
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 5, October 2023, pp. 5253~5264

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i5.pp5253-5264 5253

Journal homepage: http://ijece.iaescore.com

Thermal aware task assignment for multicore processors using

genetic algorithm

Mohammed Parwez, Diary R. Sulaiman
Department of Electrical Engineering, College of Engineering, Salahaddin University, Erbil, Iraq

Article Info ABSTRACT

Article history:

Received Sep 16, 2022

Revised Jan 31, 2023

Accepted Feb 4, 2023

 Microprocessor power and thermal density are increasing exponentially. The

reliability of the processor declined, cooling costs rose, and the processor's

lifespan was shortened due to an overheated processor and poor thermal

management like thermally unbalanced processors. Thus, the thermal

management and balancing of multi-core processors are extremely crucial.

This work mostly focuses on a compact temperature model of multicore

processors. In this paper, a novel task assignment is proposed using a genetic

algorithm to maintain the thermal balance of the cores, by considering the

energy expended by each task that the core performs. And expecting the cores’

temperature using the hotspot simulator. The algorithm assigns tasks to the

processors depending on the task parameters and current cores’ temperature

in such a way that none of the tasks’ deadlines are lost for the earliest deadline

first (EDF) scheduling algorithm. The mathematical model was derived, and

the simulation results showed that the highest temperature difference between

the cores is 8 C for approximately 14 seconds of simulation. These results

validate the effectiveness of the proposed algorithm in managing the hotspot

and reducing both temperature and energy consumption in multicore processors.

Keywords:

Gem5

Genetic algorithm

McPAT

Multicore processor

Thermal management

This is an open access article under the CC BY-SA license.

Corresponding Author:

Diary R. Sulaiman

Department of Electrical Engineering, College of Engineering, Salahaddin University

Kirkuk Road, Erbil, Iraq

Email: diary.sulaiman@su.edu.krd

1. INTRODUCTION

Nowadays, the difficulties with thermal management in modern multi-core central processing units

(CPUs) become increasingly significant and essential hence, one of the difficulties faced by electrical and

computer designers is the thermal management of integrated circuits (ICs), as IC performance and reliability are

impacted by temperature. According to studies in [1] the IC lifetime can be reduced by 50% for every

10 C to 15 C increase in the IC peak temperature hence, many research and articles are focusing on this issue.

One of the methods of controlling chip temperature is consisting of active cooling integration (e.g., fan cooling,

water circulation, and oil cooling and heat pipe). This technique is not always suitable for embedded systems

especially those with limited size and battery. Another method of chip thermal management is a program

management approach in which the temperature of the central processing unit (CPU) can be balanced by

assignment of tasks to the CPU cores according to the cores’ thermal spot. This method doesn’t have a limitation

of the method as mentioned above.

Many polished articles studied the reduction of the peak/overall core temperatures by program

management such as Rubio-Anguiano et al. [2] proposed a scheduler consisting of two stages: offline stage and

online stage. In the offline stage, a minimum clock frequency is calculated that fulfills the deadline and

partitioning scheme. And in the online stage, a fixed-priority zero laxity policy is applied as a global task

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264

5254

allocation. The online stage scheduler in which accepts or rejects soft real-time aperiodic tasks selecting the

upper lowest available frequency to minimization on power consumption while meeting time and thermal

constraints. Also, Rodriguez and Yomsi [3] proposed a framework that captures both the temporal and thermal

behavior of the system after scheduling tasks by one of the fixed priority algorithms like Deadline Monotonic

orate Monotonic.

Many works tried to control CPU temperature reduction by using bio-inspired algorithms as such,

Rupanetti and Salamy [4] proposed a novel strategy for task migration in multiprocessors by combining modified

ant colony algorithm (ACO) and first-fit task allocation heuristic. The ACO algorithm tries to split tasks and

migrate them to processors with low task utilization to minimize the overall power consumption of the

multiprocessor system on a chip (MPSoC). Then tasks are scheduled by the earliest deadline first algorithm. In

the same way, many other works use bio-inspired algorithms for controlling CPU thermal as it is done in [5], [6].

Regarding CPU frequency, Singh and Thangaraju [7] in their article labeled running processes or jobs as cold and

hot processes. And they introduced a hybrid frequency scaling governor to reduce the overall power of the

platform. This was caused by temperature reduction of the cores from 85 C to 47 C according to their

experimental results. Li et al. [8] tried to minimize both the temperature and energy consumption of heterogeneous

MPSoC by proposing two phases of task scheduling. First phase tasks are assigned to the processor while

thermal and power dissipation factors are taken into account. And the second phase deduces the thermal/energy

optimal speed assignment for tasks by considering the heterogeneity of both processors and tasks. For

controlling peak temperatures, Jayaseelan and Mitra [9] proposed two techniques to control the peak

temperature of the chip. First, they analyzed the peak temperature of the repeating task sequence and develop

an optimal sequence of the tasks to minimize the peak temperature. The second proposed technique is the

iterative algorithm that combines task sequencing with voltage scaling to further lower the peak temperature

while satisfying the timing constraints. Some researchers are attempting of reducing the temperature by

utilizing the dynamic voltage frequency (DVFS) technique frequency as [10]–[13] used DVFS technique to

reduce power consumption by lowering chip voltage and frequency accordingly as a result the CPU

temperature is reduced. And Durand and Lesecq [14] analyzed the nonlinearity between power and

temperature. And they used a technique that implements a chopped scheme on top of a robust DVFS approach

in order to prevent increasing temperature. Unfortunately, the DVFS technique has a limited impact on

temperature and causes CPU performance reduction, as the execution time increases by lowering frequency

[15]. Another way of reduction of CPU temperature is also can be performed by using adaptive supply and

body voltage control technique as Sulaiman et al. [16] that they used particle swarm algorithm (PSO) combined

with the pareto front (PF) to determine the optimal solution of threshold and supply voltage (𝑉𝑡ℎ − 𝑉𝑑𝑑) that

caused by thermal reduction rages from 8 C to 12 C for each body bias strep voltage. Also, they used adaptive

supply and body voltage control in [17] to compensate the threshold voltage and clock frequency for ultra-low

power design by supplying optimal 𝑉𝑑𝑑 and NMOS-PMOS body bias voltages (𝑉𝐵𝐵 − 𝑁 & 𝑉𝐵𝐵 − 𝑃) to the

microprocessor unit and results in a power saving up to 20% and thermal reduction in a range of 8 C for each

body bias step voltage. CPU temperature also can be reduced by CPU floor planning as it is done by Xie and

Hung [18] utilized a floor planning technique for peak temperature reduction and thermal balancing on the

CPU.

This article presents the analysis of the proposed task assignment algorithm using a natural inspiration

genetic algorithm for thermal balancing in multi-core processors by taking the temperature of each core and

then assigning tasks depending on the current cores’ temperature and the expected energy consumption of the

tasks using the proposed assignment algorithm. The algorithm analyzes the behavior of different core

temperature states while considering the energy expended by each task that the core performs including parallel

application tasks. The results of the performance achieved with its application in different simulation

environments are analyzed and compared to thermal unbalanced approaches. The proposed approach collects

information about the real hotspot of all cores besides the task mapped and executed by each core on each

processor to decide the next task mapped and assigned for each core. This approach decides to

dynamically move tasks between light and heavy types so that the temperature difference between the cores

reduces. The results validate the effectiveness of the proposed algorithm in managing the hotspot and

reducing both temperature and energy consumption in multicore processors in high-performance computer

systems.

The rest of the paper is organized as: section 2 explains the theoretical background and relation

between power and temperature by algebraic equations. In section 3 system models are explained which

consist of power and task modeling. Section 4 talks about the assignment algorithm in detail by expressing the

pseudo-code at the end of the section. the simulation and results of two cases (equal cores’ initial temperature and

different cores’ initial temperature) are illustrated and discussed in section 5. Finally, the conclusions are expressed

in section 6.

Int J Elec & Comp Eng ISSN: 2088-8708

 Thermal aware task assignment for multicore processors using genetic algorithm (Mohammed Parwez)

5255

2. THEORETICAL BACKGROUND

Overall, this paper introduces the use of thermal RC-modeling as an accurate efficient modeling

system for temperature estimation in multi-core processors considering 𝑃𝑖 is the average power of a task with

an execution time 𝑡𝑖, the temperature rise on each core caused by task (𝑖) is 𝑇𝑖 that can be expressed as (1) [15],

𝑇𝑖 = 𝑃𝑖 ∗ 𝑅 + 𝑇𝐴 − (𝑃 ∗ 𝑅 + 𝑇𝐴 − 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑒−𝑡𝑖/𝑅𝐶 (1)

The temperature rise according to the next task can be stated as (2) [15],

𝑇𝑖+1 = 𝑃𝑖+1 ∗ 𝑅 + 𝑇𝐴 − (𝑃 ∗ 𝑅 + 𝑇𝐴 − 𝑇𝑖)𝑒−𝑡𝑖+1/𝑅𝐶 (2)

where:

𝑃𝑖 is the average power of Task (𝑖).

𝑡𝑖 is the execution time of Task(𝑖)

𝑇𝐴 is ambient temperature.

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial temperature.

𝑅 is thermal resistance.

𝐶 is thermal capacitance.

From the above equations, we can conclude that four factors have an impact on the core’s transient

temperature: average power of the executed task on the core, initial temperature, execution time, and the

number of assigned tasks on the core. Thus, if we execute more tasks on a core, the temperature rise of the core

will be the sum of the power and execution time of each task.

If the periodic tasks are mapped as (𝑇𝑎𝑠𝑘1, 𝑇𝑎𝑠𝑘2, 𝑇𝑎𝑠𝑘3, … 𝑇𝑎𝑠𝑘𝑛) to be executed by a multicore

CPU (𝐶1, 𝐶2, 𝐶3, … 𝐶𝑛). the problem is how to assign Tasks in such a way that keeps the temperature of the

cores balanced. This can be done by performing an assignment algorithm which takes the cores’ temperature

and task parameters as input, and implementation of the assignment algorithm goal is the core with the highest

temperature take over a set of tasks which their energy summation is less, compared to the energy sum of other

cores’ assigned task set by a factor which’s covered in the next sections. And the same way for the core with the

second-highest temperature. The algorithm will continue until the assignment of the task-set for the coldest core.

3. THE PROPOSED SYSTEM MODEL

3.1. Power model

In complementary metal–oxide–semiconductor (CMOS) ICs which are building block of modern

processors, power dissipation can be classified generally into two aspects; dynamic power and static power

dissipation. The dynamic power dissipation is caused by the charging and discharging of the transistor’s

junction capacitors and the short interval short circuit during toggling between P-MOS and N-MOS. However,

the static power is dissipated because of leakage current through reverse biased junctions of the transistor [19].

The dynamic power dissipation (Pd) can be expressed (3) [20],

𝑃𝑑 = 𝐶𝑒𝑓𝑓 . 𝑉𝑑𝑑
2 . 𝑓 (3)

where:

Vdd is the supply voltage,

Cef is the effective capacitance and

f is the clock frequency.

And the frequency can be represented by (4) [21],

𝑓 = 𝑘. (𝑉𝑑𝑑 − 𝑉𝑡)2/𝑉𝑑𝑑 (4)

where 𝑉𝑡 is threshold voltage and 𝐾 is hardware constant.

The leakage power dissipation is expressed (5) [21],

𝑃𝑙 = 𝑉𝑑𝑑 . 𝐼𝑙𝑒𝑎𝑘 (5)

where 𝐼𝑙𝑒𝑎𝑘 is the leakage current which consists of gate-oxide leakage current 𝐼𝑔 and sub-threshold leakage

current 𝐼𝑠 Gate-oxide leakage current and they expressed as (6) [22],

𝐼𝑔 = 𝑀𝑊(𝑉𝑑𝑑/𝑊𝑜𝑥)2𝑒−𝑎𝑊𝑜𝑥/𝑉𝑑𝑑 (6)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264

5256

where 𝑀 and 𝛼 are hardware parameters, 𝑊 is the gate width and 𝑊𝑜𝑥 is the oxide thickness. Sub-threshold

leakage current is calculated by (7) [22],

𝐼𝑠 = 𝐾𝑊𝑒−𝑉𝑡ℎ/𝑛𝑉ℎ (1 − 𝑒−𝑉𝑑𝑑/𝑉ℎ) (7)

where 𝐾 and 𝑛 are hardware parameters. 𝑉ℎ is the voltage related to the current chip temperature.

3.2. Task classification and modeling

According to [23] tasks can be classified into three classes. Depending on the application, we decide

to use the class of the task. For instance, if we need to monitor a process by a specified sensor, then we should

use a periodic task, however, if monitoring of that process is obliged to be within a specified time, then this

task should be a real-time class. Task classes are described stated in the followings:

− Independent vs dependent tasks: When one activity's completion depends on that of another work or task,

that task is said to be dependent. The majority of general-purpose programs operate on the dependent task

approach. Directed acyclic graph (DAG) is used to depict the dependency between tasks (GAG). Tasks are

represented in a DAG by nodes, while interdependence between tasks is represented by edges.

− Real time vs non-real time tasks: When the CUP is required by the operating system to complete a task

before the deadline expires, the task is said to be in real time. Real time tasks have two subclasses, the first

of which is hard real time tasks, wherein the deadline for completing the task must be met. The processor

is permitted to finish the task execution by some intervals that depend on the application and the level of

application seriousness in the second subclass of real time tasks, known as soft real time tasks.

− Periodic vs aperiodic tasks: A task that arrives in fixed time intervals is called a periodic task. The instant

of the first activation is called phase ϕ. For a periodic task τ, its activation time for Kth instant can easily be

expressed by ∅ + (𝑘 − 1𝑇) where T is period. And in real time systems the task period is assigned as the

task’s deadline in most of the cases. Aperiodic tasks, on the other hand, have an indefinite series of activity

and arise erratically, making it difficult and inaccurate to estimate when they will appear.

This study considers independent non-real time periodic tasks which are modeled as follows:

𝑇𝑎𝑠𝑘𝑖(𝑡𝑖 , 𝑃𝑖 , 𝐸𝑛𝑖) where:

𝑡𝑖 is the execution time of 𝑇𝑎𝑠𝑘𝑖 .

𝑃𝑖 is the average power consumption of 𝑇𝑎𝑠𝑘𝑖.

𝐸𝑛𝑖 energy dissipated by 𝑇𝑎𝑠𝑘𝑖.

The task period depends on the application of the task. However, the other parameters of the tasks

depend on the CPU configuration and they will be determined through the simulation setup. One of the

parameters is 𝑡𝑖 and could be accurately measured in selected CPU configuration by GEM5 [24], 𝑃𝑖 is could

be measured using multicore power, area, and timing (McPAT) [25] with the same CPU configuration that was

used for GEM5, and finally 𝐸𝑛𝑖 could be achieved by multiplying 𝑃𝑖and 𝑡𝑖 together to determine the energy of

each Task as explained by the block diagram in Figure 1.

Figure 1. The signal flow diagram of the task model

Int J Elec & Comp Eng ISSN: 2088-8708

 Thermal aware task assignment for multicore processors using genetic algorithm (Mohammed Parwez)

5257

4. THE PROPOSED TASK ASSIGNMENT ALGORITHM

Let’s consider a set of independent, heterogeneous (i.e., tasks with different parameters), and periodic

tasks. The algorithm of the task assignment will assign the tasks for each hyper-period of the tasks based on

the decision factors (𝑎1, 𝑎2, … 𝑎𝑚) which depend on the cores’ temperature (𝑇1, 𝑇2, 𝑇3, … 𝑇4) and the tasks’

energy as illustrated in Figure 2. The factor (𝑎𝑗)assigns the percent of the total energy that should be consumed

by each core. Hence, the energy that should be consumed by each core to keep the temperature balance of the

CPU is computed by multiplying 𝑎𝑗factor by the total energy of the tasks as expressed in (8).

𝐶𝐸𝑛𝑗
≈ 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙 (8)

Where 𝐶𝐸𝑛𝑗
 is the total energy that should be executed by 𝑐𝑜𝑟𝑒𝑗 during a hyper-period.

𝐸𝑛𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑛𝑖
𝑖=0
𝑛 (9)

𝑛 is the total number of the tasks 𝐸𝑛𝑖
 is the energy of Taski

Figure 2. Task assignment signal flow

The factor 𝑎𝑗 will be computed by the principle of load assignment according to the core’s

temperature. Such that if the cores’ temperatures are equal, 𝑎𝑗 of all the cores will be equal and if there’s any

difference between them, the factor 𝑎𝑗 will be highest for the lowest core temperature to execute the lowest

energy and vice versa for the heist core temperature. This load distribution can be performed utilization of a

square curve as shown below in Figure 3. The factor 𝑎𝑗 can be found by substitution the temperature of each

core into (12) and determining their corresponding Y-axis value as shown in Figure 3.

𝑦𝑗 = (𝑇𝑗 − 2 ∗ 𝑇𝑚𝑎𝑥)2 (10)

where:

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264

5258

Tmax = 𝑀𝑎𝑥{𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑚}. (11)

Now, 𝑎𝑗 can easily be found by the following expression:

𝑎𝑥 =
𝑦𝑥

∑ 𝑦𝑗
𝑚
𝑗=1

 ; 𝑥 ∈ {1, 2, 3, … , 𝑚}. (12)

After determination of the decision factors, we can perform a task assignment by genetic algorithm

(Geno-type) [26] such that each core (𝐶𝑗) executes (𝑎𝑗) of total tasks energy given that (0 ≤ 𝑎𝑗 ≤ 1). This can

be done by treating each gene in a chromosome as a task as shown in Figure 4. Gene 1 represents Task 1,

Gene 2 represents task 2, and so on.

Figure 3. Decision factor curve to find 𝛼𝑥 factor of decision

Figure 4. Mapping tasks to genes, in which each task is represented by a gene

At the beginning of the algorithm, a number (𝑁𝑝) of chromosome vectors with a length equal to the

tasks vector length (𝑛) will be generated randomly which’s calle d initial population matrix with a size equal

to (𝑁𝑝 ∗ 𝑛). Then the generated genes of the chromosomes are changed with each iteration according to the

genetic algorithm (expressed in algorithm-1) such that we achieve the best fitness which’s expressed in (13).

The chromosome vector of the best fitness is mapped to the tasks vector in such a way that the tasks in which

corresponding genes are equal to “1” are assigned to the core during a hyper-period. This assures that the

energy consumed by the core is equal to 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙 . See Figure 5.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴𝑏𝑠 {𝐶𝐸𝑛𝑗
− 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙}. (13)

After that, the assigned tasks are extracted from the tasks vector and the remaining tasks will be a

candidate to be assigned to the next core. This process will continue until all the tasks are assigned to all the

CPU cores. But it is critical to mention that the assignment algorithm won’t be applied on the last core even if

we do not achieve exact (𝐶𝑒𝑛𝑙𝑎𝑠𝑡−𝑐𝑜𝑟𝑒
≈ 𝑎𝑙𝑎𝑠𝑡−𝑐𝑜𝑟𝑒 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙) to guarantee the implementation of all tasks. The

task assignment algorithm is expressed in algorithm 1.

Int J Elec & Comp Eng ISSN: 2088-8708

 Thermal aware task assignment for multicore processors using genetic algorithm (Mohammed Parwez)

5259

Figure 5. Illustration of using genetic algorithm in task assignment

Algorithm-1
1: Input: Tasks’ (𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛) and (𝐸𝑛1, 𝐸𝑛2, 𝐸𝑛3, … , 𝐸𝑛𝑛) parameters.

2: Input: Cores’ Temperature(𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑚).
3: Compute Total Energy.

4: Input Energy assignment decision factors(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑚) 𝑤ℎ𝑒𝑟𝑒: 0 ≤ 𝑎𝑗 ≤ 1.

5: Perform Genetic Algorithm for each core such that𝐶𝑒𝑛𝑗
≈ 𝑎𝑗 ∗ ∑ 𝐸𝑛𝑖

𝑛
1 .

Input: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑁𝑝, 𝑖𝑡𝑒𝑟, 𝑛, 𝑘, 𝜌𝑐 , 𝜌𝑚

Initialize a random Population of binary string (𝑠𝑖𝑧𝑒 = 𝑁𝑝 ∗ 𝑛).
For j=1 to (m-1)

Evaluate Fitness: 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴𝑏𝑠(𝑠𝑢𝑚(𝐶𝐻 ⨀ 𝐸𝑛) − 𝑎𝑗 ∗ 𝐸𝑛𝑡𝑜𝑡𝑎𝑙)

For g=1 to 𝑖𝑡𝑒𝑟
Perform Tournament selection of tournament size k

For h=1 to 𝑁𝑝/2
Randomly choose two parents

Generate a random number (r)

If r<𝜌𝑐

Select a random crossover site

Generate two offspring using single-point-crossover

else

Copy the selected parents as offspring

End

End

For g=1 to 𝑁𝑝

Generate n random number between 0 and 1

Perform bitwise mutation of 𝑔𝑡ℎ offspring if the number is less than 𝜌𝑚

Evaluate the Fitness of offspring

End

Combine Population and Offspring to perform (𝜇 + 𝜆)
End

Map the chromosome of the best fitness to the task set so that each “1” in the

chromosome is an assigned task to Core (j)

Extract the assigned tasks form the task set

n=n-number of extracted tasks.

End

Assign the remaining tasks to the last core (𝑚).

Once all the tasks are assigned to the cores according to their temperature, they will be simulated by

a hotspot simulator to get the temperature response of the processor. And the steady-state value yield in the

output of the hotspot simulator will be an input to the assignment algorithm for the next hyper-period. Again,

the algorithm performs task assignment depending on the latest cores’ temperature of the previous period.

5. SIMULATION AND RESULTS

5.1. Simulation setup

The Architecture used in this paper is a Quad-Core O3 (out of order) Processor with an I-Cache and

D-Cache capacity of 32KB. And a dedicated L2-Cache memory with 1MB the capacity of the RAM used in

this architecture is 64 MB integrated with DDRx1 memory controller type and the clock frequency is set to

2 GHz. The complete architecture is shown in Figure 6.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264

5260

Figure 6. Simulation architecture consisting of a 4 cores CPU with dedicated L1 and L2 of each core

5.2. Task benchmarks and results

For testing the efficiency of our algorithm, we have to use some standard test benchmarks. The

benchmarks which are used for the simulation of our algorithm consist of Spec2006 [27], Mibench [28], and

Mediabench [29]. The detail of each benchmark is expressed in Table 1.

Table 1. Real benchmarks

Group Tasks#
Benchmark

Name

Ex. Time

(ms)

Leakage

Power (W)

Dynamic

Power (W)

Energy

(mJ)
Description

S
p

ec
2
0

0
6

0 401.bzip2 83.654 1.15327 0.318345 123.106 File compression program
1 456.hmmer 105.657 0.72241 0.105194 87.4425 Used in computational biology to search for

patterns in DNA sequences

2 470.lbm 70.205 1.15327 0.364266 106.539 Implements the so-called "Lattice Boltzmann
Method" to simulate incompressible fluids in 3D

3 429.mcf 75.89 0.72241 0.144257 65.7716 The program is designed for the solution of

single-depot vehicle scheduling (sub-) problems
occurring in the planning process of public

transportation companies.

4 458.sjeng 174.763 1.15327 0.178489 232.742 It attempts to find the best move via a
combination of alpha-beta or priority proof

number tree searches

M
i

B
en

ch

5 basicmath 490.239 0.66866 0.041022 347.912 Performs simple mathematical calculations
6 bitcount 62.553 1.15327 0.340039 93.411 Tests the bit manipulation abilities of a processor

by counting the number of bits in an array of

integers
7 qsort 71.714 0.84359 0.187796 73.9645 Sorts a large array of strings into ascending order

using the well-known quick sort algorithm

8 susan 513.823 1.15327 0.129601 659.169 An image recognition package
9 patricia 340.339 1.1158 0.279612 474.913 A data structure used in place of full trees with

very sparse leaf nodes
10 sha 882.386 0.84359 0.058882 796.325 The secure hash algorithm that produces a 160-

bit message digest for a given input

11 blowfish 67.093 1.15062 0.331208 99.4203 A symmetric block cipher with a variable length
key

12 pgp

sign/verify

490.239 0.66866 0.041022 347.912 A public key encryption algorithm developed by

Phil Zimmerman
13 tiff2bw 280.534 0.84359 0.077 258.256 Converts a color TIFF image to black and white

image

14 typeset 70.75 0.74111 0.135449 62.0162 General typesetting tool, that has a front-end
processor for HTML

15 FFT/IFFT 99.812 2.48721 0.868513 334.941 Performs a fast fourier transform

M
ed

ia
 B

en
ch

16 PEGWIT 82.678 2.48721 1.19988 304.841 A program for public key encryption and
authentication

17 EPIC 174.763 0.95743 0.179687 198.725 An experimental image compression utility

18 RASTA 84.629 0.72241 0.127025 71.8871 A program for speech recognition

19 Ghostscript 72.412 1.15065 0.357371 109.199 An interpreter for the PostScript language

Int J Elec & Comp Eng ISSN: 2088-8708

 Thermal aware task assignment for multicore processors using genetic algorithm (Mohammed Parwez)

5261

5.3. Simulation results

To evaluate the assignment algorithm the simulation was executed for 10 hyper-periods. For each

hyper-period, all the tasks are assigned and executed by the processor, and the final temperature of each hyper-

period will be the initial temperature of the next hyper-period. This will be repeated for 10 hyper-periods. The

simulation is performed in two parts, first part is setting the initial temperature of cores to equal values to know

the ability of the assignment algorithm to maintain the balance of the temperature between the cores. And the

second part is performed by setting each core’s initial temperature with different values to inspect if the

assignment algorithm is capable of re-balance the temperature of the processor cores.

5.3.1. Equal initial temperature

Figure 7 shows the temperature trend of each core and the executed task by each core on the same

time domain, and the initial temperature of the cores is set at 45 ℃ and the ambient temperature is set at 45 ℃.

From the results which are shown in the following Figure 8. It can be seen that the temperature of each core is

slightly equal to the temperature of the other cores. This shows that the algorithm is successful in maintaining

the temperature balance of the processor cores in such a way that the maximum difference in temperature

between cores is nearly 9 ℃ for each hyper period. See Figure 8.

Figure 7. Cores temperature trend for the case of equal initial temperature

Figure 8. Maximum temperature different between each core for 10 hyper-periods for equal initial

temperature case

5.3.2. Different initial temperature

In the same previous way, we performed the simulation of our architecture with the same algorithm

and test benchmarks. The only thing that has been changed, is the processor core’s initial temperature. Which

sat with different initial temperatures as follows:

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264

5262

− Core1 Temp: 65.48 ℃

− Core2 Temp: 49.77 ℃

− Core3 Temp: 45.82 ℃

− Core4 Temp: 51.86 ℃

− Ambient Temperature: 45 ℃

According to the results shown in Figure 9. The temperature gets balanced after a few seconds of task

execution. This proves that the algorithm can balance processor cores’ temperatures even if their temperatures

are different as it can be seen in Figure 10 shows the maximum temperature difference between each core for

each hyper period is slightly 8 ℃ except for the first hyper-period as the cores’ initial temperatures are different.

Figure 9. Cores temperature trend for non-equal initial temperature

Figure 10. Maximum temperature difference between each core for 10 hyper-periods for the case of non-

equal initial temperature

6. CONCLUSION

In this paper, an assignment algorithm has been proposed to keep the balance of temperature between

the cores. The simulation is performed on a Quad-Core platform with two levels of cache and L2-cache

dedicated. The mentioned task benchmarks are simulated using GEM5 to measure the task execution time on

the platform. The McPAT simulator is used to measure the power of each task by exploiting the GEM5 statistics

outputs. The energy of each task is measured through both GEM5 and McPAT outputs. Once the parameters

of each task are achieved, they are employed and assigned to the cores according to the cores’ current

Temperature and energy of each task. The algorithm assigns the most energy to the lowest temperature core

and the least energy to the core with the highest temperature. The algorithm uses genetic optimization for

assignment of the tasks. The simulation results showed that the highest temperature difference between the

Int J Elec & Comp Eng ISSN: 2088-8708

 Thermal aware task assignment for multicore processors using genetic algorithm (Mohammed Parwez)

5263

cores is 8 ℃ for approximately 14 seconds. These results validate the effectiveness of the proposed task

assignment algorithm in managing the hotspot and reducing both temperature and energy consumption in

multicore processors. From Figures 7 and 9 it is noticeable from the results that there’s a large peak takes place

during each hyper-period of the cores this can be eliminated by using a proper task portioning algorithm after

assignment of the tasks. Hence our future is to integrate task partitioning algorithm with our proposed

assignment algorithm, to reduce the peak temperature of the cores.

REFERENCES
[1] W. H. Gerling, A. Preussger, and F. W. Wulfert, “Reliability qualification of semiconductor devices based on physics-of-failure

and risk and opportunity assessment,” Quality and Reliability Engineering International, vol. 18, no. 2, pp. 81–98, Mar. 2002, doi:
10.1002/qre.468.

[2] L. Rubio-Anguiano, G. Desirena-López, A. Ramírez-Treviño, and J. L. Briz, “Energy-efficient thermal-aware multiprocessor

scheduling for real-time tasks using TCPN,” Discrete Event Dynamic Systems, vol. 29, no. 3, pp. 237–264, Sep. 2019, doi:
10.1007/s10626-019-00285-x.

[3] J. P. Rodriguez and P. M. Yomsi, “Thermal-aware schedulability analysis for fixed-priority non-preemptive real-time systems,” in

2019 IEEE Real-Time Systems Symposium (RTSS), Dec. 2019, pp. 154–166. doi: 10.1109/RTSS46320.2019.00024.
[4] D. Rupanetti and H. Salamy, “Energy-aware task migration through ant-colony optimization for multiprocessors,” in 2021 IEEE

12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Dec. 2021, pp. 0901–0907.

doi: 10.1109/UEMCON53757.2021.9666584.
[5] M. S. Babadi, M. E. Shiri, M. R. M. Goudarzi, and H. H. S. Javadi, “Multi-objective tasks scheduling using artificial bee colony

algorithm based on cellular automata in cloud computing environment,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 12, no. 5, pp. 5657–5666, Sep. 2022, doi: 10.11591/ijece.v12i5.pp5657-5666.
[6] T. P. Thanh, L. N. The, S. Elnaffar, C. N. Doan, and H. D. Quoc, “An effective PSO-inspired algorithm for workflow scheduling,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 5, pp. 3852–3859, Oct. 2018, doi:

10.11591/ijece.v8i5.pp3852-3859.
[7] B. P. Singh and B. Thangaraju, “Thermal aware power save policy for hot and cold jobs,” in 2021 IEEE International Conference

on Electronics, Computing and Communication Technologies (CONECCT), Jul. 2021, pp. 1–7. doi:

10.1109/CONECCT52877.2021.9622715.
[8] T. Li, G. Yu, and J. Song, “Minimizing energy by thermal-aware task assignment and speed scaling in heterogeneous MPSoC

systems,” Journal of Systems Architecture, vol. 89, pp. 118–130, Sep. 2018, doi: 10.1016/j.sysarc.2018.08.003.

[9] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and voltage scaling,” in 2008 IEEE/ACM International Conference
on Computer-Aided Design, Nov. 2008, pp. 618–623. doi: 10.1109/ICCAD.2008.4681641.

[10] M. Kadin and S. Reda, “Frequency planning for multi-core processors under thermal constraints,” in Proceeding of the thirteenth

international symposium on Low power electronics and design - ISLPED ’08, 2008, pp. 213–216. doi: 10.1145/1393921.1393977.
[11] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance microprocessors,” in Proceedings HPCA

Seventh International Symposium on High-Performance Computer Architecture, 2001, pp. 171–182. doi:

10.1109/HPCA.2001.903261.
[12] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs energy optimization for DVFS-enabled processors in embedded

systems,” in 8th International Symposium on Quality Electronic Design (ISQED’07), Mar. 2007, pp. 204–209. doi:

10.1109/ISQED.2007.158.
[13] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip regulators,” ACM Transactions on Architecture and Code

Optimization, vol. 8, no. 1, pp. 1–24, Apr. 2011, doi: 10.1145/1952998.1952999.

[14] S. Durand and S. Lesecq, “Nonlinear and asymmetric thermal-aware DVFS control,” in 2013 European Control Conference (ECC),
2013, pp. 3240–3245.

[15] Z. Wang, S. Ranka, and P. Mishra, “Efficient task partitioning and scheduling for thermal management in multicore processors,” in

Proceedings of International Symposium on Quality Electronic Design, 2015.
[16] D. Sulaiman, I. Hamarash, and M. Ibrahim, “Microprocessors optimal power dissipation using combined threshold hopping and

voltage scaling,” IEICE Electronics Express, vol. 14, no. 24, pp. 20171046–20171046, 2017, doi: 10.1587/elex.14.20171046.

[17] D. Sulaiman, I. Hamarash, and M. Ibrahim, “Adaptive supply and body voltage control for ultra-low power microprocessors,”
IEICE Electronics Express, vol. 14, no. 12, pp. 20170306–20170306, 2017, doi: 10.1587/elex.14.20170306.

[18] Y. Xie and W. Hung, “Temperature-aware task allocation and scheduling for embedded multiprocessor systems-on-chip (MPSoC)

design,” The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 45, no. 3, pp. 177–189, Dec.

2006, doi: 10.1007/s11265-006-9760-y.

[19] J. Kang, “Scheduling algorithms for energy minimization,” University of Florida ProQuest Dissertations, 2008.
[20] M. J. Walker, S. Diestelhorst, A. Hansson, D. Balsamo, G. V. Merrett, and B. M. Al-Hashimi, “Thermally-aware composite run-

time CPU power models,” in 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation

(PATMOS), Sep. 2016, pp. 17–24. doi: 10.1109/PATMOS.2016.7833420.
[21] M. Awadalla, “Processor speed control for power reduction of real-time systems,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 5, no. 4, pp. 701–713, Aug. 2015, doi: 10.11591/ijece.v5i4.pp701-713.

[22] N. S. Kim et al., “Leakage current: Moore’s law meets static power,” Computer, vol. 36, no. 12, pp. 68–75, Dec. 2003, doi:
10.1109/MC.2003.1250885.

[23] Z. Wang, “Thermal-aware task scheduling on multicore processors,” University of Florida, 2012.

[24] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, May 2011, doi:
10.1145/2024716.2024718.

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT: An integrated power, area, and timing

modeling framework for multicore and manycore architectures,” in 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2009, pp. 469–480.

[26] J. McCall, “Genetic algorithms for modelling and optimisation,” Journal of Computational and Applied Mathematics, vol. 184, no.

1, pp. 205–222, Dec. 2005, doi: 10.1016/j.cam.2004.07.034.
[27] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17,

Sep. 2006, doi: 10.1145/1186736.1186737.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5253-5264

5264

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “MiBench: A free, commercially

representative embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization. WWC-4 (Cat. No.01EX538), 2001, pp. 3–14. doi: 10.1109/WWC.2001.990739.

[29] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a tool for evaluating and synthesizing multimedia and

communications systems,” in Proceedings of 30th Annual International Symposium on Microarchitecture, 1997, pp. 330–335. doi:
10.1109/MICRO.1997.645830.

BIOGRAPHIES OF AUTHORS

Mohammed Parwez received B.Sc. in Electrical Engineering from Salahaddin

University, Erbil, Iraq, in 2015. Currently, he is an M.Sc. student of the Computer and Control

branch at Salahadding University. His research interests include operating systems, multicore

architectures, OS schedulers, and CPU thermal management. He can be contacted at email:

mohammad.perweze@gmail.com and Linkedin: https://www.linkedin.com/in/mohammad-

parweze

Diary R. Sulaiman Professor of Electronics and Computer Engineering,

Department of Electrical Engineering, College of Engineering, Salahaddin university-Erbil, Iraq.

He has been working in higher education for more than 30 years and he taught both

undergraduate and postgraduate students at Department of Electrical Engineering. He has gained

the CISCO certifications and Information System Professional certifications. His current

research interests include power/thermal management of microprocessors, advanced digital

design, and CMOS circuit design. Diary R. SULIAIMAN has authored many publications on

electronics and computer hardware design, CMOS circuit design, and microprocessors

power/thermal management. He has more than 50 published articles in international journals and

conferences. He can be contacted at email: diary.sulaiman@su.edu.krd, Academic Website:

https://academics.su.edu.krd/diary.sulaiman, and Linkedin: https://www.linkedin.com/in/diariy-

sulaiman/

mailto:mohammad.perweze@gmail.com
https://www.linkedin.com/in/mohammad-parweze
https://www.linkedin.com/in/mohammad-parweze
https://academics.su.edu.krd/diary.sulaiman
https://www.linkedin.com/in/diariy-sulaiman/
https://www.linkedin.com/in/diariy-sulaiman/
https://orcid.org/0000-0003-2239-3880
https://orcid.org/0000-0002-4966-4970
https://scholar.google.com/citations?user=6eWuZ_kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=14027787300
https://www.webofscience.com/wos/author/record/1989438

