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ABSTRACT: Significant research efforts are invested in the quest for solutions that will 

increase the fuel economy and reduce the environmental impacts of ICE-powered vehicles. 

The main objective of the study presented in this paper has been to analyze and assess the 

performance of a control methodology for a parallel hydraulic hybrid powertrain system of a 

transit bus. A simulation model of the vehicle has been calibrated by analyzing data 

obtained during an experiment conducted in real-world traffic conditions aboard a Belgrade 

transit bus. A Dynamic Programming optimization procedure has been applied on the 

calibrated powertrain model and an optimal configuration that minimizes the fuel 

consumption has been selected. A Neural Network-based, implementable control algorithm 

has then been formed through a machine learning process involving data from the optimal, 

non-implementable Dynamic Programming-based control. Several Neural Network 

configurations have been tested to obtain the best fuel economy for the range of conditions 

encountered during normal transit bus operation. It has been shown that a considerable fuel 

consumption reduction on the order of 30% could be achieved by implementing such a 

system and calibration method. 

KEY WORDS: hydraulic hybrid, internal combustion engines, machine learning, dynamic 
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UPRAVLJAČKI ALGORITAM ZA HIDRAULIČNI HIBRIDNI POGONSKI 

SISTEM ZASNOVAN NA NEURONSKOJ MREŽI 

REZIME: Značajni istraživački napori ulažu se u potragu za rešenjima koja će povećati 

ekonomičnost goriva i smanjiti uticaj vozila na ICE pogon na životnu sredinu. Glavni cilj 

studije predstavljene u ovom radu je analiza i procena performansi metodologije upravljanja 

za paralelni hidraulični hibridni pogonski sistem tranzitnog autobusa. Simulacioni model 

vozila je kalibrisan analizom podataka dobijenih tokom eksperimenta sprovedenog u 

realnim saobraćajnim uslovima u beogradskom tranzitnom autobusu. Procedura optimizacije 

dinamičkog programiranja je primenjena na kalibrisani model pogonskog sklopa i izabrana 

je optimalna konfiguracija koja minimizira potrošnju goriva. Algoritam upravljanja koji se 

može primeniti, zasnovan na neuronskoj mreži, je zatim formiran kroz proces mašinskog 

učenja koji uključuje podatke iz optimalne, nesprovodljive kontrole zasnovane na 

dinamičkom programiranju. Nekoliko konfiguracija neuronske mreže je testirano da bi se 

postigla najbolja ekonomičnost goriva za niz uslova koji se javljaju tokom normalnog 

tranzitnog rada. Pokazalo se da se primenom ovakvog sistema i metode kalibracije može 

postići značajno smanjenje potrošnje goriva od oko 30%. 

 

KLJUČNE REČI: hidraulični hibrid, motori sa unutrašnjim sagorevanjem, mašinsko 

učenje, dinamičko programiranje, tranzitni autobus
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A NEURAL NETWORK-BASED CONTROL ALGORITHM FOR A 

HYDRAULIC HYBRID POWERTRAIN SYSTEM 

Marko Kitanović, Slobodan Popović, Nenad Miljić, Predrag Mrđa 

INTRODUCTION 

Rising fuel prices and increasing awareness of environmental issues place greater emphasis 

on the quest for solutions that improve vehicle fuel economy and reduce harmful emissions. 

One of the many possible directions in that regard, and perhaps the most promising, is 

powertrain hybridization. Achieving improved fuel economy, lower emissions and a 

relatively low price without incurring penalties in performance, safety, reliability, and other 

vehicle-related aspects represents a great challenge for the automotive industry. For 

accommodating the hybrid powertrain demands of heavy vehicles, particularly those 

undergoing frequent deceleration and acceleration phases, the best solutions are those that 

can sustain very high power levels, such as the hydraulic hybrid or the ultracapacitors-based 

hybrid electric systems. 

The main objective of the study presented in this paper is to analyze and assess the 

performance of a control methodology for a parallel hydraulic hybrid powertrain system. An 

experiment has been conducted on a transit bus circulating in real traffic and occupancy 

conditions in Belgrade, Serbia to assess the circumstances encountered in this particular type 

of transportation and in order to obtain the real driving cycle and the vehicle powertrain 

parameters necessary for conducting virtual analyses involving hybrid solutions. Data 

acquired during this experiment has been of crucial importance; effectively allowing us to 

conduct identification procedures on a set of powertrain parameters in order to calibrate the 

vehicle model used in the simulation. By successfully transferring the real-world physical 

conditions into computer code, a practically infinite number of numerical study possibilities 

has been opened. In the following section of this paper, methods applied during this research 

are presented, including an overview of the calibrated hybrid powertrain system simulation 

model used in this study. The methodology section also includes an overview of the 

Dynamic Programming method used to derive the optimal control law and to assess the 

ultimate fuel economy improvement potential of the hybrid powertrain system. Next, the 

details on the Artificial Neural Network (ANN) configurations used in this study to derive 

an implementable control algorithm are laid out. 

The results and concluding remarks are presented in their respective sections, following the 

methodology section.  

1. METHODOLOGY 

The methods applied in this study are presented in the following subsections. 

 

1.1 Hybrid Powertrain System Model 

In order to calibrate the hybrid powertrain system model used in the study, an experiment 

was conducted on an Ikarbus IK206 transit bus circulating in real occupancy and traffic 

conditions. It was equipped with a MAN D2066 LUH 11 engine (10.5 dm
3
, 6-cylinder, 

turbocharged diesel engine) and a Voith 864.5 automatic transmission. An autonomous data 

acquisition system based on National Instrument’s CompactRIO hardware platform and 

LabVIEW software has been designed for this purpose. The powertrain parameters were 
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acquired by accessing the vehicle’s J1939 CAN bus by means of a high-speed NI 9853 CAN 

module. The raw network stream has been logged and afterwards processed according to the 

SAE J1939 standard [1]. In order to obtain the GPS coordinates of the driving cycle, which 

are needed for determining the road slope, a Garmin GPS 18x 5 Hz receiver streaming 

NMEA messages was used. Suspension system pressure sensors have also been installed in 

order to log the vehicle mass during the experiment. 

This experiment has been conducted for the duration of several weeks, during which a vast 

amount of highly valuable data has been collected. It has allowed the calibration of a 

MATLAB model of a conventional transit bus powertrain that has served afterwards as an 

input for Dynamic Programming (DP) optimization runs involving various hydraulic hybrid 

configurations. Rolling friction coefficients, aerodynamic friction coefficients, brake torque 

limits maps (Figure 1) and the engine BSFC (Figure 2), along with data concerning the 

gearbox, hydrodynamic torque converter and various drivetrain components among others, 

have been implemented into the base model. Detailed procedures and values can be found in 

[2, 3, 4]. 

 
Figure 1 Max. engine brake torque and friction torque 

 

 
Figure 2 Brake Specific Fuel Consumption (BSFC) map 

 

A model of a 250 cm
3
, variable displacement swashplate axial piston pump (Rexroth 

A4VSO) has been used as the main hydraulic unit for recuperating the regenerative braking 

energy and subsequently providing traction to the vehicle during acceleration phases. A 

fixed ratio (1.2) gearbox is positioned between the pump and the vehicle drivetrain in order 

to match the operational range of the hydraulic unit with the engine speed range. 
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Compared to electrical batteries, hydro-pneumatic accumulators are characterized by a 

higher specific power and a lower specific energy. Its high specific power renders it suitable 

for heavy vehicles with frequent acceleration/deceleration phases. On the other hand, the 

low specific energy represents a disadvantage due to the limited braking recuperation 

potential and is a challenge that must be overcome in order to maximize the fuel economy 

benefits of the hydraulic hybrid system. 

 

In this study, a two state simulation model of a hydro-pneumatic accumulator has been used. 

The first state variable - gas temperature T is derived from the gas energy equation [5]: 

 

gf f
w

w v v

pm c dT T dv
T T

hA dt c T dt




  
      

   
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where  

g v

w

m c

hA
   (2) 

is the thermal time constant. Due to high pressures encountered in the accumulator, the ideal 

gas law cannot be used with sufficient accuracy. Instead, a Benedict-Webb-Rubin equation 

of state has been used for modelling the state of the nitrogen gas: 
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where the corresponding coefficients for nitrogen are taken from [6]. 

 

The second state variable, specific volume v, is derived from the continuity equation 

 

a

g

Qdv

dt m
  

(4) 

 

where Qa is the pump/motor actual flow rate and mg is the accumulator gas mass. 

 

1.2 Dynamic Programming 

Dynamic programming is a technique for solving optimal control problems. It has been used 

in this study to derive the optimal load distribution between the hydraulic pump/motor and 

the internal combustion engine, subject to various constraints and conditions, in order to 

minimize the fuel consumption. 

Dynamic programming relies on the principle of optimality, which states that [7] “An 

optimal policy has the property that whatever the initial state and initial decision are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from 

the first decision.” 

By decomposing a control problem into segments or sub-problems, an optimal decision can 

be discovered at each stage, starting from the end and moving toward the initial instant. By 

defining the allowable final system state constraints, a DP algorithm starts with evaluating 

the optimal decision at the stage preceding the final stage that will result in the system 

reaching this final state at minimal cost. This is done by discretizing the state space, which 

results in a time-state space grid with nodes at which the cost is evaluated by sweeping the 

admissible control values, subject to state constraints. By proceeding backwards, an optimal 

control decision can be stated for each stage-state combination that will bring the system 
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from the current stage-state point to the desired final state at minimal cost. By ultimately 

reaching the initial time stage, the cost-to-go and optimal control matrices are obtained, 

representing respectively the cost and optimal control decisions for each admissible stage-

state combination. Mathematically, this can be stated through a recurrence relation [8]: 

  
 

    

       
*

, *

1 ,

,
min

,

D
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DN K N

g x N K u N K
J x N K

J a x N K u N K




 

    
   

    

 (5) 

By knowing J
*
N-(K-1),N, the optimal cost at the K-1 stage, the optimal cost for the stage K, J

*
N-

K,N can be determined, along with its corresponding control. Only one DP control variable 

has been used in this study: the load distribution u. In control phases, this control variable 

represents the engine to hydraulic motor torque ratio. During deceleration phases, it is 

defined as the ratio of hydraulic pump to friction brakes torque ratio. A generic MATLAB 

implementation of the DP algorithm has been used in this study [9]. 

1.3 Machine Learning 

The DP-derived optimal control law is not implementable due to its dependency on future 

system states and conditions. This is why a machine learning algorithm based on ANN has 

been considered with the goal of trying to derive an implementable control algorithm that 

will yield near-optimal performance in a multitude of conditions observed in transit bus 

operation. An ANN was to be configured and trained using the optimal hybrid powertrain 

system load distribution obtained during the DP optimization runs for different 

representative driving cycles. 

A NARX network (Figure 3) has been used in this research. 

 

 
Figure 3 Nonlinear Autoregressive Network with eXogenous inputs (NARX) [10] 

 

For exogenous inputs, a vector of 4 variables in total have been used – the instantaneous 

vehicle speed, the driveshaft torque as a representative of the actual powertrain load, the 

hydraulic machine normalized load and the hydro-pneumatic accumulator gas pressure. The 

motivation behind this choice lies in the necessity to give the ANN a sufficient amount of 

information regarding the state of the hybrid powertrain system with the intention to allow 

for the training process to be successfully accomplished, while providing parameters that 

would be relatively easy to acquire in a real-world scenario. 

Optimal control data from the DP optimization routines that had been obtained for driving 

cycles in different traffic and vehicle occupancy conditions have been relied upon for the 

ANN training process. The characteristics of the driving cycles are presented in Tables 1 
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and 2. This set of data has then further been divided into the training dataset (comprising 

70% of the set), the validation and test datasets (each containing 15% of the original data). 

The training set is used for weights and biases adjustment, while the validation set serves the 

purpose of stopping the training procedure before overfitting occurs. Specifically, the 

training process is set to be interrupted when no improvement in the validation MSE occurs 

for 6 consecutive iterations. 

The Levenberg-Marquardt backpropagation technique has been employed for the training 

process, while the weights and biases of the network have been initialized using the 

Nguyen-Widrow initialization method. 

 

Table 1 Characteristics of driving cycles in direction 1 that have been selected for the ANN 

training process 

 
Mean 

negative 

accel. 

Mean 
positive 

accel. 

Cycle 
durati- 

on 

Mean 

vehi- 

cle 
mass 

Total fuel 

mass 

consu- 
med 

Vehicle 

stationa- 
ry 

periods 

fraction 

Total 

stationary 

vehicle 
duration 

Mean 

moving 

veloci- 
ty 

cycle name aneg apos Δt mveh mf xtstat Δtstat vpos 

[-] [m/s2] [m/s2] [s] [t] [kg] [%] [s] [m/s] 

330001_05_1 -0.518 0.453 2769 18.85 6.54 33.2 919 6.748 

370001_01_1 -0.407 0.414 3271 17.97 6.21 35.5 1160 5.924 

290001_07_1 -0.521 0.488 3446 18.73 7.93 38.5 1327 5.902 

 

Table 2 Characteristics of driving cycles in direction 2 that have been selected for the ANN 

training process 

 

Mean 

negative 
accel. 

Mean 

positive 
accel. 

Cycle 
duration 

Mean 

vehicle 
mass 

Total fuel 

mass 
consumed 

Vehicle 

stationary 
periods 

fraction 

Total 

stationary 
vehicle 

duration 

Mean 

moving 
velocity 

cycle name aneg apos Δt mveh mf xtstat Δtstat vpos 

[-] [m/s2] [m/s2] [s] [t] [kg] [%] [s] [m/s] 

330001_06_2 -0.487 0.457 2882 18.14 5.63 30.7 885 6.400 

270001_11_2 -0.472 0.433 3377 19.40 5.60 38.4 1297 6.079 

360001_09_2 -0.487 0.435 3755 17.64 6.41 40.7 1530 5.759 

 

Different configurations of the network have been tested in order to find the one that will 

yield the closest performance to the reference control law obtained using the Dynamic 

Programming method. 

2. RESULTS 

The results of the research are presented in the following subsections. First, an analysis of 

the trained networks performance is provided, after which the selected ANN is applied on a 

set of driving cycles not used during the training process in order to analyze its fuel 

economy improvement results compared to the optimal solution calculated using DP. 

2.1 ANN Training Performance 

A total of 4 artificial neural network configurations using the NARX architecture have been 

considered in this investigation. The values for the input and feedback delays have been 

varied from 10 to 20 and 30 to 60, respectively, while 2 different layer size values of 4 and 8 
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neurons have been applied. For each set of applied configuration parameters, 10 training 

sessions have been attempted for the purpose of minimizing the influence of the random 

weights and biases initialization on the ANN performance. The actual number of valid NNs 

per configuration depends on the number of early training stop occurrences caused when 

breaching the upper limit on the mu parameter (regulating the training gain). The results 

shown in Figures 4 to 7 are obtained for a section of the original driving cycles that belongs 

to the test set data, i.e. not having been used in the training procedure. The load distribution 

from three different sources is plotted against time: the optimal hybrid powertrain load 

distribution (obtained through the DP calculation) is shown, along with the output of the 

trained individual ANN with the lowest testing Mean Square Error (MSE) and the combined 

average response of all the valid ANNs obtained by repeating the training process. 

  

 

 

 

Figure 4 ANN control response for the best individual network, the average of the set of 

trained networks, compared to the optimal control (Input Delay of 10, Feedback Delay of 

30, Layer Size of 4 neurons) 

 

 
Figure 5 ANN control response for the best individual network, the average of the set of 

trained networks, compared to the optimal control (Input Delay of 10, Feedback Delay of 

30, Layer Size of 8 neurons) 

 

 

 

 
Figure 6 ANN control response for the best individual network, the average of the set of 

trained networks, compared to the optimal control (Input Delay of 20, Feedback Delay of 

60, Layer Size of 4 neurons) 
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Figure 7 ANN control response for the best individual network, the average of the set of 

trained networks, compared to the optimal control (Input Delay of 20, Feedback Delay of 

60, Layer Size of 8 neurons) 

 

Figures 4 and 5 show data that has been obtained for the lower input and feedback delay 

sizes (10 and 30, respectively). It can be said that even for the simplest NARX configuration 

considered in this research, the ANN control yields acceptable results. The individual ANN 

(from this configuration variation batch) with the best achieved testing performance (i.e. the 

lowest MSE) tracks the optimal load distribution on the driving cycle section shown quite 

well, even though the control parameter overshoots the upper bound or does not quite reach 

the required optimal level repeatedly. The lowest individual MSE obtained by taking into 

account the testing set data (representing 15% of the whole dataset) is on the order of 0.029. 

By combining the outputs of 9 trained ANN with the simplest configuration, the resulting 

MSE drops by approximately 3.6%, with visibly better tracking of the optimal load 

distribution on the test data section shown in Figure 4. Overshoots are dampened and the 

oscillations where the optimal control value is constant are moderated. 

By increasing the number of neurons in the hidden layer of the NARX from 4 to 8, the 

individual ANN with the best performance gets its MSE lowered by 3.9%. In this case, 

overshoots occur at different instants of time but the ANN control yields better tracking at 

extreme reference values. By combining the outputs of 10 trained networks and calculating 

the average, the MSE is reduced by only 2.2% compared to the best individual ANN MSE 

and by 2.5% compared to the corresponding MSE of the NARX with 4 neurons. 

By increasing the input and feedback delay sizes by a factor of 2, it can be seen that the best 

individual and combined ANN performance drops compared to the NARX with 

input/feedback delays of 10/30 and the layer size of 8 neurons. Specifically, the best 

individual ANN yields an MSE that is 9% higher than the corresponding MSE of the NARX 

with the best configuration. The effect of the increase in delay sizes is an increase in best 

individual ANN MSE of 4.8% for the NARX with 4 neurons. By combining the outputs of 

the 8 valid ANN of this case and calculating the average control value, a reduction in the 

MSE of 5% is achieved. By increasing the number of neurons from 4 to 8, a marginal 

improvement of approximately 3.8% is achieved in best individual MSE and an 

improvement of 2.6% in combined ANN MSE. 

2.2 ANN Control Performance 

In this subsection of the article, the results of the application of the ANN control on a 

hydraulic hybrid transit bus powertrain system simulation are shown and compared against 

the optimal control results obtained using the dynamic programming algorithm. The 

individual ANN with the best control variable matching (Input/Feedback Delay of 10/30 and 

with layer size of 8) has been chosen to perform the analysis. 
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In total, 6 different driving cycles have been considered for evaluating the performance of 

the selected ANN control, three for each route direction. All six cycles have been obtained 

in real traffic and occupancy conditions. For each route direction, one cycle per congestion 

state has been chosen in order to analyze the impact of the ANN control on the fuel 

consumption improvement potential for different driving conditions. Indeed, all driving 

cycles acquired during the experiment have been divided into three categories based on the 

total duration of the runs. These categories have been further divided into three 

subcategories according to the values of the mean vehicle positive velocity. For each total 

run duration category, one cycle with moderate positive vehicle speed value has been 

chosen. In the end, a cycle representative of low, moderate and high congestion states has 

been selected for both route directions. It should be noted that the cycles used for the 

validation of the control methodology have not been part of the ANN training selection. 

  

Figure 8 Absolute fuel consumption 

comparison for the driving cycles in 

direction 1 

Figure 9 Absolute fuel consumption 

comparison for the driving cycles in 

direction 2 

Figures 8 and 9 show the absolute fuel consumption for the conventional powertrain, along 

two other values obtained by simulating the hybrid system solution – one using the optimal 

control derived by the dynamic programming algorithm and the other realized using the 

selected ANN control. Calculations have been carried out for the three traffic conditions 

mentioned earlier and for both driving cycle directions. Maximum absolute fuel 

consumption savings occur in the route direction 2, primarily due to the difference in the 

terrain elevations of the bus terminal stations. Indeed, the starting “Crveni Krst” terminal 

station is located approximately 60 m above the destination of the driving cycle direction 2 – 

the “Zemun Bačka” terminal station, allowing greater potential energy of the vehicle to be 

harnessed by the use of the hybrid powertrain system. Maximum achievable fuel 

consumption reductions range from 1.3 to 1.7 kg in the route direction 1, while savings on 

the order of 2.2 to 2.8 kg can be achieved in the direction 2 in the optimal case. The savings 

achieved by using an implementable control algorithm range from 0.86 to 1.3 kg in direction 

1, and 1.8 to 2.2 kg in route direction 2. The fuel consumption improvement relative to the 

conventional powertrain system is shown in Figures 10 and 11 for all six driving cycles 

considered in this ANN control validation investigation. The least relative amount of fuel 

saved is achieved for the most congested cycle in direction 1, where only 20.5% can be 

optimally achieved. Using the implementable ANN control algorithm, 13.2% of fuel can be 

saved. Ideally, approximately 25% of the fuel used for powering the conventional 

powertrain system may be saved in low and moderate congestion states in direction 1. The 

ANN control can cut back approximately 18.5% of the fuel consumed in a non-hybrid 
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transit bus. The values achieved in direction 2 show a different trend. Namely, potential fuel 

savings rise with increasingly congested traffic conditions, with over 40% of fuel savings 

ideally achieved for the most congested driving cycle. The least amount of fuel consumption 

improvement in driving cycle direction 2 reaches a figure of over 36%, which is 

significantly higher than the most favorable case in direction 1. The range of values 

representing fuel savings achievable using the selected ANN control is from 29.1% for the 

least, to 33.7% for the most congested state. 

  

Figure 10 Relative fuel consumption 

improvement compared to the conventional 

powertrain system for the driving cycles in 

direction 1 

Figure 11 Relative fuel consumption 

improvement compared to the conventional 

powertrain system for the driving cycles in 

direction 2 

By analyzing the optimal fuel consumption savings that could ideally be achieved and the 

values obtained using the ANN control, it can be concluded that the proposed 

implementable control algorithm yields a good performance. Over 64% of the potential fuel 

savings can be achieved by using the ANN control in the most congested driving conditions 

in direction 1. In the most favorable case (in the most congested conditions in direction 2), 

over 80% of the maximally achievable fuel consumption reduction can be accomplished by 

using the suboptimal, implementable control algorithm. 

3. CONCLUSIONS 

An implementable, artificial neural network based control algorithm has been devised to 

control the load distribution in a parallel, hydraulic hybrid powertrain system for a transit 

bus. A physical experiment involving the use of a transit bus circulating in real traffic and 

occupancy conditions as part of the Belgrade’s public transportation service has been 

conducted in order to acquire the data needed to calibrate a simulation model of the 

powertrain system. This endeavor has also allowed to acquire the driving cycles in differing 

traffic congestion states, a prerequisite for training and validating the proposed ANN 

control.  

By using a NARX ANN, up to 80% of the ultimate fuel consumption improvement potential 

obtained using a non-implementable optimization algorithm can be achieved. Further 

research efforts shall be invested in order to analyze the conditions required for closing the 

gap to the optimal solution.  
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