain geometry possesses boundary states or not, for insights into their physical
properties, more advanced descriptions are necessary. Similar to the Mott-insulator,
which cannot be described in the TB model [ 527 ], there are also topological effects that
are induced by interactions like the fractional quantum Hall effect (FQHE) [ 528 ,  529 ].
Although electron–electron correlations are known to be enhanced in finite graphene
nanostructures [ 47 ,  48 ], most theoretical studies of topological states in GNRs do not
take them into account [ 506 ,  507 ,  530 – 536 ]. Even though the topological phases in GNR
heterostructures are expected to be stable with respect to interactions, the properties
and nonequilibrium behavior of the topological states can be considerably modified [ 168 ].
Therefore, the study conducted within the context of this thesis focuses on the treatment
of GNR heterostructures, including electron–electron correlations, by employing the lattice
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Figure 7.4 – Shape of the 7–9-AGNR heterostructure, a periodic superlattice of the
7–9-AGNR heterojunction depicted in Fig.  7.3 , analyzed in section  7.1.1 . The same
system was experimentally realized and studied by Rizzo et al. in Ref. [  24 ]. The boxes
illustrate the local distribution of selected states, which is explained in more detail in
section  7.2.3 . Adapted from Ref. [ 295 ]. © 2019 American Chemical Society.

models introduced in section  2 and solving them by using the EGF, NEGF, and G1–G2
approach, cf. sections  4 ,  5 and  6 , respectively.

7.2 Ground State of the 7–9-AGNR Heterostructure

Shortly after the seminal theoretical work on topological phases in AGNRs by Cao et
al. [ 23 ], first heterostructures with topologically protected states were synthesized and
experimentally studied. Rizzo et al. [ 24 ] reported on GNR heterostructures composed of
alternating segments of 7- and 9-AGNRs, as sketched in Fig.  7.4 , which exhibit topological
bulk  

6
 bands that span across the superlattice as well as end states localized at the termini.

Both result in a strong qualitative deviation from the band structures of pristine 7- and 9-
AGNRs [ 24 ]. Simultaneously, Gröning et al. published similar results on robust topological
phases in staggered 7-AGNRs [ 25 ].

Although interactions are known to be enhanced in finite graphene nanostructures [ 22 ,
 46 – 48 ,  537 ,  538 ], and electronic correlations can famously induce new or alter existing
topological phases [  168 ], so far, most theoretical work on the topology of GNRs has been
restricted to noninteracting models such as TB or SSH, or density functional theory within
the local density approximation (LDA-DFT), which are known to completely ignore or
underestimate these effects, respectively [  23 – 25 ,  30 ,  506 – 508 ,  523 – 525 ,  534 – 536 ,  539 ]. 

7
 

Based on the EGF approach introduced in chapter  4 , in the following, a systematic analysis
of electronic correlations and their influence on the topological states in the aforementioned
7–9-AGNR heterostructures is presented. The results have been published in Ref. [  295 ] by

6In this context, bulk refers to the sections that are not the termini of the heterostructure, cf. Fig.  7.7 (a).
The bulk bands are localized at the outer edges of the bulk.

7It should be noted that there are a number of theoretical studies that include quasiparticle corrections
based on the GW approximation [  479 ,  489 ,  493 ].
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the author and coworkers.

7.2.1 Experimental Setup

As illustrated in Fig.  7.4 , the 7–9-AGNR heterostructure studied in the following can be
interpreted as a periodic superlattice of the 7–9-AGNR heterojunction depicted in Fig.  7.3 .
The unit cell of the system is indicated by the dashed rectangles in Fig.  7.7 (a). In the
experiment by Rizzo et al. [ 24 ] heterostructures of various lengths were synthesized on
a metallic Au(111) surface. Scanning tunneling spectroscopy (STS) measurements were
performed at T = 4 K to obtain the differential conductance dI/dV . By making certain
assumptions this gives direct access to the local density of states, as discussed in the
following.

In first-order perturbation theory, the tunneling current I between a sample and the
tip of a scanning tunneling microscope (STM), as a function of the bias differential V
between the two, 

8
 is given by [ 540 ]

I(V ) = 2πe
ℏ
∑
st

f−(Es)f̄−(Et + eV ) |Mst|2 δ(Es − Et) , (7.10)

where f− is the Fermi function with f̄− = 1 − f−, Es and Et are the eigenenergies of the
sample and tip, respectively, and

Mst := − ℏ2

2m

∫
dS · (ψ∗

s∇ψt − ψt∇ψ∗
s) (7.11)

are tunneling matrix elements between the respective eigenstates ψs and ψt [ 541 ]. The
integral has to be performed over a surface that lies entirely within the region separating
the sample and the tip. In practice, Eq. (  7.10 ) is rewritten as an integral over the energy,
and the tunneling matrix is thought of as constant [ 542 ],

I(V ) = 2πe
ℏ

|M |2
∫ ∞

−∞
dEDS(E)DT(E + eV )f−(E)f̄−(E + eV ) , (7.12)

with the LDOSs  

9
 of the sample (DS) and the tip (DT). In the next step, by assuming

that the system is at zero temperature, the Fermi functions become step functions, which
reduce the integration interval,

I(V ) = 2πe
ℏ

|M |2
∫ 0

−eV
dEDS(E)DT(E + eV ) . (7.13)

Finally, if the DOS of the tip is nearly constant, i.e. DT(E + eV ) → DT, the differential
conductance is simply obtained by applying the Leibniz integral rule, cf. Eq. (  6.25 ),

dI
dV = 2πe2

ℏ
|M |2 DTDS(−eV ) (7.14)

∝ DS(−eV ) . (7.15)
8To be precise, in this notation V is the positive potential bias of the tip with respect to the sample.
9The DOSs can be assumed to be local, since the lateral dimensions of the tip are small and, therefore,

only a small area of the sample contributes to the measurement [ 540 ,  543 ].
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While in practice the zero-temperature assumption is justified at T = 4 K, both the
tunneling matrix and the DOS of the tip can be non-constant and lead to potential
disagreements between experimental and theoretical data for the DOS of the sample.

7.2.2 Theoretical Model

To gain a theoretical understanding of the experimental observations, in Ref. [ 24 ], LDA-
DFT simulations were performed, which described the topological bulk bands reasonably
well but failed to quantitatively reproduce the experimental energies of the end states, cf.
the discussion of Fig.  7.10 . To overcome these limitations, in the following, the system
is modeled by the Hubbard Hamiltonian, cf. section  2.2.2 , with a hopping amplitude
between adjacent lattice sites of J = 2.7 eV [ 141 ]. As the experimental measurements
are performed for systems on a metallic Au(111) substrate, which leads to a significant
screening of long-range interactions, the use of the Hubbard model is justified. The choice
of the on-site interaction U depends on the applied approximation.

In the following, results of the TB, UHF, and fully self-consistent GW approximations,
obtained via the EGF approach of chapter  4 , are compared in order to quantify electronic
correlation effects. As explained in section  2.2.1 , the TB approach corresponds to setting
U = 0. It is often used to describe GNRs, due to its simplicity [ 25 ,  150 – 152 ], and here serves
as a point of reference representing an uncorrelated system. For GW , the on-site interaction
was chosen such that it reproduces the experimental gap between the topological bulk bands
of Ref. [ 24 ]. To that end, calculations for various interaction strengths U = 0, . . . , 3.5J for
a 7–9-AGNR heterostructure of six unit cells were performed and the resulting band gap
between the topological bulk bands is compared to the experimental result of Ref. [ 24 ],
see Fig.  7.5 . Starting from 0.52 eV in the non-interacting case, the band gap opens for
increasing interaction strength until at U = 2.5J the GW approximation shows the best
agreement with the experimental value of 0.74 eV. This is a surprisingly weak on-site
interaction, as for the calculations for free-standing graphene nanostructures in section  7.3 

the optimal Hubbard interaction was found to be U = 3.5J .
The difference can be explained by the screening of the metallic substrate, which reduces

the effective on-site interaction in this case. An easy way to see this is by looking at the
screened interaction W , cf. Eq. ( 4.11 ). In a simple model, the effects of environmental
screening can be included in a constant dielectric function of the substrate εenv, which
modifies the screened interaction of the isolated system W R

iso, cf. Eq. ( 4.26 ),

W R
tot(ω) = ε−1

envW
R
iso(ω) . (7.16)

As shown in section  4.1 , the leading term of the non-singular screened interaction in the
Hubbard model is given by W R

iso(ω) = U2
isoP

R(ω), which corresponds to the well-known
static second-order Born approximation, cf. Eq. ( 4.23 ).

Instead of using an external dielectric function, here, the effect of substrate screening
is assumed to be included in an effective Hubbard interaction Ueff , resulting in W R

tot(ω) =
U2

effP
R(ω). Comparing the above equations leads to

ε−1
envU

2
isoP

R(ω) = U2
effP

R(ω) , (7.17)
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Figure 7.5 – Spin-restricted GW results for the gap between the topological bulk bands of
a 7–9-AGNR heterostructure containing six unit cells, cf. Fig.  7.7 , calculated for different
interaction strengths, U = 0, . . . , 3.5J . The dashed line marks the experimentally
determined value for the same heterostructure on Au(111) obtained in Ref. [ 24 ]. Due
to spectral broadening an error of ±0.015J is assumed. Adapted from Ref. [ 295 ].
© 2019 American Chemical Society.

which results in a relation between the Hubbard interaction of the isolated system Uiso,
the effective interaction, and the dielectric constant of the substrate,

Ueff = Uiso√
εenv

. (7.18)

Therefore, environmental screening can be accounted for in the Hubbard model within
the leading order of the screened interaction by simply reducing the on-site interaction U .
A major advantage of this approach is that it naturally does not violate any sum rules
or conservation laws, which, in general, is not the case when including momentum or
frequency-dependent external dielectric functions of the substrate in Eq. ( 7.16 ).

In conclusion, to account for the Au(111) surface, an interaction strength of U = 2.5J
is chosen for the spin-restricted GW calculations. 

10
 Additionally, to get a qualitative

understanding of the properties of free-standing heterostructures and to identify the effects
of the environmental screening, UHF calculations with an on-site interaction of U = 1J
are performed, which are known to qualitatively describe edge magnetism in free-standing
ZGNRs [  544 ].

The theory behind the experimental dI/dV measurements was already discussed in
section  7.2.1 . Using STS the local DOS of the GNR heterostructure in the vicinity of the
STM tip can be obtained within the boundaries of certain assumptions. In the model
description of the graphene nanostructure the π electrons are assumed to be localized on
10Enforcing spin symmetry is justified due to the moderate on-site interaction, cf. section  4.2 .
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lattice sites. For better comparability between experiment and theory, each atomic site of
the lattice is dressed with a 2pz orbital following the procedure described in Refs. [ 25 ,  545 ,
 546 ]. The simulated spatially resolved differential conductance at a height z0 above the
sample is then given by

dI
dV (x, y, z0) ∝ DS(r,−eV ) =

∑
ij

Aij(−eV )z2
0eλ−1|r−ri|eλ−1|r−rj | , (7.19)

with z0 = 4 Å and λ = 1.72 Å. Notably, in Eq. (  7.19 ) all elements of the total spectral
function Aij(ω), cf. Eq. ( 4.33 ), enter. In contrast, the LDOS on the lattice sites without
the additional 2pz orbitals solely depends on the diagonal entries Aii(ω), cf. Eq. (  3.115 ).
Consequences of this subtle difference will be discussed for Fig.  7.18 in section  7.4.2 .

7.2.3 Topological Bulk and End States

Based on the discussion on the 7–9-AGNR heterojunction depicted in Fig.  7.3 , it is
expected that a heterostructure consisting of a periodic array of these systems should
host topological states. The specific properties of these states will be investigated in
the following using the GW approximation as described in section  7.2.2 . In Fig.  7.6 two
slightly different 7–9-AGNR heterostructures are compared. The first one is shown in its
entirety in Fig.  7.7 (a) and consists of six unit cells, which are highlighted by the dashed
rectangles in the same figure. It is represented by the color green both for the DOS in
Fig.  7.6 (a) and for the local dI/dV maps in Fig.  7.6 (b).

For pristine 7- and 9-AGNRs on Au(111) Senkovskiy et al. reported a band gap of
2.4 eV and 1.4 eV, respectively [ 547 ]. As shown in Fig.  7.6 (a), for the heterostructure of
these two constituents, multiple in-gap states, labeled as 1 to 5 , can be observed in the
DOS within this range around the Fermi level. The calculated dI/dV maps, i.e. the local
distributions, of the respective states are shown in the left panels of Fig.  7.6 (b). Strikingly,
the bands labeled as 2 and 4 are mainly localized at the boundary between the 7-
and 9-AGNR regions, which corresponds to the dashed line in Fig.  7.3 . Consequently,
these bands, which span across the heterostructure, are formed by overlapping topological
boundary states of neighboring heterojunctions. Looking at Fig.  7.6 (b), these topological
bulk bands do not extend into the terminating unit cell. As a consequence, their spectral
weight corresponds to only four peaks in the case of this heterostructure of six unit cells,
since only the heterojunction states of the innermost four unit cells hybridize. 

11
 

While the existence of the states 2 and 4 can be explained with the topological
phases of the 7–9-AGNR heterojunction of Fig.  7.3 , the behavior of the states in the end
region is more intricate. Rizzo et al. [ 24 ] showed that the complete periodic 7–9-AGNR
heterostructure is topologically non-trivial (ν = 1), which leads to a topological edge state
emerging at the boundary to the topologically trivial (ν = 0) vacuum. This zero-level
zigzag-edge state at the end of the ribbon hybridizes with the topological heterojunction
states of the terminating unit cell to form a triplet of states labeled 1 , 3 and 5 . These
11More information on the spectral weight of these bands is given in the discussion for Fig.  7.10 in

section  7.2.6 .



140 7 Correlated Topological States in Graphene Nanostructures

−1.0 −0.5 0.0 0.5 1.0(
E − EF

)
/eV

0

1

2

D
O

S
/
a
.u

.

1

2 3 4

5

(a)

(b)

1

2

3

4

5

Figure 7.6 – (a) Total DOS of the two systems indicated in the top panel of (b) calculated
with the EGF approach for the GW self-energy and U = 2.5J . The green (orange)
line corresponds to the left (right) system. The left system contains exactly six unit
cells, cf. Fig.  7.4 and Fig.  7.7 (a), while the right system is extended additionally by
ten zigzag lines on both sides. (b) dI/dV maps for the respective states labeled in
the same manner in (a). Only a small section of the ribbon is shown indicated by the
three black dots in the top panel. Adapted from Ref. [ 295 ]. © 2019 American Chemical
Society.
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states are all localized within the final unit cell, as can be seen in Fig.  7.6 (b).
All these observations can be verified by taking a look at the slightly modified system

represented by the color orange in Fig.  7.6 (a) and the right panels of Fig.  7.6 (b). Here,
the final unit cell is extended by ten zigzag lines to increase the distance between the
terminating zigzag edge and the final heterojunction. This breaks the previously observed
hybridization between the three topological states in the final unit cell. As a consequence,
the final heterojunction states now join and hybridize with the same states of the bulk
unit cells to increase the spectral weight of these bulk bands to six peaks, cf. Fig.  7.6 (a).
In contrast, the topological zigzag-edge state 3 becomes the zero-energy end state of an
ordinary 7-AGNR, similar to the one observed in Fig.  2.4 . The states labeled as 1 and
5 are localized in the extended 7-AGNR region and are also reminiscent of the respective

states of the pristine 7-AGNR of the same figure.
The focus of the following study will be on the first discussed system without extension,

as it contains the three interesting hybridized topological end states and is equivalent to
the system that was experimentally realized by Rizzo et al. in Ref. [ 24 ].

7.2.4 Effects of Electronic Interactions on the Topological States

To evaluate the accuracy of the GW approximation and quantify the influence of electron–
electron correlations on the topological states observed in Fig.  7.6 , in Fig.  7.7 differential
conductance results of TB, UHF, and GW simulations for the 7-9-AGNR heterostructure
on Au(111) are compared to the experiment of Ref. [  24 ].  

12
 The calculations were performed

for a system containing six unit cells as shown in Fig.  7.7 , which is equivalent to the green
system in Fig.  7.6 . In accordance with the experimental measurements, the differential
conductance signal shown in Fig.  7.7 (b) was averaged over the area marked by the red
cross in Fig.  7.7 (a) and thus corresponds to the topological bulk bands 2 and 4 of
Fig.  7.6 . Likewise, the data of Fig.  7.7 (c) represents the local differential conductance at
the end of the heterostructure, marked by the blue cross in Fig.  7.7 (a), and features the
three hybridized end states 1 , 3 , and 5 of Fig.  7.6 .

In the experimental data, both the two bulk bands as well as the three end states are
visible. The band gap between the former is Eexp

g,bulk = 0.74 eV, whereas the gap between
the non-zero energy end peaks is Eexp

g,end = 1.32 eV. The simple, non-interacting TB ap-
proximation vastly underestimates both gaps with ETB

g,bulk = 0.52 eV and ETB
g,end = 1.08 eV,

respectively. Additionally, between the two bands in the bulk region, an unphysical
zero-level mode appears in the TB solution, which is not observed in the experiment.

In the next step, mean-field interaction effects are included within the UHF approxi-
mation. As expected for the Hubbard model, this does not lead to a considerable energy
renormalization for the bulk and end states, cf. section  2.2.2 . Instead, it results in the
splitting of all three topological states that are localized at the end of the heterostructure,
cf. Fig.  7.7 (c), which is a particularly surprising observation for the two non-zero energy
12While the calculations were performed at half filling, the experimental dI/dV spectrum is shifted to

higher energies due to a slightly doped heterostructure. For the comparison, the experimental data
was shifted so that the zero-level peaks of theory and experiment match.
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Figure 7.7 – (a) Illustration of the 7–9-AGNR heterostructure containing six unit cells.
The red and blue crosses mark the areas for which the dI/dV spectra shown in (b)
and (c) are calculated, respectively. The red and blue dashed rectangles mark the bulk
and end unit cell referenced in Fig.  7.10 , respectively. (b) dI/dV spectra measured
(red) and simulated (black) at the position in the bulk region marked by the red cross
in (a). (c) dI/dV spectra measured (blue) and simulated (black) at the position in
the end region marked by the blue cross in (a). The curves in (b) and (c) are shifted
vertically, for better comparison. The experimental data taken from Ref. [ 24 ] are
corrected for charge doping effects so that the zero-level peaks align. Adapted from
Ref. [  295 ]. © 2019 American Chemical Society.

end peaks. While for ZGNRs [ 492 ], the splitting of zero-energy edge states due to magnetic
instabilities at the Fermi level [ 548 ] is well known, the splitting of states away from the
Fermi level cannot be understood in this picture. In the present case, the hybridization
of the zero-level zigzag-edge state with the topological heterojunction states leads to the
energetic splitting of all three of them. In the experimental data, this effect is not observed,
which can be for several reasons. First, the measurements were performed for a system on
top of a screening Au(111) surface, which was not accounted for in the RHF calculation.
Metallic substrates are known to suppress the splitting of zero-energy states in finite-length
pristine AGNRs [  549 ] compared to insulating substrates [ 489 ]. Second, a small splitting
might not be resolved in the experimental data, which is broadened due to the finite
temperature T = 4 K of the STM tip. In this case, the main reason is likely the first one,
as will be explained in the following.
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TB

GW

Figure 7.8 – dI/dV maps obtained from TB and GW simulations for the zero-level state
of a 7–9-AGNR heterostructure containing six unit cells. Only part of the system
is shown, as indicated by the black dots in the top panel. For the TB solution, the
state extends further into the bulk region than for GW . Adapted from Ref. [  295 ].
© 2019 American Chemical Society.

The GW calculations, which take quasiparticle correction as well as the screening of the
metallic substrate into account, predict a considerable correlation-induced renormalization
of both the bulk and end states. 

13
 While the bulk gap of EGW

g,bulk = 0.71 eV was used for
fitting the interaction strength U in section  7.2.2 and, therefore, matches the experimental
value by construction, also the properties of the three topological end states are in excellent
agreement with the experimental findings. On the one hand, the distance between the
non-zero energy end states, EGW

g,end = 1.35 eV, is very close to Eexp
g,end = 1.32 eV and on

the other hand, no splitting of these states is predicted by GW . This suggests, that the
splitting observed in the UHF result might emerge in measurements for heterostructures
on insulating surfaces.

Another effect caused by the self-consistent screening of the GW approximation is
the reduction of the unphysical zero-energy peak in the bulk spectrum of the TB result.
It turns out that in the TB case the zero-energy zigzag-edge state of the final unit cell
extends far into the bulk region leading to the contribution at the Fermi level observed in
Fig.  7.7 (b). This is nicely illustrated in Fig.  7.8 , where the dI/dV maps of the respective
state are compared for TB and GW . While in the non-interacting case it extends well
into the second and third unit cell, the GW approximation strongly reduces its spatial
extension, effectively confining it to the terminating unit cell.
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Figure 7.9 – (a) LDOS of the topological end states at E = EF (left) and E = EF ±
0.54 eV (right) for the UHF solution of the 7–9-AGNR heterostructure shown in
Fig.  7.7 (c). (b) Second local magnetic moment ⟨m2

i ⟩, Eq. ( 3.103 ), of the same system
calculated within UHF (top) and GW (bottom). Only part of the system is shown as
indicated by the three black dots. Adapted from Ref. [ 295 ]. © 2019 American Chemical
Society.

7.2.5 Local Correlations and Magnetic Polarization

For a better understanding of the physics behind both the renormalization as well as
the splitting of the topological states mentioned in the previous section, next, the local
correlations and magnetic polarizations within the 7–9-AGNR heterostructure are studied.
Both aspects are described by the second local magnetic moment

〈
m̂2

i

〉
, which was defined

in Eq. (  3.103 ). Since it depends, next to the density, also on the local double occupancy, a
two-particle observable, it not only is a measure for the local magnetic polarization of the
system but also quantifies the local interaction energy in the Hubbard model. Consequently,
the local moment shown in Fig.  7.9 (b) is in general higher for the GW approximation at
U = 2.5J than for UHF at U = 1J .

More insightful is the fact, at which sites the local moment peaks in both cases. For UHF,
which is known to mimic correlation effects by breaking spin symmetry, cf. section  4.2 ,〈
m̂2

i

〉
is increased exactly at the sites where the zero-energy end state, which spatial

distribution is depicted at Fig.  7.9 (a), is localized. This is in agreement with previous
mean-field calculations for ZGNRs [ 548 ,  550 ], where the magnetic instability of the zero-
energy edge state gives rise to an antiferromagnetic ordering at opposing zigzag edges. In
contrast, the local distribution of the non-zero end states only partially coincides with
the local moment, cf. Fig.  7.9 . This confirms that the splitting of these states observed in
Fig.  7.7 (c) originates from their hybridization with the zero-energy zigzag state, which
13Notably, the GW calculation does not reproduce the extreme broadening of the upper bulk band seen

in the experiment. The specific origin of this feature is unclear, however, it is likely caused by effects
of either the substrate or the STM tip, which were not fully accounted for in the model.
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experiences a magnetic instability at the Fermi level.
In the GW case, the increased magnetic moment is not due to magnetic instability but

correlation-induced. Strikingly, it is increased on all outer edges of the heterostructure,
which, when comparing to Fig.  7.6 (a), coincides with all regions where the topological
states are localized. These strongly localized correlations at the edges of the heterostructure
cause the renormalization of the topological bulk and end peaks observed in Fig.  7.7 .
Surprisingly, the topological bulk states that extend along the outer boundary of the
complete heterostructure result in increased correlation-induced magnetic polarization
even at the armchair edges of the ribbon. This is in contrast to previous mean-field theory
results [ 544 ,  548 ,  551 – 554 ] where, typically, considerable magnetic polarization is only
observed at the zigzag edges of GNRs.

7.2.6 Finite Size Effects

Until now, only a 7–9-AGNR heterostructure consisting of exactly six unit cells was
considered as it best resembles the systems synthesized in the experiment of Ref. [ 24 ]. As
was shown in Fig.  7.6 , the precise geometry can have a huge impact on the properties
of the heterostructure. Therefore, in the following, the effect of the system size on the
topological states is studied by varying the number of unit cells.

In Fig.  7.10 the DOS of 7–9-AGNR heterostructures containing one to eight unit cells
is shown for the TB and GW approximation. For the latter, the DOS is plotted separately
for the end cells (blue) and the bulk cells (red). In the case of the eight-unit cell system,
additionally, the LDA-DFT result of Ref. [ 24 ] is shown to allow for a direct comparison
to the results of this work. The observed effects will be discussed individually for the
topological bulk and end states. The bulk bands first appear for a system of three unit
cells because smaller systems per definition do not contain a bulk cell. In general, the
spectral weight increases with the system size. In fact, the TB result clearly shows that
each additional bulk cell adds an additional peak to the bulk bands so that their total
spectral weight corresponds to (Nuc − 2) peaks, where Nuc is the number of unit cells
of the total heterostructure. This is in agreement with the idea discussed for Fig.  7.6 

that the bulk bands form by hybridization of heterojunction states of adjacent bulk cells.
The interaction effects contained in GW lead to renormalization and broadening of the
individual bulk states, whereas the bulk bands as a whole become narrower. Moreover,
the LDA-DFT results of Ref. [ 24 ] for the bulk bands are in good agreement with the GW
approximation.

The three topological states of the end cell are influenced differently by the size of
the heterostructure. For systems of three or more unit cells, these states remain mostly
unchanged since, in that case, both ends of the ribbon do not influence each other as
they are separated by bulk cells. However, for a system of two unit cells, the states of
opposing termini overlap and result in an additional splitting of each end states. 

14
 The

14This effect is also visible for the zero-energy peak in the TB solution of the three unit cell system. This
is because, as discussed for Fig.  7.7 , this state extends far into the bulk for the TB model, resulting in
an overlap even for three unit cells.
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single unit cell is a special system as it possesses four hybridized end states consisting
of the two heterojunction states and the two states of the opposing zigzag edges. This
system is studied in detail in section  7.4 . The inclusion of correlation effects through GW
again leads to a renormalization to higher energies and a broadening of the peaks. The
LDA-DFT description fails to correctly describe the shift of the end states for the system
of eight unit cells. This indicates that a correct characterization of these topological end
states is particularly challenging and requires an accurate description of the underlying
electronic correlations.
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7.2.7 Summary

The band structure of the 7–9-AGNR heterostructure strongly depends on its specific
geometry. While the prominent feature in long systems is the two topological bulk bands
emerging from the overlap of 7–9-AGNR heterojunction states, three end states can occur at
the termini of the heterostructure due to the hybridization of the zero-level zigzag-edge state
with the adjacent heterojunction states. The influence of electron–electron correlations on
these topological states was analyzed by comparing new results based on TB, UHF, and
GW calculations within the Hubbard model to the experimental differential conductance
and LDA-DFT data of Ref. [ 24 ] for the 7–9-AGNR heterostructure on Au(111). 

15
 

It was found that, while the general topological phases of the system based on the
TB description of section  7.1.1 remain stable, strong local electronic correlations affect
the properties of both the end states as well as the topological bulk bands even in the
presence of a screening Au(111) surface. This leads to increased magnetic moments in
the outer edges of the heterostructure, a strong spatial confinement, and a significant
quasiparticle renormalization of the states. For the spatially confined topological states of
the termini, these correlations can explain the large discrepancy between the LDA-DFT
and experimental energies of Ref. [ 24 ], emphasizing the need for a sophisticated description
of the effects of the electronic interactions as provided by GW .

For free-standing heterostructures, it is predicted that the magnetic instability at
the Fermi level, which is well known for pristine AGNRs, causes a splitting of all three
hybridized edge states. This effect should not be restricted to the present 7–9-AGNR
heterostructure but instead is predicted to appear in an entire class of systems that meet
the criteria for hosting hybridized end states, i.e. possess topological states close to Fermi-
level zigzag-edge states. The existence of such states is determined by the topological
phases of the system, cf. section  7.1.1 .

7.3 Carrier Dynamics in Excited Graphene Nanostructures

While in the previous section the properties of topological states were studied for GNR
heterostructures in the ground state, the remainder of this work will focus on the ultrafast
nonequilibrium response of these systems to laser excitations.

Electric fields can have a profound effect on the topological phases in graphene nanos-
tructures. As briefly mentioned in section  7.1.1 , McIver et al. could show that the QAHE
can be induced in graphene by a femtosecond pulse of circularly polarized light [ 515 ].
Recently, other proposals were made to modify the existing, or even induce new, topo-
logical phases in GNR heterostructures by applying transverse electric fields [ 530 ,  539 ,
 556 ]. However, for a long time, the ultrafast response of these finite systems to external
excitations could not be resolved experimentally. While for pristine graphene, intriguing
carrier–carrier scattering was predicted and observed on the scale of femtoseconds [  486 ],
for finite graphene heterostructures, experimental techniques were lacking the needed
15This approach was adopted by Honet et al. to study the optical response of PAHs [ 555 ].
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spatial and temporal resolution [ 557 – 559 ]. This is expected to change with the recently
reported advances in applying lightwave-driven terahertz scanning tunneling spectroscopy
(THz-STS) to atomically precise GNRs [ 34 ,  35 ]. To quote Ref. [ 34 ], “With pump-probe
THz-STM and THz-STS, the optoelectronic properties of individual GNRs will soon come
into clearer view, visualized through atomically resolved movies of sub-picosecond popula-
tion and wavefunction dynamics.” This technique might allow to experimentally observe
ultrafast, spatially localized effects in GNRs such as the femtosecond polaron dynamics
predicted for 4-AGNRs [  560 ] and 7–9-AGNR heterostructures [ 561 ], or the response of
the strongly localized topological states discussed in section  7.2 to optical excitation. The
theoretical study of the latter process will be the topic of the next section  7.4 . However,
some preliminary groundwork has to be done beforehand.

Simulating nonequilibrium dynamics within Green functions theory is significantly
more numerically expensive than studying systems in the ground state. While in EGF
theory, steady states can be expressed using only a single frequency, cf. section  4.1 , the
time evolution within NEGF theory, in general, requires the introduction of two-time
quantities and memory integrals, which goes hand in hand with the notorious cubic scaling
with the number of time steps, cf. section  5.1 . Therefore, for the longest time, performing
time-resolved simulations of large heterostructures, containing up to 768 π-electrons as
in section  7.2 , turned out to be too costly using the NEGF approach. This problem was
solved with the introduction of the time-linear G1–G2 scheme in chapter  6 , which, due
to its improved numerical scaling, now allows reaching the long simulations times that
are needed to analyze the nonequilibrium response of GNR heterostructures to optical
excitations. However, accessing spectral observables such as the PES, which are crucial
for these kinds of setups, is challenging within the G1–G2 scheme, and at present, the
obtained spectra are missing correlation-based features as explained in section  6.5 . 

16
 In

contrast, the two-time NEGF approach naturally yields accurate spectra that contain
quasiparticle effects even though individual peaks tend to be overly broadened due to the
self-consistent nature of the solution, cf. section  5.1.1 .

Therefore, the purpose of the present section is to get a physical understanding of the
scattering effects that can occur between excited charge carriers in graphene nanostructures
and how to identify them based on their distinct spectral features by performing test
calculations for small AGNRs using the NEGF approach. These results will serve as a
reference and will help to interpret the results of section  7.4 , where the nonequilibrium
response of the topological states of the larger 7–9-AGNR unit cell is studied using the
G1–G2 scheme. The results of this section were obtained by refining the methods developed
in the author’s master’s thesis [ 143 ] and part of them have been published in Ref. [ 294 ] by
the author and coworkers.

16It is important to note that the calculations do take correlations into account. It is merely the extracted
PES, based on KT, that does not contain certain effects beyond HF.
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Auger Recombination Impact Excitation

VB

CB

VB

CB

Figure 7.11 – Illustration of the scattering events happening for Auger recombination
(left) and impact excitation (right). In both cases, the first (left) picture shows the
laser excitation to generate the initial state, while the second (right) picture shows
the actual scattering process. Gray and white dots represent electrons and holes,
respectively. Electrons in the valence band (VB) and holes in the conduction band
(CB) are indicated by dashed circles.

7.3.1 Impact Excitation and Auger Recombination

In the following, a quick introduction on electron–electron interaction induced effects
in laser-excited semimetals and semiconductors shall be given. In compliance with the
respective conservation laws, excited electrons can scatter under the exchange of energy and
momentum. In general, these scattering events can be classified, depending on whether they
conserve the number of particles and holes in each band separately [ 562 ]. The interesting
processes are those, for which this is not the case, as this is connected to a change in
the average energy per electron–hole pair, i.e. the carrier temperature. Depending on
the occurring scattering event, one distinguishes between Auger recombination (AR) and
impact excitation (IE), which are illustrated in Fig.  7.11 .

The first process, AR, occurs when multiple electrons are excited into low-lying states
of the conduction band. Then they can interact with each other and exchange energy
resulting in one electron dropping to the valence band, while the other electron is further
excited to a higher energy state [ 563 ]. This process is of course conserving with respect
to energy, momentum, and total particle number. However, when only considering the
charge carriers, i.e. the electrons in the conduction band, AR reduces the number of
particles, while their average energy increases. In the second case, IE, electrons have to be
excited high into the conduction band. If they have enough excess energy, they can excite
additional electrons from the valence band over the band gap into low-lying states of the
conduction band [ 564 ].

The efficiency of both processes is strongly dependent on the density of all involved
states and can be severely limited by the conservation laws that have to be satisfied [ 565 ,
 566 ]. Notably, AR and IE are inverse processes that happen simultaneously. Which one of
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the two prevails, depends on the concrete carrier distribution at hand [  567 ]. In pristine
graphene, especially AR processes are expected to be strongly suppressed by the low
number of potentially occupied states in the vicinity of the Dirac cones due to the linear
dispersion [ 568 – 570 ]. In a series of experiments [ 485 ,  571 – 575 ], it was indeed observed that
within the first ∼25 fs after a laser excitation, IE was the dominant process leading to a
significant carrier multiplication (CM) in the conduction band. 

17
 Typically within ∼130 fs,

slow AR results in the thermalization of the electron system before it is cooled down by
the emission of optical phonons, which ultimately decay into acoustic phonons.

The concept of CM [ 486 ,  576 – 578 ], i.e. generating multiple charge carriers with only
one initially excited electron, has the potential to surpass the theoretical efficiency limit
of solar cells derived by Shockley and Queisser [  12 ]. In the conventional picture, charge
carriers excited high above the band gap relax via electron–phonon scattering to the
bottom of the conduction band resulting in the excess energy effectively being lost. The
amount of energy that dissipates in this way can be substantially reduced by ultrafast
CM processes that generate additional low-energy charge carriers before electron–phonon
scattering can set in.

While graphene is ill-suited for use in solar cells due to the lack of a band gap [ 570 ],
various finite systems such as quantum dots [ 579 ,  580 ], carbon nanotubes [ 581 – 584 ] and
GNRs [ 33 ] are promising candidates for the application in solar energy harvesting, as they
combine the transport properties of graphene with a finite band gap [  564 ]. In these systems,
IE and AR rates are expected to be greatly enhanced, since due to quantum confinement
electron–electron correlations are increased, which results in broadened spectra and the
relaxation of the conservation laws [ 563 ,  585 ]. Moreover, the large exciton binding energies
in these systems  

18
 are expected to reduce the efficiency of phonon-mediated cooling [ 565 ].

The following studies focus on the ultrafast  

19
 response of the π-electrons in finite

graphene nanostructures within the first several femtoseconds after a laser pulse excitation.
Therefore, coupling to phonons, which happens on a time scale of several hundreds of
femtoseconds, will be neglected. An excellent review on carrier thermalization in graphene
due to electron–phonon scattering is given in Ref. [ 587 ].

7.3.2 Extended Hubbard Model

To compensate for the cubic time scaling of the two-time NEGF approach, the systems
studied have to be chosen small. In the following, these are free-standing perylene (C20H12)
and terrylene (C30H16), two PAHs, which could also be described as 5-AGNRs with a

17While carrier multiplication is the term used in bulk semiconductors, the same process in finite quantum
dots or nanoribbons is often called multiple exciton generation (MEG) due to the increased electron–hole
interactions. For molecules, the effect is known as singlet fission (SF) [ 15 ].

18The large exciton binding energy of the topological edge state in the 7–9-AGNR unit cell is discussed in
section  7.4.2 .

19Even within the small field of carrier dynamics in graphene the term “ultrafast” is not clearly defined [ 347 ,
 478 ,  567 ,  571 ,  572 ,  586 ]. It can refer to time scales ranging from several femto- to tens of picoseconds.
The following studies are restricted to the sub-30 fs regime.
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length of four and six zigzag lines, respectively. 

20
 Both systems are depicted in Fig.  7.13 (c).

Since the systems are assumed to be isolated instead of being in contact with a metallic
substrate like in section  7.2 , they will be described within an extended Hubbard model
that takes the overlap of adjacent π orbitals into account. Mathematical details on the
extended TB Hamiltonian can be found in appendix  A.1 with the respective parameters
that are used in the following calculations given in Fig.  A.1 . The finite orbital overlap not
only includes hopping processes between up to third nearest neighbors but also results
in the on-site Hubbard interaction affecting electrons on adjacent lattice sites. In the
following, the model is solved using the two-time NEGF approach in combination with
the HF, 2B, and GW self-energy approximation.

In order to determine an appropriate value for the interaction U , in Fig.  7.12 the
calculated band gaps of a 7-AGNR of length Nℓ = 16 for U = 0, . . . , 3.5J using adiabatic
switching are compared against various theoretical and experimental results for infinite
7-AGNRs, which are indicated by horizontal lines. 

21
 For vanishing interaction, i.e. U = 0,

all approximations produce a band gap of Eg ≈ 2 eV, which is larger than both the TB and
LDA-DFT result for infinite ribbons due to finite size effects [ 21 ]. While increasing the
interaction strength only slightly affects the band gaps of HF and 2B, for GW , a nearly
linear correlation-induced opening of the band gap starts at U ≈ 2J that reaches a size of
Eg ≈ 2.75 eV at U = 3.5J . To obtain a reasonable value for U , these results are compared
to four additional external data points included in Fig.  7.12 . First, including quasiparticle
corrections to the LDA band structure within (DFT+)G0W0 greatly increases the band
gap of free-standing, infinite 7-AGNRs to Eg = 3.7 eV [ 488 ]. Further, experimental
measurements of 7-AGNRs on Au(111) and NaCl surfaces revealed band gaps between
LDA-DFT and G0W0 of Eg = 2.37 eV and Eg = 2.9 eV, respectively [  489 ,  591 ]. Finally, a
sophisticated treatment of 7-AGNRs on an insulating substrate by including image-charge
corrections (GW+IC) leads to a band gap of Eg = (2.3–2.7) eV [ 162 ]. Since the systems
considered here are assumed to be free-standing or in contact with an insulating surface, an
interaction strength of U = 3.5J is chosen, which is close to the experimentally obtained
value of 7-AGNRs in contact with a NaCl substrate.

Although the fit of the interaction was performed for 7-AGNRs of length Nℓ = 16
against literature values for (approximately) infinite ribbons, the resulting parameter set
should be applicable for a broad range of finite AGNRs. On the one hand, the parameters
of the extended TB Hamiltonian by Tran et al. [ 146 ], cf. appendix  A.1 , were created to
perform well for all kinds of nanoribbons independent of width and edge structure and,
on the other hand, Yang et al. [ 488 ] found that the effect of quasiparticle corrections is
similar for all small AGNRs. Nonetheless, while for the following qualitative assessment of
the ultrafast electron dynamics the extended Hubbard model is well-suited, it should be
mentioned that a more accurate description of these systems could be accomplished by
using the PPP model, as it is done in section  7.4 . Especially, as this is not accompanied
by any numerical downsides for the approximations used here, cf. Tabs.  3.1 and  3.2 .

20In organic chemistry according to the nomenclature of Clar [ 588 ] 5-AGNRs belong to the family of
rylenes [ 589 ] while 7-AGNRs are anthenes [ 590 ].

21The interaction U is determined for 7-AGNRs instead of 5-AGNRs because for the former system, more
reference data is available.



152 7 Correlated Topological States in Graphene Nanostructures

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

U/J

0.4

0.6

0.8

1.0

1.2

1.4

E
g
/
J

HF

exp:

theory:

(L→∞)

2B

Au(111)

TB, 1NN

LDA

GW

NaCl

G0W0

GW+IC

HF

exp:

theory:

(L→∞)

2B

Au(111)

TB, 1NN

LDA

GW

NaCl

G0W0

GW+IC

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
g
/
eV

Figure 7.12 – Band gap Eg of a 7-AGNR of length Nℓ = 16 as a function of the on-site
interaction U for the extended Hubbard model using the HF (teal squares), 2B (orange
circles) and GW (green triangles) self-energy. For comparison, various theoretical and
experimental band gaps for infinite 7-AGNRs are included. Theoretical results for
free-standing GNRs obtained by the nearest-neighbor TB model and LDA [ 21 ], and
by G0W0 [ 488 ] are indicated as horizontal dashed and dotted lines, respectively. The
blue rectangle shows the range of the band gap predicted by considering image-charge
corrections to GW [ 162 ], and the gold and gray solid lines correspond to measurements
for GNRs on Au(111) [  591 ] and NaCl [ 489 ], respectively. Adapted from Ref. [ 294 ].
© 2019 WILEY-VCH.

7.3.3 Modeling Laser Excitations

Finite graphene nanostructures, like the GNRs and GNR heterostructures studied in this
work, have small spatial dimensions of only several nanometers. The longest system, the
eight-unit cell 7–9-AGNR heterostructure discussed in Fig.  7.10 , has a length of about
20 nm. The structures excited by laser pulses are considerably smaller, with perylene and
terrylene measuring only ∼1 nm along the longest dimension and the 7–9-AGNR unit
cell in section  7.4 being only ∼2.5 nm long. Since the used laser wavelengths range from
141 nm to 1003 nm, it is reasonable to apply the dipole approximation [ 592 ], i.e. assume
that the electric field of the laser pulse is spatially homogeneous across the nanostructure.
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The electric field vector can then be expressed as

EL(t) = E0e
− (t−tL)2

2σ2
L Epol(t) , (7.20)

where tL and σL are the mean time and standard deviation of the Gaussian describing
the pulse envelope, E0 is the laser amplitude, and Epol is the time-dependent polarization
vector. Within the 2D lattice system, the latter is defined as

Epol(t) =


Ex(t)

Ey(t)

0

 , (7.21)

where for circularly polarized light the x and y components are given by

Ex(t) = cos (ωL [t− tL]) , (7.22)
Ey(t) = sin (ωL [t− tL]) , (7.23)

with the laser frequency ωL. For linearly polarized light in x or y direction, one has to set
Ey = 0 or Ex = 0, respectively. In the calculations performed for perylene and terrylene,
the laser is chosen to be linearly polarized along the armchair edges (perpendicular to
the zigzag edges) of the systems, cf. Fig.  7.13 (c). Empirical studies have shown that this
choice results in the highest number of states getting excited by the laser. A more in-depth
analysis of the polarization dependence is given in section  7.4.3 .

The laser excitation enters in the time-dependent single-particle Hamiltonian h(1),
cf. Eq. ( 5.4 ), through the external potential term f , cf. Eqs. (  2.5 ) and ( 3.19 ). Within the
dipole approximation, the potential induced by the electric field of the laser on lattice site
i is

fi(t) = −e ri · EL(t) , (7.24)

where e is the elementary charge and ri is the position vector of lattice site i in units of the
lattice spacing, which is a = 0.142 nm for the carbon–carbon bond length in graphene [ 593 ].

Alternatively, the laser can be coupled to the electron system via the so-called Peierls
substitution [ 594 ]. This results in a time-dependent hopping term and is often done for
spatially homogeneous systems [ 595 ,  596 ].

7.3.4 Ultrafast Carrier Dynamics in Short 5-AGNRs

Using perylene as an example, it will be shown whether the two-time NEGF approach
with 2B self-energy can describe the electron–electron scattering processes introduced in
section  7.3.1 and how these are reflected in the trARPES signal. For the interpretation
of the latter, it is important to understand that in finite graphene nanostructures the
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Figure 7.13 – (a) The hexagon represents the first BZ of graphene. The gray shaded
area marks an alternative BZ. For a 5-AGNR kx can only attain five discrete values,
cf. Eq. ( 7.25 ), highlighted by the dashed lines. (b) Zone-folding band structure of a
5-AGNR. The individual lines correspond to the respective discrete values of kx in
(a). (c) Illustration of two 5-AGNRs with a length of Nℓ = 4 (perylene) and Nℓ = 6
(terrylene) zigzag lines. The red arrow indicated the polarization of the laser pulse
used in section  7.3.4 . Adapted from Ref. [ 143 ].

momentum can only attain certain discrete values. For infinite AGNRs of width Nw, the
discretized momenta along this finite dimension are given by [ 597 ]

kx = 2π√
3

n

Nw + 1 with n = 1, . . . , Nw . (7.25)

This is illustrated in Fig.  7.13 (a) for the first BZ of a 5-AGNR of infinite length. Within
the zone-folding approximation [  141 ], the band structure of 5-AGNRs is then simply given
by the sum of the five 1D cuts through the full 2D TB band structure of graphene, cf.
Fig.  7.1 , along the dashed lines in Fig.  7.13 (a). The result is shown in Fig.  7.13 (b). For
Perylene, a finite 5-AGNR with a length of Nℓ = 4, also the momenta in y direction
are strongly discretized. Nonetheless, in Fig.  7.14 the zone-folding band structure of the
infinite 5-AGNR serves as reasonable reference data.

The laser parameters entering Eqs. ( 7.20 ) to ( 7.23 ) are chosen as E0 = 0.2Je−1a−1 =
3.9 V/nm, σL = 4.35ℏJ−1 = 1 fs and ℏωL = 3.2J = 8.8 eV, which corresponds to a laser
fluence of 1.84 mJ/cm2. The calculation is performed for the 2B self-energy, for which in
the ground state the gap between the highest occupied and the lowest unoccupied state
is Eg = 0.87J = 2.4 eV. Consequently, the ultraviolet laser pulse is expected to excite
electrons into high-energy states, which favors impact excitation processes, cf. Fig.  7.11 .

The results are shown in Fig.  7.14 . The system is prepared in the correlated ground state
via adiabatic switching, cf. appendix  A.3.2 , before it is excited by a laser pulse at tL = 0,
as shown in the bottom right panel. The momentum-resolved PES results, comparable to
experimental trARPES measurements, are shown in the large panels on the left. They
are obtained via Eqs. ( 3.111 ) and ( 3.116 ) using a probe pulse with κ = 2.5ℏJ−1 = 6 fs.
The upper panels show the system at time t = 0 while the lower panels correspond to
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Figure 7.14 – Response of perylene, cf. Fig.  7.13 (c), to the laser pulse shown in the
bottom right panel. Panels on the left: Momentum-resolved PES, cf. Eq. ( 3.116 ),
at times tJ = 0 (top) and tJ = 60ℏ (bottom). The individual panels correspond to
the discrete momenta kx, as illustrated in Fig.  7.13 (a). Upper panels show electron
distribution in the conduction band in red, while lower panels show holes in the
valence band. Dashed black lines indicate TB band structure of infinite 5-AGNR,
cf. Fig.  7.13 (b). Gray shaded areas correspond to the 2B band structure of a 5-AGNR
of length Nℓ = 20. Top right panel: Momentum-integrated data, i.e. the PES,
during and after the laser excitation. Calculations were performed within the 2B
approximation.
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t = 60ℏJ−1, around 14 fs after the laser excitation. From left to right the panels labeled as
1 to 5 correspond to the respective cuts through the BZ as illustrated in Fig.  7.13 (a).

Electrons above the Fermi level are marked as red, while holes below the Fermi level are
drawn as blue. The panel on the top right shows the momentum-integrated time-dependent
occupations of electrons in the conduction and holes in the valence band.

At t = 0, i.e. during the laser interaction, electrons are excited high into the upper band.
In this highly nonequilibrium state, the occupations do neither match the equilibrium
band structure for the infinite 5-AGNR in the TB approximation, illustrated by the black
dashed lines, nor the ground-state results obtained with 2B for a 5-AGNR with length
Nℓ = 20, which are represented by the gray shaded lines. With a laser frequency of
ℏωL = 3.2J one would expect excitations to happen roughly from states of energy −1.6J
in the valence band to states of energy 1.6J in the conduction band. While this is the
case for the momenta in panels 1 and 5 , the transferred energy in the other cases
appears closer to 4J . The spectral broadening of the ultrashort laser pulse is approximately
0.4J , which is not enough to explain this observation. A more likely reason is a large
exciton binding energy of the respective excited states, which reduces the energy needed
to generate electron–hole pairs. This additional negative energy correction is not included
in the quasiparticle spectrum obtained from the single-particle Green function, i.e. the
PES [ 598 ]. A discussion on the exciton binding energy of the topological edge states in
the 7–9-AGNR unit cell is given in section  7.4.2 .

At t = 60ℏJ−1 the electrons accumulated at the bottom of the conduction band, while
the holes predominantly occupy states at the top of the valence band. At this point in
time, the occupations match the band structure calculations for the ground state, i.e. the
band structure is not or only slightly renormalized due to the excitation. While Fig.  7.14 

nicely illustrates how the momentum- and frequency-resolved occupation of the states
changes during and after the laser excitation, it is not suitable for quantitative analysis of
the occurring scattering processes. Although the redistribution of charge carriers from
high energy states to the bottom of the conduction band indicated the presence of IE-like
scattering events, cf. Fig.  7.11 , a more in-depth analysis is needed to confirm that the
number of charge carriers in the upper band increases during the process.

This is done for terrylene using a laser pulse with a slightly reduced frequency of
ℏωL = 2J = 5.5 eV and amplitude of E0 = 0.1Je−1a−1 = 1.95 V/nm, resulting in
a laser fluence of 0.46 mJ/cm2, since terrylene has a smaller band gap than perylene
due to less quantum confinement. For the HF, 2B and GW approximations used in
the following, the band gap is EHF

g = 0.25J = 0.69 eV, E2B
g = 0.42J = 1.16 eV and

EGW
g = 0.64J = 1.76 eV, respectively. In Fig.  7.15 the time-dependent PES, cf. Eq. ( 3.111 ),

is plotted. It is determined using the same probe pulse as previously at four different
times, tJ/ℏ = −30, 0, 20, 50, which are sketched in the upper panel of Fig.  7.15 by the
Gaussians of different colors. The different snapshots represent the system in the ground
state (gray), during the laser interaction (green), directly after the laser pulse decayed
(orange) and ∼12 fs after the laser excitation (blue).

The PES around the Fermi level ℏωF = 0 for these four points in time is shown in the
lower panel of Fig.  7.15 for the HF, 2B, and GW self-energy approximations. In the ground
state, only states below the Fermi level are occupied and the small spectral weight above
ℏω = 0 is due to the finite width κ of the probe pulse, which results in a broadening of the
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Figure 7.16 – Same setup as Fig.  7.15 . Left: Total number of electrons in the conduction
band NCB normalized to the value at t = 10ℏ/J , indicated by the dashed line. Right:
Mean energy of the electrons in the conduction band ECB/NCB. Both quantities can
be calculated via Eqs. ( 7.26 ) and ( 7.27 ).

observed states in the valence band. While the laser pulse with a frequency of ℏωL = 2J
mainly excites electrons from ℏω ≈ −1J to ℏω ≈ 1J there are some higher energy carriers
appearing at ℏω ≈ 1.9J . Similar to the observations made for Fig.  7.14 , this could indicate
a high exciton binding energy of the respective states. Due to differences in the band
structure, the actual shape of the excited carrier distribution differs slightly between
the three approximations. Other than that, the laser-induced single-particle excitation
processes are already well described by the HF self-energy. However, this is not the case
for the subsequent ultrafast carrier dynamics.

While for HF, the general shape of the carrier distribution in the conduction band
remains stable, for 2B and GW , the collision events between electrons result in a significant
redistribution of the spectral weight. This is analyzed in more detail in Fig.  7.16 , where
the number of charge carriers in the conduction band NCB (left) and their mean energy
ECB/NCB (right) are displayed. They can be calculated via the zeroth and first moment
of the PES for the conduction band, 

22
 

NCB(t) =
∫ ∞

0
dω A<(ω, t) , (7.26)

ECB(t) =
∫ ∞

0
dω ωA<(ω, t) . (7.27)

The dashed line marks the time roughly 2σL after the maximum of the laser pulse. In the
mean-field description of HF, the number of charge carriers and their mean energy remain
22One has to ensure that the total PES is normalized to the total particle number of the system. The energy

ECB is only an approximation and related to the Galitskii–Migdal interaction energy, cf. Eq. ( 4.30 ).
For the total energy see Eq. ( 4.28 ).
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constant after the laser excitation. For the correct treatment of electron–electron scattering
processes more advanced self-energy approximations are necessary. Using the 2B self-energy
leads to a considerable increase in the carrier number already a few femtoseconds after the
laser field has vanished. During this time, the carrier distribution shifts to lower energies
as observed in Fig.  7.15 , which in total leads to a declining average energy of the carriers.
The occurring processes can, therefore, actually be identified as impact excitation, i.e.
high-energy carriers excite additional electrons into the conduction band while dropping
to lower energies, which leads to carrier multiplication.

While for 2B the particle number in the conduction band is not yet converged after
∼12 fs, it saturates faster and is not as pronounced for GW . This might be due to the
larger band gap in the GW band structure compared to 2B, which reduces the probability
of IE events [ 564 ,  584 ].

7.3.5 Summary

The ultrafast electron response of finite graphene nanostructures to laser excitations was
studied for short 5-AGNRs, namely perylene (Nℓ = 4) and terrylene (Nℓ = 6), which
were described in an extended Hubbard model. Two distinct types of electron–electron
scattering events are expected to occur in the excited systems. On the one hand, for
laser frequencies in the ultraviolet regime, which generate high-energy carriers, impact
excitation processes should result in an increasing number of electrons in the conduction
band (carrier multiplication). On the other hand, for low-frequency (infrared) excitations,
Auger recombination is expected to decrease the number of charge carriers while increasing
their mean energy.

In the two-time NEGF simulations with ultraviolet laser pulses performed here, carrier
multiplication was indeed observed. However, the scattering rates highly depend on the
self-energy approximation used. While the HF description with its discrete spectrum  

23
 

shows no scattering-induced redistribution of spectral weight, for 2B and GW , the size of
the band gap influences the possible electron–electron scattering channels. For the following
study of the nonequilibrium response of the topological edge states of the 7–9-AGNR unit
cell, it is therefore especially important to ensure a precise description of the system both
regarding the model Hamiltonian as well as the many-body approximation used in the
G1–G2 scheme.

7.4 Laser Excitation of the 7–9-AGNR Unit Cell

The topological phases in finite graphene nanostructures have attracted increasing interest
in recent years [  23 – 25 ,  508 ,  523 ,  524 ] as GNR heterostructures emerged as a promising
platform to create topologically protected states with unique properties ranging from
23The broadening of the peaks in Fig.  7.15 is solely due to the finite width of the probe pulse.
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metallic in-gap bands to tunable 1D spin chains [ 20 ,  30 ,  505 – 507 ]. However, most research
until now focused on studying GNR heterostructures in equilibrium, see section  7.2 .
Although the relaxation rate of excited states is a crucial aspect for the applicability of
these systems in actual nanoscale devices [ 28 ,  29 ,  32 ,  563 ], little research was conducted
in this direction. The key challenge that arises in the study of the ultrafast response of
excited topological states in GNR heterostructures, and which hampered previous efforts,
is the combination of the intermediate size of the systems with the time scale of the
dynamics. From an experimental point, the spatial dimensions of (1–10) nm are small
and the relevant dynamics happen within a short subpicosecond time frame. Performing
measurements that achieve sufficient spatial and temporal resolution simultaneously is
challenging. Related problems occur for the theoretical modeling, where the accurate
description of systems containing up to several hundreds of electrons over a time interval
that can range from femto- to picoseconds seems out of reach for current state-of-the-art
methods.

On the experimental side, a lot of work is put into developing and applying new
spectroscopy techniques that enable ultrafast measurements of GNR heterostructures with
simultaneous subpicosecond temporal and atomic spatial resolution [ 34 ,  35 ]. With these
new exciting experimental capabilities on the horizon, a potent theoretical treatment is
desperately needed. In the theoretical chapters  2 to  6 of this thesis, such an approach
was introduced. The combination of the PPP model with the G1–G2 scheme allows the
precise description of graphene nanostructures including an accurate treatment of electronic
correlations for a reasonable numerical cost. In the following, this method is employed
to study the ultrafast dynamics of the excited topological states in the free-standing
7–9-AGNR unit cell containing 96 π electrons.

7.4.1 Validity of the PPP Model

For both the description of the 7–9-AGNR heterostructure in section  7.2 and the short 5-
AGNRs perylene and terrylene in section  7.3 the (extended) Hubbard model was used and
the on-site interaction parameter U was determined by fitting the band gap to literature
values. This is necessary since, as discussed in section  2.2.2 , the neglected long-range
interactions have to be compensated by an effective local interaction, which can strongly
depend on the individual geometry of the system at hand. In contrast, for the PPP model
used here, which takes long-range Coulomb interactions into account, the same parameters
set was found to be applicable for a wide range of PAHs [ 56 ]. In the upcoming calculations,
the following set of parameters is used, cf. Eqs. ( 2.7 ) and ( 2.16 ),

PPP parameters : J = 2.34 eV , ϵ = −3.25J , U = 3.54J , (7.28)

which was initially determined in Ref. [ 184 ] by fitting the PPP eigenenergies of 2, 5, 8-
trihydro-phenalenyl (3H-C13H9) to B3LYP-DFT [  66 ] results.

The validity of the above parameters for large-scale GNRs is verified in Fig.  7.17 . The
splitting of the topological states, localized at the zigzag edges of finite 7-AGNRs, is
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Figure 7.17 – Energy splitting of the zigzag-edge states of finite 7-AGNRs of length
L with Nℓ = 2, 4, 6, 8, 12, 16, 20, 48 (from right to left). The PPP model with the
parameters given in Eq. ( 7.28 ) is solved with the EGF approach using the HF and GW
self-energy. The results are compared to PBE-DFT and ab initio G0W0 calculations
of Ref. [ 489 ]. The green line is fitted through the G0W0 data to allow a comparison
for longer systems.

compared between the PPP model, solved within the EGF approach using the HF and
GW approximation, and PBE-DFT [ 65 ] and ab initio G0W0 results taken from Ref. [ 489 ].
For all approaches, the splitting decreases with the ribbon length L and converges towards
a fixed value in the limit L → ∞. Although the set of parameters used for the PPP model
was originally determined for a small molecule containing only nine π electrons, when
solved within the GW approximation it excellently reproduces the edge-state splitting of
the ab initio G0W0 calculations for long 7-AGNRs. 

24
 However, solving the PPP model

within a sophisticated approximation like GW is necessary, as the HF approach, especially
for long 7-AGNRs, overestimates the splitting by more than 1 eV. Nonetheless, even
this simple solution of the PPP model provides much better results than the PBE-DFT
calculations of Ref. [ 489 ], which severely underestimate the edge-state splitting for all
ribbon lengths.

These findings indicate that the setup used in the following sections, the PPP model
with the parameters given in Eq. ( 7.28 ) and solved using the DSL* approximation within
the G1–G2 scheme, should provide accurate results for the free-standing 7–9-AGNR unit
cell.

24The largest system considered in Fig.  7.17 contains 336 π electrons.
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laser parameters are given in section  7.4.3 . Calculations were performed with the
DSL* approximation of the G1–G2 scheme.
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7.4.2 Ground-State Properties

Before studying the nonequilibrium response, it is advised to revisit the ground state of
the 7–9-AGNR unit cell. Its DOS in the Hubbard model was already discussed in Fig.  7.10 ,
where it was shown that one unit cell does not contain the topological bulk states emerging
from the 7–9-AGNR heterojunctions that are present in long heterostructures consisting
of three or more unit cells. Instead, a single unit cell possesses four topological end
states that result from the hybridization of the two topological states at the 7–9-AGNR
heterojunctions with the two states at the zigzag edges, which are all in close proximity
within this finite system. These observations are confirmed when describing the 7–9-AGNR
unit cell with the PPP model.

The spectral results for the ground state are obtained by the EGF approach using the
GW self-energy and are shown in Fig.  7.18 . The total DOS is depicted in Fig.  7.18 (a),
while a more detailed view of the four topological states with energies ±1.285 eV and
±1.767 eV is given in Fig.  7.18 (b). The gap or splitting between the low-energy end states
is 2.57 eV, which is important for the determination of the exciton binding energy in the
discussion of Fig.  7.19 below.

As shown in the local occupations on the lattice sites in Fig.  7.18 (c), cf. Eq. ( 3.115 ), and
the differential conductance maps in Fig.  7.18 (d), obtained from Eq. ( 7.19 ), the topological
states are mainly localized in the end region of the unit cell near the zigzag edges. Notably,
states with the same absolute energy show the same local distributions on the lattice
but completely different local dI/dV maps. The reason for this is that in the calculation
of the LDOS on the lattice only the diagonal components Aii of the spectral function
enter, cf. Eq. ( 3.115 ), while the differential conductance depends also on the off-diagonal
elements Aij, cf. Eq. (  7.19 ). In the general case, the spectral function is not symmetric
with respect to the frequency, i.e. Aij(ω) ̸= Aij(−ω), however, the particle–hole symmetry
of the PPP model [ 599 ] leads to symmetric diagonal entries, i.e. Aii(ω) = Aii(−ω).

Another important spectral observable that provides crucial information about the
ground-state properties of the 7–9-AGNR unit cell is the optical or absorption spec-
trum [ 600 ]. Similar to the DOS, i.e. the spectral function or quasiparticle spectrum, being
related to the single-particle Green function, cf. Eqs. ( 4.33 ) and ( 4.34 ), the optical spectrum
can be obtained within linear response as the Fourier transform of the density–density
response function χ [ 78 ], which is related to the two-particle Green function, cf. section  6.6 

and appendix  A.4 . Importantly, while the quasiparticle spectrum describes the addition or
the removal of an electron in the system, i.e. the creation or annihilation of a quasiparticle
in the N -particle state, the optical spectrum only includes particle-number conserving
processes where an electron is excited to a higher-energy state. The latter corresponds
to the simultaneous creation of a quasiparticle and a quasihole that can interact with
each other and form an exciton [ 601 ]. Those kinds of interactions cannot be described
by the single-particle Green function but are included in the two-particle Green function.
Therefore, a common way to determine the binding energy of the exciton corresponding to
the HOMO–LUMO (highest occupied and lowest unoccupied molecular orbital) transition
is to compare the gap of the quasiparticle spectrum with the gap in the optical spectrum [ 22 ,
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 33 ,  537 ]. 

25
 For a noninteracting system, the gaps in both spectra are equivalent, while for

increasing interactions the exciton binding energy reduces the optical gap compared to
the one in the DOS [ 598 ].

As a two-particle quantity, the optical spectrum requires the solution of the numerically
demanding Bethe–Salpeter equation, cf. appendix  A.4 . However, Kwong et al. [ 602 ] could
show that the density–density response of a system in equilibrium can be calculated both
accurately and in a cost-efficient way by determining the density dynamics of the system
after an infinitesimal external perturbation within the HF approximation. Here, the central
site of one of the zigzag edges of the 7–9-AGNR unit cell is excited by an instantaneous
potential kick of amplitude 0.01J at time t = 0. The Fourier transform of the resulting
density dynamics on that site, labeled as i = 0, results in the optical spectrum,

χR
00(ω) ∼

∫ ∞

0
dt e−iωt [n0(t) − n0(0)] . (7.29)

The result is plotted as the gray curve in Fig.  7.19 . The first peak at 1.39 eV corre-
sponds to the transition between the topological end states with the quasiparticle energies
±1.285 eV, shown in Fig.  7.18 (b). The difference between the quasiparticle and the optical
gap corresponds to an exciton binding energy of Eb = 2.57 eV − 1.39 eV = 1.18 eV. This
value is in good agreement with previously reported binding energies of excitons in generic
AGNRs between 0.58 eV [ 537 ] and 1.6 eV [ 33 ]. In general, the exciton binding energies
in finite graphene nanostructures are comparably large due to the spatial confinement,
which enhances the overlap between electrons and holes and consequently the interaction
between them [ 558 ]. This is expected to result in increased carrier scattering rates [ 563 ,

 565 ].

7.4.3 Laser Parameters and Spectral Function

As the following study shall focus on the nonequilibrium dynamics of the topological end
states in the 7–9-AGNR unit cell, it is crucial to ensure that these states are actually
excited by the laser pulse. While the amplitude and the standard deviation of the Gaussian
envelope are set to E0 = 1.65 V/nm and σL = 2.8 fs, respectively, the laser frequency ωL
and polarization are determined by performing test calculations.

The results of the frequency scans for three different polarizations are shown in Fig.  7.19 ,
where the total gained energy ∆Etot of the system due to the laser excitation is plotted.
While for frequencies ℏωL > 2 eV, all three polarizations, circular (black), linear along the
armchair edges (red), and linear along the zigzag edges (blue), agree well with the optical
spectrum determined in section  7.4.2 , differences manifest for the two peaks corresponding
to the transitions between the topological end states. First, the latter cannot be excited
by a laser polarized linearly along the direction of the zigzag edges. This is in agreement
with multiple previous reports that zigzag-edge states in finite AGNRs are transparent to
light polarized along those edges [ 555 ,  603 ]. Second, for the other two polarizations, the
25While the gap in the optical spectrum is mostly referred to as optical gap, the quasiparticle gap in the

quasiparticle spectrum is sometimes called transport or fundamental gap [ 598 ].
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Figure 7.20 – PES above the Fermi level of the 7–9-AGNR unit cell in the ground
state (black) and after a laser excitation with frequency ℏωL = 4.2 eV and circular
polarization (red). The remaining laser parameters were chosen as in Fig.  7.19 .
Calculations were performed with the DSL* approximation of the G1–G2 scheme.
The spectra were obtained using the KT method, cf. section  6.5 , and broadened using
a Lorentzian with a FWHM of 0.2 eV.

first peak appears at slightly lower energy than observed for the optical spectrum. As the
latter was obtained within a HF calculation, whereas the current results are derived from
simulations based on the DSL* approximation, it can be assumed that the actual exciton
binding energy is even slightly higher than the 1.18 eV determined in section  7.4.2 . As a
consequence, for the following calculations, the laser frequency is set to ℏωL = 1.17 eV,
corresponding to a fluence of 0.9 mJ/cm2, while the polarization is chosen as parallel to
the armchair edges.

Another point to address is the calculation of the spectral function. Following the
discussion of section  6.5 , within the G1–G2 scheme the PES will be determined using the
KT method, cf. Eq. ( 6.136 ). As explained in section  6.5 the resulting spectrum possesses
unphysical spectral weight above the Fermi level even in the zero-temperature ground
state. This initial occupation has to be subtracted from the spectra determined for the
pumped system at later times to determine the actual distribution of excited carriers.
An example is given in Fig.  7.20 for one of the calculations in Fig.  7.19 with circular
polarization and a laser frequency of ℏωL = 4.2 eV. The red area shows the spectral weight
of the upper band after the laser excitation, corresponding to 7.2 particles, while the black
area represents the initial distribution of 1.7 particles in the ground state. The excited
carriers are given by the difference between the two curves. Here and in the following, the
discrete spectra of the KT method are broadened by a Lorentzian with a full width at
half maximum (FWHM) of 0.2 eV.
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Figure 7.21 – Ultrafast response of the carriers in the 7–9-AGNR unit cell to a laser
excitation as described in section  7.4.3 . (a) Electric field amplitude of the laser pulse.
(b) The total number of carriers (red) and their mean energy (green) before during
and after the laser interaction. (c) Local distribution of the excited carriers in the
unit cell, for three different times after the laser pulse. Calculations were performed
in the PPP model using the DSL* approximation in the G1–G2 scheme.
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7.4.4 Ultrafast Carrier Dynamics

In the following study of the ultrafast nonequilibrium dynamics of the excited topo-
logical edge states of the 7–9-AGNR unit cell, interactions with phonons are neglected
as electron–phonon processes are expected to happen at time-scales of several hundred
femtoseconds [ 575 ], considerably longer than the time interval of about 30 fs considered
here. Electron–electron scattering is taken into account via the DSL* approximation
within the G1–G2 scheme, cf. chapter  6 . The interacting ground state is generated via
adiabatic switching, cf. appendix  A.3.2 , and the laser parameters are chosen, as explained
in section  7.4.3 , to specifically pump the topological edge states. An illustration of the
respective laser pulse is given in Fig.  7.21 (a).

The carrier number and their mean energy during a time interval of 10 fs before to 25 fs
after the maximum of the laser pulse are shown in Fig.  7.21 (b). The laser pulse directly
excites roughly 2.2 of the 96 electrons in the system. This low number is not surprising,
since the laser frequency of ℏωL = 1.17 eV was selected to mainly excite the two edge
states. Additionally, the laser amplitude was set to the low value of E0 = 1.65 V/nm to
reduce the number of multi-photon absorption events [ 585 ]. However, the mean energy of
∼3.5 eV indicates that some higher energy states have been excited, regardless.

In the first 7 fs after the laser pulse vanished, a drop in the carrier number to 1.75
particles is accompanied by a sharp rise of the mean energy to 4.8 eV, which is a sign of
AR processes, cf. section  7.3.1 . Starting at 12 fs, the reverse behavior can be observed.
The mean energy decreases to 4 eV, while the carrier number rises above 2.5, which can be
explained by IE processes that dominate on these larger time scales.

That a redistribution between the excited states takes place can also be observed for
the local occupation of the charge carriers on the lattice sites shown in Fig.  7.21 (c). The
first distribution at 5.6 fs, directly after the laser pulse, confirms that electrons are mainly
excited into the topological edge states that are localized at the end regions of the unit
cell, cf. Fig.  7.18 (c) and (d). At 12.5 fs, after the AR processes have reduced the carrier
density, the local distribution is much more homogeneous, indicating that the occupation
of the edge states was strongly reduced by scattering events. Finally, at 25 fs, IE processes
have again led to a larger carrier number with an inhomogeneous local distribution that is
slightly increased at the location of the topological edge states.

The dynamics of the individual states are shown in more detail in Fig.  7.22 , where in
panel (a) the number of carriers for the same setup as in Fig.  7.21 is displayed separately
for the two edge states (red and orange) and the remaining bulk states (blue). 

26
 The panels

(b)–(d) show the energy-resolved occupation of the upper band at three different times
after the laser pulse. During the laser excitation, marked by the gray area in Fig.  7.22 (a),
not only the two topological states but also the higher-energy bulk states are excited with
a slight delay. This is presumably caused by occasionally occurring multiphoton absorption
and AR effects that already set in during the laser interaction. As seen in Fig.  7.22 (b), the
occupation of the bulk states is distributed over a wide energy range, while the spectral
weight of the individual edge states stands out more prominently in the PES.

26These are actual bulk states, not to be confused with the topological bulk bands discussed for the larger
7–9-AGNR heterostructure in Fig.  7.7 .
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The time frame between 5.6 fs and 12.5 fs labeled as AR in Fig.  7.21 (b) is characterized
by a sharp drop in the occupation of both edge states by 0.9 particles in total, correspond-
ing to a short lifetime of only ∼5 fs. In the same time window, the number of carriers in
the high-energy bulk states increases by roughly 0.5. In the simple model of AR processes,
the number of particles lost in the low-energy topological states should be twice as high as
the number of particles gained in the bulk. 

27
 In reality, there are, of course, IE and other

higher-order scattering events happening at the same time, which can slightly modify the
expected outcome. However, the scattering rates of all these processes strongly depend
on the occupation of the involved states, and the observed behavior indicated that AR
events between the edge and the bulk states are dominant during this early time frame,
leading to a carrier distribution as shown in Fig.  7.22 (c). Due to this changed occupation
of the involved states for times above 12.5 fs, IE becomes the dominant electron–electron
scattering process. Here, very high-energy carriers above 7 eV transfer energy, to excite
additional electrons from the valence band over the band gap to the topological states
and to the low-energy bulk band. This process not only increases the occupation of the
edge states but also leads to a slight net increase in the number of carriers in the bulk, as
shown in Fig.  7.22 (a).

After around 30 fs the electron distribution reaches a prethermalized state [  566 ,  604 ],
as shown in Fig.  7.22 (d), which is expected to fully thermalize via electron–phonon pro-
cesses that are not included in the current description. The peak at around 5 eV in the
distribution does not correspond to a non-thermal distribution but is due to the van Hove
singularity in the DOS, cf. Fig.  7.18 (a) [  605 ].

In conclusion, the emerging dynamics at different points in time strongly depend on
the relative occupation of all states. Therefore, the same calculation as in Figs.  7.21 and
 7.22 is repeated but with a higher laser amplitude of E0 = 4.12 V/nm, corresponding to a
fluence of 5.6 mJ/cm2. As a consequence, as shown in Fig.  7.23 , the occupation of the two
topological edge states (red) quickly saturates at one particle during the laser interaction.
Moreover, around t = 0, at the maximum of the laser pulse, the intermediate-energy (dark
blue) and high-energy (light blue) bulk states are excited. Due to the delay of around
(1–2) fs between the increase in the occupation of the three different types of states, it
seems that the bulk states are not excited by the instantaneous absorption of multiple
photons, but instead are the result of consecutive excitations. After the laser interaction
at 6 fs there is about one electron occupying the edge states, 4.5 electrons in the lower
bulk states (< 7 eV), and 1.75 electrons in the upper bulk states (> 7 eV). Within a short
time period until 11 fs, the number of high-energy electrons reduces to 1.25, while the
number of electrons in the low-energy bulk increases by 2 particles to 6.5, indicating that
in the occurring scattering processes multiple electrons are excited by one high-energy
carrier. In the following time up to 16 fs, this carrier distribution remains stable.

Interestingly, in this setup, which differs from the one considered for Fig.  7.22 only by a
higher laser amplitude of E0 = 4.12 V/nm instead of E0 = 1.65 V/nm, completely different
carrier dynamics are observed. Instead of two consecutive phases that are dominated by
AR and IE processes, respectively, as observed for Figs.  7.21 and  7.22 , here only an IE
phase occurs directly after the laser excitation. This emphasizes the importance of the
27In an AR event, two scattering low-energy carriers create one high-energy electron and one valence

band electron, which is no longer considered, cf. Fig.  7.11 .
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initially pumped carrier distribution on the subsequent dynamics. Despite the unchanged
laser frequency, the higher laser amplitude in this case results in more electrons being
excited into the higher-energy states. This type of carrier distribution favors IE, or CM,
processes, as already observed for the setups considered in section  7.3 .

7.4.5 Effect on Magnetic Correlations

The last aspect that shall be addressed is the effect of the laser excitation on the spin
correlations in the 7–9-AGNR unit cell. It was established in section  7.1 that zigzag edges
in GNRs are well-known for their ferromagnetic spin ordering. Further, in section  7.2.5 

it was observed that the 7–9-AGNR heterostructure has increased magnetic moments
along all outer edges. Here, the short- and long-range magnetic correlations and spin
polarizations will be studied for the 7–9-AGNR unit cell in response to the same laser
pulse as in Figs.  7.21 and  7.22 . In Fig.  7.24 two quantities that are relevant in this regard
are compared. First, the normalized total PCF, cf. Eq. ( 3.101 ),

δg̃tot
ij (t) :=

δg↑↓
ij (t) + δg↑↑

ij (t)
ni(t)nj(t)

, (7.30)

which describes the correlation-induced corrections to finding two electrons on the sites i
and j, cf. Fig.  6.3 . And second, the magnetic PCF,

δg̃mag
ij (t) :=

δg↑↓
ij (t) − δg↑↑

ij (t)
ni(t)nj(t)

, (7.31)

which is defined as the difference between the same spin and the different spin contribution.
It, therefore, quantifies whether correlations support a ferromagnetic (δg̃mag

ij < 0) or an
antiferromagnetic (δg̃mag

ij > 0) ordering between spins on the sites i and j.
Three different combinations of sites are compared in Fig.  7.24 . First, two adjacent

sites on the armchair edge of the bulk (red), second, two adjacent sites on a zigzag edge at
the end (blue), and third, one site on the zigzag edge and one site at the heterojunction
between the 7-AGNR and the 9-AGNR region (green). While the first case is expected to
be mainly affected by the excitation of the bulk states, the latter two should respond to
changes in the occupation of the topological end states.

In the ground state, i.e. at t = −10 fs, the pair correlation between the sites of the
latter configuration is positive, indicating that electron–electron correlations increase the
probability of detecting two particles on both sites simultaneously. In the other two cases
δg̃tot

ij is negative, corresponding to a reduced probability. The magnetic correlations in the
initial state favor a ferromagnetic ordering on the zigzag edge but show an antiferromagnetic
preference for the other two pairs of sites. 

28
 Interestingly, all three cases are affected

differently by laser excitation.
During the direct pumping of the topological edge states above the Fermi level, around

28This can be understood based on the lattice structure. The honeycomb lattice can be expressed as two
triangular sublattices [ 67 ]. The two sites on the zigzag edge belong to different sublattices, while in
the other cases they belong to the same sublattice.
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Figure 7.24 – (a) 7–9-AGNR unit cell with three pairs of lattice sites highlighted.
(b) Total PCF, cf. Eq. ( 7.30 ), and magnetic PCF, cf. Eq. ( 7.31 ), for the same
setup as in Figs.  7.21 and  7.22 . The colors correspond to the pairs of lattice sites
shown in panel (a). The dashed lines are equivalent to the ones in Fig.  7.21 .

t = 0, both the total and magnetic correlations between the heterojunction and the zigzag
edge drop sharply and in the former case even change sign. Since the occupation of the
bulk states increases with a slight delay, cf. Fig.  7.22 , the total pair correlation of the
armchair edge only starts to reduce towards the end of the laser interaction. In this case,
the magnetic pair correlations are unaffected. Surprisingly, the direct laser excitation
has no effect on the pair correlations between the zigzag sites, which only show weak
oscillations around the initial value throughout the duration of the laser pulse.

However, this changes during the following AR phase, cf. Fig.  7.21 , where the magnetic
PCF sharply increases to a value of around zero  

29
 and the total PCF starts to decrease.

For the other two combinations of sites, the carrier dynamics after the laser pulse lead to a
partial recovery of δg̃tot

ij to its initial value. Notably, the final IE phase has no influence on
δg̃mag, which remains nearly constant throughout the rest of the calculation for all three
cases.

The most interesting point to realize is that the magnetic correlations of the end states
can be modified by laser excitation. In the case of the one site at the heterojunction and
the other at the zigzag edge, this is happening immediately during the laser pulse. For the
two sites at the zigzag edge, the effect happens delayed, during the subsequent AR phase.
In both cases, the absolute value of δg̃mag is reduced to about zero. This change remains
stable and is not lost during the following IE phase. However, a physical explanation of
why the carrier dynamics of Figs.  7.21 and  7.22 lead to the behavior observed in Fig.  7.24 

29While correlations do not favor a ferromagnetic ordering between spins on both sites at this point, it is
still the predominant spin configuration due to the mean-field contributions, which are not discussed
here.
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is still missing and should be the focus of future research. The totally different response
of both the total and magnetic PCF for the two cases containing a zigzag site (blue and
green) indicates that knowledge about the occupation of the topological end states is not
enough for predicting the effect on spin ordering.

7.4.6 Summary

The goal of the study conducted in this section was to get an understanding of the ultrafast
response of the topological states occurring in GNR heterostructures to external laser
excitations. Pressing questions concerned the lifetime of the states and the influence of
their dynamics on the magnetic coupling between local spins. The representative system
of the 7–9-AGNR unit cell was modeled using the PPP Hamiltonian, which was solved
using the G1–G2 scheme with the DSL* approximation, cf. section  6.4.2 .

The dynamics and the lifetime of the topological states strongly depend on the
distribution of the pumped carriers, which is determined by the parameters of the laser
excitation. In the performed calculations, the laser frequency was chosen as ℏωL = 1.17 eV
to directly excite the low-energy topological states. In the case of a low laser amplitude
of E0 = 1.65 V/nm, multiphoton absorption processes are rare so that high-energy bulk
states are only sparsely pumped. This initial carrier distribution favors ultrafast AR
events within the first 5 fs after the laser pulse, where topological states scatter to excite
additional bulk states. Only subsequently do IE processes begin to dominate, which
leads to a partial recovery of the edge-state occupation until a prethermal distribution
is reached within 30 fs. A stronger laser amplitude of E0 = 4.12 V/nm leads to a larger
number of particles being pumped into the high-energy bulk states directly. In this case, no
scattering channels are available for the topological states to transition into. Instead, only
the IE-mediated redistribution within the bulk is observed, while the edge state occupation
remains stable. In conclusion, while it is in principle possible to selectively excite confined
topological states in the 7–9-AGNR unit cell by an appropriate choice of laser parameters,
this localized distribution is quickly destroyed by the ultrafast carrier–carrier scattering.
For a stable occupation of the topological end states, the scattering channels have to be
blocked by simultaneously exciting the high-energy bulk states.

However, despite the short lifetimes of the topological states for low laser amplitudes,
their excitation has a lasting effect on the magnetic correlations within the system.
While the magnetic ordering along the armchair edges is only slightly disturbed, it is
sustainably affected in the end region, where the topological edge states are localized. In
general, the absolute value of the magnetic correlations is strongly reduced, with details
differing depending on the concrete pair of lattice sites. The antiferromagnetic correlation
between the zigzag edge and the heterojunction is affected directly by the laser interaction.
In contrast, sites along the terminating zigzag edges, which, in the ground state, are
ferromagnetically coupled, are affected only during the subsequent AR phase. In both
cases, the modified spin ordering remains stable for the rest of the calculation up to
30 fs. These effects cannot be understood within the simple picture of the occupation
of the excited topological states but require further future analysis. Nonetheless, these
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observations show that a targeted excitation of the topological states can sustainably alter
the short- and long-range magnetic correlations in GNR heterostructures.
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8 Summary and Outlook

Maybe the real treasure was the G1–G2 scheme we discovered along the way.

The main goal of this thesis was the accurate, unified description of graphene nanostructures
both in equilibrium and nonequilibrium by means of Green functions theory. To this end,
several chapters were dedicated to the introduction and evaluation of lattice Hamiltonians
for modeling finite graphene systems (chapter  2 ), the basics of Green functions theory in
general (chapter  3 ), and the practical implementation of the EGF (chapter  4 ) and NEGF
(chapter  5 ) approach for solving those models.

While these parts of the thesis contained important original work like the derivation of
the DSL self-energy based on the parquet approximation in section  3.3 or the discussion
on Löwdin’s symmetry dilemma for the 2B approximation in section  4.2 , the two main
achievements of this work were presented in chapters  6 and  7 . The former expands upon
the G1–G2 scheme, which was recently developed in a series of papers by the author and
coworkers [ 93 – 95 ], and which already proves to be a game-changing improvement for the
practical application of NEGF theory. The latter focuses on the study of topological states
in graphene nanostructures in equilibrium and nonequilibrium using the whole spectrum
of methods available in Green functions theory, the EGF and NEGF approach, and the
newly developed G1–G2 scheme.

In the following, the major findings regarding these two major topics will be summarized
separately and an outlook on future developments will be given.

8.1 About the G1–G2 Scheme

The G1–G2 scheme is an identical reformulation of the KBEs of NEGF theory when
applying the HF-GKBA. By reintroducing the correlation part of the two-particle Green
function G in place of the self-energy Σ, it is able to attain a linear numerical scaling with
respect to the number of time steps Nt and allows direct access to two-particle observables
(section  6.1 ). This is a tremendous achievement for NEGF theory, which is notorious for
being an accurate but extremely costly approach that in most cases scales cubically with



176 8 Summary and Outlook

the number of time steps.
However, the reduced numerical complexity in the time domain is paid for by the

introduction of rank-4 tensor quantities. Therefore, in uniform systems like the homoge-
neous electron gas, where the traditional formulation in terms of single-particle quantities
benefits from the translation invariance of the system, the G1–G2 scheme might not result
in significant improvements [ 349 ]. In these cases, the original formulation of the HF-GKBA
remains the method of choice.

For finite spatial systems, however, like the lattice models considered in this thesis, the
new formulation typically achieves speed-up factors equivalent to N2

t , cf. Tab.  6.2 . In prac-
tice, with typical values of Nt = 103–104, this can result in a reduction of the computing
time by a factor of 106–108 compared to the original formulation. This not only greatly
increases the range of applicability of commonly used self-energies like 2B, the T matrices,
or GW , but it also allows the application of even more sophisticated approximations like
the DSL to simulate the nonequilibrium dynamics of strongly correlated systems.

In the short time span since its first introduction, the G1–G2 scheme has already found
application in the simulation of ion stopping in monolayers of graphene and MoS2 [ 251 ,

 342 ], photoionization of molecules [ 344 ], ultrafast electron–boson dynamics [ 343 ,  346 ], and
the carrier and exciton dynamics in graphene [  347 ]. In this work, it was applied to study
the response of the topological states in finite graphene heterostructures to an external
laser-pulse excitation. A summary of the results is given in section  8.2 .

However, the improved numerical scaling for self-energy approximations of the NEGF
approach is not the only achievement that can be credited to the G1–G2 scheme. One
main part of this work focused on the illumination of the role that the transformation
between the HF-GKBA representation and the G1–G2 representation plays in the greater
picture of quantum many-body theories (section  6.3 ). It was shown how this reformulation
connects the BBGKY hierarchy of RDO theory with the Martin–Schwinger hierarchy
of NEGF theory. A large number of approximations can actually be expressed in both
theories allowing one to choose the best representation case-by-case to exploit numerical
advantages.

The most important example is the DSL approximation of the G1–G2 scheme, which
found abundant application in nuclear [ 247 ,  394 ,  404 ,  405 ,  412 ] and molecular physics [ 348 ,

 395 ,  396 ,  406 ] under the names of TDDM and Valdemoro approximation, respectively.
The G1–G2 scheme for the first time allowed connecting this fundamental approximation
of the BBGKY hierarchy to a self-energy approximation of MBPT (section  6.2 ). In fact,
an identical reformulation of the very same approximation within NEGF theory was
found to be a modified version of the parquet approximation in combination with the
HF-GKBA. This finding also revealed important insights about the physical content of the
HF-GKBA. Importantly, the application of the HF-GKBA alone is not enough to decouple
the BBGKY hierarchy on the two-particle level. Instead, the HF-GKBA can actually
contain three-particle correlation effects when combined with sophisticated self-energies
like the parquet approximation.

This established connection between both theories also allows for the fruitful transfer
of knowledge other than many-body approximations. One example is the application of
the concepts of contraction consistency and purification to improve the stability of the
G1–G2 scheme (section  6.4 ). Both approaches were previously developed within 2RDM
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theory to ensure the N -representability of the reduced density matrices [  359 ,  360 ]. The
DSL* approximation, which combines both concepts with the DSL approximation in the
G1–G2 scheme, was found to be both the most stable and most accurate approximation
used within this work.

Another example is the calculation of the PES or spectral function. This quasiparticle
spectral information is typically included in the off-diagonal time elements of the Green
function. As a purely time-diagonal approach the G1–G2 scheme naturally faces difficulties
when trying to access spectral observables. However, within 2RDM theory, extensions to
Koopmans’ theorem have been developed [ 436 – 445 ] that allow obtaining accurate PESs
from knowledge of the time-diagonal one- and two-particle reduced density matrices or
Green functions alone (section  6.5 ). Although currently, this EKT approach has only
shown convincing results in equilibrium setups, a generalization to nonequilibrium is
currently being worked on, which would solve the pressing problem of obtaining accurate
quasiparticle spectra in the G1–G2 scheme.

A third example addresses the simulation of large-scale systems. Despite its, in general,
reduced numerical costs, the G1–G2 scheme is limited to medium-sized systems of several
hundred particles. A possible solution that is used in NEGF theory is the concept of an
embedding self-energy, which allows describing the environment of the system of interest
in a simplified fashion. Typical examples include electronic transport through nanoscale
systems such as GNRs, which are coupled to macroscopic leads [ 327 ,  337 ,  606 ], or the
photoionization of atoms and molecules, where the embedding self-energy describes the
continuum states [  87 ]. The application of this idea to the G1–G2 scheme was very recently
achieved by the author and coworkers [ 607 ], which further expands the range of possible
problems to treat within the G1–G2 scheme.

In the future, the prolific connection between the two theories promises further valuable
insights. One aspect is the reliable generation of a steady interacting ground state within
the G1–G2 scheme. While the adiabatic-switching procedure is known to sometimes pro-
duce highly oscillating initial states, possible solutions to this problem based on a steady
state formalism [ 421 – 427 ] and on the antihermitian contracted Schrödinger equation [ 386 ,
 387 ] were proposed in 2RDM theory. Further, it is enticing to see if there is a direct link
between the concept of the PSD property of the self-energy in NEGF theory [ 428 – 430 ]
with the concept of N -representability of the reduced two-particle density matrix in RDO
theory. Both aspects are essential for the stability of approximations within their respective
theory.

Another direction of research regarding the G1–G2 scheme is the fluctuation approach
that was presented in section  6.6 . It is an alternative way to express the BBGKY hierarchy
and is thus closely related to the G1–G2 scheme. While this method is still under active
development, it is already emerging as a competitive alternative approach, as it promises
to reduce the numerical burden of the rank-4 tensors present in the G1–G2 scheme [ 453 ]
and allows to access two-time spectral observables such as the dynamic structure factor.

All in all, the development of the G1–G2 scheme had an immediate practical impact
within NEGF theory by critically reducing the numerical complexity of HF-GKBA cal-
culations for all common self-energy applications to a linear scaling with the number of
time steps. But maybe even more importantly in the long run, it built a bridge between
NEGF and RDO theory resulting in new insights that not only improve the theoretical
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understanding but actually lead to further practical improvements. It should be reiterated
that a connection between NEGF and RDO theory was actually established previously
on several occasions [ 76 ,  388 – 390 ,  401 ,  402 ], however, without reaching these important
conclusions.

Finally, a completely different neural-network approach will be briefly outlined, with
which the G1–G2 can be improved in the future. Although this approach has been devel-
oped in the context of this thesis, it is presented here only marginally as an outlook in
the following separate section, since it is still in its infancy and further development is
necessary.

8.1.1 A Neural Network Approach to the G1–G2 Scheme

When a new, revolutionary concept is discovered that allegedly heralds the start of a
new era in science, it is hard to not get carried away. After all, quantum mechanics
and the theory of relativity are prominent historical examples of scientific advances that
decades later became the foundation for technology that is indispensable today. However,
sometimes these groundbreaking discoveries turn out to be not as earth-shattering as
initially thought. The example of graphene was shortly discussed in the introduction to
chapter  7 . Nearly 20 years after the first measurements by Novoselov et al. [  463 ] it is
safe to say that graphene, despite its undoubted success, did not live up to the initial
hype of the early years. Other examples are the infamous ongoing quests to construct a
commercially viable fusion reactor [ 608 ] and, more recently, to realize large-scale quantum
computers [ 14 ]. That is why it can sometimes be useful not to be blinded by the general
gold-rush atmosphere and the prospect of research funding but to take a step back and
think carefully about new concepts.

The reason for this introduction is the recent increasing efforts to revolutionize the-
oretical physics, and especially theoretical quantum mechanics, by the use of artificial
intelligence (AI) and deep neural networks (DNN) [ 609 ,  610 ]. As the name suggests, DNNs
were designed to mimic the learning process of the human brain, which consists of billions
of highly interconnected neurons. An in-depth explanation of the working principles of
the different variants of neural networks would go beyond the scope of this short outlook.
The interested reader can find more information in Ref. [ 611 ]. In general, neural networks
can be thought of as a generalization of a more familiar concept, linear regression. When
trying to interpret data, scientists often resort to fitting analytical functions by the method
of least squares. The type of the function, be it a parabola, a logarithm, a Gaussian, or a
Lorentzian, has to be chosen beforehand based on expectations and previous knowledge,
while the linear regression procedure optimizes the free parameters to best fit the provided
data. Neural networks operate very similarly, with the major difference that they not
only determine the parameters but also the type of function that best represents the data
points [ 612 ,  613 ]. For reliable results, this greater degree of freedom requires repetitive
fitting iterations on large amounts of data, which is referred to as the training procedure.

Within the span of only a few years, neural networks have led to tremendous advances
in the fields of image classification [  614 ], face [ 615 ] and speech [ 616 ] recognition, and
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language processing [ 617 ], tasks that are generally thought of as easy to do for humans
but hard to accomplish for computers. Nowadays, AI often even outperforms humans
at many of these tasks. The superhuman performance of neural networks in the classic
board games Go [ 618 ] and Chess [ 619 ], in which the world’s best players could be defeated
by the AI, caused a particular sensation. Even in far more complex real-time computer
games like Starcraft II [ 620 ] or DOTA 2 [ 621 ] modern neural-network based algorithms
are superior to human players.

With this long list of successes, it comes as no surprise that DNNs have also made
their way into the sciences. A prime example is the important challenge of predicting the
3D shape of proteins in computational biology, known as protein folding, where a new
AI network significantly outperformed traditional algorithms that have been developed
since the 1980s and 1990s [ 622 ,  623 ]. While there have been many attempts to use neural
networks with similar success in quantum mechanics as well, there has not yet been
a major breakthrough. The problem of applying AI in physics is one of fundamental
nature. Neural networks excel at discovering patterns in allegedly random data and
building models without prior knowledge. But if physics has enough of one thing then
it is models and analytical relations between quantities, which physicists discovered over
centuries. It is, therefore, somewhat challenging to find a suitable problem in physics that
benefits from the use of AI methods. One successful example is the construction of a
DNN-based surrogate model for the static local field correction (LFC) of the warm dense
electron gas [ 624 ]. Other recent attempts to apply neural networks include the expression
of quantum states [ 625 – 629 ], the calculation of the exchange–correlation energy in the
Kohn–Sham equations [  630 ] and the forecasting of chaotic processes [  631 – 633 ]. However,
often these approaches are limited by the bad performance of neural networks when it
comes to extrapolating and predicting results outside of the parameter domain that was
covered by the training process. Moreover, neural networks are bound by the laws of
information theory. A finite neural network can only store a limited amount of information,
although it might do so in a very efficient, compressed way. Therefore, AI is not expected
to solve the most prominent problem in computational quantum mechanics, which is to
find exact solutions for general large many-body systems that suffer from the exponential
growth of the Hilbert space.

The approach presented here is based on an entirely different idea and goes back to
the roots of DNNs, which is, taking over tasks that are traditionally done by humans. As
discussed in section  3.3.2 , the performance of the approximations derived within MBPT
strongly depends on the parameters of the system, such as the interaction strength or the
filling. While HF and 2B are most accurate for weak interactions at all levels of the filling,
TPP performs well for low densities independent of the relevance of electron–electron
interactions in the system. Moreover, it was established in section  6.3.3 that including more
terms or diagrams in the approximation does not always lead to better results. On the
contrary, under certain circumstances ignoring certain contributions can lead to a better
approximation, cf. Fig.  6.5 . Traditionally, the choice of the appropriate approximation,
based on knowledge of the system and previous experiences, is made by the physicist
before starting the calculation. The general idea of the following approach is that for the
G1–G2 scheme, this task is instead done by a neural network that has learned under what
circumstances which approximation performs best. It will be shown that assigning this
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task to an AI brings several advantages.
For a start, the EOM of G, cf. Eq. ( 6.4 ), is expressed in a slightly different form,

iℏ d
dtGijkl(t) = Cijkl(t) + Cjilk(t) − [Cklij(t)]∗ − [Clkji(t)]∗ , (8.1)

with a new quantity C, which combines the Hamiltonian term H̃ with the collision integral
I(2), cf. Eq. ( 6.6 ), 

1
 

CDSL
ijkl (t) =

∑
p

hHF
ip (t)Gpjkl(t)︸ ︷︷ ︸

H̃(t)

+Ψijkl(t) + Lpp
ijkl(t) + P ph

ijkl(t) + PGW
ijkl (t) . (8.2)

In this definition, three-particle correlations are neglected as in the related equations in
section  6.1.1 . For the neural network approach one now introduces real-valued factors f
to weight the individual terms, 

2
 

CNN
ijkl(t) = H̃(t) + f 2B(t)Ψijkl(t) + fpp(t)Lpp

ijkl(t) + fph(t)P ph
ijkl(t) + fGW (t)PGW

ijkl (t) . (8.3)

The DSL approximation can be reproduced by setting the weights to f 2B = fpp = fph =
fGW = 1. Selecting other approximations can be achieved through the elimination of
certain terms by setting the corresponding weight to zero. It should be mentioned that,
for instance, the 2P approximation, cf. section  6.3.3 , cannot be represented by Eq. ( 8.3 ),
as it requires neglecting only parts of the 2B and TPP terms.

Still, the introduction of the weight factors f corresponds to an enormous additional
degree of freedom when it comes to the choice of the approximation. Not only can the
weights take other values than zero or one, which leads to a partial mixing of different
self-energy contributions, but they can also be time-dependent. Traditionally, an educated
guess for the best approximation has to be made before the start of the calculation. This
choice is applied for the entire calculation since, although it might be technically possible,
it is often not feasible to change the approximation during the simulation. In contrast, a
neural network that learns the optimal choice of the weights f based on the current system
parameters can react to dramatic changes to the system, like sudden strong excitations. It
can adjust the weights accordingly, on the fly, to guarantee that at any time during the
simulation the best possible combination of self-energy terms is selected.

While the idea itself is pretty straightforward, the setup and training of a neural
network that can achieve this, require some work. First, exact reference data is needed
for the quantity C entering Eq. ( 8.1 ), to determine the optimal choices for the weights
f in Eq. ( 8.3 ). However, exact solutions can only be obtained for small systems, so the
training of the neural network is restricted to those. To ensure that the final approach
is still applicable also for large systems one needs, second, representative, system-size
independent observables that are correlated to the performance of the approximations, like
the interaction strength or the filling mentioned above. This way, the neural network can

1In the exact formulation I(2) also contains three-particle correlations, which leads to the definition of C

given in Eq. ( 8.4 ).
2In the Hubbard model this approach is actually energy conserving even for time-dependent weights.

In the general case, however, efforts must be made to ensure that the TPH and GW exchange
contributions do not violate energy conservation.
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be trained to learn the (hidden) correlations between those observables and the optimal
weights f for small systems where exact reference data is available, and can then be
used to accurately simulate large-scale systems under the assumption that those learned
correlations are still applicable there.

In practice, the neural network has to be trained for a large number of different setups
to account for a broad range of possible system parameters. Therefore, the following
demonstration for a half-filled four-site Hubbard chain with U = 2J should merely
serve as a proof of concept. The system is prepared in the correlated ground state via
adiabatic switching during the first 50ℏJ−1, before it is excited by a laser pulse with the
amplitude EL = 0.1Je−1a−1, frequency ℏωL = 2J , and standard deviation σL = 1.8ℏJ−1

at time t = 60ℏJ−1. The exact time-dependent wave function is obtained by the exact
diagonalization of the Hamiltonian, which gives direct access to all reduced density matrices
or time-diagonal Green functions. This way, the exact quantity C, which enters on the
right-hand side of Eq. ( 8.1 ), can be obtained via

Cijkl(t) =
∑

p

h
(1)
ip (t)Gpjkl(t) + 1

2
∑
pq

wijpq(t)G(2)
pqkl(t) (8.4)

∓ iℏ
∑
pqr

[
wipqr(t)G<

jl(t)G
(2)
qrkp(t) ± wipqr(t)G<

jk(t)G(2)
qrlp(t) − wipqr(t)G(3)

qrjkpl(t)
]
.

The above equation can be derived by comparing Eqs. ( 6.6 ) and ( 6.85 ). Notice, that
it depends on the full three-particle Green function, which also includes three-particle
correlations in contrast to Eq. ( 8.2 ). At each time step, the parameters f are determined
so that CNN best fits the exactly determined C. This is done by solving a system of
equations of the form

H̃1111 Ψ1111 Lpp
1111 P ph

1111 PGW
1111

H̃1112 Ψ1112 Lpp
1112 P ph

1112 PGW
1112

... ... ... ... ...

H̃ijkl Ψijkl Lpp
ijkl P ph

ijkl PGW
ijkl

... ... ... ... ...


︸ ︷︷ ︸

N4
b×5

·



1

f 2B

fpp

fph

fGW


︸ ︷︷ ︸

5×1

=



C1111

C1112
...

Cijkl

...


︸ ︷︷ ︸

N4
b×1

(8.5)

via a singular value decomposition (SVD) to obtain a least squares solution.
The results for the weights f are shown in Fig.  8.1 (g). For very small U at the beginning

of the adiabatic switching, all weights are found to be 1, except for the GW contribution,
which starts at 0. This early behavior is not very relevant, since the small value of U
diminishes any influence of G in the collision integral of Eq. ( 6.16 ) anyway. The interesting
part starts around t = 15ℏJ−1, where correlations begin to build up. During the switching
procedure, fph decreases to around 0.85, whereas f 2B and fpp increase above 1 to values of
∼1.1 and ∼1.4, respectively. The weight of the GW term, fGW , remains nearly constant at
around 0.34. The laser excitation induces oscillations in the weights and results in a slight
decrease of the average values for f 2B and fpp. The panel (f) shows the mean deviation of
CDSL, cf. Eq. (  8.2 ), and CNN, cf. Eq. (  8.3 ), with the parameters of the panel (g), to the
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Figure 8.1 – Training data set for the DNN shown in Fig.  8.2 generated for a four-site
Hubbard chain at U = 2J that is excited by a laser pulse at t = 60ℏJ−1. (a) Hubbard
interaction. (b)–(d) Mean kinetic, HF, and correlation energy per particle. (f) Mean
second local magnetic moment per particle. (f) Error of CDSL and CNN with respect to
the exact C calculated as the Frobenius norm. (g) Time-dependent weights determined
via Eq. ( 8.5 ).
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Figure 8.2 – Illustration of the DNN trained by the parameters given in Fig.  8.1 . It
contains 6 hidden layers with 20 nodes each. The five input parameters U , Ekin, EHF,
Ec, and ⟨m̂2

i ⟩ are labeled as x1 to x5 while the four weights f 2B, fpp, fph, and fGW

are labeled as y1 to y4.

exact C, cf. Eq. ( 8.4 ), calculated as the Frobenius norm. During the adiabatic switching, as
correlations start to build up, the error of the approximate quantities increases. However,
at each point in time the weighted variant CNN shows a clear improvement compared to
CDSL. This is important, since it shows that the ansatz of introducing weights in Eq. ( 8.3 )
can actually lead to a systematic improvement of the approximation.

The next step is to find a suitable set of system-size independent parameters that
are expected to be correlated to the weights f . Here, the parameters chosen are the
Hubbard interaction U , the mean kinetic, HF, and correlation energy per particle, Ekin,
EHF and Ec, respectively, and the mean second local magnetic moment per particle
⟨m̂2

i ⟩, cf. section  3.4.1 . Defining the latter observables per particle ensures that they are
applicable regardless of the particle number and system size. Their dynamics are shown in
Fig.  8.1 (a)–(e).

These parameters and weights are now used to train the DNN depicted in Fig.  8.2 ,
which consists of 6 hidden layers with 20 nodes each, using the Keras library [  634 ]. The
Exponential Linear Unit (ELU) is chosen as the activation function, the cost function is
defined as the mean squared error of the weights f and the weights are updated using the
Adam algorithm [ 635 ]. The network is trained for 200 epochs with a batch size of 16. Since
the calculation shown in Fig.  8.1 was performed with a time step size of ∆t = 0.01ℏJ−1,
the total data set contains 7500 data points of which every 100th is used for the test set
and the others for training.

The idea is that the network learns any correlations between these observables and the
corresponding weights at any time during the calculation. It should be reiterated that this
approach requires two fundamental assumptions to be fulfilled. First, correlations have to



184 8 Summary and Outlook

−2.9

−2.8
E

to
t
/
J

(a)

Exact DSL DNN

50 60 70 80 90 100

time tJ/h̄

0.9

1.0

1.1

n
1

(b)

Figure 8.3 – Half-filled four-site Hubbard chain at U = 2J . The system is prepared in the
interacting ground state via adiabatic-switching up until t = 50ℏJ−1. At t = 60ℏJ−1

the system is excited by a laser pulse. The total energy [panel (a)] and the density
on the first site [panel (b)] are compared between the exact solution, the G1–G2
scheme with the DSL approximation, and the newly developed neural-network-assisted
approach of the G1–G2 scheme (DNN).

exist between the chosen observables and the weights in the first place. And second, these
correlations have to be universal, meaning that the neural network trained with knowledge
from this system can be applied to other systems where no exact data is available for
training. For the former point, it is important to choose representative observables that
carry important information about the system. The ones chosen here are first guesses and
there might be others that are more fitting and should be included. The second point is
nearly uncontrollable, since it might just be that larger systems contain physics that are
not present in smaller systems. However, to improve the chances of success it is important
to choose variables that are system-independent, e.g. the energy per particle instead of
the total energy.

A first test of the performance of the trained network is shown in Fig.  8.3 . The setup
is exactly equivalent to the one the training was performed for, the half-filled four-site
Hubbard model at U = 2J . It is, therefore, the best-case scenario, where the neural
network approach is expected to excel. However, here the calculation is extended by
25ℏJ−1 to a final time of t = 100ℏJ−1 to observe how the performance changes once the
end of the training data set at t = 75ℏJ−1 has passed. During the calculation, at each
time step the five observables U , Ekin, EHF, Ec, and ⟨m̂2

i ⟩ are calculated and fed into
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Figure 8.4 – Half-filled six-site Hubbard chain at U = 2J . The system is prepared in the
interacting ground state via adiabatic-switching up until t = 50ℏJ−1. At t = 60ℏJ−1

the system is excited by a laser pulse. The total energy [panel (a)] and the density
on the first site [panel (b)] are compared between the exact solution, the G1–G2
scheme with the DSL approximation, and the newly developed neural-network-assisted
approach of the G1–G2 scheme (DNN).

the trained DNN to predict the best weights f 2B, fpp, fph and fGW for that point in
time. Those weights are then used to solve Eq. ( 8.3 ) and propagate Eq. (  8.1 ). The neural
network approach is compared to the DSL approximation within the G1–G2 scheme and
to the exact diagonalization of the Hamiltonian. In Fig.  8.3 (a) and (b), the results for the
total energy and the occupation on the first lattice site are shown, respectively, for the
time after the adiabatic switching. For both observables, the new AI-supported approach
tremendously outperforms the traditional DSL approximation and shows great agreement
with the exact results, especially up to t = 75ℏJ−1. While the total energy is nearly
identically reproduced throughout the whole simulation, deviations in the amplitude and
the frequency of the density oscillation begin to increase for t > 75ℏJ−1. However, even at
these long times, the DNN approach performs much better than the DSL approximation
that shows considerable deviations to the exact density dynamics already at t < 75ℏJ−1.

While these results are promising, they were obtained for the system for that the
neural network was trained. A more convincing test setup is given by the half-filled six-site
Hubbard model at U = 2J , a system that has 50% more lattice sites and particles. As all
five input parameters were chosen to be particle-number independent, in principle, the
trained neural network can straightforwardly be applied to this larger system. However,
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the quality of the results depends on whether the correlations between the observables
and the weights that the DNN learned for the four-site system are applicable in this case.
Further, the parameter range used for training the network was limited, cf. Fig.  8.1 , as
only one setup was considered in this proof of concept. Therefore, in the six-site system
parameter combinations might occur that are far outside the trained environment of
the DNN. Considering these circumstances, the test results shown in Fig.  8.4 are very
encouraging. Although the exact total energy is not as nicely reproduced by the DNN
approach as in Fig.  8.3 , it is still a huge improvement compared to DSL. Also, the density
dynamics are in good agreement with the exact result, even for large times. In contrast,
the DSL solution shows considerable deviations already during the laser interaction.

In summary, the DNN-based approach introduced in this section has the potential to
greatly improve the accuracy of the G1–G2 scheme compared to traditional approximations.
It is based on the idea that, when describing finite systems, it is not about including the
most diagrams but about including the correct diagrams, cf. section  6.3.3 . The introduced
time-dependent weights f allow one to gradually reduce the influence of terms that lead
to malicious contributions. Delegating the adjustment of the weights to an artificial
neural network opens the possibility to react to sudden changes to the system on the fly
during the calculation. It should be noted that in its present form this approach adds
no additional physics that is not already included in the DSL approximation, such as
three-particle correlations. However, as was impressively demonstrated in section  6.3.3 

for the 2P approximation, removing the unphysical contributions of diagrams can already
lead to considerable qualitative improvements. Additionally, in principle, the approach
can also be extended to approximations that go beyond DSL, cf. section  6.3.4 .
As mentioned already on multiple occasions, this short outlook on the topic should only
serve as a proof of concept. In practice, a much larger training data set is needed that
includes a greater parameter space. Moreover, the choice of the observables entering the
DNN might also be improved. An optimized version of this approach might have great
potential since the evaluation of the DNN to calculate the weights during the simulation
only adds negligible numerical costs.

8.2 About Graphene Nanostructures

The recent advances regarding the atomically precise synthetization of graphene nanos-
tructures constitute an important step towards the technological application of GNRs
and similar finite carbon-based structures [ 16 ,  20 ,  29 ,  32 ]. However, for the realization
of practical devices, such as FETs, quantum computers, or solar cells, a fundamental
understanding of the underlying physical systems is essential.

On the one hand, not only the synthetization but also the precise measurement of
graphene nanostructures has made great progress in recent years. Consequently, a great
number of different GNRs, including heterostructures of various geometries, have been
realized and studied experimentally [ 24 ,  25 ,  30 ,  536 ,  557 ,  636 ]. New, advanced spectroscopy
techniques even promise to resolve the subpicosecond dynamics of the electrons in these
systems with atomic precision [ 34 ,  35 ]. The theoretical studies of graphene nanoribbons,
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on the other hand, up until this point were hampered by the high numerical challenges that
these finite but moderately coupled systems pose. Since the simulation of the nonequilib-
rium electron dynamics is especially costly, most calculations focused on the ground-state
properties and disregarded electronic correlations [ 23 – 25 ,  30 ,  506 – 508 ,  523 – 525 ,  534 – 536 ,
 539 ].

This thesis presents a major breakthrough in the theoretical modeling of graphene
nanostructures. The π electrons, which are responsible for most of graphene’s optoelec-
tronic properties, are described by lattice Hamiltonians such as the TB, Hubbard, or PPP
model. The latter two represent natural extensions of the widely used, noninteracting TB
Hamiltonian by including local and long-range Coulomb interactions, respectively. For an
accurate treatment of electron–electron correlations these models are solved within the
Green functions approach using advanced self-energy approximations such as GW and
DSL. The combination of the lattice Hamiltonians with Green functions theory provides a
theoretical framework that is both accurate and numerically efficient. In this regard, the
simulation of the nonequilibrium dynamics benefited greatly from the development of the
G1–G2 scheme, cf. section  8.1 .

This theoretical approach was employed in section  7 to study finite graphene nanos-
tructures and in particular the topological states in 7–9-AGNR heterostructures. This
compound of 7-AGNR and 9-AGNR segments was one of the first GNR heterostructures
deliberately synthesized for its localized, topologically protected in-gap states. It was first
realized experimentally by Rizzo et al. [ 24 ] who also performed LDA-DFT calculations.
For a basic understanding of the origin of topological states in GNR heterostructures, sec-
tion  7.1 discussed the fundamental theory on topological phases and topological invariants.

In section  7.2 , which is based on Ref. [  295 ], the ground-state properties of the 7–9-
AGNR heterostructure were studied using the Hubbard model, which was solved within
the EGF approach for the UHF and GW self-energy approximation. The comparison to
the experimental and LDA-DFT data of Rizzo et al. allowed determining the qualitative
and quantitative effects of electron–electron correlations on the topological states. The
7–9-AGNR heterostructure possesses two types of topological states. The first is the bulk
bands, which are formed by hybridized heterojunction states that are localized at the
interface between 7-AGNR and 9-AGNR segments. And the second is the end states,
which are a result of the overlap of the final heterojunction state with the terminating
zigzag edge state. For a heterostructure on top of a metallic substrate, it was found
that electron–electron correlations within GW lead to a considerable spatial confinement
and quasiparticle renormalization of all topological states, and increased local magnetic
moments at the outer edges of the system. For a free-standing, isolated heterostructure
UHF calculations predicted the splitting of all three topological end states. This kind
of splitting normally only affects states at the Fermi level, as it is caused by magnetic
instabilities. Here, the hybridization of the end states led to this fascinating new behavior.

After the study of the topological states in the ground state, the logical next step
was to examine their nonequilibrium behavior. With regard to possible applications, the
targeted excitation of these states as well as their ultrafast scattering dynamics and the
resulting lifetimes were of particular interest. To get a better understanding of possible
electron–electron scattering events in finite graphene nanostructures, before applying the
G1–G2 scheme to the 7–9-AGNR system, in section  7.3 , two-time NEGF calculations were



188 8 Summary and Outlook

performed for small 5-AGNR test systems, namely perylene and terrylene. The simulations,
which were partly published in Ref. [ 294 ], revealed that for the correct description of
the scattering dynamics not only particle–particle collisions have to be included in the
self-energy but also the band structure of the nanostructure has to be accurately mod-
eled. This is, because the scattering rates of impact excitation and Auger recombination
processes crucially depend on the energy difference and the occupation of the involved
states. For the finite 5-AGNRs, which were excited by an ultraviolet laser pulse, carrier
multiplication could be observed for self-energy approximations beyond HF.

Therefore, in the concluding study of the laser-excited 7–9-AGNR unit cell, the π-
electron system was modeled using the most accurate methods available, namely the PPP
Hamiltonian, which was solved using the DSL* approximation in the G1–G2 scheme.
The direct excitation of the topological end states was found to be severely dependent
on the polarization of the light. Only the component of the electric field that is per-
pendicular to the terminating zigzag edges is able to transfer energy into the end region
of the ribbon. While this targeted excitation of localized states is in principle possible
by choosing the appropriate laser frequency, in practice high laser intensities excite the
electrons from the low-energy topological states into higher-energy bulk states. In the
present calculations, the laser amplitude had to be set to a small value of EL = 1.65 V/nm
for selective excitation of mainly the topological end states. However, in the case of such a
targeted excitation, ultrafast Auger recombination and impact excitation processes quickly
redistribute the excited carriers, leading to a quick depletion of the end state occupation
within the first 5 fs after the laser pulse. For a stable density of the excited topological
states, a higher-intensity laser is needed that also excites higher-energy bulk states, in
order to close possible scattering channels. Moreover, the laser-pulse excitation and the
subsequent carrier dynamics were found to have a direct effect on the spin ordering within
the 7–9-AGNR unit cell. Especially for the edge states, the magnetic correlations were
severely reduced in the excited system compared to the ground state. Although a more
in-depth analysis of the underlying physical processes is still pending, these first results on
the ultrafast dynamics of excited topological edge states in GNR heterostructures should
prove valuable on the road to the practical application of these systems.

Looking forward, it would be reasonable if the present study could be extended to
larger heterostructures containing more than one unit cell. This would allow analyzing
the nonequilibrium response of the topological bulk bands that are not present in the
single unit cell system, cf. section  7.2.6 . Even today, the simulation of systems containing
a few unit cells should be possible. The calculations presented in section  7.4 for a system
containing 96 electrons took roughly 50 hours on a single NVIDIA Tesla V100 GPU with
a single rank-4 tensor object requiring about 1.3 GB of RAM. Even with a scaling of
O(N4

b) the memory requirement will not be obstructive on modern computer clusters.
The computational effort, however, scales with O(N6

b) for the naïve implementation of the
eigenvalue decomposition required for the purification within the DSL* approximation.
The same simulation for a two-unit cell system on identical hardware would, therefore, take
over 130 days. While this can potentially be compensated by utilizing more computational
resources, it is advisable to implement a more efficient purification procedure.

Another interesting aspect is the inclusion of electron–phonon coupling in the simula-
tion of the nonequilibrium response of excited graphene nanostructures. Especially on the
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picosecond time scales, scattering between electrons and phonons should dominate the
relaxation dynamics. With its linear time scaling, the G1–G2 scheme is particularly suited
to describe both the ultrafast electron–electron scattering as well as the phonon-mediated
cooling of the electron distribution at longer times. Interacting electron–boson systems
were already successfully described within the G1–G2 formalism by Karlsson et al. [ 343 ]
and Pavlyukh et al. [ 345 ,  346 ] so that the implementation for the present systems should
be straightforward.

In the bigger picture, the presented theoretical framework, consisting of lattice models,
which are solved within Green functions theory, by no means is restricted to finite graphene
nanostructures but instead can be, and already is, applied to a wide range of other problems.
For example, Honet et al. [ 301 ,  555 ] used the Hubbard model in combination with the GW
self-energy to evaluate the optical properties of PAHs. Borkowski et al. [ 251 ] and Niggas et
al. [ 342 ] utilized the G1–G2 scheme with the Hubbard Hamiltonian to model ion stopping
in single-layer graphene and (in the latter case) MoS2. And in the above-mentioned
publications on electron–boson systems, Karlsson et al. [ 343 ] and Pavlyukh et al. [ 345 ,  346 ]
solved, inter alia, the Hubbard–Holstein model in the momentum representation using a
variant of the G1–G2 scheme. Other systems that could potentially be treated are twisted
bilayers of graphene or transition-metal dichalcogenides (TMDCs) [ 637 – 639 ], although
their large scale poses a considerable numerical challenge. Nevertheless, it is important
to note that in each case it must be checked separately, whether the description by the
lattice models is suitable. For example, if the systems considered in this work were excited
by strongly charged ions rather than weak laser pulses, the description of the π electrons
alone may no longer be sufficient [ 640 ].

Finally, the attractive numerical scaling behavior of the NEGF approach is not re-
stricted to lattice models but more generally applies to all Hamiltonians with a diagonal
pair-interaction of the form wijkl ∼ δikδjlVij. An example of a basis that fulfills this
requirement is the finite-element discrete variable representation (FE-DVR) [  641 – 643 ],
which was successfully used to describe atoms and molecules [ 644 ], and quantum wells [ 316 ].
In the past, the numerical scaling behavior of the HF-GKBA restricted these simulations
to small systems, such as helium or lithium hydride, and the use of the 2B self-energy.
The combination of this basis representation with the G1–G2 scheme will allow treating
larger molecules and describing them more accurately than before using, e.g., the DSL
approximation. In conclusion, the presented theoretical framework of lattice models and
Green functions theory is expected to find use in multiple physical fields to treat atomic,
molecular, and solid-state systems both in equilibrium as well as in nonequilibrium.
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A Additional Information

A.1 Extended TB Model

An in-depth discussion on this topic can be found in Ref. [  294 ] by the author and coworkers.
In the common TB model introduced in section  2.2.1 the finite overlap between adjacent
orbitals is neglected. Further, the kinetic term tij in the general lattice Hamiltonian,
cf. Eq. (  2.6 ), is chosen to contain only nearest-neighbor hopping, i.e. tij → −J . For a more
accurate description of physical systems, it would be desirable to consider both additional
hopping contributions and orbital overlap. Although this kind of extension significantly
increases the number of external parameters, it does not increase the numerical effort
needed to solve the extended lattice models. However, it should be noted that the extended
model only provides small corrections on the single-particle level and does not describe
interaction effects.
For graphene-type systems, it turned out that hopping and orbital overlap between up
to third-nearest neighbor (3NN) lattice sites are relevant, which leads to the hopping
matrix

tij :=



t1 if (i, j) is 1NN
t2 if (i, j) is 2NN
t3 if (i, j) is 3NN
0 else

. (A.1)

Finite overlap of adjacent orbitals can be expressed in the form of an overlap matrix S,
which, for up to 3NN overlap, is defined as

Sij := δij +



s1 if (i, j) is 1NN
s2 if (i, j) is 2NN
s3 if (i, j) is 3NN
0 else

. (A.2)

Vanishing orbital overlap can be expressed by setting S = 1, which corresponds to
orthogonal basis states. Both sets of parameters t1, t2, t3 and s1, s2, s3 are typically
obtained by fitting the extended tight-binding band structure to DFT calculations [ 141 ,
 145 ,  146 ]. The parameter values used in section  7.3 are adapted from Ref. [ 146 ] and given
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in Fig.  A.1 .
While the hopping matrix t directly enters the Hamiltonian, cf. Eq. ( 2.6 ), the effects of the
overlap matrix S on the system are more intricate. Deviations of the S from unity have
the effect that the single-particle orbital basis is not orthogonal anymore, which disagrees
with the picture of point-like lattice sites. In such a case the system Hamiltonian H is
described by the following GEP [  142 ]:

H |ψ⟩ = ES |ψ⟩ . (A.3)

A straightforward solution would be to transform this equation into a standard eigenvalue
problem

S−1H︸ ︷︷ ︸
H̃

|ψ⟩ = E |ψ⟩ , (A.4)

given that S−1 exists. However, as the single-particle basis is non-orthogonal the Hamil-
tonian H̃ is not generally Hermitian. A better way to solve Eq. ( A.3 ) is to apply the
symmetric Löwdin orthogonalization [ 645 ], where a transformation matrix U is defined
as

U := S− 1
2 , (A.5)

with the property

U †SU = 1 , (A.6)

since S is real and symmetric. This way the GEP of Eq. ( A.3 ) transforms to

H |ψ⟩ = ES |ψ⟩ (A.7)
H UU−1︸ ︷︷ ︸

1

|ψ⟩ = ES UU−1︸ ︷︷ ︸
1

|ψ⟩ (A.8)

U †HU︸ ︷︷ ︸
H′

U−1 |ψ⟩︸ ︷︷ ︸
|Ψ⟩

= EU †SU︸ ︷︷ ︸
1

U−1 |ψ⟩︸ ︷︷ ︸
|Ψ⟩

, (A.9)

where the Hermitian Hamiltonian H ′ is defined in an orthogonal basis

H ′ := U †HU , (A.10)

with the standard eigenvalue problem

H ′ |Ψ⟩ = E |Ψ⟩ . (A.11)

The new Hermitian Hamiltonian H ′ is connected to the non-Hermitian Hamiltonian H̃

defined in Eq. ( A.4 ) via

H ′ =
(
S− 1

2
)†

HS− 1
2

= S− 1
2 HS− 1

2

= S
1
2 S−1H︸ ︷︷ ︸

H̃

S− 1
2

= U−1H̃U . (A.12)
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Figure A.1 – Left: Illustration of the position of neighboring sites in the honeycomb
lattice with respect to the white site. The three nearest neighbors (1NN) are marked
in red, the six second-nearest neighbors (2NN) in blue, and the three third-nearest
neighbors (3NN) in green. Adapted from Ref. [ 143 ]. Right: Parameter set taken from
Ref. [  146 ] for the hopping, cf. Eq. ( A.1 ), and overlap, cf. Eq. ( A.2 ), matrix in the
extended Hubbard model used in section  7.3 .

Therefore, H ′ can be understood as the Hamiltonian H̃ = S−1H transformed to an
orthogonal basis by the transformation matrix U . Likewise, any matrix A′ can be
transformed from the orthogonal basis of H ′ to the original non-orthogonal basis by the
transformation

A = UA′U−1 . (A.13)

The inclusion of extended hopping and orbital overlap is not restricted to the TB model
but can also be applied to the Hubbard or PPP model as is done in section  7.3 . In
practice, when combining these extended models with the NEGF approach, the effective
HF Hamiltonian, cf. Eq. (  5.4 ), has to be expressed in an orthogonal basis

hHF′ = U †hHFU . (A.14)

However, to calculate observables in the original, non-orthogonal lattice basis G< and G>

have to be transformed using Eq. ( A.13 ).

A.2 Hubbard Dimer

The eigenvalues of the half-filled Hubbard dimer (Nb = 2 with N↑ = 1 and N↓ = 1) are
presented in section  2.2.2 . Here, it will be briefly outlined how they can be calculated.



194 A Additional Information

The Hubbard dimer at half-filling can be represented by the following basis states,

|↑, ↓⟩ = ĉ†
2,↓ĉ

†
1,↑ |0⟩ , (A.15)

|↓, ↑⟩ = ĉ†
1,↓ĉ

†
2,↑ |0⟩ , (A.16)

|↓↑, ·⟩ = ĉ†
1,↓ĉ

†
1,↑ |0⟩ , (A.17)

|·, ↓↑⟩ = ĉ†
2,↓ĉ

†
2,↑ |0⟩ . (A.18)

In this basis the Hubbard Hamiltonian, cf. Eqs. ( 2.5 ) and (  2.11 ), can be expressed as a
4 × 4 matrix [ 646 ],

H =



0 0 −J −J

0 0 −J −J

−J −J U 0

−J −J 0 U


, (A.19)

which can be easily diagonalized analytically. This way one gets the following eigenvalues
with the corresponding eigenstates,

E± = U

2 ±
√
U2 + 16J2

2 , E0 = 0 , EU = U , (A.20)

ψ± =
2 + 1

2

(
E±

J

)2
− 1

2



∓1

∓1
E±

2J

E±

2J


, ψ0 = 1√

2



−1

1

0

0


, ψU = 1√

2



0

0

−1

1


.

Most notably, the ground-state energy has the two limiting cases

lim
U→0

E− = −2 J and lim
U→∞

E− = 0 J . (A.21)

leading to the corresponding ground-state wavefunctions

lim
U→0

∣∣∣ψ−
〉

= 1
2 (|↑, ↓⟩ + |↓, ↑⟩ − |↓↑, ·⟩ − |·, ↓↑⟩) and (A.22)

lim
U→∞

∣∣∣ψ−
〉

= 1√
2

(|↑, ↓⟩ + |↓, ↑⟩) . (A.23)

While for vanishing interactions the ground state does not show any spin polarization, in
the limit of infinite U the system is in a superposition of two antiferromagnetic states.

A.3 Generating an Initial State

In both the EGF and the NEGF approach presented in chapters  4 and  5 , respectively, a
non-interacting initial state has to be provided to start the calculation. A procedure to
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generate such a state is presented in section  A.3.1 . In the EGF approach, the correlated
ground state represents the final solution and is generated iteratively by solving the Dyson
equation. In contrast, in the NEGF case generating the correlated ground state is typically
part of the initialization process before the system is excited out of equilibrium. This
is done by the adiabatic-switching method, which was introduced in section  3.1 . In the
following section  A.3.2 numerical details are discussed.

A.3.1 Generating a Non-Interacting Ground State

In order to initialize both GR
0 (ω) in the EGF as well as G<(ts) in the NEGF theory to

represent a non-interacting ground state the initial single-particle Hamiltonian h(1)(ts) has
to be diagonalized,

h(1) = φεφ−1 , (A.24)

with ε being a diagonal matrix that contains the eigenvalues of h(1)(ts) to the eigenstates
φ. The initial value of GR

0 (ω), cf. Eq. ( 4.6 ), can then be calculated by

GR
0,ij(ω) =

∑
k

φik
1

ω − εk + iηφ
∗
ik with η → 0+ . (A.25)

For the initialization of G<(ts) one uses that within NEGF theory systems are described
by the grand canonical ensemble and its corresponding density operator ρGCE, cf. Eq. ( 3.5 ),
which is determined by the inverse temperature β = (kBT )−1 and the chemical potential µ.
While the particle number is allowed to vary, a system with a particular particle number
N can be defined by choosing µ in such a way that the average particle number in the
ground state ⟨N̂⟩ matches the desired N . This is exactly what is done in the following,
where µ is chosen in such a way that the sum over all occupied single-particle states equals
the desired particle number,

N (β, µ, ε) =
∑

k

f∓(εk − µ) , (A.26)

where

f∓ (εk − µ) := 1
eβ(εk−µ) ∓ 1 (A.27)

is the Bose/Fermi function. Now the initial non-interacting lesser component of the
single-particle Green function can be calculated as

G<(ts) = ± 1
iℏφFφ−1 , (A.28)

where F is a diagonal matrix with the entries

Dk = f∓(εk − µ) . (A.29)
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Figure A.2 – Illustration of the adiabatic-switching function, cf. Eq. (  A.32 ), for τ
tH

=
1, 1

2 ,
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4 . The parameters used in this work have a ratio of τ

tH
= 0.76 and thus lie between

the red and the orange curve. Adapted from Ref. [ 328 ].

A.3.2 Adiabatically Generating a Correlated Ground State

In Sec.  3.1 the adiabatic-switching method to generate an interacting ground state was intro-
duced. It is based on defining a time-dependent pair interaction wijkl(t) := fAS(t)wijkl that
is switched on by a smooth function with the limits limt→ts fAS(t) = 0 and limt→t0 fAS(t) = 1.
On the one hand, the switching has to be performed slowly enough to end up in the
correlated ground state. On the other hand, especially for the NEGF method every
additional time step is very costly due to the N3

t scaling, so the switching procedure should
not take too long. A very time-efficient switching function was presented in Ref. [ 647 ] and
is given by

f τ,tH
AS (t) = exp

{
−

Aτ
tH

t/ (2tH) exp
[

Bτ
tH

t/ (2tH) − 1

]}
, (A.30)

Bτ
tH

:= tH
τ ln(2) − 1

2 , (A.31)

Aτ
tH

:=ln(2)
2 e2Bτ

tH , (A.32)

where tH := t0−ts
2 is the length of the switching process and τ determines the slope of the

function. The switching function is displayed in Fig.  A.2 for different ratios τ
tH

. In practice,
if the number of time steps has to be kept low and if the accuracy of the ground state is
less important, parameter values of τ = 9.5 and tH = 12.5 are recommended. However, if
the requirements on the correlated initial state are high and the numerical costs are less of
an issue values of τ = 19 and tH = 25 should be used. Throughout this work, the first set



A.4 Useful Relations in MBPT 197

of parameters is typically used for the two-time NEGF calculations while the second one
is chosen for the G1–G2 scheme.

A.4 Useful Relations in MBPT

In the following the parquet approach used in section  3.3 to derive approximations within
MBPT is compared to similar formulations. As was already mentioned in said section the
central parquet equation ( 3.45 ),

F (1, 2; 1′, 2′) = Λ(1, 2; 1′, 2′) + Φpp(1, 2; 1′, 2′) + Φph(1, 2; 1′, 2′) + ΦGW (1, 2; 1′, 2′) ,
(A.33)

is often expressed in the alternative form

F (1, 2; 1′, 2′) = Γr(1, 2; 1′, 2′) + Φr(1, 2; 1′, 2′) with r ∈ {pp, ph, GW} , (A.34)

with the three two-particle irreducible vertices

Γr(1, 2; 1′, 2′) = Λ(1, 2; 1′, 2′) +
∑
r′ ̸=r

Φr′(1, 2; 1′, 2′) with r ∈ {pp, ph, GW} . (A.35)

For the derivation of the DSL approximation Eq. ( A.33 ) is more suitable than Eq. (  A.34 ).
While in the former the approximation Γr = iℏw±, cf. Eq. ( 3.56 ), can be applied equally
to all occurring instances of Γr inside the Φr, in the latter it must not be used for
the Γr occurring explicitly in Eq. ( A.34 ), which would lead to the TPP, TPH or GW
approximation depending on r. Instead, it has to be applied solely to the Γr entering
the Φr in Eq. ( A.35 ), in summary leading to an inconsistent treatment of Γr when using
Eq. (  A.34 ) to derive the DSL approximation.
In general, however, Eq. ( A.34 ) is certainly the more prevalent expression in the literature.
While in principle all three versions are equivalent, for reasons discussed below most of
the time r = GW is chosen, leading to

F (1, 2; 1′, 2′) = ΓGW (1, 2; 1′, 2′) + ΦGW (1, 2; 1′, 2′) (A.36)

= ΓGW (1, 2; 1′, 2′) ±
∫

ΓGW (1, 3; 1′, 4)G(1)(4; 5)G(1)(6; 3)F (5, 2; 6, 2′) (A.37)

=
∫

ΓGW (1, 3; 1′, 4)
[
δ(2; 3)δ(4; 2′) ±G(1)(4; 5)G(1)(6; 3)F (5, 2; 6, 2′)

]
.

(A.38)

Especially Eq. ( A.37 ) is a very common expression, although the designation of the
quantities may differ. For example, in Ref. [ 219 ] the full vertex F is called Γ, while in
Ref. [ 78 ] F is denoted as Kr and ΓGW as K. The two-particle irreducible vertex in the
GW channel is often defined as the functional derivative [ 80 ,  220 ,  221 ]

ΓGW (1, 2; 1′, 2′) := δΣ(1; 1′)
δG(1)(2′; 2) (A.39)
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and denoted as Ξ.
Another important quantity is the two-particle exchange–correlation function L, which
is the variational derivative of the single-particle Green function G(1) with respect to an
external potential Uex [ 81 ],

L(1, 2; 1′, 2′) := ± δG(1)(1; 1′)
δUex(2′; 2)

∣∣∣∣∣
Uex=0

. (A.40)

Compared to the correlation contribution G it also contains the Fock part of the two-particle
Green function, cf. Eq. (  3.40 ),

L(1, 2; 1′, 2′) =G(2)(1, 2; 1′, 2′) −G(1)(1; 1′)G(1)(2; 2′) (A.41)
= ±G(1)(1; 2′)G(1)(2; 1′) + G(1, 2; 1′, 2′) (A.42)
= ±G(1)(1; 2′)G(1)(2; 1′)

+
∫
G(1)(1; 3)G(1)(2; 4)F (3, 4; 5, 6)G(1)(5; 1′)G(1)(6; 2′) . (A.43)

By multiplying Eq. ( A.38 ) with G(1)G(1) and comparing with Eq. ( A.42 ) one can identify
the following relation between F , ΓGW and L,∫

G(1)(2; 3)F (1, 3; 1′, 4)G(1)(4; 2′) = ±
∫

ΓGW (1, 3; 1′, 4)L(4, 2; 3, 2′) . (A.44)

Inserting this in Eq. ( A.43 ) leads to the following well-known Bethe–Salpeter equation for
L [ 78 ,  80 ,  221 ],

L(1, 2; 1′, 2′) = ±G(1)(1; 2′)G(1)(2; 1′) ±
∫
G(1)(1; 3)G(1)(5; 1′)ΓGW (3, 4; 5, 6)L(6, 2; 4, 2′) .

(A.45)

For the DSL approximation, the ΓGW under the integral in Eq. ( A.37 ) is approximated
by the antisymmetrized pair interaction so that L cannot be identified as easily when
multiplying by G(1)G(1). Instead, Eq. ( A.44 ) becomes∫

G(1)(2; 3)F (1, 3; 1′, 4)G(1)(4; 2′) = ± iℏ
∫
w±(1, 3; 1′, 4)L(4, 2; 3, 2′)

+
∫
G(1)(2; 3)Φpp(1, 3; 1′, 4)G(1)(4; 2′)

+
∫
G(1)(2; 3)Φph(1, 3; 1′, 4)G(1)(4; 2′) , (A.46)

and consequently, for the DSL approximation the Bethe–Salpeter equation for L is

L(1, 2; 1′, 2′) = ±G(1)(1; 2′)G(1)(2; 1′) ± iℏ
∫
G(1)(1; 3)G(1)(5; 1′)w±(3, 4; 5, 6)L(6, 2; 4, 2′)

+
∫
G(1)(1; 3)G(1)(2; 4)Φpp(3, 4; 5, 6)G(1)(5; 1′)G(1)(6; 2′)

+
∫
G(1)(1; 3)G(1)(2; 4)Φph(3, 4; 5, 6)G(1)(5; 1′)G(1)(6; 2′) . (A.47)

Directly connected to the two-particle exchange–correlation function is the reducible
polarizability or density-response function [ 78 ]

χ(1; 2) := iℏL(1, 2; 1+, 2+) (A.48)
= ± iℏG(1)(1; 2+)G(1)(2; 1+) + iℏG(1, 2; 1+, 2+) . (A.49)



A.4 Useful Relations in MBPT 199

Its real-time components are given by, cf. Eqs. ( 4.15 ) and ( 5.13 ),

χ≷
ij(t, t′) = ±iℏG≷

ij(t, t′)G≶
ji(t′, t)︸ ︷︷ ︸

χ
≷
0,ij(t,t′)

+iℏG≷
ijij(t, t′, t, t′) , (A.50)

χR
ij(t, t′) = Θ(t, t′)

[
χ>

ij(t, t′) − χ<
ij(t, t′)

]
, (A.51)

χA
ij(t, t′) = Θ(t′, t)

[
χ<

ij(t, t′) − χ>
ij(t, t′)

]
, (A.52)

where the lesser and greater component of G(1, 2; 1+, 2+) is here defined for the time ordering
1 < 2 < 1+ < 2+ and 2 < 1 < 2+ < 1+, respectively. The lesser component of the density
response χ< is also known as the dynamic structure factor S(q, ω), typically expressed in
momentum and frequency space, where the real-time components are connected via the
fluctuation–dissipation theorem similar to the single-particle Green functions, cf. Eqs. ( 4.8 )
and ( 4.9 ). The retarded component describes the linear response of the system to an
external potential, much like L was originally defined in Eq. ( A.40 ), and is often defined
as

χR
ij(t, t′) = − i

ℏ
Θ(t, t′) ⟨[n̂ii(t), n̂jj(t′)]⟩ (A.53)

in the literature. With n̂ij(t) = ±iℏĜ<
ij(t) and using the fluctuation ansatz of Eq. (  6.141 )

it can be expressed as

χR
ij(t, t′) = iℏΘ(t, t′)

〈
δĜii(t)δĜjj(t′) − δĜjj(t′)δĜii(t)

〉
. (A.54)

Comparing Eqs. ( A.51 ) and ( A.54 ) one can show that the two-time components of the
exchange–correlation function are

L>
ijkl(t, t′) =

〈
δĜik(t)δĜjl(t′)

〉
(A.55)

L<
ijkl(t, t′) =

〈
δĜjl(t′)δĜik(t)

〉
. (A.56)

As two-particle quantities they obey the same symmetry relation as the screened interaction,
cf. Eq. ( 5.12 ),

Lijkl(t, t′) := L>
ijkl(t, t′) = L<

jilk(t′, t) . (A.57)

The time-diagonal limit Lijkl(t) := Lijkl(t, t) is used in the fluctuation approach in sec-
tion  6.6 .
Finally, the Bethe–Salpeter equation for the density-response function χ shall be roughly
outlined. Looking at Eq. ( A.45 ) and the definition of χ in Eq. ( A.50 ) it immediately
follows that

χ = χ0 + 1
iℏχ0ΓGWχ , (A.58)

with χ0 = ±iℏGG. Solving this equation for χ results in

χ = χ0

1 − 1
iℏχ0ΓGW

. (A.59)
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When describing the homogeneous electron gas the two-particle irreducible vertex in
this equation is typically expressed as ΓGW = iℏw(1 − G) where G is the local field
correction [ 624 ], which describes vertex corrections beyond GW . This is obvious when
realizing that within the parquet approximation ΓGW = iℏw± + Φpp + Φph, cf. Eqs. ( 3.48 )
and ( 3.49 ), while in the traditional RPA or GW approximation ΓGW = iℏw so that [ 602 ]

χRPA = χ0

1 − χ0w
. (A.60)

For the DSL approximation comparing to Eq. (  A.47 ) leads to

χDSL = χ0 + χ0w
±χDSL + 1

(iℏ)2χ0Φppχ0 + 1
(iℏ)2χ0Φphχ0 (A.61)

= χ0
1 + 1

(iℏ)2

(
Φpp + Φph

)
χ0

1 − χ0w± . (A.62)

A.5 Contour-Time Expressions in the PPP Model

In this section, the contour-time expressions for the second-order Born and the GW

self-energy will be presented for a general diagonal basis like the PPP model. In that case,
the pair interaction has the form

w(1, 2, 1′, 2′) → δ(1, 1′)δ(2, 2′)V (1, 2) , (A.63)

1

2

1′

2′

→ δ(1, 1′)δ(2, 2′)

1

2

where V (1, 2) still contains a contour delta δC(z1, z2), cf. Eq. (  3.33 ). In the diagrams
of section  3.3 this corresponds to merging the two outer vertices of the pair interaction
belonging to the same particle into one. Inserting above expression into Eqs. ( 3.43 )
and (  3.44 ) one gets for the Hartree–Fock part

ΣHF(1, 1′) = ±iℏδ(1, 1′)
∫
V (1, 2)G(1)(2, 2) + iℏV (1, 1′)G(1)(1, 1′) (A.64)

and for the correlation part

Σc(1, 1′) = ±iℏ
∫
V (1, 2)G(1)(1, 3)G(1)(2, 4)F (3, 4, 1′, 5)G(1)(5, 2) . (A.65)

The following expressions for the 2B and GW self-energies only contain the respective
correlation parts. To obtain the total self-energy the Hartree–Fock part has to be added.
The second-order Born self-energy is obtained by setting F = w±, which results in

Σ2B(1, 1′) = ± (iℏ)2G(1)(1, 1′)
∫
V (1, 2)G(1)(2, 3)V (1′, 3)G(1)(3, 2) (A.66)

± (iℏ)2
∫
V (1, 2)G(1)(1, 3)G(1)(2, 1′)V (3, 1′)G(1)(3, 2) . (A.67)
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For the direct GW approximation without exchange contributions one gets

ΣGW (1, 1′) = ±iℏG(1)(1, 1′)
∫
V (1, 2)G(1)(2, 3)FGW (1′, 3)G(1)(3, 2) (A.68)

with the full vertex

FGW (1, 2) = iℏV (1, 2) + ΦGW (1, 2) (A.69)

and the non-singular part of the screened interaction (W̃ := W − w)

W̃ (1, 2) = ΦGW (1, 2) = ±
∫
G(1)(3, 4)FGW (1, 4)G(1)(4, 3)V (3, 2) . (A.70)

Comparing above equations and using the symmetry relation W (1′, 1) = W (1, 1′) one
finds

ΣGW (1, 1′) = iℏG(1)(1, 1′)W̃ (1′, 1) , (A.71)

which is the famous GW approximation. The use of W̃ instead of W is necessary since
the Fock term, which is normally included in the GW self-energy, is written separately in
Eq. (  A.64 ).

A.6 Fourier Extension Integration

In general the Newton–Cotes quadrature formula for numerically integrating the function
f(x) over the closed interval [a, b] is given by [ 648 ]

I[f ] :=
∫ b

a
f(x)dx ≈ Q[f ] :=

N∑
j=1

wjf(xj) , (A.72)

with the weights wj and the sampling points

xj = a+ (j − 1) b− a

N − 1 , j = 1, . . . , N . (A.73)

The idea is to choose a finite number of d linearly independent basis functions ϕi, for
which the quadrature rule is going to be exact,

Q[ϕi] = I[ϕi] , i = 1, . . . , d . (A.74)

The weights of Eq. ( A.72 ) can then be calculated by solving the linear system∑
j

Sijwj = bi , i = 1, . . . , d , (A.75)

where S is a (d×N) matrix containing the evaluation of basis function i at sample point
j,

Sij = ϕi(xj) , i = 1, . . . , d , j = 1, . . . , N , (A.76)
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and b contains the exact, analytical solution of the integrals of the d basis functions,

bi = I[ϕi] , i = 1, . . . , d . (A.77)

If d < N is chosen Eq. ( A.76 ) is underdetermined and has to be solved using a singular
value decomposition (SVD) to obtain a least squares solution. In the traditional Newton–
Cotes rules the Lagrange polynomials are used as basis functions.
However, as the Green function and the self-energy entering the collision integral,
cf. Eqs. ( 5.5 ) to ( 5.10 ), are highly oscillating, it is advantageous to choose a Fourier
basis for the numerical integration. In that case one can use that any function f can be
expressed by its symmetric (S) and antisymmetric (A) part,

f(x) = S(x) + A(x) , (A.78)

S(x) := f(x) + f(−x)
2 , (A.79)

A(x) := f(x) − f(−x)
2 , (A.80)

which can be integrated using cosine and sine basis functions, respectively. Without loss
of generality, one can set the integral bounds to [−1, 1] so that due to their symmetries
the basis functions

ϕcos
i (xj) = cos

(
[i− 1]π

2 xj

)
, j = 1, . . . , d , (A.81)

ϕsin
i (xj) = sin

(
[i− 1]π

2 xj

)
, j = 1, . . . , d (A.82)

have to be evaluated only at the N/2 sample points

xj = 2(j − 1)
N − 1 − 1 , j = 1, . . . , N/2 . (A.83)

Typically, d = N/4 is chosen to avoid numerical problems such as Runge’s phenomenon [ 649 ,
 650 ]. In that case, Eq. ( A.76 ) has to be solved using an SVD with a suitable threshold to
discard small singular values. The final weights can then be calculated as

wj =


wcos

j +wsin
j

2 , if j < N/2
wcos

N−j−wsin
N−j

2 , otherwise .
(A.84)

The idea of the Fourier-based quadrature was inspired by the interpolation method of
Fourier extension [ 651 ]. It is well suited to integrate oscillating functions.

A.7 Contour Integrals in the Real-Time Domain

The introduction of the Kronecker delta for the contour indices in Eq. ( 6.34 ),

δ̃αβ :=


1 if α = β = +

−1 if α = β = −
0 else

, (A.85)
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is motivated by the following consideration. Let A, B and C be quantities on the Keldysh
contour C with

C(z, z′) :=
∫

dz̄ A(z, z̄)B(z̄, z′) (A.86)

and B(z, z′) := δC(z, z′). Directly resolving the integral by utilizing the contour delta
distribution leads to

C(z, z′) = A(z, z′) → Aαβ(t, t′) , (A.87)

with α, β ∈ {+,−} being the contour indices indicating the position of the respective time
argument on the causal (+) or anticausal (-) branch.
If one instead keeps the integral and transforms Eq. (  A.86 ) directly into a real-time
expression one gets,

Cαβ(t, t′) =
∫ ∞

−∞
dt̄ Aα+(t, t̄)B+β(t̄, t′) −

∫ ∞

−∞
dt̄ Aα−(t, t̄)B−β(t̄, t′) (A.88)

= Aα+(t, t′)δ̃+β − Aα−(t, t′)δ̃−β , (A.89)

where Bαβ(t, t′) = δ̃αβδ(t, t′) was used. The introduction of the contour-index Kronecker
delta δ̃αβ as defined in Eq. (  A.85 ) is essential to guarantee that for each combination of
α, β ∈ {+,−} the expression of Eq. ( A.89 ) agrees with Eq. ( A.87 ). This finding is valid in
general when transforming contour-time delta distributions to real times.

Another important relation used in section  6.2 is related to the occurrence of delta
distributions at the integration limit leading to additional factors of 1

2 in Eqs. (  6.53 ), ( 6.62 )
and (  6.71 ). Imagine three real-time quantities A,B, and C with

C(t) := d
dt

∫ t

−∞
dt̄
∫ t

−∞
d¯̄t A(t̄)B(¯̄t)δ(t̄, ¯̄t) , (A.90)

which is a slightly simplified version of expressions occurring in section  6.2 . For comparison,
Eq. ( 6.32 ) also contains a time derivative, several integrals, and a delta distribution in rΦ.
The most straightforward way of solving this expression is to eliminate one of the integrals
by utilizing the delta distribution after expressing the integration limits by Heaviside step
functions,

C(t) = d
dt

∫ ∞

−∞
dt̄
∫ ∞

−∞
d¯̄tΘ(t, t̄)Θ(t, ¯̄t)A(t̄)B(¯̄t)δ(t̄, ¯̄t) (A.91)

= d
dt

∫ ∞

−∞
dt̄Θ(t, t̄)A(t̄)B(t̄) (A.92)

=
∫ ∞

−∞
dt̄ δ(t, t̄)A(t̄)B(t̄) (A.93)

= A(t)B(t) . (A.94)

However, in section  6.2 this is not what was done. Instead, the time derivative was
performed before calculating the integral over the delta distribution. In this case, starting
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from Eq. ( A.91 ), one gets

C(t) = d
dt

∫ ∞

−∞
dt̄
∫ ∞

−∞
d¯̄tΘ(t, t̄)Θ(t, ¯̄t)A(t̄)B(¯̄t)δ(t̄, ¯̄t) (A.95)

=
∫ ∞

−∞
dt̄
∫ ∞

−∞
d¯̄t
[
δ(t, t̄)Θ(t, ¯̄t) + δ(t, ¯̄t)Θ(t, t̄)

]
A(t̄)B(¯̄t)δ(t̄, ¯̄t) (A.96)

=
∫ ∞

−∞
d¯̄tΘ(t, ¯̄t)A(t)B(¯̄t)δ(t, ¯̄t) +

∫ ∞

−∞
dt̄Θ(t, t̄)A(t̄)B(t)δ(t̄, t) . (A.97)

Similar to Eqs. ( 6.53 ), (  6.62 ) and (  6.71 ) an integral over a delta distribution at an
integration bound (here expressed by the Heaviside step function) has to be solved. For
the first term, define

z(t, t′) := Θ(t, t′)Θ(t, t′)B(t′) (A.98)

with
d

dt′ z(t, t
′) = −2δ(t, t′)Θ(t, t′)B(t′) + Θ(t, t′)Θ(t, t′) d

dt′B(t′) . (A.99)

Substituting this in the first term of Eq. ( A.97 ) leads to∫ ∞

−∞
d¯̄tΘ(t, ¯̄t)A(t)B(¯̄t)δ(t, ¯̄t) = −1

2A(t)
[∫ 0

B(−∞)
dz −

∫ ∞

−∞
d¯̄tΘ(t, ¯̄t)Θ(t, ¯̄t) d

d¯̄t
B(¯̄t)

]
(A.100)

= −1
2A(t)

[∫ 0

B(−∞)
dz −

∫ t

−∞
d¯̄t d

d¯̄t
B(¯̄t)

]
(A.101)

= −1
2A(t) [−B(−∞) −B(t) +B(−∞)] (A.102)

= 1
2A(t)B(t) . (A.103)

After repeating this procedure for the second term in Eq. ( A.97 ) one arrives at the correct
final result A(t)B(t) in agreement with Eq. ( A.94 ).

A.8 Enforcing Contraction Consistency between G(3) and
G(2)

The following derivation of contraction consistency and unitary decomposition of three-
particle matrices is based on the respective appendix in Ref. [  95 ].
The correction term G(3),CC, given in Eq. ( 6.117 ), is constructed using the zero-, one- and
two-particle quantities M (0), M (1) and M (2), which are weighted by the factors ak

τ , bk
τ,σ

and ck
τ,σ, respectively. The former are defined as partial traces over the three-particle

quantity M (3), which is defined in Eq. (  6.114 ) and shall be repeated here for the DSL
approximation,

G(3)(t) = G(3)(t) −G(3),DSL(t) =: M (3)(t) . (A.104)
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It contains all three-particle effects that are not included in the approximation, which in
the case of DSL corresponds to all three-particle correlations. For the calculation of M (0),
M (1) and M (2) the notation Tr

(1,4
2,5
3,6

)
is introduced, which denotes that contractions are

performed over indices in the same line. For the sake of readability, the indices of the M
quantities are neglected. They are given by

1M (2) = Tr(3,6)M
(3) 2M (2) = Tr(2,6)M

(3) 3M (2) = Tr(1,6)M
(3)

4M (2) = Tr(3,5)M
(3) 5M (2) = Tr(2,5)M

(3) 6M (2) = Tr(1,5)M
(3)

7M (2) = Tr(3,4)M
(3) 8M (2) = Tr(2,4)M

(3) 9M (2) = Tr(1,4)M
(3) , (A.105)

1M (1) = Tr
(

2,5
3,6

)
M (3) 2M (1) = Tr

(
1,5
3,6

)
M (3) 3M (1) = Tr

(
1,5
2,6

)
M (3)

4M (1) = Tr
(

2,6
3,5

)
M (3) 5M (1) = Tr

(
1,6
3,5

)
M (3) 6M (1) = Tr

(
1,6
2,5

)
M (3)

7M (1) = Tr
(

2,4
3,6

)
M (3) 8M (1) = Tr

(
1,4
3,6

)
M (3) 9M (1) = Tr

(
1,4
2,6

)
M (3)

10M (1) = Tr
(

2,6
3,4

)
M (3) 11M (1) = Tr

(
1,6
3,4

)
M (3) 12M (1) = Tr

(
1,6
2,4

)
M (3)

13M (1) = Tr
(

2,4
3,5

)
M (3) 14M (1) = Tr

(
1,4
3,5

)
M (3) 15M (1) = Tr

(
1,4
2,5

)
M (3)

16M (1) = Tr
(

2,5
3,4

)
M (3) 17M (1) = Tr

(
1,5
3,4

)
M (3) 18M (1) = Tr

(
1,5
2,4

)
M (3) , (A.106)

1M (0) = Tr
(1,4

2,5
3,6

)
M (3) 2M (0) = Tr

(1,4
2,6
3,5

)
M (3) 3M (0) = Tr

(1,5
2,4
3,6

)
M (3) (A.107)

4M (0) = Tr
(1,5

2,6
3,4

)
M (3) 5M (0) = Tr

(1,6
2,4
3,5

)
M (3) 6M (0) = Tr

(1,6
2,5
3,4

)
M (3) .

The traces over M (3) can be split into traces over G(3) and traces over G(3),DSL. While the
former can be calculated analytically, since the trace relations for the exact three-particle
Green function are known, cf. Eq. (  6.106 ), the latter can be performed numerically using
the cluster expansion of Eq. ( 6.85 ).
The weights ak

τ , bk
τ,σ and ck

τ,σ entering Eq. ( 6.117 ) are given in Tabs.  A.2 ,  A.4 and  A.3 ,
respectively, where for the index permutation the following shortened notation is used,

1 := (1, 2, 3) 2 := (1, 3, 2) 3 := (2, 1, 3)
4 := (2, 3, 1) 5 := (3, 1, 2) 6 := (3, 2, 1) . (A.108)

The weights can be expressed by a reduced amount of auxiliary parameters α, β, and γ,
which can be calculated utilizing Tab.  A.1 and

X := 1
36

(
A1

Nb − 4 + A2

Nb + 4 + B1

Nb − 3 + B2

Nb + 3 + C1

Nb − 2 + C2

Nb + 2

+ D1

Nb − 1 + D2

Nb + 1 + E1

Nb
+ E2

N2
b

)
. (A.109)

Due to the terms containing denominators of the form Nb − 4, the contraction consistency
procedure cannot be applied to systems with Nb ≤ 4.
Finally, the numerical scaling of the enforcing contraction consistency shall be addressed.
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X A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

α1 1 1 2 2 1 1 -2 -2 -4 0
α2 1 1 -4 -4 4 4 4 4 -10 0
α3 1 1 4 4 4 4 4 4 10 0
β1 -1 1 0 0 1 -1 2 -2 0 0
β2 -1 1 3 -3 -2 2 -1 1 0 0
β3 -1 1 -3 3 -2 2 -1 1 0 0
β4 -1 1 0 0 4 -4 -4 4 0 0
β5 1 1 -1 -1 -2 -2 1 1 2 0
β6 1 1 1 1 -2 -2 1 1 -2 0
β7 1 1 -2 -2 1 1 -2 -2 4 0
γ1 -3 3 6 -6 -3 3 0 0 0 0
γ2 3 3 -6 -6 3

2
3
2 0 0 3 0

γ3 3 3 -6 -6 6 6 0 0 -6 0
γ4 -2 2 -2 2 -5

2
5
2 4 -4 0 -6

γ5 -2 2 -2 2 1
2 -1

2 -2 2 0 6
γ6 -2 2 1 -1 5

4 -5
4 1 -1 0 3

γ7 -2 2 4 -4 -7
4

7
4 -2 2 0 3

γ8 2 2 -4 -4 1
2

1
2 2 2 -1 0

γ9 2 2 -1 -1 -1 -1 -1 -1 2 0
γ10 2 2 2 2 2 2 -4 -4 -4 0

Table A.1 – List of parameters A–E to calcu-
late the values of α, β and γ for Tables  A.2 –

 A.4 using Eq. ( A.109 ).

ak
τ 1 2 3 4 5 6

1 α3 α1 α1 α2 α2 α1
2 α1 α3 α2 α1 α1 α2
3 α1 α2 α3 α1 α1 α2
4 α2 α1 α1 α3 α2 α1
5 α2 α1 α1 α2 α3 α1
6 α1 α2 α2 α1 α1 α3

Table A.2 – Parameters ak
τ , which enter

Eq. ( 6.117 ). The values of α can be deter-
mined using Eq. ( A.109 ) and Table  A.1 .

ck
τ,σ 1 2 3 4 5 6 7 8 9

1,1 γ7 γ1 γ6 γ1 γ8 γ3 γ6 γ3 γ10
1,2 γ1 γ7 γ2 γ8 γ1 γ5 γ3 γ6 γ4
1,3 γ1 γ6 γ1 γ8 γ3 γ8 γ3 γ10 γ3
1,4 γ7 γ2 γ7 γ1 γ5 γ1 γ6 γ4 γ6
1,5 γ6 γ1 γ7 γ3 γ8 γ1 γ10 γ3 γ6
1,6 γ2 γ7 γ1 γ5 γ1 γ8 γ4 γ6 γ3
2,1 γ1 γ8 γ3 γ7 γ1 γ6 γ2 γ5 γ4
2,2 γ8 γ1 γ5 γ1 γ7 γ2 γ5 γ2 γ9
2,3 γ8 γ3 γ8 γ1 γ6 γ1 γ5 γ4 γ5
2,4 γ1 γ5 γ1 γ7 γ2 γ7 γ2 γ9 γ2
2,5 γ3 γ8 γ1 γ6 γ1 γ7 γ4 γ5 γ2
2,6 γ5 γ1 γ8 γ2 γ7 γ1 γ9 γ2 γ5
3,1 γ1 γ8 γ3 γ6 γ3 γ10 γ1 γ8 γ3
3,2 γ8 γ1 γ5 γ3 γ6 γ4 γ8 γ1 γ5
3,3 γ8 γ3 γ8 γ3 γ10 γ3 γ8 γ3 γ8
3,4 γ1 γ5 γ1 γ6 γ4 γ6 γ1 γ5 γ1
3,5 γ3 γ8 γ1 γ10 γ3 γ6 γ3 γ8 γ1
3,6 γ5 γ1 γ8 γ4 γ6 γ3 γ5 γ1 γ8
4,1 γ7 γ1 γ6 γ2 γ5 γ4 γ7 γ1 γ6
4,2 γ1 γ7 γ2 γ5 γ2 γ9 γ1 γ7 γ2
4,3 γ1 γ6 γ1 γ5 γ4 γ5 γ1 γ6 γ1
4,4 γ7 γ2 γ7 γ2 γ9 γ2 γ7 γ2 γ7
4,5 γ6 γ1 γ7 γ4 γ5 γ2 γ6 γ1 γ7
4,6 γ2 γ7 γ1 γ9 γ2 γ5 γ2 γ7 γ1
5,1 γ6 γ3 γ10 γ1 γ8 γ3 γ7 γ1 γ6
5,2 γ3 γ6 γ4 γ8 γ1 γ5 γ1 γ7 γ2
5,3 γ3 γ10 γ3 γ8 γ3 γ8 γ1 γ6 γ1
5,4 γ6 γ4 γ6 γ1 γ5 γ1 γ7 γ2 γ7
5,5 γ10 γ3 γ6 γ3 γ8 γ1 γ6 γ1 γ7
5,6 γ4 γ6 γ3 γ5 γ1 γ8 γ2 γ7 γ1
6,1 γ2 γ5 γ4 γ7 γ1 γ6 γ1 γ8 γ3
6,2 γ5 γ2 γ9 γ1 γ7 γ2 γ8 γ1 γ5
6,3 γ5 γ4 γ5 γ1 γ6 γ1 γ8 γ3 γ8
6,4 γ2 γ9 γ2 γ7 γ2 γ7 γ1 γ5 γ1
6,5 γ4 γ5 γ2 γ6 γ1 γ7 γ3 γ8 γ1
6,6 γ9 γ2 γ5 γ2 γ7 γ1 γ5 γ1 γ8

Table A.3 – Parameters ck
τ , which en-

ter Eq. ( 6.117 ). The values of γ
can be determined using Eq. ( A.109 )
and Table  A.1 .
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bk
τ,σ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1,1 β4 β5 β5 β3 β2 β6 β5 β4 β2 β6 β5 β3 β3 β6 β6 β1 β3 β7
1,2 β5 β3 β4 β5 β6 β2 β2 β6 β5 β4 β3 β5 β6 β1 β3 β6 β7 β3
1,3 β5 β4 β2 β6 β5 β3 β4 β5 β5 β3 β2 β6 β6 β3 β3 β7 β6 β1
1,4 β3 β5 β6 β2 β4 β5 β6 β2 β3 β5 β5 β4 β1 β6 β7 β3 β3 β6
1,5 β2 β6 β5 β4 β3 β5 β5 β3 β4 β5 β6 β2 β3 β7 β6 β3 β1 β6
1,6 β6 β2 β3 β5 β5 β4 β3 β5 β6 β2 β4 β5 β7 β3 β1 β6 β6 β3
2,1 β5 β2 β4 β6 β5 β3 β3 β6 β6 β1 β3 β7 β5 β4 β2 β6 β5 β3
2,2 β4 β6 β5 β2 β3 β5 β6 β1 β3 β6 β7 β3 β2 β6 β5 β4 β3 β5
2,3 β2 β5 β5 β3 β4 β6 β6 β3 β3 β7 β6 β1 β4 β5 β5 β3 β2 β6
2,4 β6 β4 β3 β5 β5 β2 β1 β6 β7 β3 β3 β6 β6 β2 β3 β5 β5 β4
2,5 β5 β3 β2 β5 β6 β4 β3 β7 β6 β3 β1 β6 β5 β3 β4 β5 β6 β2
2,6 β3 β5 β6 β4 β2 β5 β7 β3 β1 β6 β6 β3 β3 β5 β6 β2 β4 β5
4,1 β3 β6 β6 β1 β3 β7 β5 β2 β4 β6 β5 β3 β2 β5 β5 β3 β4 β6
4,2 β6 β1 β3 β6 β7 β3 β4 β6 β5 β2 β3 β5 β5 β3 β2 β5 β6 β4
4,3 β6 β3 β3 β7 β6 β1 β2 β5 β5 β3 β4 β6 β5 β2 β4 β6 β5 β3
4,4 β1 β6 β7 β3 β3 β6 β6 β4 β3 β5 β5 β2 β3 β5 β6 β4 β2 β5
4,5 β3 β7 β6 β3 β1 β6 β5 β3 β2 β5 β6 β4 β4 β6 β5 β2 β3 β5
4,6 β7 β3 β1 β6 β6 β3 β3 β5 β6 β4 β2 β5 β6 β4 β3 β5 β5 β2

Table A.4 – Parameters bk
τ , which enter Eq. ( 6.117 ). The values of β can be determined

using Eq. ( A.109 ) and Table  A.1 .

The calculation of the trace relations in Eqs. ( A.105 ) to ( A.108 ) does not depend on the
basis choice and scales as O (N5

b). The nine M (2), eighteen M (1) and six M (0) terms enter
G(3),CC in various index combinations so that in total Eq. ( 6.117 ) consists of

6 × 3! = 36 M (0) terms
18 × 3! × 3!/2 = 324 M (1) terms

9 × 3! × 3! = 324 M (2) terms

 684 terms. (A.110)

However, due to symmetry relations in the Hubbard and PPP model only four M (2),
five M (1) and two M (0) terms are unique, reducing the number of individual terms in
Eq. ( 6.117 ) to 174. In practice, G(3),CC is never explicitly calculated though, since all of
its terms contain at least one Kronecker delta. In Eq. ( 6.112 ),

I
(2),CC
ijkl (t) = ±iℏ

∑
pqr

wipqr(t)G(3),CC
qrjkpl (t) , (A.111)

it is therefore much more beneficial to process the many terms individually. For comparison,
when using the complete G(3),CC in Eq. ( A.111 ) the memory consumption, as well as the
CPU time scaling of this expression, is O (N6

b), O (N5
b) and O (N4

b) in the general, PPP and
Hubbard basis, respectively. However, when exploiting the Kronecker delta the numerical
complexity can be reduced considerably resulting for instance in the PPP model in a time
scaling and memory consumption of only O (N4

b). So while the large number of 174 terms
sounds intimidating, only 72 of them contribute to the time scaling with O (N4

b), 90 with
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O (N3
b) and 12 with O (N2

b). In the Hubbard and PPP model, the numerical scaling of the
contraction consistency procedure for the DSL approximation can thus be summarized
as

CPU time: O ([N5
b + 72N4

b ]Nt) Memory consumption: O (N4
b)

Especially for large systems the prefactor of 72 becomes negligible.

A.9 Derivation of (the Extended) Koopmans’ Theorem

In the following the main equations for calculating the PES  

1
 in the G1–G2 scheme are

derived. The results are discussed in section  6.5 .
Starting from Eq. ( 3.12 ) the N -particle ensemble average of the lesser component of the
single-particle Green function can be expressed as

G<
ij(t, t′) = ± 1

iℏ
∑

λ

pλ

〈
Ψ(N)

λ

∣∣∣∣ĉ†
j,H(t′)ĉi,H(t)

∣∣∣∣Ψ(N)
λ

〉
(A.112)

= ± 1
iℏ
∑

λ

pλ

〈
Ψ(N)

λ

∣∣∣∣e− i
ℏ Ĥ(t0−t′)ĉ†

je
− i

ℏ Ĥ(t′−t)ĉie
− i

ℏ Ĥ(t−t0)
∣∣∣∣Ψ(N)

λ

〉
(A.113)

= ± 1
iℏ
∑

λ

pλ

〈
Ψ(N)

λ

∣∣∣∣ĉ†
je

− i
ℏ

(
Ĥ−E

(N)
λ

)
(t′−t)

ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.114)

= ± 1
iℏ
∑
κλ

pλ

〈
Ψ(N)

λ

∣∣∣∣ĉ†
j

∣∣∣∣Ψ(N−1)
κ

〉
e

− i
ℏ

(
E

(N−1)
κ −E

(N)
λ

)
(t′−t)

〈
Ψ(N−1)

κ

∣∣∣∣ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.115)

= ± 1
iℏ
∑
κλ

pλ

(
Φj

κλ

)∗
e

− i
ℏ

(
E

(N−1)
κ −E

(N)
λ

)
(t′−t)Φi

κλ , (A.116)

where in the fourth line the complete set of eigenstates of the (N−1)-particle Hamiltonian,

1 =
∑

κ

∣∣∣∣Ψ(N−1)
κ

〉〈
Ψ(N−1)

κ

∣∣∣∣ , (A.117)

was inserted twice and in the last line the transition amplitudes between the N - and
(N − 1)-particle states,

Φi
κλ :=

〈
Ψ(N−1)

κ

∣∣∣∣ĉi

∣∣∣∣Ψ(N)
λ

〉
, (A.118)

were introduced. Here and in the following, roman indices label single-particle orbitals in
the physical basis, e.g. the TB, Hubbard or PPP model, while κ and λ refer to (N − 1)-
particle and N -particle states, respectively. Assuming the system is in a steady state, a
Fourier transform of Eq. ( A.116 ) with respect to the relative time, cf. section  4.1 , results
in the Lehmann representation of the Green function,

G<
ij(ω) = ±2π

iℏ
∑
κλ

pλ

(
Φj

κλ

)∗
Φi

κλ δ
(
ℏω − E

(N)
λ + E(N−1)

κ

)
. (A.119)

1The IPES can be accessed in a similar fashion by repeating the derivation for G>.
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This notation nicely highlights the information contained in the lesser component of
the single-particle Green function. It describes the emission of a particle, resulting in a
transition of the initialN -particle to an (N−1)-particle system with the probability given by
the transition amplitudes Φ. In the general, interacting case the latter satisfies an intricate
Schrödinger-like equation. Starting from the commutator of a canonical annihilation
operator with the Hamiltonian of the system, cf. Eqs. ( 2.2 ) and ( 2.5 ), respectively,[

ĉi, Ĥ
]

=
[
ĉi, Ĥ

(1)
]

+
[
ĉi, Ĥ

W
]

(A.120)

=
∑

j

h
(1)
ij ĉj +

[
ĉi, Ĥ

W
]
, (A.121)

the equation for Φ can be derived by multiplying from left by
〈
Ψ(N−1)

κ

∣∣∣ and from right by∣∣∣Ψ(N)
λ

〉
. For the left-hand side of Eq. ( A.120 ) this results in〈

Ψ(N−1)
κ

∣∣∣∣ [ĉi, Ĥ
] ∣∣∣∣Ψ(N)

λ

〉
=
〈

Ψ(N−1)
κ

∣∣∣∣ĉiĤ

∣∣∣∣Ψ(N)
λ

〉
−
〈

Ψ(N−1)
κ

∣∣∣∣Ĥĉi

∣∣∣∣Ψ(N)
λ

〉
(A.122)

=
∑

µ

〈
Ψ(N−1)

κ

∣∣∣∣ĉi

∣∣∣∣Ψ(N)
µ

〉〈
Ψ(N)

µ

∣∣∣∣Ĥ∣∣∣∣Ψ(N)
λ

〉
(A.123)

−
∑

µ

〈
Ψ(N−1)

κ

∣∣∣∣Ĥ∣∣∣∣Ψ(N−1)
µ

〉〈
Ψ(N−1)

µ

∣∣∣∣ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.124)

=
(
E

(N)
λ − E(N−1)

κ

)
Φi

κλ , (A.125)

while the interaction term on the right-hand side can be expressed as〈
Ψ(N−1)

κ

∣∣∣∣ [ĉi, Ĥ
W
] ∣∣∣∣Ψ(N)

λ

〉
=
〈

Ψ(N−1)
κ

∣∣∣∣ĉiĤ
W

∣∣∣∣Ψ(N)
λ

〉
−
〈

Ψ(N−1)
κ

∣∣∣∣ĤW ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.126)

=
∑

µ

〈
Ψ(N−1)

κ

∣∣∣∣ĉi

∣∣∣∣Ψ(N)
µ

〉〈
Ψ(N)

µ

∣∣∣∣ĤW

∣∣∣∣Ψ(N)
λ

〉
(A.127)

−
∑

µ

〈
Ψ(N−1)

κ

∣∣∣∣ĤW

∣∣∣∣Ψ(N−1)
µ

〉〈
Ψ(N−1)

µ

∣∣∣∣ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.128)

=
∑

µ

(
Φi

κµI
(N)
µλ − I(N−1)

κµ Φi
µλ

)
, (A.129)

with

I
(N)
κλ :=

〈
Ψ(N)

κ

∣∣∣∣ĤW

∣∣∣∣Ψ(N)
λ

〉
. (A.130)

In total, the right-hand side of Eq. ( A.120 ) is then given by〈
Ψ(N−1)

κ

∣∣∣∣
∑

j

h
(1)
ij ĉj +

[
ĉi, Ĥ

W
] ∣∣∣∣Ψ(N)

λ

〉
=
∑

j

h
(1)
ij Φj

κλ +
∑

µ

(
Φi

κµI
(N)
µλ − I(N−1)

κµ Φi
µλ

)
,

(A.131)

which leads to the following Schrödinger-like equation for the transition amplitudes,∑
j

h
(1)
ij Φj

κλ +
∑

µ

(
Φi

κµI
(N)
µλ − I(N−1)

κµ Φi
µλ

)
=
(
E

(N)
λ − E(N−1)

κ

)
Φi

κλ . (A.132)

In the interacting case solving Eq. (  A.132 ) is not practical since knowledge about the full
N - and (N − 1)-particle wave function is required. Famous approaches to circumvent this
barrier are based on Koopmans’ theorem.
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A.9.1 Koopmans’ Theorem

Already in 1933 Koopman proposed that ionization energies can be approximated by
eigenvalues of the HF Hamiltonian [ 435 ]. In the above formalism this corresponds to
setting the interaction term to zero, i.e. ĤW → 0, and instead include the HF contribution
in the single-particle Hamiltonian, i.e. ĥ(1) → hHF. When neglecting correlations, both the
N - as well as the (N − 1)-particle system are described by product states. In that case
one can simply express the (N − 1)-particle state by eliminating a single-particle orbital ν
of the N -particle state, ∣∣∣∣Ψ(N−1)

κ

〉
→ âν

∣∣∣∣Ψ(N)
λ

〉
, (A.133)

where the canonical operators,

â†
ν =

∑
j

ϕj
ν ĉ

†
j −→ ĉ†

j =
∑

ν

(
ϕj

ν

)∗
ĉ†

ν (A.134)

âν =
∑

j

(
ϕj

ν

)∗
ĉj −→ ĉj =

∑
ν

ϕj
ν ĉν , (A.135)

are introduced that create and annihilate particles in the eigenbasis of the single-particle
Hamiltonian hHF. With this, the transition amplitudes simplify to

Φi
κλ →

〈
Ψ(N)

λ

∣∣∣∣â†
ν ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.136)

=
∑

µ

ϕi
µ

〈
Ψ(N)

λ

∣∣∣∣â†
ν âµ

∣∣∣∣Ψ(N)
λ

〉
(A.137)

=
∑

µ

ϕi
µδνµ (A.138)

= ϕi
ν . (A.139)

Finally, by defining Eν := E
(N)
λ − E(N−1)

κ , Eq. ( A.132 ) attains the form of a single-particle
Schrödinger equation, ∑

j

hHF
ij ϕ

j
ν = Eνϕ

i
ν , (A.140)

with ϕν and Eν being the eigenstates and eigenenergies of the single-particle HF Hamilto-
nian, respectively. Solving this equation allows one to express the lesser Green function in
Lehmann representation, cf. Eq. ( A.119 ), on the level of Koopmans’ theorem,

G<
ij(ω) = ±2π

iℏ
∑

ν

pν

(
ϕj

ν

)∗
ϕi

ν δ (ℏω − Eν) . (A.141)

Within this approach, both the initial N -particle state of the system as well as the
transition process are treated on the single-particle level for the calculation of the spectral
features. Take note, that in Eq. ( A.119 ) λ denotes an N -particle state, and pλ accounts
for the system to be in a mixed N -particle state. In Eq. (  A.133 ) the description changes
from N -particle to single-particle by the introduction of ν. Hence, in Eq. ( A.141 ) the
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summation is performed over single-particle orbitals, not N -particle product states as one
might assume. The factor pν is therefore qualitatively different than pλ in Eq. (  A.119 ) and
might also appear even when the system is in a pure N -particle state. This is because,
as already discussed in section  3.1 , a reduced S-particle subsystem, in this case S = 1,
is always described by a mixed-state density matrix given that the N -particle system is
correlated [ 207 ].

A.9.2 Extended Koopmans’ Theorem

There are different extensions to Koopmans’ Theorem, the most common one, also known
as EKT-1 [ 442 ,  445 ], is presented here. The main difference to the approach based on
Koopmans’ theorem is that the initial N -particle state is treated with correlations included.
However, the transition process is still described by the removal of a single-particle orbital,
cf. Eq. ( A.133 ). In the following transformation of Eq. ( A.132 ) the ensemble average of
each term is taken. This way the transition amplitudes, Eq. ( A.118 ), become

Φi
κλ →

∑
λ

pλ

∑
j

ϕj
ν

〈
Ψ(N)

λ

∣∣∣∣ĉ†
j ĉi

∣∣∣∣Ψ(N)
λ

〉
(A.142)

=
∑

j

D
(1)
ij ϕ

j
ν , (A.143)

with the single-particle reduced density matrix D(1)
ij . The first term on the right-hand side

of Eq. ( A.132 ) is given by〈
Ψ(N−1)

κ

∣∣∣∣∑
j

h
(1)
ij ĉj

∣∣∣∣Ψ(N)
λ

〉
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νh

(1)
ij

〈
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λ

∣∣∣∣ĉ†
kĉj

∣∣∣∣Ψ(N)
λ

〉
(A.144)

=
∑
jk

h
(1)
ij D

(1)
jk ϕ

k
ν , (A.145)

while the second one becomes〈
Ψ(N−1)
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=
∑

λ

pλ

∑
kpqrs

ϕk
ν

wpqrs

2
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〉
(A.147)

=1
2
∑
kqrs

ϕk
ν

(
wiqrsD

(2)
rskq + wqirsD

(2)
srkq

)
(A.148)

=
∑
kqrs

wiqrsD
(2)
rskqϕ

k
ν , (A.149)

with the two-particle reduced density matrix D(2) and

Ĥ
W (t) := 1

2
∑
ijkl

wijklĉ
†
i ĉ

†
j ĉlĉk . (A.150)
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Bringing everything together, Eq. ( A.132 ) reduces to the GEP,∑
k

F<
ikϕ

k
ν = Eν

∑
k

Sikϕ
k
ν , (A.151)

with the generalized HF potential,

F<
ij :=

∑
k

h
(1)
ik D

(1)
kj +

∑
klp

wiklpD
(2)
lpjk , (A.152)

and the overlap matrix S = D(1). The Lehmann representation of the lesser Green function
has the same form as for the standard Koopmans’ theorem,

G<
ij(ω) = ±2π

iℏ
∑

ν

pν

(
ϕj

ν

)∗
ϕi

ν δ (ℏω − Eν) . (A.153)

The difference is that the eigenfunctions and eigenvalues entering are now given by
Eq. (  A.151 ).

A.10 Energy Conservation of the Polarization
Approximation

In the following, it will be shown that the PA introduced in section  6.6 is energy conserving
in a diagonal basis such as the PPP or Hubbard model.
With the total energy given by

E(t) = ±iℏ
∑
ij

[
h

(1)
ij + 1

2ΣHF
ij (t)

]
G<

ji(t) + (iℏ)2

2
∑
ijkl

wijklGklij(t) , (A.154)

energy conservation requires that the time derivative

d
dtE(t) = ± iℏ

∑
ij

[
h

(1)
ij + 1

2ΣHF
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] [ d
dtG

<
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]
± iℏ

2
∑
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HF
ij (t)

]
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ji(t)

+ (iℏ)2

2
∑
ijkl

wijkl

[
d
dtGklij(t)

]
(A.155)

vanishes, i.e. d
dt
E(t) = 0. Using the symmetry relations of w and G one can show that

± iℏ
2
∑
ij

[
d
dtΣ

HF
ij (t)

]
G<

ji(t) = ± iℏ
2
∑
ij

ΣHF
ij (t)

[
d
dtG

<
ji(t)

]
(A.156)

which simplifies Eq. ( A.155 ) to

d
dtE(t) = ± iℏ

∑
ij

hHF
ij

[
d
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<
ji(t)

]
+ (iℏ)2

2
∑
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[
d
dtGklij(t)

]
. (A.157)
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By inserting the EOMs ( 6.2 ) and ( 6.4 ) for G< and G, respectively, the two terms of
Eq. (  A.157 ) become  

2
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(A.158)

and
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. (A.159)

In a first step one can show that the contributions EHF and E(2),HF cancel,

E(2),HF = iℏ
2
∑
ijkl

wijkl

[
h(2),HF(t),G(t)

]
klij

(A.160)

= iℏ
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= iℏ
∑
ijklp

wijkl

[
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kp (t)Gplij(t) − Gklpj(t)hHF
pi (t)

]
(A.162)

= −EHF . (A.163)

2For the PA the EOM of G contains all terms of GW including the exchange contributions and additionally
the residual term of Eq. ( 6.165 ).



214 A Additional Information

Further, the 2B contribution EΨ vanishes,

EΨ = iℏ
2
∑
ijkl
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=0 , (A.166)

while from the GW term only the exchange part remains,
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=EexGW . (A.169)

Last, the residual term leads to the following non-vanishing contribution,

ER = iℏ
2
∑
ijkl

wijklRklij(t) (A.170)

= (iℏ)2

2
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ijklpqr
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li (t)Gkpqr(t)wqrjp

]
. (A.171)

In summary, only the terms EexGW and ER remain, so that energy is conserved when
EexGW = −ER.
For a diagonal basis, e.i. wijkl → δikδjlVij , as in the PPP model both contributions simplify
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to

EexGW = (iℏ)2
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and

ER = −(iℏ)2
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= −(iℏ)2

2
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− (iℏ)2
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]
. (A.174)

By renaming the indices in the four terms of Eq. ( A.174 ) as (i, j, k) → (k, i, j), (i, j, k) →
(j, k, i), (i, j, k) → (i, k, j), (i, j, k) → (k, j, i), respectively and using the symmetry of
the interaction Vij = Vji it can be shown that Eqs. ( A.172 ) and (  A.174 ) cancel. As a
consequence, the PA is energy conserving in a diagonal basis. For the DSL approximation,
it is known that the exchange contributions of the GW and TPH terms cancel each
other [ 159 ]. Therefore, one possible interpretation is that for a diagonal basis the residual
term R provides the same energy contribution as the TPH exchange term.
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