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 Microprocessor power and thermal density are increasing exponentially. The 

reliability of the processor declined, cooling costs rose, and the processor's 

lifespan was shortened due to an overheated processor and poor thermal 

management like thermally unbalanced processors. Thus, the thermal 

management and balancing of multi-core processors are extremely crucial. 

This work mostly focuses on a compact temperature model of multicore 

processors. In this paper, a novel task assignment is proposed using a genetic 

algorithm to maintain the thermal balance of the cores, by considering the 

energy expended by each task that the core performs. And expecting the cores’ 

temperature using the hotspot simulator. The algorithm assigns tasks to the 

processors depending on the task parameters and current cores’ temperature 

in such a way that none of the tasks’ deadlines are lost for the earliest deadline 

first (EDF) scheduling algorithm. The mathematical model was derived, and 

the simulation results showed that the highest temperature difference between 

the cores is 8 C for approximately 14 seconds of simulation. These results 

validate the effectiveness of the proposed algorithm in managing the hotspot 

and reducing both temperature and energy consumption in multicore processors. 
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1. INTRODUCTION  

Nowadays, the difficulties with thermal management in modern multi-core central processing units 

(CPUs) become increasingly significant and essential hence, one of the difficulties faced by electrical and 

computer designers is the thermal management of integrated circuits (ICs), as IC performance and reliability are 

impacted by temperature. According to studies in [1] the IC lifetime can be reduced by 50% for every  

10 C to 15 C increase in the IC peak temperature hence, many research and articles are focusing on this issue. 

One of the methods of controlling chip temperature is consisting of active cooling integration (e.g., fan cooling, 

water circulation, and oil cooling and heat pipe). This technique is not always suitable for embedded systems 

especially those with limited size and battery. Another method of chip thermal management is a program 

management approach in which the temperature of the central processing unit (CPU) can be balanced by 

assignment of tasks to the CPU cores according to the cores’ thermal spot. This method doesn’t have a limitation 

of the method as mentioned above.  

Many polished articles studied the reduction of the peak/overall core temperatures by program 

management such as Rubio-Anguiano et al. [2] proposed a scheduler consisting of two stages: offline stage and 

online stage. In the offline stage, a minimum clock frequency is calculated that fulfills the deadline and 

partitioning scheme. And in the online stage, a fixed-priority zero laxity policy is applied as a global task 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264 

5254 

allocation. The online stage scheduler in which accepts or rejects soft real-time aperiodic tasks selecting the 

upper lowest available frequency to minimization on power consumption while meeting time and thermal 

constraints. Also, Rodriguez and Yomsi [3] proposed a framework that captures both the temporal and thermal 

behavior of the system after scheduling tasks by one of the fixed priority algorithms like Deadline Monotonic 

orate Monotonic.  

Many works tried to control CPU temperature reduction by using bio-inspired algorithms as such, 

Rupanetti and Salamy [4] proposed a novel strategy for task migration in multiprocessors by combining modified 

ant colony algorithm (ACO) and first-fit task allocation heuristic. The ACO algorithm tries to split tasks and 

migrate them to processors with low task utilization to minimize the overall power consumption of the 

multiprocessor system on a chip (MPSoC). Then tasks are scheduled by the earliest deadline first algorithm. In 

the same way, many other works use bio-inspired algorithms for controlling CPU thermal as it is done in [5], [6]. 

Regarding CPU frequency, Singh and Thangaraju [7] in their article labeled running processes or jobs as cold and 

hot processes. And they introduced a hybrid frequency scaling governor to reduce the overall power of the 

platform. This was caused by temperature reduction of the cores from 85 C to 47 C according to their 

experimental results. Li et al. [8] tried to minimize both the temperature and energy consumption of heterogeneous 

MPSoC by proposing two phases of task scheduling. First phase tasks are assigned to the processor while 

thermal and power dissipation factors are taken into account. And the second phase deduces the thermal/energy 

optimal speed assignment for tasks by considering the heterogeneity of both processors and tasks. For 

controlling peak temperatures, Jayaseelan and Mitra [9] proposed two techniques to control the peak 

temperature of the chip. First, they analyzed the peak temperature of the repeating task sequence and develop 

an optimal sequence of the tasks to minimize the peak temperature. The second proposed technique is the 

iterative algorithm that combines task sequencing with voltage scaling to further lower the peak temperature 

while satisfying the timing constraints. Some researchers are attempting of reducing the temperature by 

utilizing the dynamic voltage frequency (DVFS) technique frequency as [10]–[13] used DVFS technique to 

reduce power consumption by lowering chip voltage and frequency accordingly as a result the CPU 

temperature is reduced. And Durand and Lesecq [14] analyzed the nonlinearity between power and 

temperature. And they used a technique that implements a chopped scheme on top of a robust DVFS approach 

in order to prevent increasing temperature. Unfortunately, the DVFS technique has a limited impact on 

temperature and causes CPU performance reduction, as the execution time increases by lowering frequency 

[15]. Another way of reduction of CPU temperature is also can be performed by using adaptive supply and 

body voltage control technique as Sulaiman et al. [16] that they used particle swarm algorithm (PSO) combined 

with the pareto front (PF) to determine the optimal solution of threshold and supply voltage (𝑉𝑡ℎ − 𝑉𝑑𝑑) that 

caused by thermal reduction rages from 8 C to 12 C for each body bias strep voltage. Also, they used adaptive 

supply and body voltage control in [17] to compensate the threshold voltage and clock frequency for ultra-low 

power design by supplying optimal 𝑉𝑑𝑑 and NMOS-PMOS body bias voltages (𝑉𝐵𝐵 − 𝑁 & 𝑉𝐵𝐵 − 𝑃) to the 

microprocessor unit and results in a power saving up to 20% and thermal reduction in a range of 8 C for each 

body bias step voltage. CPU temperature also can be reduced by CPU floor planning as it is done by Xie and 

Hung [18] utilized a floor planning technique for peak temperature reduction and thermal balancing on the 

CPU. 

This article presents the analysis of the proposed task assignment algorithm using a natural inspiration 

genetic algorithm for thermal balancing in multi-core processors by taking the temperature of each core and 

then assigning tasks depending on the current cores’ temperature and the expected energy consumption of the 

tasks using the proposed assignment algorithm. The algorithm analyzes the behavior of different core 

temperature states while considering the energy expended by each task that the core performs including parallel 

application tasks. The results of the performance achieved with its application in different simulation 

environments are analyzed and compared to thermal unbalanced approaches. The proposed approach collects 

information about the real hotspot of all cores besides the task mapped and executed by each core on each 

processor to decide the next task mapped and assigned for each core. This approach decides to 

dynamically move tasks between light and heavy types so that the temperature difference between the cores 

reduces. The results validate the effectiveness of the proposed algorithm in managing the hotspot and 

reducing both temperature and energy consumption in multicore processors in high-performance computer 

systems. 

The rest of the paper is organized as: section 2 explains the theoretical background and relation 

between power and temperature by algebraic equations. In section 3 system models are explained which 

consist of power and task modeling. Section 4 talks about the assignment algorithm in detail by expressing the 

pseudo-code at the end of the section. the simulation and results of two cases (equal cores’ initial temperature and 

different cores’ initial temperature) are illustrated and discussed in section 5. Finally, the conclusions are expressed 

in section 6. 
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2. THEORETICAL BACKGROUND 

Overall, this paper introduces the use of thermal RC-modeling as an accurate efficient modeling 

system for temperature estimation in multi-core processors considering 𝑃𝑖  is the average power of a task with 

an execution time 𝑡𝑖, the temperature rise on each core caused by task (𝑖) is 𝑇𝑖  that can be expressed as (1) [15], 

 

𝑇𝑖 = 𝑃𝑖 ∗ 𝑅 + 𝑇𝐴 − (𝑃 ∗ 𝑅 + 𝑇𝐴 − 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑒−𝑡𝑖/𝑅𝐶   (1)  

 

The temperature rise according to the next task can be stated as (2) [15], 

 

𝑇𝑖+1 = 𝑃𝑖+1 ∗ 𝑅 + 𝑇𝐴 − (𝑃 ∗ 𝑅 + 𝑇𝐴 − 𝑇𝑖)𝑒−𝑡𝑖+1/𝑅𝐶   (2)  

 

where: 

𝑃𝑖  is the average power of Task (𝑖). 

𝑡𝑖  is the execution time of Task(𝑖) 

𝑇𝐴 is ambient temperature. 

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the initial temperature.  

𝑅 is thermal resistance. 

𝐶 is thermal capacitance. 

From the above equations, we can conclude that four factors have an impact on the core’s transient 

temperature: average power of the executed task on the core, initial temperature, execution time, and the 

number of assigned tasks on the core. Thus, if we execute more tasks on a core, the temperature rise of the core 

will be the sum of the power and execution time of each task. 

If the periodic tasks are mapped as (𝑇𝑎𝑠𝑘1, 𝑇𝑎𝑠𝑘2, 𝑇𝑎𝑠𝑘3, … 𝑇𝑎𝑠𝑘𝑛) to be executed by a multicore 

CPU (𝐶1, 𝐶2, 𝐶3, … 𝐶𝑛). the problem is how to assign Tasks in such a way that keeps the temperature of the 

cores balanced. This can be done by performing an assignment algorithm which takes the cores’ temperature 

and task parameters as input, and implementation of the assignment algorithm goal is the core with the highest 

temperature take over a set of tasks which their energy summation is less, compared to the energy sum of other 

cores’ assigned task set by a factor which’s covered in the next sections. And the same way for the core with the 

second-highest temperature. The algorithm will continue until the assignment of the task-set for the coldest core. 

 

 

3. THE PROPOSED SYSTEM MODEL 

3.1. Power model 

In complementary metal–oxide–semiconductor (CMOS) ICs which are building block of modern 

processors, power dissipation can be classified generally into two aspects; dynamic power and static power 

dissipation. The dynamic power dissipation is caused by the charging and discharging of the transistor’s 

junction capacitors and the short interval short circuit during toggling between P-MOS and N-MOS. However, 

the static power is dissipated because of leakage current through reverse biased junctions of the transistor [19]. 

The dynamic power dissipation (Pd) can be expressed (3) [20], 

 

𝑃𝑑 = 𝐶𝑒𝑓𝑓 . 𝑉𝑑𝑑
2 . 𝑓  (3)  

 

where:  

Vdd is the supply voltage,  

Cef is the effective capacitance and  

f is the clock frequency.  

And the frequency can be represented by (4) [21], 

 

𝑓 = 𝑘. (𝑉𝑑𝑑 − 𝑉𝑡)2/𝑉𝑑𝑑  (4)  

 

where 𝑉𝑡 is threshold voltage and 𝐾 is hardware constant. 

The leakage power dissipation is expressed (5) [21], 

 

𝑃𝑙 = 𝑉𝑑𝑑 . 𝐼𝑙𝑒𝑎𝑘   (5)  

 

where 𝐼𝑙𝑒𝑎𝑘 is the leakage current which consists of gate-oxide leakage current 𝐼𝑔 and sub-threshold leakage 

current 𝐼𝑠 Gate-oxide leakage current and they expressed as (6) [22], 

 

𝐼𝑔 = 𝑀𝑊(𝑉𝑑𝑑/𝑊𝑜𝑥)2𝑒−𝑎𝑊𝑜𝑥/𝑉𝑑𝑑  (6)  
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where 𝑀 and 𝛼 are hardware parameters, 𝑊 is the gate width and 𝑊𝑜𝑥  is the oxide thickness. Sub-threshold 

leakage current is calculated by (7) [22], 

 

𝐼𝑠 = 𝐾𝑊𝑒−𝑉𝑡ℎ/𝑛𝑉ℎ (1 − 𝑒−𝑉𝑑𝑑/𝑉ℎ)  (7)  

 

where 𝐾 and 𝑛 are hardware parameters. 𝑉ℎ is the voltage related to the current chip temperature. 

 

3.2. Task classification and modeling 

According to [23] tasks can be classified into three classes. Depending on the application, we decide 

to use the class of the task. For instance, if we need to monitor a process by a specified sensor, then we should 

use a periodic task, however, if monitoring of that process is obliged to be within a specified time, then this 

task should be a real-time class. Task classes are described stated in the followings: 

− Independent vs dependent tasks: When one activity's completion depends on that of another work or task, 

that task is said to be dependent. The majority of general-purpose programs operate on the dependent task 

approach. Directed acyclic graph (DAG) is used to depict the dependency between tasks (GAG). Tasks are 

represented in a DAG by nodes, while interdependence between tasks is represented by edges. 

− Real time vs non-real time tasks: When the CUP is required by the operating system to complete a task 

before the deadline expires, the task is said to be in real time. Real time tasks have two subclasses, the first 

of which is hard real time tasks, wherein the deadline for completing the task must be met. The processor 

is permitted to finish the task execution by some intervals that depend on the application and the level of 

application seriousness in the second subclass of real time tasks, known as soft real time tasks. 

− Periodic vs aperiodic tasks: A task that arrives in fixed time intervals is called a periodic task. The instant 

of the first activation is called phase ϕ. For a periodic task τ, its activation time for Kth instant can easily be 

expressed by ∅ + (𝑘 − 1𝑇) where T is period. And in real time systems the task period is assigned as the 

task’s deadline in most of the cases. Aperiodic tasks, on the other hand, have an indefinite series of activity 

and arise erratically, making it difficult and inaccurate to estimate when they will appear. 

This study considers independent non-real time periodic tasks which are modeled as follows: 

𝑇𝑎𝑠𝑘𝑖(𝑡𝑖 , 𝑃𝑖 , 𝐸𝑛𝑖) where: 

𝑡𝑖  is the execution time of 𝑇𝑎𝑠𝑘𝑖 . 

𝑃𝑖   is the average power consumption of 𝑇𝑎𝑠𝑘𝑖. 

𝐸𝑛𝑖  energy dissipated by 𝑇𝑎𝑠𝑘𝑖. 

The task period depends on the application of the task. However, the other parameters of the tasks 

depend on the CPU configuration and they will be determined through the simulation setup. One of the 

parameters is 𝑡𝑖 and could be accurately measured in selected CPU configuration by GEM5 [24], 𝑃𝑖  is could 

be measured using multicore power, area, and timing (McPAT) [25] with the same CPU configuration that was 

used for GEM5, and finally 𝐸𝑛𝑖 could be achieved by multiplying 𝑃𝑖and 𝑡𝑖 together to determine the energy of 

each Task as explained by the block diagram in Figure 1. 

 

 

 
 

Figure 1. The signal flow diagram of the task model 
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4. THE PROPOSED TASK ASSIGNMENT ALGORITHM 

Let’s consider a set of independent, heterogeneous (i.e., tasks with different parameters), and periodic 

tasks. The algorithm of the task assignment will assign the tasks for each hyper-period of the tasks based on 

the decision factors (𝑎1, 𝑎2, … 𝑎𝑚) which depend on the cores’ temperature (𝑇1, 𝑇2, 𝑇3, … 𝑇4) and the tasks’ 

energy as illustrated in Figure 2. The factor (𝑎𝑗)assigns the percent of the total energy that should be consumed 

by each core. Hence, the energy that should be consumed by each core to keep the temperature balance of the 

CPU is computed by multiplying 𝑎𝑗factor by the total energy of the tasks as expressed in (8). 

 

𝐶𝐸𝑛𝑗
≈ 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙  (8) 

 

Where 𝐶𝐸𝑛𝑗
 is the total energy that should be executed by 𝑐𝑜𝑟𝑒𝑗 during a hyper-period. 

 

𝐸𝑛𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑛𝑖
𝑖=0
𝑛   (9) 

 

𝑛 is the total number of the tasks 𝐸𝑛𝑖
 is the energy of Taski   

 

 

 
 

Figure 2. Task assignment signal flow 

 

 

The factor 𝑎𝑗 will be computed by the principle of load assignment according to the core’s 

temperature. Such that if the cores’ temperatures are equal, 𝑎𝑗 of all the cores will be equal and if there’s any 

difference between them, the factor 𝑎𝑗 will be highest for the lowest core temperature to execute the lowest 

energy and vice versa for the heist core temperature. This load distribution can be performed utilization of a 

square curve as shown below in Figure 3. The factor 𝑎𝑗 can be found by substitution the temperature of each 

core into (12) and determining their corresponding Y-axis value as shown in Figure 3. 

 

𝑦𝑗 = (𝑇𝑗 − 2 ∗ 𝑇𝑚𝑎𝑥)2  (10) 

 

where: 
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Tmax = 𝑀𝑎𝑥{𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑚}.  (11) 

 

Now, 𝑎𝑗 can easily be found by the following expression: 

 

𝑎𝑥 =
𝑦𝑥

∑ 𝑦𝑗
𝑚
𝑗=1

 ; 𝑥 ∈ {1, 2, 3, … , 𝑚}.  (12) 

 

After determination of the decision factors, we can perform a task assignment by genetic algorithm 

(Geno-type) [26] such that each core (𝐶𝑗) executes (𝑎𝑗) of total tasks energy given that (0 ≤ 𝑎𝑗 ≤ 1). This can 

be done by treating each gene in a chromosome as a task as shown in Figure 4. Gene 1 represents Task 1, 

Gene 2 represents task 2, and so on. 

 

 

 
 

Figure 3. Decision factor curve to find 𝛼𝑥 factor of decision 

 

 

 
 

Figure 4. Mapping tasks to genes, in which each task is represented by a gene 

 

 

At the beginning of the algorithm, a number (𝑁𝑝) of chromosome vectors with a length equal to the 

tasks vector length (𝑛) will be generated randomly which’s calle d initial population matrix with a size equal 

to (𝑁𝑝 ∗ 𝑛). Then the generated genes of the chromosomes are changed with each iteration according to the 

genetic algorithm (expressed in algorithm-1) such that we achieve the best fitness which’s expressed in (13). 

The chromosome vector of the best fitness is mapped to the tasks vector in such a way that the tasks in which 

corresponding genes are equal to “1” are assigned to the core during a hyper-period. This assures that the 

energy consumed by the core is equal to 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙 . See Figure 5. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴𝑏𝑠 {𝐶𝐸𝑛𝑗
− 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙}.  (13) 

 

After that, the assigned tasks are extracted from the tasks vector and the remaining tasks will be a 

candidate to be assigned to the next core. This process will continue until all the tasks are assigned to all the 

CPU cores. But it is critical to mention that the assignment algorithm won’t be applied on the last core even if 

we do not achieve exact (𝐶𝑒𝑛𝑙𝑎𝑠𝑡−𝑐𝑜𝑟𝑒
≈ 𝑎𝑙𝑎𝑠𝑡−𝑐𝑜𝑟𝑒 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙) to guarantee the implementation of all tasks. The 

task assignment algorithm is expressed in algorithm 1. 
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Figure 5. Illustration of using genetic algorithm in task assignment 

 

 

Algorithm-1  
1: Input: Tasks’ (𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛) and (𝐸𝑛1, 𝐸𝑛2, 𝐸𝑛3, … , 𝐸𝑛𝑛) parameters. 

2: Input: Cores’ Temperature(𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑚).  
3: Compute Total Energy. 

4: Input Energy assignment decision factors(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑚) 𝑤ℎ𝑒𝑟𝑒: 0 ≤ 𝑎𝑗 ≤ 1. 

5: Perform Genetic Algorithm for each core such that𝐶𝑒𝑛𝑗
≈ 𝑎𝑗 ∗ ∑ 𝐸𝑛𝑖

𝑛
1 . 

Input: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑁𝑝, 𝑖𝑡𝑒𝑟, 𝑛, 𝑘, 𝜌𝑐 , 𝜌𝑚  

Initialize a random Population of binary string (𝑠𝑖𝑧𝑒 = 𝑁𝑝 ∗ 𝑛). 
For j=1 to (m-1) 

Evaluate Fitness:  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴𝑏𝑠(𝑠𝑢𝑚( 𝐶𝐻 ⨀ 𝐸𝑛) − 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙) 

For g=1 to 𝑖𝑡𝑒𝑟 
Perform Tournament selection of tournament size k 

For h=1 to 𝑁𝑝/2 
Randomly choose two parents 

Generate a random number (r) 

If r<𝜌𝑐 

Select a random crossover site 

Generate two offspring using single-point-crossover 

else  

Copy the selected parents as offspring 

End 

End 

For g=1 to 𝑁𝑝  

Generate n random number between 0 and 1 

Perform bitwise mutation of 𝑔𝑡ℎ offspring if the number is less than 𝜌𝑚 

Evaluate the Fitness of offspring 

End 

Combine Population and Offspring to perform (𝜇 + 𝜆) 
End 

Map the chromosome of the best fitness to the task set so that each “1” in the 

chromosome is an assigned task to Core (j) 

Extract the assigned tasks form the task set 

n=n-number of extracted tasks. 

End 

Assign the remaining tasks to the last core (𝑚). 

 

Once all the tasks are assigned to the cores according to their temperature, they will be simulated by 

a hotspot simulator to get the temperature response of the processor. And the steady-state value yield in the 

output of the hotspot simulator will be an input to the assignment algorithm for the next hyper-period. Again, 

the algorithm performs task assignment depending on the latest cores’ temperature of the previous period. 

 

 

5. SIMULATION AND RESULTS 

5.1. Simulation setup 

The Architecture used in this paper is a Quad-Core O3 (out of order) Processor with an I-Cache and 

D-Cache capacity of 32KB. And a dedicated L2-Cache memory with 1MB the capacity of the RAM used in 

this architecture is 64 MB integrated with DDRx1 memory controller type and the clock frequency is set to 

2 GHz. The complete architecture is shown in Figure 6. 
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Figure 6. Simulation architecture consisting of a 4 cores CPU with dedicated L1 and L2 of each core 

 

 

5.2.  Task benchmarks and results 

For testing the efficiency of our algorithm, we have to use some standard test benchmarks. The 

benchmarks which are used for the simulation of our algorithm consist of Spec2006 [27], Mibench [28], and 

Mediabench [29]. The detail of each benchmark is expressed in Table 1. 
 

 

Table 1. Real benchmarks 

Group Tasks# 
Benchmark 

Name 

Ex. Time 

(ms) 

Leakage 

Power (W) 

Dynamic 

Power (W) 

Energy 

(mJ) 
Description 

S
p

ec
2
0

0
6
 

0 401.bzip2 83.654 1.15327 0.318345 123.106 File compression program 
1 456.hmmer 105.657 0.72241 0.105194 87.4425 Used in computational biology to search for 

patterns in DNA sequences 

2 470.lbm 70.205 1.15327 0.364266 106.539 Implements the so-called "Lattice Boltzmann 
Method" to simulate incompressible fluids in 3D 

3 429.mcf 75.89 0.72241 0.144257 65.7716 The program is designed for the solution of 

single-depot vehicle scheduling (sub-) problems 
occurring in the planning process of public 

transportation companies. 

4 458.sjeng 174.763 1.15327 0.178489 232.742 It attempts to find the best move via a 
combination of alpha-beta or priority proof 

number tree searches 

M
i 

B
en

ch
 

5 basicmath 490.239 0.66866 0.041022 347.912 Performs simple mathematical calculations 
6 bitcount 62.553 1.15327 0.340039 93.411 Tests the bit manipulation abilities of a processor 

by counting the number of bits in an array of 

integers 
7 qsort 71.714 0.84359 0.187796 73.9645 Sorts a large array of strings into ascending order 

using the well-known quick sort algorithm 

8 susan 513.823 1.15327 0.129601 659.169 An image recognition package 
9 patricia 340.339 1.1158 0.279612 474.913 A data structure used in place of full trees with 

very sparse leaf nodes 
10 sha 882.386 0.84359 0.058882 796.325 The secure hash algorithm that produces a 160-

bit message digest for a given input 

11 blowfish 67.093 1.15062 0.331208 99.4203 A symmetric block cipher with a variable length 
key 

12 pgp 

sign/verify 

490.239 0.66866 0.041022 347.912 A public key encryption algorithm developed by 

Phil Zimmerman 
13 tiff2bw 280.534 0.84359 0.077 258.256 Converts a color TIFF image to black and white 

image 

14 typeset 70.75 0.74111 0.135449 62.0162 General typesetting tool, that has a front-end 
processor for HTML 

15 FFT/IFFT 99.812 2.48721 0.868513 334.941 Performs a fast fourier transform 

M
ed

ia
 B

en
ch

 

16 PEGWIT 82.678 2.48721 1.19988 304.841 A program for public key encryption and 
authentication 

17 EPIC 174.763 0.95743 0.179687 198.725 An experimental image compression utility 

18 RASTA 84.629 0.72241 0.127025 71.8871 A program for speech recognition 

19 Ghostscript 72.412 1.15065 0.357371 109.199 An interpreter for the PostScript language 
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5.3.  Simulation results 

To evaluate the assignment algorithm the simulation was executed for 10 hyper-periods. For each 

hyper-period, all the tasks are assigned and executed by the processor, and the final temperature of each hyper-

period will be the initial temperature of the next hyper-period. This will be repeated for 10 hyper-periods. The 

simulation is performed in two parts, first part is setting the initial temperature of cores to equal values to know 

the ability of the assignment algorithm to maintain the balance of the temperature between the cores. And the 

second part is performed by setting each core’s initial temperature with different values to inspect if the 

assignment algorithm is capable of re-balance the temperature of the processor cores. 

 

5.3.1. Equal initial temperature 

Figure 7 shows the temperature trend of each core and the executed task by each core on the same 

time domain, and the initial temperature of the cores is set at 45 ℃ and the ambient temperature is set at 45 ℃. 

From the results which are shown in the following Figure 8. It can be seen that the temperature of each core is 

slightly equal to the temperature of the other cores. This shows that the algorithm is successful in maintaining 

the temperature balance of the processor cores in such a way that the maximum difference in temperature 

between cores is nearly 9 ℃ for each hyper period. See Figure 8. 

 

 

 
 

Figure 7. Cores temperature trend for the case of equal initial temperature 

 

 

 
 

Figure 8. Maximum temperature different between each core for 10 hyper-periods for equal initial 

temperature case 

 

 

5.3.2. Different initial temperature 

In the same previous way, we performed the simulation of our architecture with the same algorithm 

and test benchmarks. The only thing that has been changed, is the processor core’s initial temperature. Which 

sat with different initial temperatures as follows: 
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− Core1 Temp: 65.48 ℃ 

− Core2 Temp: 49.77 ℃ 

− Core3 Temp: 45.82 ℃ 

− Core4 Temp: 51.86 ℃ 

− Ambient Temperature: 45 ℃ 

According to the results shown in Figure 9. The temperature gets balanced after a few seconds of task 

execution. This proves that the algorithm can balance processor cores’ temperatures even if their temperatures 

are different as it can be seen in Figure 10 shows the maximum temperature difference between each core for 

each hyper period is slightly 8 ℃ except for the first hyper-period as the cores’ initial temperatures are different. 

 

 

 
 

Figure 9. Cores temperature trend for non-equal initial temperature 

 

 

 
 

Figure 10. Maximum temperature difference between each core for 10 hyper-periods for the case of non-

equal initial temperature 

 

 

6. CONCLUSION 

In this paper, an assignment algorithm has been proposed to keep the balance of temperature between 

the cores. The simulation is performed on a Quad-Core platform with two levels of cache and L2-cache 

dedicated. The mentioned task benchmarks are simulated using GEM5 to measure the task execution time on 

the platform. The McPAT simulator is used to measure the power of each task by exploiting the GEM5 statistics 

outputs. The energy of each task is measured through both GEM5 and McPAT outputs. Once the parameters 

of each task are achieved, they are employed and assigned to the cores according to the cores’ current 

Temperature and energy of each task. The algorithm assigns the most energy to the lowest temperature core 

and the least energy to the core with the highest temperature. The algorithm uses genetic optimization for 

assignment of the tasks. The simulation results showed that the highest temperature difference between the 
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cores is 8 ℃ for approximately 14 seconds. These results validate the effectiveness of the proposed task 

assignment algorithm in managing the hotspot and reducing both temperature and energy consumption in 

multicore processors. From Figures 7 and 9 it is noticeable from the results that there’s a large peak takes place 

during each hyper-period of the cores this can be eliminated by using a proper task portioning algorithm after 

assignment of the tasks. Hence our future is to integrate task partitioning algorithm with our proposed 

assignment algorithm, to reduce the peak temperature of the cores. 

 

 

REFERENCES 
[1] W. H. Gerling, A. Preussger, and F. W. Wulfert, “Reliability qualification of semiconductor devices based on physics-of-failure 

and risk and opportunity assessment,” Quality and Reliability Engineering International, vol. 18, no. 2, pp. 81–98, Mar. 2002, doi: 
10.1002/qre.468. 

[2] L. Rubio-Anguiano, G. Desirena-López, A. Ramírez-Treviño, and J. L. Briz, “Energy-efficient thermal-aware multiprocessor 

scheduling for real-time tasks using TCPN,” Discrete Event Dynamic Systems, vol. 29, no. 3, pp. 237–264, Sep. 2019, doi: 
10.1007/s10626-019-00285-x. 

[3] J. P. Rodriguez and P. M. Yomsi, “Thermal-aware schedulability analysis for fixed-priority non-preemptive real-time systems,” in 

2019 IEEE Real-Time Systems Symposium (RTSS), Dec. 2019, pp. 154–166. doi: 10.1109/RTSS46320.2019.00024. 
[4] D. Rupanetti and H. Salamy, “Energy-aware task migration through ant-colony optimization for multiprocessors,” in 2021 IEEE 

12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Dec. 2021, pp. 0901–0907. 

doi: 10.1109/UEMCON53757.2021.9666584. 
[5] M. S. Babadi, M. E. Shiri, M. R. M. Goudarzi, and H. H. S. Javadi, “Multi-objective tasks scheduling using artificial bee colony 

algorithm based on cellular automata in cloud computing environment,” International Journal of Electrical and Computer 

Engineering (IJECE), vol. 12, no. 5, pp. 5657–5666, Sep. 2022, doi: 10.11591/ijece.v12i5.pp5657-5666. 
[6] T. P. Thanh, L. N. The, S. Elnaffar, C. N. Doan, and H. D. Quoc, “An effective PSO-inspired algorithm for workflow scheduling,” 

International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 5, pp. 3852–3859, Oct. 2018, doi: 

10.11591/ijece.v8i5.pp3852-3859. 
[7] B. P. Singh and B. Thangaraju, “Thermal aware power save policy for hot and cold jobs,” in 2021 IEEE International Conference 

on Electronics, Computing and Communication Technologies (CONECCT), Jul. 2021, pp. 1–7. doi: 

10.1109/CONECCT52877.2021.9622715. 
[8] T. Li, G. Yu, and J. Song, “Minimizing energy by thermal-aware task assignment and speed scaling in heterogeneous MPSoC 

systems,” Journal of Systems Architecture, vol. 89, pp. 118–130, Sep. 2018, doi: 10.1016/j.sysarc.2018.08.003. 

[9] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and voltage scaling,” in 2008 IEEE/ACM International Conference 
on Computer-Aided Design, Nov. 2008, pp. 618–623. doi: 10.1109/ICCAD.2008.4681641. 

[10] M. Kadin and S. Reda, “Frequency planning for multi-core processors under thermal constraints,” in Proceeding of the thirteenth 

international symposium on Low power electronics and design - ISLPED ’08, 2008, pp. 213–216. doi: 10.1145/1393921.1393977. 
[11] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance microprocessors,” in Proceedings HPCA 

Seventh International Symposium on High-Performance Computer Architecture, 2001, pp. 171–182. doi: 

10.1109/HPCA.2001.903261. 
[12] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs energy optimization for DVFS-enabled processors in embedded 

systems,” in 8th International Symposium on Quality Electronic Design (ISQED’07), Mar. 2007, pp. 204–209. doi: 

10.1109/ISQED.2007.158. 
[13] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip regulators,” ACM Transactions on Architecture and Code 

Optimization, vol. 8, no. 1, pp. 1–24, Apr. 2011, doi: 10.1145/1952998.1952999. 

[14] S. Durand and S. Lesecq, “Nonlinear and asymmetric thermal-aware DVFS control,” in 2013 European Control Conference (ECC), 
2013, pp. 3240–3245. 

[15] Z. Wang, S. Ranka, and P. Mishra, “Efficient task partitioning and scheduling for thermal management in multicore processors,” in 

Proceedings of International Symposium on Quality Electronic Design, 2015. 
[16] D. Sulaiman, I. Hamarash, and M. Ibrahim, “Microprocessors optimal power dissipation using combined threshold hopping and 

voltage scaling,” IEICE Electronics Express, vol. 14, no. 24, pp. 20171046–20171046, 2017, doi: 10.1587/elex.14.20171046. 

[17] D. Sulaiman, I. Hamarash, and M. Ibrahim, “Adaptive supply and body voltage control for ultra-low power microprocessors,” 
IEICE Electronics Express, vol. 14, no. 12, pp. 20170306–20170306, 2017, doi: 10.1587/elex.14.20170306. 

[18] Y. Xie and W. Hung, “Temperature-aware task allocation and scheduling for embedded multiprocessor systems-on-chip (MPSoC) 

design,” The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 45, no. 3, pp. 177–189, Dec. 

2006, doi: 10.1007/s11265-006-9760-y. 

[19] J. Kang, “Scheduling algorithms for energy minimization,” University of Florida ProQuest Dissertations, 2008. 
[20] M. J. Walker, S. Diestelhorst, A. Hansson, D. Balsamo, G. V. Merrett, and B. M. Al-Hashimi, “Thermally-aware composite run-

time CPU power models,” in 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation 

(PATMOS), Sep. 2016, pp. 17–24. doi: 10.1109/PATMOS.2016.7833420. 
[21] M. Awadalla, “Processor speed control for power reduction of real-time systems,” International Journal of Electrical and Computer 

Engineering (IJECE), vol. 5, no. 4, pp. 701–713, Aug. 2015, doi: 10.11591/ijece.v5i4.pp701-713. 

[22] N. S. Kim et al., “Leakage current: Moore’s law meets static power,” Computer, vol. 36, no. 12, pp. 68–75, Dec. 2003, doi: 
10.1109/MC.2003.1250885. 

[23] Z. Wang, “Thermal-aware task scheduling on multicore processors,” University of Florida, 2012. 

[24] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, May 2011, doi: 
10.1145/2024716.2024718. 

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT: An integrated power, area, and timing 

modeling framework for multicore and manycore architectures,” in 2009 42nd Annual IEEE/ACM International Symposium on 
Microarchitecture (MICRO), 2009, pp. 469–480. 

[26] J. McCall, “Genetic algorithms for modelling and optimisation,” Journal of Computational and Applied Mathematics, vol. 184, no. 

1, pp. 205–222, Dec. 2005, doi: 10.1016/j.cam.2004.07.034. 
[27] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 

Sep. 2006, doi: 10.1145/1186736.1186737. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264 

5264 

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “MiBench: A free, commercially 

representative embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE International Workshop on Workload 
Characterization. WWC-4 (Cat. No.01EX538), 2001, pp. 3–14. doi: 10.1109/WWC.2001.990739. 

[29] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a tool for evaluating and synthesizing multimedia and 

communications systems,” in Proceedings of 30th Annual International Symposium on Microarchitecture, 1997, pp. 330–335. doi: 
10.1109/MICRO.1997.645830. 

 

 

BIOGRAPHIES OF AUTHORS 
 

 

Mohammed Parwez     received B.Sc. in Electrical Engineering from Salahaddin 

University, Erbil, Iraq, in 2015. Currently, he is an M.Sc. student of the Computer and Control 

branch at Salahadding University. His research interests include operating systems, multicore 

architectures, OS schedulers, and CPU thermal management. He can be contacted at email: 

mohammad.perweze@gmail.com and Linkedin: https://www.linkedin.com/in/mohammad-

parweze 

 

Diary R. Sulaiman     Professor of Electronics and Computer Engineering, 

Department of Electrical Engineering, College of Engineering, Salahaddin university-Erbil, Iraq. 

He has been working in higher education for more than 30 years and he taught both 

undergraduate and postgraduate students at Department of Electrical Engineering. He has gained 

the CISCO certifications and Information System Professional certifications. His current 

research interests include power/thermal management of microprocessors, advanced digital 

design, and CMOS circuit design. Diary R. SULIAIMAN has authored many publications on 

electronics and computer hardware design, CMOS circuit design, and microprocessors 

power/thermal management. He has more than 50 published articles in international journals and 

conferences. He can be contacted at email: diary.sulaiman@su.edu.krd, Academic Website: 

https://academics.su.edu.krd/diary.sulaiman, and Linkedin: https://www.linkedin.com/in/diariy-

sulaiman/  

 

mailto:mohammad.perweze@gmail.com
https://www.linkedin.com/in/mohammad-parweze
https://www.linkedin.com/in/mohammad-parweze
https://academics.su.edu.krd/diary.sulaiman
https://www.linkedin.com/in/diariy-sulaiman/
https://www.linkedin.com/in/diariy-sulaiman/
https://orcid.org/0000-0003-2239-3880
https://orcid.org/0000-0002-4966-4970
https://scholar.google.com/citations?user=6eWuZ_kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=14027787300
https://www.webofscience.com/wos/author/record/1989438

