
 
  

 

15 

 

Iraqi Journal for Computers and Informatics 
 

Vol. [49], Issue [1], Year (2023 ) 

THE USE OF ROUGH CLASSIFICATION AND TWO THRESHOLD 

TWO DIVISORS FOR DEDUPLICATION 
 

Hashem B.  Jehlol 1 Loay E. George 
Iraqi Commission for  Computers and Informatics University of Information Technology and Communication 

(UoITC) 

 Informatics Institute of Postgraduate Studies Baghdad-Iraq 

Baghdad-Iraq  

phd202020556@iips.icci.edu.iq                             loayedwar57@uoitc.edu.iq 

 

 Abstract - The data deduplication technique efficiently 

reduces and removes redundant data in big data storage 

systems. The main issue is that the data deduplication requires 

expensive computational effort to remove duplicate data due to 

the vast size of big data. The paper attempts to reduce the time 

and computation required for data deduplication stages. The 

chunking and hashing stage often requires a lot of calculations 

and time. This paper initially proposes an efficient new method 

to exploit the parallel processing of deduplication systems with 

the best performance. The proposed system is designed to use 

multicore computing efficiently. First, The proposed method 

removes redundant data by making a rough classification for 

the input into several classes using the histogram similarity and 

k-mean algorithm. Next, a new method for calculating the 

divisor list for each class was introduced to improve the 

chunking method and increase the data deduplication ratio. 

Finally, the performance of the proposed method was 

evaluated using three datasets as test examples. The proposed 

method proves that data deduplication based on classes and a 

multicore processor is much faster than a single-core 

processor. Moreover, the experimental results showed that the 

proposed method significantly improved the performance of 

Two Threshold Two Divisors (TTTD)  and Basic Sliding 

Window BSW algorithms.. 
 

 Index Terms - Big Data, Deduplication, hash function, data 

classification, Multicore processing . 

 

I.  INTRODUCTION 

 In recent years, there has been an astronomical increase 

in the volume of digital data[1]. Increased data collection 

and storage need more computing power, storage space, and 

network bandwidth [2]. The cost-effectiveness of storage 

management is a significant challenge [3]. The big data era 

has a fast growth rate, a large variety of data types and 

sources, and low-value density [4]. Google, International 

Business Machines Corporation IBM, Microsoft, Intel, and 

Motorola reported that 75 per cent of big data is duplicate 

[5]. Deduplication effectively reduces redundant data, as it 

avoids storing and transmitting duplicate data across 

networks. Storage systems widely use data deduplication to 

improve storage efficiency and input/output performance 

[6].  

Data deduplication often uses Content Defined Chunk 

(CDC) due to its high potential and ability to find and 

remove duplicate data in different systems [7]. However, 

implementing CDC adds considerable performance 

overhead to the system, mainly when variable-chunking size 

is employed, commonly used in backup storage systems [8]. 

In addition, the chunking, hashing, and matching for 

deduplication are time-consuming and CPU intensive. For 

example, calculating the hash value from a Rapin-based 

rolling window splitting per byte of file offset uses a 

significant amount of CPU resources and has become a 

severe performance bottleneck in many backup storage 

systems [9].  

Unfortunately, the single processor performance 

significantly impacts data deduplication [9]. To compensate 

for this performance drop, this paper indicates that data can 

be organized into classes in data deduplication systems 

according to the correlation strength between data files and 

using the k-mean algorithm. Furthermore, the processing of 

removing redundant data and the functional units are 

independent for each class. Therefore, it's a good idea to use 

parallel processing for each class, especially for chunking, 

calculating hash values, and comparing them  [10]. The 

processors in modern computer systems are multicore to 

provide more Central Processes Unit (CPU) resources. 

Therefore, it can take full advantage of multicore computer 

systems with central processors to handle data deduplication 

that requires extensive computation [9]. Using parallelism in 

the CDC-based deduplication process increases the speed 

linearly, but the deduplication rate decreases slightly [9]. To 

address this problem, this paper proposes improving the 

Two Threshold Two Divisors (TTTD) algorithm by finding 

a list of divisors based on the data content and converting 

files belonging to each class into a stream of bytes. This 

leads to very few tail chunks and improves the deduplication 

ratio. 

The rest of the paper is arranged into six  sections, which are 

as follows: In section II, the relevant work is introduced. 

Then, In section III, the paper methods and tools are 

explained. Next, the dataset for examining the performance 

of the proposed method is presented in section IV, where the 

proposed method is presented in the V section, and the 

experimental results are discussed in the VI section. Finally, 

the conclusions are presented in the VII section. 

II.  RELATED WORK 

Deduplication is the most extensively used technique for 

data backup and storage. As a result, deduplication systems 

have been the focus of several studies over the past few 

years. Here is a summary of some previous studies: 

H. Fan et al. [11] 2019 proposed a new deduplication 

algorithm called Clustering Scattered Fingerprint CSF, 

where scattered fingerprints were collected. This method 

exploits the location of the data as much as possible and 

improves the rate of fingerprint usage by using clustering. 

The algorithm has also been improved by using the 
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scheduling strategy. The results showed that the proposed 

method works better than the modern algorithms. 

H. Fan [9] 2019 presented a parallel method to speed up the 

deduplication process by dividing the deduplication process 

into four stages (chinking, fingerprinting, indexing, and 

writing). This proposed method significantly eased the 

bottleneck in processing chunking files and fingerprints and 

saving the data in storage. Experimental results indicate an 

acceleration of parallel CDC-based throughput. Also, the 

data deduplication rate decreased by 0.02%, a tiny 

percentage compared to the speed achieved by parallel 

CDC. 

P. Sangat et al. [12] 2020 introduced a new effective 

approach to big data analysis by proposing a parallel 

algorithm known as ATrie Group Join (ATGJ). This 

algorithm integrates (join, grouping, and aggregation) 

operations to speed up the work of data analysis and reduce 

the burden on memory. According to the analysis of the 

algorithm, it scales better and is significantly quicker than 

other algorithms for handling concurrent threads, aggregate 

attributes, large data sets, and complex queries. 

C. Ordonez et al. [13] 2020 proposed a low-cost processing 

method based on dynamically segmenting data sets during 

runtime. Each node processes one section of the data 

independently of the rest. After the processing is completed, 

the results of all the nodes are collected in the central 

processing node. Take advantage of parallel processing in 

the cloud, where a dynamic number of virtual processors is 

selected at runtime or when analyzing a data set for a short 

period, which can be applied to solve Machin Learning 

problems in big data analytics. 

Ahmed Sardar M et al.  [14] 2021 developed a new method 

for improving the redundancy deduplication system. They 

use a practical, boundary-based linear hash technique. 

Compared to Message-Digest Algorithm MD5 and Secure 

Hash Algorithm SHA-1, the new method reduces hash time 

by more than two times. Furthermore, the hash index table 

shrinks by 50% as a result of this. 

R. Gururaj et al. [15] 2022 proposed using an inline data 

duplication system equipped with a cache eviction 

mechanism based on machine learning. It helps to reduce 

metadata overhead, eliminate repeated writes, and boost 

performance in storage applications. For example, 

exploiting block similarity eliminates 33% of unnecessary 

writes and reduces 54.5% of metadata overhead. 

III. METHODS AND TOOLS  

 All the studies in the related work mentioned in this 

paper remove data redundancy using deduplication without 

paying attention to the type of files. That is, these studies 

treat the data regardless of the internal structure of the data. 

In the proposed method, the files are classified according to 

the internal structure of the bytes within these files. Then 

each class is dealt with separately regarding chunking, 

hashing, and comparison. This paper divided the data input 

into many classes and used parallel tasks to process each 

class independently. The proposed method improves the 

deduplication ratio and processing speed. Several algorithms 

were relied upon to complete this work. The most important 

of these algorithms are shown in this section.  

1) Two Threshold Two Divisors (TTTD): This 

algorithm works better than older algorithms by 

invalidating abnormally large chunks using the 

fallback divisor to reduce chunk sizes. This 

algorithm introduces a maximum and minimum 

threshold value to reduce the variance between the 

chunks [16]. When the chunk size reaches the 

maximum value threshold, the algorithm uses the 

fallback divisor and reruns the process to find a 

divisor representing a specific content boundary. 

However, this algorithm suffers from two main 

problems. The first is that these operations increase 

the number of fragments and the processing time of 

the deduplication process. The second problem is 

finding the second divisor, which wastes 

unnecessary time finding other backup breakpoints 

[17]. 

2) Statistical Features: This paper used three statistical 

measures to describe a particular file's features: 

Shannon's Entropy, Stander Division, and 

Variance. The experiments have shown that 

Entropy alone can be appropriate to determine the 

selected data set required in this study; However, 

we introduce Entropy, Stander Division, and 

variance to get better results. Entropy [18] is one of 

the most important techniques used to measure the 

amount of disorder and randomness in the 

information that makes up a particular file. It 

provides the amount of information and 

randomness in the given data regarding the number 

of bytes per file [19]. 

 
X is a data vector, n is the alphabet size, and i is the number 

of bits. The function is the probability of occurrence 

of byte value I in the segment [18].   

3) Pearson's correlation coefficient (R): is a metric for 

determining the strength and direction of the 

connection between two variables assessed at least 

on an interval scale. Pearson correlation coefficient 

is determined using (2): 

 
Where R is the Correlation Coefficient of Pearson, N equals 

the number of pairs of values, ∑xy is equal to the sum of the 

products of x and y,  is equal to the mean of the x values,  

is equal to the mean of the values y, the Product of the 

mean values, ∑x2 the sum of the squares of all x values, 

∑y2  the sum of the squares of all y values [20]. 

 

4) K-Means: Divide data into clusters that share 

similarities and differences from data from another 
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cluster. Using the K-Means clustering algorithm requires 

some steps, including the following [21]: 

Step 1: Select the K value to determine the number of 

clusters. 

Step 2: Choose a random K centroid. 

Step 3: Place each data point inside one of the K clusters 

based on its proximity to the data's centroid. 

Step 4: Create a new centroid for each cluster based on the 

variance calculation. 

Step 5: Repeat step three and reassign all data points to the 

new nearest centroid point for each cluster.  

Step 6: If there is a change, go to step 4; otherwise, the 

algorithm stops [22]. 

IV. DATASET   

 Several tests were conducted to examine the proposed 

method's performance based on three datasets from open-

source systems  .The datasets have different characteristics, 

and files belonging to datasets are of different sizes and 

types. The first dataset includes several (three-dimensional 

drawings plus the initials of the author Laurence D. Finston)  

3DLDF files of (GNU's Not Unix) GNU source code 

versions comprising 5,795 files with a data size of 2.27 GB. 

The second dataset includes 309 versions of SQLite with a 

file count of 212,741 and a data size of 6.44 GB. 

Meanwhile, the third dataset, three versions of Linux source 

code Linux-4.9.311, Linux-4.19.239, and Linux-5.4.190, 

contains 183,779 Files and a data size of 2.17 GB [14]. 
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V. PROPOSED METHOD 

The fundamental issue with the data deduplication 
technique is that it needs a costly computing effort to 
eliminate duplicate data due to the massive amount of big 
data. Therefore, this article aims to shorten the computation 
and time needed to complete the data deduplication stages. 
The chunking and hashing stages often need the most 
calculations and time. The proposed method removes 
redundant data by classifying the input data into several 
classes. It uses the parallel algorithm to remove redundant 
data based on task parallelism, the parallelism of independent 
data, and asynchrony. Furthermore, it uses parallel to speed 
up the elimination of duplicate data. Data deduplication 
processes are divided into four stages (chunking, 
fingerprinting, indexing, and writing). This method relieves 
the bottleneck of the deduplication system, especially in the 
chunking and fragmentation stages. Files belonging to each 
class are processed sequentially after being converted into a 
stream of bytes. Figure (1) describes the general framework 
of the proposed method.  

 

Fig. (1) The proposed method 
 

A. Files classification  

After the dataset is passed to the data deduplication system, 
the files are initially classified according to their file 
extension, resulting in several classes equal to the number of 
extensions. As a result, some classes are large or small. To 
achieve a reasonable number of classes, the highest-size 
extension classes are divided into lower-size subclasses, and 
the small extension classes are merged. The proposed 
algorithm tries to make the size of classes as close as 
possible based on the threshold value, as when the classes are 
close in size, this increases the performance in parallel 
processing.  Figure (2) show classified data into several 
classes. 

Divide Large Extension Class: Larger extension classes are 
divided into smaller subclasses. This method is used if the 
extension class size exceeds the threshold value. The 
extension classes are divided into several subclasses. Some 
statistical features are extracted from each file that belongs to 
subclasses. First, three features (Entropy, standard deviation, 
and variance) are computed for each file belonging to a given 
extension. Next, the K-mean algorithm clusters the files with 
similar features: files with Approximately the Same Entropy, 
variance, and stander division gather in the same cluster. 

Merge Small Extension Class: This method aggregates 
extension classes of small size into classes of larger size. The 
sizes of the resulting classes are as close as possible. First, a 
histogram is calculated for each extension class. Next, the 
strength of the correlation coefficient between the histograms 
is calculated. Finally, using a Pearson matrix for grouped 
extension classes with a strong correlation into a single class. 
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Fig. (2) Classifying data into several classes 

 

B. Parallel Processing 

In the data deduplication process, the chunking and the 
hashing are very costly in terms of time-consuming and 
process computations. The proposed method is designed to 
make efficient use of multicore processor computing. CDC-
based deduplication systems generally have four stages 
(chunking, fingerprinting, indexing, and writing). These 
stages operate dependently on each other. Therefore, it can 
be processed sequentially in each data class.  

The dataset is divided into classes, and each class is 
assigned one task for a parallel process. For example, all files 
belonging to Class 1 can perform all subtasks on them( data 
chunking, finding proper divisors, fingerprinting, and 
indexing) until they are stored on the hard drive. All class 
operations are performed entirely independently from the rest 
of the classes. First, all files belonging to the class are 
converted to a stream of bytes. Then, a sequence of bytes is 
generated for each class. The class size is usually more than 
1 GB; if it's, buffer storage is used to deal with these classes. 
Figure (3) shows the parallel processing for each class 
independently. 

1) LIST OF DIVISORS 

The new method proposed a set of divisors for each class 
where a list of divisors is computed based on the frequency 
of the byte pairs within each class. This list of divisors is 
derived for each class based on the properties of the files that 
belong to that class. For example, some byte pairs have more 
frequency through statistical analysis than other pairs. 
Therefore, it starts by counting the number of times each pair 
of bytes appears or occurs in a given class. 

  

Fig. (3) Parallel processing for each class independently 
 

Then the list of divisors is extracted according to the 
frequency of the byte pairs of each class, and this list is 
ordered from the highest frequency to the lowest frequency 
in descending order. Finally, each class defines the number 
of pairs of high-order bytes as divisors. The optimal number 
of divisors gives the best results determined by the 
experiment. Choosing the correct and perfect number of 
divisors required for each class improves deduplication 
results and increases DR. 

2) CHUNKING 

A new chunking method to improve The Two Divisors 
Two Threshold TTTD algorithm is proposed, where a list of 
D-divisors for each class in the dataset based on the dataset's 
contents is used to divide the stream of the input class into 
small, non-overlapping parts. It converts all files belonging 
to one class to a stream of bytes. A sequence of bytes is 
generated for each class. This leads to very few tail chunks, 
equal to the number of classes, only one tail chunk for each 
class. This method improves the deduplication ratio. Instead 
of using two divisors of (TTTD), the proposed method 
generates a list of divisors based on each class's content. 
These dividers define breakpoints to divide files into parts 
called fragments. 

The new technique employs the minimum (Tmin) to 

decrease the number of too-small chunks and the maximum 

(Tmax) to decrease the number of too-large chunks. Deviser 

D is used to establish breakpoints. The scan begins with the 

minimum threshold value (Tmin) and ends with the highest 

threshold value (Tmax) to discover divisors by comparing 

each pair of bytes with the list of divisors and establishing 

breakpoints. If no breakpoints are given, the value (Tmax) is 

used as the breakpoint. Unlike prior approaches that divided 

files into fixed or variable sizes, the new method selects the 

divisors based on categorizing data sets, file formats, and the 
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frequency of byte pair occurrences, producing better 

deduplication results. Figure 4 shows that the chunk size 

between the last breakpoint and the class endpoint can be 

greater than 0 bytes and less than or equal to the maximum 

value (Tmax). 

 

Fig. (4) Divide the stream of bytes in the class into Chunks based on 

Tmin,Tmax, and divisors 

3) HASHING 

Identifying duplicate chunks of data quickly is one of the 
most critical challenges in deduplicating data. Finding 
duplicate data by comparing bytes is useless and requires 
many input and output operations. Most data deduplication 
systems rely mainly on fingerprinting data to remove 
duplicate data. Fingerprint functions are the most important 
procedure in data removal. Fingerprints are the same if and 
only if the data chunk is the same. The MD5 and SHA-1 
Functions are among the known functions that are used for 
fingerprinting. The MD5 function provides faster 
computation than the SHA-1 function, which has a more 
negligible collision probability. The MD5 hash is 128 bits, 
and SHA-1 is 160 bits. In this paper, we use MD5 as the 
fingerprinting function. Parallel processing is used to speed 
up the fingerprinting procedure.  

4) INDEXING AND WRITHING 

The comparing process includes the divisor, size, and 

MD5 hash function of two chunks from the same class to 

find the identical. In previous deduplication techniques, the 

chunk is compared with all other chunks in the hash index 

table and is not considered a file type; therefore, these 

methods are inefficient and time-consuming. The new 

technique speed up the comparison procedure as a new 

chunk is compared with chunks of the same class. In 

addition, parallelism at this level expedites the comparing 

and storing processes. When two chunks match, the metadata 

that defines the current chunk is updated, and the new chunk 

is removed. If the new chunk is not duplicated, the new 

chunk information is added to the metadata table, and then 

the new chunk is placed in the non-duplicate data container. 

5) EXPERIMENTAL AND RESULT 

The proposed method is evaluated using the following 
computer characteristics: Windows 11 operating system, 
CPU Intel(R) Core i5-10300H with 4 cores, Random-Access 

Memory RAM 16 GB, and programming language C# 
Visual Studio 2022. In addition, three criteria were used to 
measure efficiency: the time required to finish the 
deduplication process, the data Deduplication Rate (DR), as 
mentioned in (3), and throughput, which reflects the quantity 

of data the system can process in a given period, as shown in 
(4). 

 

 
 

 

 

Parallel processing has been widely used to improve the 
efficiency of software systems. For example, multicore 
processors can speed up the ability to remove redundant data 
using a parallel process. The proposed method uses task 
parallelism, the parallelism of independent data, and 
asynchrony. In the beginning, data is classified before 
entering into the deduplication system, and parallel 
processing saves storage space and reduces the time used by 
the deduplication ratio. Figure (5) shows the relationship 
between the throughput and the number of processor cores. 
The throughput reaches the maximum when using 4 parallel 
cores to process the four stages of data deduplication 
(chunking, fingerprinting, indexing and writing). According 
to the experiment's findings, most chunks were decided by 
the divisor when chunk sizes were between 128 and 512 
bytes for the Tmin and Tmax values.  
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Fig. (5) Relationship of Throughput  and Task Number  

Figure (6) shows that each class is processed using one 

processor core. Increasing the number of classes reduces the 

time required to remove redundant data because each class is 

processed simultaneously with the rest. For example, each 

dataset is classified into 1,2,3,4 classes using histogram and 

k-mean algorithms. Therefore, when using 4 cores, the 

redundant removal data processing time is less than in other 

cases (1,2 and 3 cores).  

 

Fig. (6) Comparison of the Number Core and Deduplication Time 

The deduplication ratio dropped slightly when the number of 
cores increased due to the data division into classes and the 
matching of similar chunks in each class separately. 
However, the increase in speed obtained from applying the 
proposed method is much more than a simple decrease in the 
deduplication ratio. Figure (7) shows the relationship 
between the deduplication ratio and the number of cores.  

Fig. (7) Comparison of the Number Core and Deduplication Ratio 

The proposed chunking algorithm proved its efficiency 

by the results in Table 1, where most chunks are obtained 

using the list of divisors generated using the proposed 

method. The divisor list is determined based on the dataset's 

properties. While the divisors obtained using (Tmax) were 

few. Also, all files of the same class are converted to a 

stream of bytes; this reduces the number of chunks of type 

(tail), while in the case of converting each file to a stream of 

data individually, the number of chunks of type (tail) is 

enormous. Furthermore, the number of chunks (tail) was one 

for each class, which increased the data deduplication ratio.  

The performance of the proposed method has been compared 

with two published deduplication approaches. The results 

revealed the superiority of the proposed methods in 

distinguishing more duplicate chunks as efficiently as 

possible compared to the latest versions. Table II shows 

comparing the proposed method with the two methods, 

TTTD and BSW, for the Deduplication Ratio. 

TABLE II. COMPARING THE PROPOSED METHOD WITH THE TWO METHOD  

Dataset TTTD BSW Proposed Method 

Dataset1 2.13 1.7 15 

Dataset2 16.7 13.5 35 

Figure (8) shows the Deduplication Ratio for the proposed 

method compared to the other methods, TTTD and BSW. 

 
Fig. (8) Comparison proposed method with TTTD and BSW methods 

6) CONCLUSION 

The data deduplication technique's fundamental problem 

is time-consuming and requires expensive computing effort. 

This work presents a new method to speed up the 

deduplication process using parallel processing by taking 

advantage of multicore processors. It removes redundant data 

by classifying the input into several classes using the 

histogram similarity and k-mean algorithm. The proposed 

solution ensures high performance of deduplication 

operations and efficient use of system resources. 

Experimental evaluation showed that the proposed data 

deduplication method yielded more effective and faster 

results than the other approach, which does not rely on data 

classification and parallel processing. When using a 

processor with four cores, the speed is 55% to 250% faster 

than when using a single-core processor; also, throughput is 

45% to 200% higher. Furthermore, generating the list of 

divisors for each class based on the content of files and 

converting each class to one stream of bytes increased the 

deduplication ratio. The proposed method is about 7 times 

higher than that of TTTD and about 10 times higher than 

BSW. In future work, the proposed method can be extended 

by dealing with real datasets and using a dynamic method for 

defining the divisor list for each class used in dividing the 

TABLE I. NUMBER OF  DIVISORS, TMIN, TMAX AND TAIL 

Dataset 
Type of 

Stream 
Tmin Tmax divisors tail 

Dataset1 
File 15 903,265 14,130,831 5,780 

Class 0 903,916 14,133,099 4 

Dataset2 
File 733 1,281,967 40,733,806 189,970 

Class 0 1,282,342 40,825,449 4 

Dataset3 
File 4,243 18,428 16,080,753 179,707 

Class 0 19,649 16,149,337 4 
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files into chunks to increase the efficiency of eliminating 

redundant data. 
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