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ABSTRACT

In recent years, the wireless spectrum has become increasingly scarce as demand
for wireless services has grown, requiring imaginative approaches to increase
capacity within a limited spectral resource. This article proposes a new method
that combines modified symbol time compression with orthogonal frequency di-
vision multiplexing (MSTC-OFDM), to enhance capacity for the narrow-band
internet of things (NB-IoT) system. The suggested method, MSTC-OFDM, is
based on the modified symbol time compression (MSTC) technique. The MSTC
is a compressed waveform technique that increases capacity by compressing the
occupied symbol time without losing bit error rate (BER) performance or data
throughput. A comparative analysis is provided between the traditional orthog-
onal frequency division multiplexing (OFDM) system and the MSTC-OFDM
method. The simulation results show that the MSTC-OFDM scheme drastically
decreases the symbol time (ST) by 75% compared to a standard OFDM sys-
tem. As a result, the MSTC-OFDM system offers four times the bit rate of a
typical OFDM system using the same bandwidth and modulation but with a lit-
tle increase in complexity. Moreover, compared to an OFDM system with 16
quadrature amplitude modulation (16QAM-OFDM), the MSTC-OFDM system
reduces the signal-to-noise ratio (SNR) by 3.9 dB to transmit the same amount
of data.
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1. INTRODUCTION
Over the past few years, the internet of things (IoT) has evolved tremendously. The IoT provides a

wide range of possibilities for novel applications to enhance our lives [1]. The number of connected devices is
constantly increasing, and new IoT applications in vehicles, transport, the electric grid, agriculture, metering,
and other fields have developed [2]. In particular, IoT enables humans to live in a smarter environment than
ever before. For instance, residents all around the world receive personalized urban services on a continuous,
automated, and collaborative basis [3]. IoT devices have emerged in different environments, such as smart
grids [4], industrial automation [5], smart cities, healthcare, and home appliances [6]. According to the global
system for mobile communications association (GSMA), IoT connections forecast (5) and Ericsson mobility’s
report (4), both of which were issued in June 2020 (these two reports include the impact of the coronavirus
disease (COVID-19) epidemic on the IoT industry), the total number of IoT device connections is expected to
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approach over 75 billion among all IoT markets by 2025 [7]. The smart home, consumer electronics, wearables,
and smart vehicle sectors are expected to be the primary drivers of development in consumer IoT [7].

A variety of low power wide area (LPWA) systems have evolved to handle this massive data need [8].
In addition to the wide coverage, low power consumption, and large number of users, these technologies also
provide a low level of device complexity [9], [10]. There are several standardization committees working on
standardizing LPWA technology, including IEEE, 3GPP, and others [2]. LPWA can employ cellular or non-
cellular wireless technologies. Cellular technologies include machine type communication (MTC), enhanced
machine type communication (eMTC), and narrow-band internet of things (NB-IoT) [11], whereas non-cellular
technologies include long range (LoRa), ZigBee, Bluetooth, Z-Wave, and others [12]–[14]. With the explosive
growth of 5G new radio technologies, industry and academia are focusing their efforts on enhanced mobile
broadband (eMBB), massive machine-type communications (mMTCs), and ultra-reliable low latency commu-
nications (URLLCs) [15]. To meet the 5G vision, it is required to not only make substantial advancements in
new wireless technologies, but also to consider the harmonic and equitable coexistence of diverse networks,
and the compatibility of 4G and 5G systems [16].

The rest of this paper is organized as follows. Section 2 summarizes the related work and contribu-
tion. Section 3 describes the overall mathematical model of the proposed system. The simulation results and
comments are presented in section 4. This study is summarized in section 5 by outlining the advantages of the
proposed technique.

2. RELATED WORK AND CONTRIBUTION
The third generation partnership project (3GPP) produced the NB-IoT radio technology standard for

cellular devices and services [17]. As opposed to conventional multi-carrier systems, NB-IoT typically uses
low-order modulation techniques like binary phase shift keying (BPSK) and fewer sub-carriers. The drawback
of NB-IoT is that it cannot be used for critical systems due to its constrained bandwidth and transmission rate
[18]. Therefore, this article focuses on increasing data rates and improving performance within the constrained
NB-IoT bandwidth.

Xu and Darwazeh [19] proposed an NB-IoT architecture based on a sophisticated signal waveform
known as non-orthogonal spectrum efficient frequency division multiplexing (SEFDM). Compared with OFDM,
the developed waveform might enhance the data rate without requiring extra bandwidth. According to the sim-
ulation results, the suggested waveform might enhance data rates by 25% when compared to the OFDM signal
waveform. However, the non-orthogonality of the sub-carriers may lead to inter-carrier interference (ICI), re-
quiring additional power consumption on the receiver side. Since the signal processing is done at the base
stations, it is appropriate for the up-link channel [19]. But this is not practicable since it requires additional
processing at the down-link channels.

Xu and Darwazeh [20] described solutions for NB-IoT employing fast orthogonal frequency division
multiplexing (Fast-OFDM), as this technique shows its advantages compared to the standard orthogonal fre-
quency division multiplexing (OFDM). When compared to a typical OFDM system, fast-OFDM reduces the
space between sub-carriers by 50% and avoids bit error rate (BER) degradation. As a result, it doubles the num-
ber of connected devices by reducing the utilized bandwidth of each device without affecting BERperformance.
However, Fast-OFDM may cause carrier frequency offset (CFO) due to lowering sub-carrier spacing.

Xu et al. [21] employed non-orthogonal multi-carrier SEFDM wave-forms for single and
multiple-antenna systems and demonstrate how these wave-forms may improve down-link (DL) bandwidth
by 11% when compared to NB-IoT. The results demonstrated that enhanced NB-IoT (eNB-IoT) has the same
efficiency as NB-IoT in both single and multiple antennae for modulation schemes such as quadrature am-
plitude modulation (4QAM and 8QAM). However, NB-IoT outperforms eNB-IoT in higher-order modulation
formats such as 16QAM.

Liu and Darwazeh [18] proposed a new signaling technique for NB-IoT mobile systems based on
the Fast-OFDM scheme coupled with a time orthogonal Hilbert transform (HT) pair (HT-Fast-OFDM), which
quadruples the data rate by applying two orthogonal methods: the Fast-OFDM scheme combined with the
time orthogonal hilbert transform (HT) pair. According to their simulation studies, the HT-Fast-OFDM system
offers four times the data rate compared with an OFDM system using the same modulation technique (BPSK)
and utilizing the same bandwidth. However, because of the reduced sub-carrier spacing, F-OFDM may suffer
from a carrier frequency offset (CFO). Furthermore, the combination of two orthogonal techniques increases
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the complexity of the HT-Fast-OFDM system.
In this study, the modified symbol time compression with orthogonal frequency division multiplexing

(MSTC-OFDM) is suggested as a promising and effective system for 5G and beyond for the following reasons:
i) increase the data rate four times compared with a typical OFDM system; ii) using one-dimensional modu-
lation leads to lower power consumption; iii) as opposed to Fast-OFDM in [20], it does not cause a mismatch
in the sampling rate or CFO since the space between the sub-carriers is not reduced; iv) enhances system per-
formance by further keeping the system from degrading in BER; and v) the MSTC-OFDM outperforms the
HT-Fast-OFDM in terms of complexity. Furthermore, unlike the HT-Fast-OFDM system in [18], the MSTC-
OFDM system maintains the same spacing between the sub-carriers, making it more robust against CFO and
inter-carrier interference.

3. SYSTEM MODEL
The symbol time compression (STC) technique is initially presented in [22], where it compresses the

symbol time to half and saves 50% of bandwidth. This article suggests the MSTC technique, which reduces the
used bandwidth to a quarter while saving 75% of symbol time. Moreover, using MSTC does not cause deteri-
oration in BER, as will be demonstrated in further detail in section 4. The MSTC technique is applied on the
transmitter side, while the modified symbol time extension (MSTE) technique is employed on the receiver side.
The mathematical model can be divided into three parts as: i) the MSTC mathematical model at the transmitter
side; ii) the MSTE mathematical model at the receiver side; and iii) the system model of the suggested system,
MSTC-OFDM.

3.1. MSTC system model
On the transmitter side, the MSTC scheme is applied through two procedures. The spreading proce-

dure is carried out first, and subsequently the combining process. Two comparable units are joined to create
the MSTC technique. The output of the second unit is multiplied by “j” to obtain the imaginary component,
which is then added to the output of the first unit to produce the complex output Xc, as depicted in Figure 1.
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Figure 1. Block diagram of M-STC technique

Figure 1 displays the block diagram of the MSTC technique. First, the input data (S0, S1, S2, and S3)
is converted to the polar form ((b0Nx1, b1Nx1, b2Nx1, and b3Nx1). The polar form for the first unit is (b0Nx1 and
b1Nx1), and for the second unit is (b2Nx1 and b3Nx1). The polar form for the two units is expressed as (1):

b0N×1 =

 b011
.
b0N1

 , b1N×1 =

 b111
.
b1N1

 , b2N×1 =

 b211
.
b2N1

 b3N×1 =

 b311
.
b3N1

 (1)
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Second, the polar form is spread using the Walsh code (c), which is constructed using the Hadamard
matrix (H). The Hadamard matrix is a symmetric square matrix, and each row of the Hadamard matrix is
orthogonal to every other row. The (2×2) Hadamard matrix is used in this article and is given as (2) [23]:

H2x2 =

[
1 1
1 −1

]
(2)

The Hadamard matrix represents a different Walsh code and each row or column of this matrix represents a
different Walsh code. The two spreading Walsh codes are given as (3) [24]:

c0 = [1 1] and c1 = [1 − 1]. (3)

The spread data is obtained by multiplying the polar data (b0Nx1, b1Nx1, b2Nx1 and b3Nx1) by the Walsh codes (c0
and c1) as (4):

S0
N×2 = b0N×1 × c0 =

 S0
11 S0

12

.
S0
N1 S0

N2

 =

 b011 b011
.

b0N1 b0N1

 , S1
N×2 = b1N×1 × c1 =

 S1
11 S1

12

.
S1
N1 S1

N2
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 b111 −b111
.

b1N1 −b1N1

 ,

S2
N×2 = b2N×1 × c0 =

 S2
11 S2

12

.
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N1 S2
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b2N1 b2N1
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12

.
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.
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(4)

where S0
N×2 and S1

N×2 are the spread data of the first unit, whereas S2
N×2 and S3

N×2 are the spread data of the
second unit. The combining process is then applied to the spread data for both the first and second units after
the spreading procedure. The spread data S0

N×2 and S1
N×2 are joined in the first unit to produce the combined

data x1Nx2. Similarly, in the second unit, the spread data S2
N×2 and S3

N×2 are grouped to provide the combined
data x2Nx2. The combining process for the first and second units is given as (5):

x1Nx2 = 1
2

[(
S0
M1 + S1

M1

) (
S0
M1 − S1

M1

)]
, x2Nx2 = 1

2

[(
S2
M1 + S3

M1

) (
S2
M1 − S3

M1

)]
(5)

where x1Nx2 is the combining data for the first unit, x2Nx2 is the combining data for the second unit, 1 ≤ M ≤ N ,
and N represents the input’s bits. As displayed in Figure 1, the complex output Xc is created by adding the
imaginary component, obtained by multiplying the output of the second unit by ”j,” to the first unit’s output.
The output of the MSTC technique is expressed as (6).

Xc
Nx2 = x1Nx2 + jx2Nx2. (6)

Figure 2 illustrates how the MSTC methodology employs the spread and combining procedures to
compress the symbol time and increase the data rate. The MSTC approach delivers four bits per symbol time
rather than one bit per symbol time. However, as will be demonstrated in Section 4, the BER obtained using
the MSTC method is identical to the BER obtained using BPSK modulation. In Figure 2, we use four symbols
to transfer four bits (b1, b2, b3 and b4). Each symbol time has a bit rate of R. The transmitted bits are multiplied
by Walsh codes c0 and c1, as illustrated in Figure 2, to produce spread data as (7), (8):

Sd1 = b1 × c0 = [b1 b1], Sd2 = b2 × c1 = [b2 − b2], (7)

Sd3 = b3 × c0 = [b3 b3], Sd4 = b4 × c1 = [b4 − b4], (8)

where Sd1, Sd2, Sd3, and Sd4 are spread data for the transmitted bits b1, b2, b3 and b4 respectively. The
combining process of spreading data is defined as (9), (10):

Cd1 = [bc1 bc2] = [(b1 + b2) (b1 − b2)] (9)

Cd2 = [bc3 bc4] = [(b3 + b4) (b3 − b4)] (10)
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It is clear from Figure 2 that the rate of combining data Cd1 = 2R and the rate of Cd2 = 2R. The
output of the MSTC technique is written as (11):

Xc = [xc1 xc2] = [(bc1 + jbc3) (bc2 + jbc4)], (11)

where Xc is the output of the MSTC technique. The data rate of Xc is 4R. Therefore, using the MSTC
technology enhances capacity by compressing symbol time and sending data at a fourfold higher rate.
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Figure 2. Illustrative example of the increasing data rate using the MSTC technique

3.2. MSTE system model
The mathematical analysis is explained in detail for the MSTE technique in this subsection. To re-

verse the procedures that the MSTC technique performed in the transmitter, the MSTE technique is employed
at the receiver side. As indicated in Figure 3, the received signal (Yc

2Nx1 = Yreal + jYimag) is divided into two
parts: real (part 1) and imaginary (part 2). For the first unit, the real portion of the received signal is initially
transformed to a Nx2 matrix in the following manner:

MR
N×2 =

 Y R
11 Y R

12

·
Y R
N1 Y R

N2

. (12)

The Walsh codes c0 and c1 are multiplied by (12) to disseminate data in the first unit as (13):

MR0

N×2 = MR
N×2 × c0 =

 Y R
11 Y R

12

·
Y R
N1 Y R

N2

 , MR1

N×2 = MR
N×2 × c1 =

 Y R
11 −Y R

12

·
Y R
N1 −Y R

N2

 . (13)

where, c0=[1 0 ; 0 1] and c1=[1 0 ; 0 -1]. The combining process is applied to the spread data to produce the
combined data. In (14) illustrates the process of combining data:

D0
R︸︷︷︸

Nx1

=

∑N
i=1

(
MR0

i1 +MR0
i2

)
+ 1

2
, D1

R︸︷︷︸
Nx1

=

∑N
i=1

(
MR1

i1 +MR1
i2

)
+ 1

2
(14)
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Similarly, the second unit repeats all of the prior unit’s steps. As a result, the imaginary portion of the
received signal is expressed as (15):

MI
N×2 =

 Y I
11 Y I

12

·
Y I
N1 Y I

N2

 (15)

in (15) is multiplied by Walsh codes c0 and c1 to obtain the spread data in the second unit:

MI0
N×2 = MI

N×2 × c0 =

 Y I
11 Y I

12

·
Y I
N1 Y I

N2

 , MI1
N×2 = MI

N×2 × c1 =

 Y I
11 −Y I

12

·
Y I
N1 −Y I

N2

 . (16)

to generate the combined data in the second unit, the spread data in (16) are grouped as (17):

D0
I︸︷︷︸

Nx1

=

∑N
i=1

(
M I0

i1 +M I0
i2

)
+ 1

2
D1

I︸︷︷︸
Nx1

=

∑N
i=1

(
M I1

i1 +M I1
i2

)
+ 1

2
. (17)

Finally, the combined data is inserted to the decision block in order to recover the transmitted data. It
should be emphasized that the decision block is uncomplicated, as illustrated in Figure. 3. The decision block
will transform the data to one if it is larger than 0.5 and to zero in all other cases. Consequently, the suggested
approach can send more data without increasing complexity.

3.3. MSTC-OFDM system model
The mathematical analysis of the proposed system (MSTC-OFDM) is presented in this subsection.

Figure 4 depicts a generic block diagram of the MSTC-OFDM, which compresses symbol time and increases
the data rate by using the MSTC at the transmitter and the MSTE at the receiver. The input data (D0, D1, ..., DN )
is first processed by the MSTC block to compress the symbol time to one-fourth of its original length and in-
crease capacity. Therefore, instead of utilizing one bit for each symbol, four bits are used. As a consequence,
the MSTC block’s output ranges from X0 to XN/4. The complex data symbol on the Kth sub-carrier is denoted
by Xk, where k = 1, 2, ..., N/4. The N/4 resultant waveforms are transmitted into the N/4 input ports of an
inverse fast Fourier transform (IFFT) block. Following IFFT, a discrete-time OFDM symbol is represented in
the form:

xk =
2

N

N
4 −1∑
m=0

Xmej2πkm/N
4 , 0 ≤ k ≤ N

4
− 1, (18)

where k indicates the time index, N is indeed the number of sub-carriers, xk is in fact the kth OFDM symbol,
and Xm denotes the mth transferred data symbols. The generated time domain symbols are passed through a
parallel-to-serial (P/S) converter. To ensure orthogonality and avoid ISI, a cyclic prefix (CP) of an appropriate
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length (Lcp) is placed before each OFDM signal as a guard interval (GI) between OFDM symbols to mitigate
the impact of multi-path propagation. The transmitted OFDM symbol with CP is written as (19):

xcp
k =

2

N

N
4 −1∑
m=0

Xmej2πkm/N
4 ,−Lcp ≤ k ≤ N

4
− 1. (19)

in order to retrieve the sent data, the transmitter procedures is effectively reversed in opposite order at the
receiver side, as indicated in Figure 4.
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Figure 4. Block diagram of MSTC-OFDM system

4. SIMULATION RESULTS AND DISCUSSION
This part presents the numerical simulation results for the suggested method, including the perfor-

mance metrics such as BER, OFDM symbol time, and power spectral density (PSD). The input data is mod-
ulated via binary phase-shift keying (BPSK) modulation. The bandwidth is 180 kHz, the Spacing frequency
∆f = 15 kHz, the sampling frequency f= 1.92 MHz, the FFT size is 128, the CP = 1/4 of the OFDM symbol,
and the model of the channel is additive white gaussian noise (AWGN). Using Monte-Carlo simulations, the
BER is computed by totaling 1,000 OFDM symbols.

Figure 5 shows the performance comparison between the OFDM system using BPSK (BPSK-OFDM)
and the MSTC-OFDM system based on the time domain of the transmitted signal. As shown in
Figures 5(a) and 5(b), the MSTC-OFDM system reduces the OFDM symbol time to one-fourth compared
to the BPSK-OFDM system. Consequently, employing the proposed approach saves 75% of the symbol time
and can be exploited to transmit four times as much data as the BPSK-OFDM system.
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Figure 5. Performance comparison based on symbol time (a) BPSK-OFDM and (b) MSTC-OFDM systems

The spectra for three separate systems are shown in Figure 6. Figure 6(a) illustrates the spectrum
of a BPSK-OFDM system, whereas Figure 6(b) depicts the spectrum of an HT-Fast-OFDM system, and
Figure 6(c) displays the spectrum of the MSTC-OFDM system. It is obvious that all systems have the same
bandwidth when parallel sinc pulses are employed as representations of 12 subcarriers for all systems. Despite
having the same bandwidth as the BPSK-OFDM system, the HT-Fast-OFDM and MSTC-OFDM systems can
transfer four times as much data compared to the BPSK-OFDM system. Unlike the HT-Fast-OFDM system,
the MSTC-OFDM system does not modify the distance between the subcarriers, making it more resistant to
ICI.
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Figure 7 shows the power spectral density (PSD) for three different systems: the BPSK-OFDM sys-
tem, the MSTC-OFDM system, and the HT-Fast-OFDM system. It can be seen clearly from Figure 7 that
the three spectra occupy the same frequency range (approximately 180 kHz). However, when the three sys-
tems (BPSK-OFDM, HT-Fast-OFDM, and MSTC-OFDM) occupy the same bandwidth, the HT-Fast-OFDM
system and the proposed MSTC-OFDM system have the ability to transmit four times the data as compared
to the BPSK-OFDM system. Moreover, the MSTC-OFDM and the HT-Fast-OFDM systems do not affect the
degradation of the bit error rate.
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Figure 6. Sub-carriers representation for (a) BPSK-OFDM, (b) HT-Fast-OFDM [19], and (c) MSTC-OFDM

-100 0 100
Frequency (KHz)

-80

-70

-60

-50

-40

P
SD

[d
B

]

BPSK-OFDM system

-100 0 100
Frequency (KHz)

-80

-70

-60

-50

-40

P
SD

[d
B

]

MSTC-OFDM system

-100 0 100
Frequency (KHz)

-80

-70

-60

-50

-40
P

SD
[d

B
]

HT-Fast-OFDM system

Figure 7. Comparison between BPSK-OFDM, MSTC-OFDM, and HT-Fast-OFDM [18] based on PSD

As mentioned in section 3, the proposed method can send four times as much data as a BPSK-OFDM
system using the same bandwidth. Moreover, the BER is not degraded because the suggested method (MSTC-
OFDM) uses one-dimensional modulation. Figure 8 compares OFDM BPSK, MSTC-OFDM, and HT-Fast-
OFDM systems based on BER and data rate measurements. The two systems, MSTC-OFDM and HT-Fast-
OFDM, can transfer four times more data than the BPSK-OFDM system; however, there is no degradation in
the bit error rate, as illustrated in Figure 8(a). For the same BER (BER = 10−4) and the same data rate, the
signal-to-noise ratio (SNR) of the 16QAM-OFDM system is 12.3 dB, whereas the SNR of the MSTC-OFDM
system is 8.4 dB. Therefore, the SNR gain while employing the MSTC-OFDM system is 3.9 dB. As a result, it
may be concluded that the MSTC-OFDM system can transport data at a high rate while consuming less power.

It is clear from Figure 8(b) that the suggested MSTC-OFDM system has the same efficiency as the
HT-Fast-OFDM and 16QAM-OFDM systems. The three systems can transmit 720 kbps at Eb/N0 = 10 dB,
which is four times the data of the BPSK-OFDM system (RateBPSK−OFDM = 180 kbps). Furthermore, the
suggested system outperforms the 16QAM-OFDM system in terms of BER, as demonstrated in Figure 8(a),
and outperforms the HT-Fast-OFDM system in terms of complexity.

4.1. Computational complexity
The complexity of BPSK-OFDM, MSTC-OFDM, and HT-Fast-OFDM is explained in this subsection.

The FFT complexity for additions is N log2 N, whereas it is (N/2) log2 N for multiplication [25]. The following
assumptions are applied to calculate complexity: i) the complexity of subtraction equals the complexity of
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addition and ii) the complexity of division equals the complexity of multiplication. In the BPSK-OFDM system,
it requires a total of Nlog2(N) additions and (N/2)log2(N) multiplications. The HT-Fast-OFDM system in
[18] is divided into two units, each with N FFT points. The Hilbert transform pair, namely g(t) and ˆg(t), is
multiplied by the two units. The first unit is multiplied by the Hilbert transform g(t), while the second unit
is multiplied by the Hilbert transform ˆg(t). The two components are then joined. As a result, this system
will require Nlog2(N) + 2 multiplications and 2Nlog2(N) + 1 additions. The computational complexity of
our suggested system (MSTC-OFDM) is as follows: in addition to the computational complexity of the BPSK-
OFDM system, the MSTC technique requires 4N multiplication operations and 6N addition operations. As a
result, the suggested approach, MSTC-OFDM, has a total of (N/2)log2(N) + 4N multiplication operations and
Nlog2(N) + 6N addition operations. Table 1 highlights the computational complexity of the BPSK-OFDM,
HT-Fast-OFDM, and MSTC-OFDM systems. It can be observed that the computational complexity of the
suggested system, MSTC-OFDM, is lower than that of the HT-Fast-OFDM system.
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Figure 8. Comparison between BPSK-OFDM, MSTC-OFDM, and HT-Fast-OFDM [18] based on (a) BER
and (b) data rate

Table 1. Computational complexity analysis
BPSK-OFDM system HT-Fast-OFDM system [18] MSTC-OFDM system

No. Multiplications No. Additions No. Multiplications No. Additions No. Multiplications No. Additions
N (N/2)log2(N) Nlog2(N) Nlog2(N) + 2 2Nlog2(N) + 1 (N/2)log2(N) + 4N Nlog2(N) + 6N

N=128 896 448 1793 898 1536 960
N=1024 10240 5120 20481 10242 15360 9216
N=4096 49152 24576 98305 49154 69632 40960

5. CONCLUSION
The MSTC technique is proposed in this article as a promising technique for 5G. This technique com-

presses the symbol time to one-fourth of its original length. According to simulation results, the proposed
method (MSTC-OFDM) dramatically reduces the required time for each OFDM symbol by 75% when com-
pared to a traditional OFDM system. This ultimately leads to an increase in capacity. The simulation results
indicate that the proposed system (MSTC-OFDM) is equally efficient to the HT-Fast-OFDM and 16QAM-
OFDM systems. Where the simulation results prove that the proposed system (MSTC-OFDM) can transmit
data at the same rate (720 kbps) as the 16QAM-OFDM system, which is four times the rate of the BPSK-
OFDM system (180 kbps). However, the suggested system outperforms the 16QAM-OFDM system in terms
of BER, where the 16QAM-OFDM system requires an SNR that is 3.9 dB higher than the MSTC-OFDM
system in order to achieve the same BER (BER = 10−4). As a result, the MSTC-OFDM system can transfer
the same amount of data as the 16QAM-OFDM system while consuming less power. In terms of computa-
tional complexity, the MSTC-OFDM outperforms the HT-Fast-OFDM system, while the BPSK-OFDM system
outperforms the MSTC-OFDM. However, all three systems still have the same order of complexity O(n).
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