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 One of the most challenging tasks in the internet of things-cloud-based 

environment is the resource allocation for the tasks. The cloud provides 

various resources such as virtual machines, computational cores, networks, 

and other resources for the execution of the various tasks of the internet of 

things (IoT). Moreover, some methods are used for executing IoT tasks 

using an optimal resource management system but these methods are not 

efficient. Hence, in this research, we present a resource-efficient workload 

task scheduling (RWTS) model for a cloud-assisted IoT environment to 

execute the IoT task which utilizes few numbers of resources to bring a good 

tradeoff, achieve high performance using fewer resources of the cloud, 

compute the number of resources required for the execution of the IoT task 

such as bandwidth and computational core. Furthermore, this model mainly 

focuses to reduce energy consumption and also provides a task scheduling 

model to schedule the IoT tasks in an IoT-cloud-based environment. The 

experimentation has been done using the Montage workflow and the results 

have been obtained in terms of execution time, power sum, average power, 

and energy consumption. When compared with the existing model, the 

RWTS model performs better when the size of the tasks is increased. 
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1. INTRODUCTION 

The internet of things (IoT) is a platform where various devices and applications are connected to 

the internet [1], [2]. Nowadays, the IoT plays a major role in various fields such as home security, 

environment protection, intelligent traffic, and health [3]. The IoT sensors can obtain data very easily and this 

helps humans to acquire the data in high quality [4]. Furthermore, the IoT resource management technique 

can monitor and control various sensors without overriding resources [4]. Resource management includes 

various applications, networks, and different kinds of system management [5]. This resource management 

also helps to check the utilization of the resources, and performance and configures the different networks for 

the extraction of the data. In most scenarios, the IoT is used to collect the data from various sensors which the 

humans convert the IoT data for useful information using the data analysis process. To analyze the data, most 

users use the cloud-based IoT environment because it helps to analyze the data more efficiently. Furthermore, 

the cloud computing area has a major role to play in the IoT-cloud-based environment [6]. The cloud 

provides various resources such as virtual machines, computational cores, networks, and various other 

resources for the execution of the various tasks of the IoT. One of the most challenging tasks in the  
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IoT-cloud-based environment is the resource allocation for the tasks. Furthermore, there are some methods to 

execute IoT tasks using an optimal resource management system that is not efficient. Hence, present a model 

which computes the number of resources required such as the computational core, bandwidth, and resources, 

to process a certain real-time task in the cloud environment [7], [8]. Furthermore, we present  

resource-efficient workload task scheduling (RWTS) model for cloud-assisted IoT environment to execute 

the IoT tasks using minimal resources to bring a good tradeoff and also to achieve high performance with the 

least resources utilized. In the next section we have presented the literature survey about the various  

IoT-cloud-based environments and how have they handled the problem of resource utilization to execute IoT 

tasks. 

 

 

2. LITERATURE SURVEY 

In [5], they have explained the various key technologies and challenges in IoT edge computing. 

They have explained how cloud services help the various IoT applications to compute their various 

operations and store data in the cloud. In [6], they have designed an architecture for the computation of IoT 

operations at the highest performance. In this model, they have achieved the highest performance by letting 

the computational nodes automatically change dynamically according to the task requirements. Furthermore, 

they have achieved security for their model using the blockchain. In [7], they have designed a resource 

management system for the WebIDE cloud server where the IoT tasks are prescheduled. The experimental 

results have shown that by using this method, the time is reduced for the execution of IoT tasks, and also the 

cloud resources are used efficiently. In [8], they have developed a model for the resource management 

system which manages the quality of service (QoS) requirement automatically to achieve the service level 

agreements and its violations. The service level agreement (SLA) aware automatic resource management 

technique reduces the service level agreement violation for better resource management in the cloud server. 

The results show that by optimizing the quality of service and also by reducing service level agreement 

violations, the resources can be allocated efficiently. In [9], they have presented a cost-effective algorithm 

that completes the execution of the tasks of the workflow in a given time constraint. The results show that the 

model reduces the cost and time. In [10] they have presented a dynamic cost-effective model which executes 

the various tasks of the workload in a given time constraint. They have used the advantage of the virtual 

machines in the cloud to execute the tasks. The results show that the model has better performance when 

compared with the existing current state-of-art models. In [11], they have presented a model which reduces 

the cost and energy in a given deadline constraint for the execution of the tasks of the workflow tasks in the 

cloud. The model cost and energy aware scheduling (CEAS) reduces the cost of the execution and energy by 

using the virtual machine (VM) selection algorithm. They have used CloudSim to experiment on the  

real-time dataset. In [12], they surveyed various challenges and methods used for scheduling the workflow in 

the cloud. In this review, they have analyzed and compared various models that are currently being used for 

workflow scheduling. In [13], they have proposed a framework that provides a resource management system 

for real-time IoT data in the cloud environment. This helps to reduce the traffic in the network, reduce energy 

consumption, and increase the network lifetime which gives a good tradeoff. In [14], they have reviewed 

various issues and challenges for the cloud-based resource allocation for the IoT environment. Moreover, 

they have also investigated the various parameters which affect resource management such as load balancing, 

service level agreement violation, which increases energy consumption and cost. In [15], they have presented 

a model which utilizes fewer resources to execute the IoT sensor tasks by a given deadline. To execute this 

model, they have presented an algorithm, energy-efficient collaborative task computation offloading 

(ECTCO) algorithm. The results show that this model reduces the cost and energy using fewer resources 

when compared with the current state-of-art models.  

In [16], they have discussed the various challenges such as the energy consumption and resource 

utilization faced by the VM in the cloud. Hence, they have developed an algorithm that provides a better 

resource utilization technique to execute the tasks of the workflow in the virtualized cloud environment. The 

experiments have been performed using a real-time dataset and the results show that it has better performance 

in terms of makespan, energy consumption, and load balancing. In [17], they have presented two methods for 

the execution of the tasks in an infrastructure-as-a-service (IaaS) cloud. This model has reduced the cost by 

100% by providing better resources for the execution of the tasks. In [18], they have presented a model for 

the multi-objective workflow which provides a good trade-off solution for the workflow scheduling of the 

tasks in the cloud. The results show that the model has better performance in terms of reduced cost and 

optimized makespan when compared with the state-of-the-art scheduling methods. In [19], they have 

presented a model which executes the real-time stream workflows using the genetic algorithm which 

provides good tradeoffs and reduces the cost by reducing resource utilization. In [20], [21], they presented a 

model for scheduling the tasks and allocating the tasks according to the task requirement in the cloud-fog 

environment. In [22], they have proposed an efficient task scheduling approach in an IoT environment. They 
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have compared the results with the particle swarm optimization technique, artificial bee colony (ABC), and 

genetic algorithm (GA). In [23], they have proposed deep reinforcement learning algorithms for task 

scheduling in a fog environment. In [24], they have proposed a task scheduling approach using grey wolf 

optimization for providing a better quality of service. Most of the above models have not focused to reduce 

the computational resources (bandwidth and computational core) and to provide a better resource 

management model. Hence, we present a RWTS model for cloud-assisted IoT environment which computes 

the number of resources required such as bandwidth and computational core for processing certain real-time 

tasks. Further, we design an efficient resource provisioning/scheduling algorithm for executing IoT tasks 

using minimal resource usage for bringing a good tradeoff between achieving high performance with 

minimal resource usage which has been shown in the next section. 

 

 

3. METHODOLOGY 

This section provides a model to calculate the number of resources required such as computational 

core, processor, and bandwidth to process a given real-time task. This section also provides an efficient 

provisioning/scheduling method to execute an IoT task with the utilization of the least resources to bring a 

good tradeoff, reduce energy consumption, and also achieve high performance. In this section first, we 

present a system model to execute the workload in proposed architecture described in Figure 1, then we 

present a model to calculate the consumption of energy required during the execution of the task by the 

machines and finally we present a model for the task scheduling as described in flow diagram of Figure 2. 

 

 

 
 

Figure 1. Architecture of the proposed model 

 

 

 
 

Figure 2. Flowchart of the proposed model 
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3.1.  Model to execute the workload 

A basic cloud computing server consists of users, the internet, physical machines, and virtual 

machines. Consider a cloud-assisted IoT environment in which there are many physical machines represented 

using 𝐼 which can be represented using (1): 

 

𝐼 = {𝐼1 , 𝐼2, 𝐼3, … , 𝐼𝑜} (1) 

 

In (1), 𝑜 is used to represent the physical machines that are currently in the cloud-assisted IoT environment. 

There are different parameters for a given physical machine such as memory capacity, capacity, and storage 

size. All these parameters for a given physical machine can be represented using 𝐼𝑙 . Hence, for a given 

physical machine 𝐼𝑙 ∈ 𝐼. The 𝐼𝑙  can be represented as (2): 

 

𝐼𝑙 = {𝑠𝑡𝑙 , 𝑛𝑙 , 𝑞𝑙
↑, 𝑜𝑙 , (𝑔𝑙 , 𝑤𝑙), 𝑉𝑙} (2) 

 

In (2), 𝑠𝑡𝑙 is used to define the size of the storage, 𝑛𝑙 is used to define the capacity of the memory, 𝑞𝑙
↑ is used 

to define the highest energy level, 𝑜𝑙  is used to define the capacity of the bandwidth, (𝑔𝑙 , 𝑤𝑙) is used to define 

the levels of voltage and frequency and the 𝑉𝑙 is used to define the number of virtual machines present in the 

physical machine. Moreover, the levels of voltage and frequency (𝑔𝑙 , 𝑤𝑙) for the given physical machine 𝐼𝑙  

can be represented using (3): 

 

(𝑔𝑙 , 𝑤𝑙) = {(𝑔𝑙
1, 𝑤𝑙

1), (𝑔𝑙
2, 𝑤𝑙

2), … , (𝑔𝑙
↑, 𝑤𝑙

↑)} (3) 

 

In the same way, the virtual machines present in the physical machine 𝐼𝑙  can be represented using (4): 

 

𝑉𝑙 = {𝑣𝑙,1, 𝑣𝑙,2, … , 𝑣𝑙,|𝑉𝑘|} (4) 

 

Furthermore, every virtual machine can be defined using (5): 

 

𝑣𝑙,𝑚 = {𝑔𝑙,𝑚, 𝑛𝑙,𝑚, 𝑠𝑡𝑙,𝑚} (5) 

 

In (5), 𝑔𝑙,𝑚 is used to define the frequency level of the virtual machine, 𝑛𝑙,𝑚 is used to define the memory 

capacity of the virtual machine and 𝑠𝑡𝑙,𝑚 is used to define the size of the storage. In this model, the hardware 

resources can be utilized by the virtual machines and these virtual machines can migrate among the physical 

machine according to the requirement of the task. 

 

3.2.  Model for the energy consumption in the physical machines 

In this section, we discuss the energy consumption by the physical machines during the execution of 

the task and present a model which reduces the energy consumption during the execution process. For every 

execution of a task, the processor executes the task, and to run the processor energy is consumed. Consider a 

processor running and it is currently executing a given task, then the energy consumed by the processor can 

be represented using 𝑡𝑙 and the highest peak of energy consumed by the physical machine can be represented 

using 𝑖𝑙. From the existing method [14], the consumption of energy by a given physical machine can be 

represented using (6) 

 

𝐼𝑙 = 𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 + (1 − 𝑡𝑙) ∗ 𝑞𝑙
↑ ∗ ((𝑔𝑙

↑)
3

)
−1

∗ (𝑔𝑙)
3 (6) 

 

In (6), 𝑡𝑙 is used to define the highest energy consumed, 𝑞𝑙
↑ is used to define the highest energy level, 𝑧𝑙

𝑢 is 

used to define if the physical machine is currently active or not, also 𝑧𝑙
𝑢 ∈ {1,0}. 𝑔𝑙 is used to define the 

frequency of CPU at the time 𝑢, and 𝑔𝑙
↑ is used to define the highest frequency of the CPU utilized. Using all 

the different parameters the energy consumed by each physical machine can be calculated using (7): 

 

ℰ = ∑ ∫ (𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 + (1 − 𝑡𝑙) ∗ 𝑞𝑙
↑ ∗ ((𝑔𝑙

↑)
3

)
−1

∗ (𝑔𝑙)
3) 𝑑𝑡

yt

xt
𝑜
𝑗=1  (7) 

 

In (7), all the variables are not dependent on the time except 𝑔𝑙 and 𝑧𝑙
𝑢 which can vary according to the given 

time; hence they are time-dependent. The variables which do not vary with time are static.  
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3.3.  Model for task scheduling the workload in a cloud-assisted IoT environment 

To execute the task in a cloud-assisted IoT environment we require a physical machine with some 

number of virtual machines to execute the whole task. Consider a physical machine in which the virtual 

machines 𝑣𝑙,𝑚 has to execute various tasks 𝑢𝑘
𝑗
. To execute the tasks, consider a mapping association 𝑦𝑘,𝑙𝑚

𝑗
 

between the virtual machines 𝑣𝑙,𝑚 and various tasks 𝑢𝑘
𝑗
. If the mapping association 𝑦𝑘,𝑙𝑚

𝑗
 equals to 0 then we 

can say that the given tasks have been mapped to the virtual machine. If the mapping association 𝑦𝑘,𝑙𝑚
𝑗

 equals 

to 1 then we can say that the given tasks have not been mapped to the virtual machine. This can be expressed 

mathematically using (8): 

 

𝑦𝑘,𝑙𝑚
𝑗

= {
0, 𝑖𝑓 𝑢𝑘

𝑗
 is not mapped to 𝑣𝑙,𝑚

1,                                         otherwise.
 (8) 

 

The tasks that have to be executed have different dependencies and sometimes require more time to execute 

the given task. This problem of data dependency on the given task can be summarized using (9): 

 

𝑔𝑢𝑞,𝑙𝑚
𝑗

+ 𝑢𝑢𝑞𝑘
𝑗

≤ 𝑠𝑡𝑘,𝑙𝑚
𝑗

,   ∀𝑓𝑞𝑘
𝑗

∈ 𝐹𝑗 (9) 

 

In (9), 𝑔𝑢𝑞,𝑙𝑚
𝑗

 is used to define the completion time of the given task 𝑢𝑞
𝑗
, 𝑢𝑢𝑞𝑘

𝑗
 is used to define the time 

utilized for the transmission of data from one task 𝑢𝑞 to another task 𝑢𝑗. After the whole process of the 

execution of the tasks in the virtual machines 𝑣𝑙,𝑚, the maximum time utilized for the execution of the task 

𝑢𝑘
𝑗
 is given by (10): 

 

𝑔𝑢𝑗 = max
𝑢𝑞

𝑗
∈𝑈𝑗

{𝑔𝑢𝑞,𝑙𝑚
𝑗

}. (10) 

 

Furthermore, to maintain the allocation of resources for a given task 𝑢𝑘
𝑗
, the tasks have to be executed within 

a given deadline. The task deadline is given using (11): 

 

𝑔𝑢𝑗 ≤ 𝑒𝑗,   ∀𝑥𝑗 ∈ 𝑋 (11) 

 

Moreover, if an existing task is currently running and if a new task arrives and the job requirement of that 

task has more priority then they have to be allocated some of the resources from the currently running tasks. 

This problem of restriction of the resources in the physical machine can be described using (12) and (13): 

 

𝑔𝑙
↑ − ∑ 𝑔𝑙,𝑚 ≥ 0,

|𝑉𝑙|
𝑚=1    ∀𝑖𝑙 ∈ 𝐼 (12) 

 

𝑛𝑙 − ∑ 𝑛𝑙,𝑚 ≥ 0,
|𝑉𝑙|
𝑚=1    ∀𝑖𝑙 ∈ 𝐼 (13) 

 

The main focus of this model is to resolve the constraints which have been mentioned in (9)-(13) and also to 

reduce the consumption of energy during the allocation of the resources for the given tasks of the workload, 

(14) is used to resolve all the constraints.  

 

𝑀𝑖𝑛 ∑ ∫ (𝑡𝑙 ∗ 𝑞𝑙
↑ ∗ 𝑧𝑙

𝑢 + (1 − 𝑡𝑙) ∗ 𝑞𝑙
↑ ∗ ((𝑔𝑙

↑)
3

)
−1

∗ (𝑔𝑙)
3)

𝑦𝑡

𝑥𝑡
𝑜
𝑙=1 𝑑𝑡 (14) 

 

In (14), 𝑜 is used to define the size of the physical machine, 𝑥𝑡 is used to define the starting time of the 

execution of the workload, and 𝑦𝑡 is used to define the ending time of the execution of the workload. 

Moreover, in (14), all the variables are not dependent on the time expected 𝑔𝑙 and 𝑧𝑙
𝑢 which can vary 

according to the given time; hence they are time-dependent. The variables which do not vary with time are 

static. Furthermore, this model also focuses to provide good tradeoffs, allocating the resources efficiently, 

and also providing better performance by utilizing fewer resources, hence, the following equation is given by 

(15): 

 

𝑀𝑎𝑥 (∑ ∑ 𝑐𝑝𝑢𝑘
𝑗

∗ 𝒯𝑘
𝑗|𝑈𝑗|

𝑘=1
𝑛
𝑗=1 ) (∑ 𝑔𝑙

↑ ∗ 𝒜𝑙
𝑜
𝑙=1 )⁄ , (15) 
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In (15), 𝑛 is used to define the size of the workload of 𝑋, |𝑈𝑗| is used to define the size of the task in the 

workload  𝑥𝑗 , 𝑐𝑝𝑢𝑘
𝑗
 is used to define the frequency of the CPU for the given task 𝑢𝑘

𝑗
, 𝒯𝑘

𝑗
 is used to define the 

execution of the complete workload, 𝑜 is used to define the size of the physical machine in a cloud-assisted 

IoT environment and 𝒜𝑙  is used to define the active state of the physical machine. Moreover, scheduling 

tasks on various computing machines is an NP-Hard problem. The proposed RWTS described in algorithm 1 

is efficient in obtaining ideal resources heuristically meeting constraints such as reducing energy 

consumption and meeting task deadline. 

 

Algorithm 1. Resource-efficient workload task scheduling (RWTS) 
Step 1. Start 

Step 2. Deploy cloud computational environment composed of physical machines 𝐼 and virtual machines 𝑉. 

➔ Configure physical machines with storage 𝑠𝑡𝑙, Memory 𝑛𝑙, highest energy level 𝑞𝑙
↑, bandwidth 𝑜𝑙, voltage 𝑤𝑙 and 

frequency 𝑔𝑙 and virtual machines 𝑉𝑙 using (2). 

➔ Configure the virtual machine with the frequency level 𝑔𝑙,𝑚, memory capacity 𝑛𝑙,𝑚, and storage 𝑠𝑡𝑙,𝑚 using (1). 

Step 3. The user submits workflow task dependency 𝑓𝑞𝑘
𝑗

∈ 𝐹𝑗  to cloud resource provisioner 

Step 4. The resource provisioner according to the task deadline finds resources from the cloud service provider and schedules tasks 
with constraints defined in (9)-(13). 

➔ Compute energy consumption of physical machine using (7). 

➔ Compute constraints such as tasks should be executed within the deadline with minimal energy consumption using  
(9)-(13). 

➔ The resource provisioner schedules task with minimal energy consumption (using (14) and maximizes resource utilization 

using (15). 
Step 5. Measure the scheduling efficiency of RWTS in terms of minimizing execution time and minimizing energy consumption. 

Step 6. Stop 
 

 

4. RESULTS AND DISCUSSION 

In this section, the results obtained during the experimentation have been discussed. The Montage 

workflow has been considered which has been shown in Figure 3 [25]. The Montage workflow has different 

workloads such as Montage 25, Montage 50, Montage 100, and Montage 1,000. We have considered all the 

given montage workflows for the experimentation of the proposed model. The experiments have been 

conducted on a Windows 10 operating system containing 8 GB RAM and 500 GB of hard disk. The 

experiments have been conducted using CloudSim. The experiments have been performed based on 

execution time, power sum, average power, and energy consumption required by the resources for the 

execution of the tasks of the Montage workflow. Host and VM sizes are heterogeneous. 

 

 

 
 

Figure 3. Montage workflow 

 

 

4.1.  Execution time 

In this section, the execution time taken for the execution of the Montage workflow by the proposed 

RWTS model and the existing dynamic voltage frequency scaling (DVFS) model has been discussed [18]. 

Figure 4 shows the execution time taken for both models. In Figure 4 it can be seen that the DVFS model 

executes the workflow in 174.67, 387.53, 817.35, and 8591.39 seconds for the execution of the Montage 25, 
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Montage 50, Montage 100, and Montage 1,000 respectively whereas the proposed model RWTS executes the 

Montage workflow in 57.72, 71.77, 113.31 and 873.82 seconds for the execution of the Montage 25, 

Montage 50, Montage 100 and Montage 1,000 respectively. From the results, it can be seen that as the size of 

the Montage workflow increases proposed model consumes less time and resources for the execution of the 

tasks and gives a better result. The figure shows the proposed model tends to perform extremely well for 

larger workloads; this is due to the adoption resource maximization function introduced in (15), which aids in 

fully utilizing the system resource meeting processing time concerning energy constraints. 

 

4.2.  Power sum 

In this section, the power sum consumed for the execution of the Montage workflow by the 

proposed RWTS model and the existing DVFS model [18] has been discussed. Figure 5 shows the power 

sum consumed for both models. In Figure 5 it can be seen that the DVFS model consumes 500514.3738, 

1110499.188, 2342175.633, 24619248.96 Watts of energy for the execution of the Montage 25, Montage 50, 

Montage 100, and Montage 1,000 respectively whereas proposed model RWTS executes the Montage 

workflow in 126969.3334, 157874.1816, 249266.5583 and 1922339.057 Watts of energy for the execution of 

the Montage 25, Montage 50, Montage 100 and Montage 1,000 respectively. From the results, it can be seen 

that as the size of the Montage workflow increases proposed model consumes power sum and resources for 

the execution of the tasks and gives a better result. The figure shows the proposed model tends to perform 

extremely well for larger workloads; this is due to the adoption energy minimization function introduced in 

(14), which aid in reducing the energy required for the execution of respective task time requirement. Thus, 

more task is executed by utilizing resource efficiently i.e., using a smaller number of physical resources. 

 

 

  
  

Figure 4. Execution time comparison with the 

existing DVFS system 

Figure 5. Power sum comparison with the existing 

DVFS system 

 

 

4.3.  Average power 

In this section, the average power consumed for the execution of the Montage workflow by the 

proposed RWTS model and the existing DVFS model [18] has been discussed. Figure 6 shows the average 

power consumption for both models. In Figure 6 it can be seen that the DVFS model consumes 28.65562182, 

28.65567714, 28.655701, and 28.6557204 Watts of energy for the execution of the Montage 25, Montage 50, 

Montage 100, and Montage 1,000 respectively whereas the proposed model RWTS executes the Montage 

workflow in 21.99901827, 21.99910567, 21.99923734 and 21.99943531 Watts of energy for the execution of 

the Montage 25, Montage 50, Montage 100 and Montage 1,000 respectively. From the results, it can be seen 

that as the size of the Montage workflow increases proposed model consumes less power and resources for 

the execution of the tasks and gives a better result. The average power reduction is due to the adoption of 

(14) and (15) for scheduling tasks with high resource utilization that meets energy constraints considering the 

application deadline prerequisite. 

 

4.4.  Energy consumption 

In this section, the energy consumed by the resources for the execution of the Montage workflow by 

the proposed RWTS model and the existing DVFS model [18] has been discussed. Figure 7 shows the energy 

consumption of the resources for both models. In Figure 7 it can be seen that the DVFS model consumes 

3271084, 432.306718, 1191.416193, and 68107.65154 Watt-hour for the execution of the Montage 25, 

Montage 50, Montage 100, and Montage 1,000 respectively whereas the proposed model RWTS consumes 
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39.18879852, 52.60213278, 95.8242739 and 937.90767914 Watt-hour for the execution of the Montage 25, 

Montage 50, Montage 100 and Montage 1,000 respectively. From the results, it can be seen that as the size of 

the Montage workflow increases proposed model consumes less energy and resources for the execution of 

the tasks and gives a better result. The figure shows the proposed model tends to perform extremely well for 

larger workloads; this is due to the adoption energy minimization function introduced in (14), which aid in 

reducing the energy required for the execution of respective task time requirement. Thus, more task is 

executed by utilizing resource efficiently i.e., using a smaller number of physical resources. 

 

 

  
  

Figure 6. Average power comparison with the 

existing DVFS system 

Figure 7. Energy consumption comparison with the 

existing DVFS system 

 

 

4.5.  Average execution time comparison 

In this section, the average execution time consumed to execute the different montage workloads 

using different models has been discussed. Figure 8 shows the graphical representation of the average energy 

time consumed by each model for Montage 25, Montage 50, Montage 100, and Montage 1,000. The 

evolutionary multi-objective (EMO) model [19] has taken 8.44, 9.78, 10.58, and 11.36 seconds to execute the 

Montage 25, Montage 50, Montage 100, and Montage 1,000 workflow respectively. The DVFS model [18] 

has taken 6.9868, 7.7506, 8.1735, and 8.591 seconds to execute the Montage 25, Montage 50, Montage 100, 

and Montage 1,000 workflow respectively. The proposed RWTS model has taken 2.2188, 1.435, 1.331, and 

0.9532 seconds to execute the Montage 25, Montage 50, Montage 100, and Montage 1,000 workflow 

respectively. The figure shows the proposed model tends to perform extremely well for larger workloads; this 

is due to the adoption resource maximization function introduced in (15), which aids in fully utilizing the 

system resource meeting processing time concerning energy constraints. 

 

 

 
 

Figure 8. Average execution time comparison with the existing systems 

 

 

From all the above results shown above, the proposed model performs better in terms of execution 

time, power sum, average power, and energy consumption. Moreover, the proposed model consumes fewer 

resources to execute the complex montage workflow and the proposed model has outperformed the existing 

models. The significant performance enhancement is due to the adoption of the energy minimization function 
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introduced in (14) and the resource utilization maximization function introduced in (15) considering the 

makespan-energy constraint meeting application deadline prerequisite. 

 

 

5. CONCLUSION 

The research work presents a RWTS model for a cloud-assisted IoT environment to execute the IoT 

task which utilizes fewer amount of resources to bring a good tradeoff and also to achieve high performance 

using fewer resources of the cloud. The work has also presented a brief survey about the challenges of the 

existing models and presented a solution for these challenges using the proposed model. We have presented a 

model which reduces the energy consumed by the resources and also presented a task scheduling process in 

which the resources are used efficiently for the execution of the tasks of the workload. Furthermore, the 

results have been presented for a proposed model which has been compared with the existing DVFS model. 

The results show that the proposed model performs better in terms of execution time, power sum, average 

power, and energy consumption. The proposed model also consumes less time when compared with the 

EMO model and DVFS model. The results have shown that the proposed model consumes fewer resources 

and time when the workflow is large. When the workflow is small it performs well than the existing systems. 

Hence, the proposed model can provide efficient resources for workload task scheduling in a cloud-assisted 

IoT environment. Future work would consider testing the model under different complex workflow datasets 

such as the cybershake, epigenomics, and inspiral. 
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