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 The monitoring of wind installations is key for predicting their future 

behavior, due to the strong dependence on weather conditions and the 

stochastic nature of the wind. However, in some places, in situ 

measurements are not always available. In this paper, active power 

predictions for the city of Santa Marta-Colombia using a nonlinear 

autoregressive exogenous model (NARX) network were performed. The 

network was trained with a reliable dataset from a wind farm located in 

Turkey, because the meteorological data from the city of Santa Marta are 

unavailable or unreliable on certain dates. Three training and testing cases 

were designed, with different input variables and varying the network target 

between active power and wind speed. The dataset was obtained from the 

Kaggle platform, and is made up of five variables: date, active power, wind 

speed, theoretical power, and wind direction; each with 50,530 samples, 

which were preprocessed, and in some cases, normalized, to facilitate the 

neural network learning. For the training, testing and validation processes, a 

correlation coefficient of 0.9589 was obtained for the best scenario with the 

data from Turkey, while the best correlation coefficient for the data from 

Santa Marta was 0.8537. 
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1. INTRODUCTION 

Considering the negative impact produced using conventional energy sources, environmental 

problems such as pollution, and the accelerated expansion in global energy demand, wind energy is presented 

as an excellent renewable and sustainable alternative for electricity production. The notable increase in the 

use and exploitation of renewable energies as an alternative for the generation and storage of clean energy is 

considered worldwide as one of the main technological solutions to mitigate climate change [1]. Wind power 

is one of the fastest-growing technologies globally, due to the large-scale production of wind turbines, falling 

prices, and minimal impact on the environment. According to the International Renewable Energy Agency 

https://creativecommons.org/licenses/by-sa/4.0/
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(IRENA), the global installed capacity for onshore and offshore wind generation has increased by a factor of 

75 in the past two decades, jumping from a production of 7.5 GW in 1997 to 564 GW in 2018. In addition, 

global installed production in 2021 reached almost 825 GW, representing an increase of approximately 46% 

compared to 2018 production [2]. 

With this scenario of rapid growth for wind projects, the prediction of wind generation capacity, 

based on meteorological data from different regions, is of vital importance [3]. The process of measuring 

climatic variables is important to estimate the energy potential in areas where it is planned to install a wind 

farm [4], [5], or in general any energy transformation system [6]–[8], such as the case of hybrid systems  

[9], [10]. However, in some places, there are no monitoring stations that allow the acquisition of this type of 

variable, in some cases, the existing stations only record the behavior of a small point for an area of interest 

or have recurring faults. In the absence of such data, there is a need for tools that allow generalization and 

provide a better overview of the study variables. 

A widely extended solution is the development of computational models, which allow us to 

understand the behavior of atmospheric phenomena, positively impacting decision-making in the face of an 

unforeseen event [11]; especially those related to wind behavior. For this, it should be considered that, in 

wind systems, the most important variables in terms of climatic behavior and energy potential are wind speed 

and direction [12], which usually have a stochastic behavior, since their flow is affected by various 

environmental factors. The support of computer simulations to field measurements allows obtaining a greater 

degree of certainty about the behavior of the variables; with which it is possible to build, among others, 

adequate wind maps, necessary to make an appropriate selection of the installation site for wind projects. 

Likewise, by having a model of a wind turbine or a wind farm, the performance characteristics of a wind 

installation can be compared with computer simulations, to diagnose failures promptly [13]. 

In this instance, many studies have proposed strategies and methods to forecast parameters in a wind 

system. The selected technique depends on different parameters and available data, which vary according to 

climatic conditions [14]. Numerous papers have been published in the scientific literature that predicts the 

output power generated by wind systems, implementing different techniques and methods. Neshat et al. [15] 

developed a deep learning-based method for power prediction at a wind farm in Sweden, using power, wind 

speed, and wind direction as input data. He et al. [16] developed a combined model for wind power 

forecasting, which was validated with data obtained from a wind farm in Northwest China. 

Jalali et al. [17], Deepa and Banerjee [18] implemented convolutional neural networks (CNN) for short-term 

wind power prediction, while in [19] wavelet neural networks were also implemented for short-term wind 

power prediction, demonstrating the usefulness of neural networks in this type of study. Research has also 

been conducted to predict short-term wind speed, using wind speed measurements from neighboring 

locations to improve the prediction results [20]. 

According to the previous context, in this work, a nonlinear autoregressive exogenous model 

(NARX) neural network, trained to estimate the potential of wind generation in the city of Santa Marta, 

Colombia from the meteorological time series reported in national entities was implemented. The proposed 

prediction methodology has a novelty in that the NARX network was trained with a dataset of a wind turbine 

located in a different country than the one of this research. Thus, the dataset available in the Kaggle 

repository of a wind farm located in Turkey was used [21], because it has a large amount of reliable data, 

unlike the information available for the city of Santa Marta. 

It is important to highlight that the NARX architecture has shown enormous potential for forecasting 

complex problems with different input variables. With this type of architecture, computational costs can be 

reduced due to its ease of implementation using a combination of complex functions. In addition, with the 

NARX architecture, excellent convergence times are achieved in forecasting tasks since its function is 

focused on predicting the next output power based on the identification of the previous information [22]. This 

paper is organized as: section 2 presents an analysis and processing of the Turkey dataset, as well as the data 

from the city of Santa Marta, Colombia for a period of 3 years. The NARX architecture is also presented in 

detail. In section 3, the results of the network training and the prediction of the monthly output power are 

presented. Finally, in section 4 are the conclusions of the investigation. 

 

 

2. METHOD 

2.1.   Dataset 

For training the artificial neural networks (ANN) we use the dataset available in the Kaggle web 

repository of a wind farm in Turkey [21]. This dataset has five variables: date, active power, wind speed, 

theoretical power, and wind direction, which are described in Table 1. Each variable has 50,530 data, of 

which there are no null data, however, in the active power variable, there are 57 atypical values 

corresponding to negative powers, which may be due to failures in the data acquisition system. For this 
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reason and considering that these values represent approximately 0.1128% of the total data, we decided to 

eliminate them, with which the dataset is reduced to 50,473 data per variable.  

 

 

Table 1. Summary of the dataset used for training the neural network 
Variable No. of data Null data Invalid data 

Date 50,530 0 0 
Active power (kW) 50,530 0 57 
Wind speed (m/s) 50,530 0 0 

Theoretical power (kW) 50,530 0 0 
Wind direction (°) 50,530 0 0 

 

 

2.2.  Data processing and analysis 

The dataset variables are numeric, except for the date variable, which is a character string containing 

the day, month, year, and time, in which the data has been acquired. When processing this variable, we 

obtained the name of the month, and to obtain relevant information, a number was arbitrarily assigned to 

each month, after which, these values were normalized in an interval of [-1, 1]. Table 2 shows the original 

name of the month, the assigned number, and its normalized equivalent. 

By implementing normalization, the entire dataset has the same order of magnitude, which 

facilitates the implementation of machine learning and artificial intelligence techniques [23]. Following a 

procedure like that described for the month variable, the values of the angles that indicate the direction of the 

wind were normalized. Table 3 shows the cardinal points, direction in degrees, and acceptance interval of 

each cardinal point and its normalized value. Acceptance intervals were chosen every 22.5°. 

 

 

Table 2. Representation of the month variable 
Month Number Normalized Month Number Normalized 

Jan 1 -1.0000 Jul 7 0.0909 
Feb 2 -0.8182 Aug 8 0.2727 
Mar 3 -0.6364 Sep 9 0.4545 
Apr 4 -0.4545 Oct 10 0.6364 
May 5 -0.2727 Nov 11 0.8182 
Jun 6 -0.0909 Dec 12 1.0000 

 

 

Table 3. Normalization of angles for wind direction 
Cardinal point Direction (°) Acceptance interval (°) Normalized direction 

N 0 [0, 11.25] -1.000 
NNE 22.5 (11.25, 33.75] -0.875 
NE 45 (33.75, 56.25] -0.750 

ENE 67.5 (56.25, 78.75] -0.625 
E 90 (78.75, 101.25] -0.500 

ESE 112.5 (101.25, 123.75] -0.375 
SE 135 (123.75, 146.25] -0.250 

SSE 157.5 (146.25, 168.75] -0.125 
S 180 (168.75, 191.25] 0.000 

SSW 202.5 (191.25, 213.75] 0.125 
SW 225 (213.75, 236.25] 0.250 

WSW 247.5 (236.25, 258.75] 0.375 
W 270 (258.75, 281.25] 0.500 

WNW 292.5 (281.25, 303.75] 0.625 
NW 315 (303.75, 326.25] 0.750 

NNW 337.5 (326.25, 348.75] 0.875 
N 360 (348.75, 360] 1.000 

 

 

When analyzing the behavior of the wind direction, it is observed that the highest incidence of this 

variable corresponds to the cardinal points ENE, NNE, and to a lesser extent to SSW, particularly at angles 

30°, 60°, and 210°. This is illustrated in Figures 1(a) and 1(b). In addition, to explain the behavior of the 

wind speed, the Weibull and Rayleigh distributions were implemented [24]–[26]. The Weibull distribution 

function is represented in (1). 
 

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑉

𝑐
)

𝑘−1

𝑒
[−(

𝑉

𝑐
)
𝑘
]
 (1) 
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where, V is wind speed, k is dimensionless shape factor (2), and c scale parameter (3). 
 

𝑘 = (
𝜎

𝑉𝑎𝑣𝑔
)

−1.086

, (1 ≤ 𝑘 ≤ 10) (2) 

 

𝑐 =  
𝑉𝑎𝑣𝑔

Ґ(1−
1

𝑘
)
 (3) 

 
where, Vavg is average wind speed, σ is standard deviation, and Ґ is gamma function. Similarly, the Rayleigh 
distribution function is expressed in terms of the mean value of the velocity in (4). 
 

𝑓(𝑣) =
𝜋𝑉
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where, V is wind speed and Vavg is average wind speed. 
 
 

  
(a) (b) 

 

Figure 1. Behavior of the wind direction (a) histogram of the dataset and (b) polar plot 

 

 

2.3.  NARX neural network 

To predict active power, the NARX neural network described in Figure 2 was implemented, for 

which the neural network toolbox of the MATLAB software was used. The network is made up of two delays 

at the input as shown in (5), 10 neurons in the hidden layer with a hyperbolic tangent sigmoid activation 

function, and an output layer with one neuron and a linear activation function. The NARX architecture is 

characterized because it feedbacks the output to the input layer, likewise, it has delays in the input layer, thus, 

it considers the previous data to perform the processing. However, to perform the training, it can be 

considered as a feedforward neural network as shown in Figure 3. 

 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 − 𝑛𝑥)) (5) 

 
y(t) represents the time-dependent network output, and x(t) represents the time-dependent network input. 

 

 

 
 

Figure 2. NARX neural network 
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Figure 3. Series-parallel architecture for NARX training 

 

 

In Figure 3 the notation y'(t) is used to indicate that it is a feedback variable. Additionally, to 

perform the training, (6) was used. 

 

𝑃 =

[
 
 
 
 
 
 
 
𝑥(𝑡 − 1)

𝑥(𝑡 − 2)
⋮

𝑥(𝑡 − 𝑛𝑥)

𝑦(𝑡 − 1)

𝑦(𝑡 − 2)
⋮

𝑦(𝑡 − 𝑛𝑦)]
 
 
 
 
 
 
 

, 𝑇 = [𝑦(𝑡)] (6) 

 
where, P represents the input data and T represents the target. 
 

2.4.  Study cases 

The NARX network architecture was implemented for three case studies defined in Table 4. 

In case 1, the variables wind speed, normalized month and normalized wind direction were used to predict 

the active power. In case 2, the theoretical power, and the normalized month and wind direction were used to 

predict the wind speed. Finally, in case 3 the same input variables were used as in case 2 but to predict both 

active power and wind speed. Table 5 presents the distribution of the data that was implemented for training, 

validation, testing and prediction. Of the 50,473 data, the last 1,000 were used to perform the prediction. The 

remaining 49,473 data were distributed as: 70% for training (34,631), 15% for validation (7,421), and 15% 

for testing (7,421). 

 

 

Table 4. Prediction cases 
Case Input Target 

1 Wind speed Active power 
Normalized month 

Normalized wind direction 
2 Theoretical power Wind speed 

Normalized month 
Normalized wind direction 

3 Theoretical power Active power; Wind speed 
Normalized month 

Normalized wind direction 

 
 

Table 5. Data distribution 
Processes No. of data 
Training 34631 

Validation 7421 
Testing 7421 

Prediction 1000 
 
 

2.5.  Active power prediction-Santa Marta 

To perform the active power predictions, the time series of the city of Santa Marta, Colombia for the 

years 2018, 2019, and 2020 were presented to the NARX network previously trained with the Turkey dataset, 

described in sections 2.1 and 2.2. The time series for the city of Santa Marta were downloaded from the 

official website of the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) from the 
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weather station located at: i) Country: Colombia, Department: Magdalena, City: Santa Marta and ii) Latitude: 

11.22305556°, Longitude: -74.18591667°, Altitude: 7 m, Sampling frequency: 10 min. 

The time series of Santa Marta were downloaded by month, and subsequently the following 

variables were extracted: wind speed, angle, and date. These last two variables were normalized as described 

in section 2.2. It should be noted that for Santa Marta, the most recent data published by IDEAM correspond 

to July 2020. Therefore, the average active power predictions were only implemented up to this period. In 

future works, depending on the availability of the data, the missing time periods can be considered. 

 

 

3. RESULTS 

3.1.   Dataset pre-processing results 

Table 6 shows the results of the statistical data of the wind speed vector and the distribution 

functions used for data analysis. The Weibull and Rayleigh distributions are presented in Figure 4, where the 

variations in wind speed are observed. Additionally, when analyzing the dataset, it is possible to determine 

which are the most relevant variables to model the behavior of interest, for which the correlation matrix of 

the dataset under study was implemented as shown in Figure 5. Where, WS is wind speed, TP is theoretical 

power, Wdi is wind direction, NM is normalized month, NW is normalized wind direction, and AP is active 

power. 

 

 

Table 6. Statistical data 
Variable Min-Max (m/s) Mean σ k 

Wind speed 0-25.2 7.563 4.227  

Weibull distribution function 0-25.2 8.52  1.86 
Rayleigh distribution function 0-25.2 6.12   

 

 

 
 

  

Figure 4. Wind speed distribution for the study data Figure 5. Correlation matrix of the original dataset 

 

 

The results of the correlation matrix show that the wind speed (WS), theoretical power (TP) and 

active power (AP) are the most relevant variables for the study. Figure 5 shows that active power has a 

correlation coefficient of 0.91 with wind speed and 0.95 with theoretical power, likewise, wind speed and 

theoretical power have a correlation coefficient of 0.94. The other variables in the dataset have a very low 

correlation coefficient with respect to the variable of interest. With the analysis performed, we were able to 

verify that the two most relevant variables for modeling active power are wind speed and theoretical power. 

 

3.2.  NARX network training with the dataset 

Case 1. In this case, wind speed, normalized month and normalized wind direction were used as 

input variables, while the target is active power. After training the NARX network, the correlation coefficient 

(R) was calculated for each of the processes mentioned in Table 5. Table 7 shows an excellent performance 

of the NARX network for each of the processes, which is evidenced by the high values obtained for the 

correlation coefficient. Figure 6 shows the output of the network versus the target, in which the satisfactory 

performance of the NARX architecture for the prediction of active power can be seen, from the 1,000 data 

used in this task. 
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Table 7. Prediction of active power-case 1 
Processes Correlation coefficient (R) 
Training 0.9833 

Validation 0.9838 
Testing 0.9812 

Prediction 0.9450 

 

 

 
 

Figure 6. Prediction of active power for case 1 

 

 

Case 2. For this case, the theoretical power, normalized month, and normalized wind direction were 

used as inputs, and the target of the network is the wind speed. The results can be seen in Table 8. As in  

case 1, excellent values for the correlation coefficient in the training, validation, testing, and prediction 

processes were obtained. In the case of wind speed prediction, an R of 0.9589 was obtained, which shows a 

similar performance to the R obtained in case 1 for the active power prediction (R=0.9450). In addition, 

Figure 7 shows the output of the network compared to the target, which in this case is the wind speed. With 

these results, the satisfactory performance of the network in the prediction from the 1,000 samples used 

continues to be evidenced. 

 

 

Table 8. Prediction of wind speed-case 2 
Processes Correlation coefficient (R) 
Training 0.9848 

Validation 0.9850 
Testing 0.9845 

Prediction 0.9589 

 

 

Case 3. In the previous cases, the ANN only had one output, which corresponds to the variable to be 

predicted. However, in this case, the ANN has two outputs: one to predict the active power and the other to 

predict the wind speed. Theoretical power, normalized month and normalized wind direction were used as 

inputs to the neural network. Table 9 shows that for active power an R of 0.9443 was obtained, which is like 

the result obtained in case 1 with a value of 0.9450. However, for wind speed, R is 0.9174, lower than the 

value of 0.9589 obtained in case 2. 

Figure 8(a) shows a comparison for the prediction of active power in cases 1 and 3, where a similar 

behavior that is consistent with the correlation coefficients obtained in both cases (R=0.9443 case 3, 

R=0.9450 case 1) is observed. Figure 8(b) illustrates the performance of the network for wind speed 

prediction in cases 2 and 3, where a better behavior can be seen in case 2, which is consistent with the values 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Wind power prediction using a nonlinear autoregressive exogenous model network … (Jordan Guillot) 

4863 

of R obtained (R=0.9174 case 3, R=0.9589 case 2). It is evident that the theoretical power input variable 

affects the behavior of the network, especially in the output corresponding to the wind speed. This is 

corroborated by comparing the network output (case 3-Figure 8(b)), with the behavior of the theoretical 

power as shown Figure 8(c), where it is observed that the response of the NARX network follows the 

theoretical power. 

 

 

 
 

Figure 7. Prediction of wind speed for case 2 

 

 

Table 9. Prediction of active power and wind speed-case 3 
Processes Correlation coefficient (R) 
Training 0.9893 

Validation 0.9877 
Testing 0.9880 

Prediction (active power) 0.9443 
Prediction (wind speed) 0.9174 

 

 

3.3.  Prediction of active power for Santa Marta 

This section presents the results for the prediction of active power in Santa Marta for the years 2018, 

2019 and 2020. For each year, the box-and-whisker plots were performed. In addition, the monthly average 

active power predictions and the correlation coefficient are presented, with which the performance of the 

NARX network can be analyzed for the years under study. The results for each year are presented 

independently in the following three subsections. 

 

3.3.1. Prediction for 2018 

With the NARX network successfully trained with the dataset, we proceeded to predict the active 

power in the city of Santa Marta for the 3 years under study. Table 10 shows the month, average wind speed, 

predicted average active power and the correlation coefficient (R) for each of the months of the year. In 

general, the wind speed data are symmetrical with many outliers in most months of the year, which affects 

the performance of the NARX network in the task of predict active power. This situation is evidenced in the 

values of R obtained that range between 0.3701 (February) for the worst case and 0.8520 for the best case in 

March as shown in Table 10. Despite the amount of atypical data, in 8 of the 12 months analyzed for 2018, 

acceptable correlation coefficients greater than 0.75 were obtained. In relation to the predicted active power, 

the highest value obtained was 45.3599 kW for the month of December, while the lowest value was obtained 

in January, 11.6430 kW, with a monthly average of 27.5754 kW for 2018. These data show that the area 

where the measurements were made has a low wind potential [27], considering that the energy mining 

planning unit (UPME) establishes that the average monthly consumption of a Colombian household is  

157 kWh. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8. Comparison of the results (a) prediction of active power in case 3, case 1 and target, (b) prediction 

of wind speed in case 3, case 2 and target, and (c) input variable: theoretical power. The Y-axis was 

normalized to the interval [-1, 1] 

 

 

Table 10. Results of the active power prediction for Santa Marta in 2018 
Month Average wind speed (m/s) Predicted average active power (KW) R 

Jan 3.9114 11.6430 0.6310 
Feb 6.3865 38.9564 0.3701 
Mar 4.3806 38.3262 0.8520 
Apr 3.1078 18.9330 0.8133 
May 2.0271 13.9741 0.6888 
Jun 2.8456 23.0365 0.7226 
Jul 3.3728 30.9814 0.8031 

Aug 2.7974 30.3111 0.7833 
Sep 2.1045 28.5010 0.7730 
Oct 1.8648 28.3356 0.8250 
Nov 2.7700 33.0256 0.8317 
Dec 4.3371 45.3599 0.7946 

 

 

3.3.2. Prediction for 2019 

For the year 2019, results were also obtained for the predicted active power and the correlation 

coefficient, as can be seen in Table 11. Many atypical data in wind speed continue to be observed for most of 

the months, which affects the performance of the network in the prediction of active power. In this case, 

correlation coefficients ranging between 0.5243 and 0.8537 were obtained, with 8 of the 12 months with R 

values greater than 0.75 as shown in Table 11. In relation to the predicted active power, a monthly average 

value of 27.4767 kW was obtained, which is like the value of 27.5754 obtained for 2018. 

 

3.3.3. Prediction for 2020 

The IDEAM only has reported data up to July 2020, for this reason the prediction of active power 

and the calculation of R were made up to this period as shown in Table 12. The results for the 7 months of 

2020 reflect R values between 0.6001 and 0.7902 as shown in Table 12, which shows an acceptable 
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performance of the NARX network in the active power prediction tasks, considering the amount of outlier 

data. In addition, the monthly average value of the predicted active power is 24.8493, which does not differ 

from the values obtained for the previous two years. 

 

 

Table 11. Results of the active power prediction for Santa Marta in 2019 
Month Average wind speed (m/s) Predicted average active power (KW) R 

Jan 4.1837 13.0007 0.5243 
Feb 4.9011 31.3477 0.6914 
Mar 4.5551 39.7766 0.8537 
Apr 3.5843 24.6955 0.8401 
May 2.1278 14.6468 0.7198 
Jun 2.8855 24.0123 0.7717 
Jul 3.1886 29.6446 0.7729 

Aug 2.2585 28.1395 0.7751 
Sep 1.9792 28.2559 0.7925 
Oct 1.5338 26.7917 0.7224 
Nov 2.6573 32.6812 0.8522 
Dec 3.1886 36.7283 0.8485 

 

 

Table 12. Results of the active power prediction for Santa Marta in 2020 
Month Average wind speed (m/s) Predicted average active power (KW) R 

Jan 4.2703 12.7642 0.6001 
Feb 5.1090 32.7979 0.6336 
Mar 5.1390 47.6349 0.7607 
Apr 3.2588 19.9056 0.7902 
May 2.1398 13.7910 0.6071 
Jun 2.5650 22.0803 0.7201 
Jul 2.0137 24.9715 0.6819 

 

 

4. CONCLUSION 

From the results obtained with the NARX network, it can be concluded that this architecture is a 

good machine learning tool to perform active power and wind speed prediction processes. The use of a 

reliable dataset allowed the training of the neural network efficiently, which was demonstrated with the 

values obtained for the correlation coefficient. The normalization process of some variables, such as the 

month and the wind direction, facilitated the learning of the neural network. Furthermore, data preprocessing 

was essential for the successful training and implementation of the neural network. It was possible to 

demonstrate that the methodology proposed in this research is a viable alternative for the predictions of active 

wind power in a place that does not have available or unreliable data on meteorological variables such as 

wind speed and direction. For most cases, acceptable correlation coefficients were obtained in the training, 

validation, testing and prediction processes of active power and wind speed for the city of Santa Marta; 

implementing a NARX network previously trained with a dataset from a wind farm in Turkey. 
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