

15

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

THE USE OF ROUGH CLASSIFICATION AND TWO THRESHOLD

TWO DIVISORS FOR DEDUPLICATION

Hashem B. Jehlol 1 Loay E. George
Iraqi Commission for Computers and Informatics University of Information Technology and Communication

(UoITC)

 Informatics Institute of Postgraduate Studies Baghdad-Iraq

Baghdad-Iraq

phd202020556@iips.icci.edu.iq loayedwar57@uoitc.edu.iq

 Abstract - The data deduplication technique efficiently

reduces and removes redundant data in big data storage

systems. The main issue is that the data deduplication requires

expensive computational effort to remove duplicate data due to

the vast size of big data. The paper attempts to reduce the time

and computation required for data deduplication stages. The

chunking and hashing stage often requires a lot of calculations

and time. This paper initially proposes an efficient new method

to exploit the parallel processing of deduplication systems with

the best performance. The proposed system is designed to use

multicore computing efficiently. First, The proposed method

removes redundant data by making a rough classification for

the input into several classes using the histogram similarity and

k-mean algorithm. Next, a new method for calculating the

divisor list for each class was introduced to improve the

chunking method and increase the data deduplication ratio.

Finally, the performance of the proposed method was

evaluated using three datasets as test examples. The proposed

method proves that data deduplication based on classes and a

multicore processor is much faster than a single-core

processor. Moreover, the experimental results showed that the

proposed method significantly improved the performance of

Two Threshold Two Divisors (TTTD) and Basic Sliding

Window BSW algorithms..

 Index Terms - Big Data, Deduplication, hash function, data

classification, Multicore processing .

I. INTRODUCTION

 In recent years, there has been an astronomical increase

in the volume of digital data[1]. Increased data collection

and storage need more computing power, storage space, and

network bandwidth [2]. The cost-effectiveness of storage

management is a significant challenge [3]. The big data era

has a fast growth rate, a large variety of data types and

sources, and low-value density [4]. Google, International

Business Machines Corporation IBM, Microsoft, Intel, and

Motorola reported that 75 per cent of big data is duplicate

[5]. Deduplication effectively reduces redundant data, as it

avoids storing and transmitting duplicate data across

networks. Storage systems widely use data deduplication to

improve storage efficiency and input/output performance

[6].

Data deduplication often uses Content Defined Chunk

(CDC) due to its high potential and ability to find and

remove duplicate data in different systems [7]. However,

implementing CDC adds considerable performance

overhead to the system, mainly when variable-chunking size

is employed, commonly used in backup storage systems [8].

In addition, the chunking, hashing, and matching for

deduplication are time-consuming and CPU intensive. For

example, calculating the hash value from a Rapin-based

rolling window splitting per byte of file offset uses a

significant amount of CPU resources and has become a

severe performance bottleneck in many backup storage

systems [9].

Unfortunately, the single processor performance

significantly impacts data deduplication [9]. To compensate

for this performance drop, this paper indicates that data can

be organized into classes in data deduplication systems

according to the correlation strength between data files and

using the k-mean algorithm. Furthermore, the processing of

removing redundant data and the functional units are

independent for each class. Therefore, it's a good idea to use

parallel processing for each class, especially for chunking,

calculating hash values, and comparing them [10]. The

processors in modern computer systems are multicore to

provide more Central Processes Unit (CPU) resources.

Therefore, it can take full advantage of multicore computer

systems with central processors to handle data deduplication

that requires extensive computation [9]. Using parallelism in

the CDC-based deduplication process increases the speed

linearly, but the deduplication rate decreases slightly [9]. To

address this problem, this paper proposes improving the

Two Threshold Two Divisors (TTTD) algorithm by finding

a list of divisors based on the data content and converting

files belonging to each class into a stream of bytes. This

leads to very few tail chunks and improves the deduplication

ratio.

The rest of the paper is arranged into six sections, which are

as follows: In section II, the relevant work is introduced.

Then, In section III, the paper methods and tools are

explained. Next, the dataset for examining the performance

of the proposed method is presented in section IV, where the

proposed method is presented in the V section, and the

experimental results are discussed in the VI section. Finally,

the conclusions are presented in the VII section.

II. RELATED WORK

Deduplication is the most extensively used technique for

data backup and storage. As a result, deduplication systems

have been the focus of several studies over the past few

years. Here is a summary of some previous studies:

H. Fan et al. [11] 2019 proposed a new deduplication

algorithm called Clustering Scattered Fingerprint CSF,

where scattered fingerprints were collected. This method

exploits the location of the data as much as possible and

improves the rate of fingerprint usage by using clustering.

The algorithm has also been improved by using the

16

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

scheduling strategy. The results showed that the proposed

method works better than the modern algorithms.

H. Fan [9] 2019 presented a parallel method to speed up the

deduplication process by dividing the deduplication process

into four stages (chinking, fingerprinting, indexing, and

writing). This proposed method significantly eased the

bottleneck in processing chunking files and fingerprints and

saving the data in storage. Experimental results indicate an

acceleration of parallel CDC-based throughput. Also, the

data deduplication rate decreased by 0.02%, a tiny

percentage compared to the speed achieved by parallel

CDC.

P. Sangat et al. [12] 2020 introduced a new effective

approach to big data analysis by proposing a parallel

algorithm known as ATrie Group Join (ATGJ). This

algorithm integrates (join, grouping, and aggregation)

operations to speed up the work of data analysis and reduce

the burden on memory. According to the analysis of the

algorithm, it scales better and is significantly quicker than

other algorithms for handling concurrent threads, aggregate

attributes, large data sets, and complex queries.

C. Ordonez et al. [13] 2020 proposed a low-cost processing

method based on dynamically segmenting data sets during

runtime. Each node processes one section of the data

independently of the rest. After the processing is completed,

the results of all the nodes are collected in the central

processing node. Take advantage of parallel processing in

the cloud, where a dynamic number of virtual processors is

selected at runtime or when analyzing a data set for a short

period, which can be applied to solve Machin Learning

problems in big data analytics.

Ahmed Sardar M et al. [14] 2021 developed a new method

for improving the redundancy deduplication system. They

use a practical, boundary-based linear hash technique.

Compared to Message-Digest Algorithm MD5 and Secure

Hash Algorithm SHA-1, the new method reduces hash time

by more than two times. Furthermore, the hash index table

shrinks by 50% as a result of this.

R. Gururaj et al. [15] 2022 proposed using an inline data

duplication system equipped with a cache eviction

mechanism based on machine learning. It helps to reduce

metadata overhead, eliminate repeated writes, and boost

performance in storage applications. For example,

exploiting block similarity eliminates 33% of unnecessary

writes and reduces 54.5% of metadata overhead.

III. METHODS AND TOOLS

 All the studies in the related work mentioned in this

paper remove data redundancy using deduplication without

paying attention to the type of files. That is, these studies

treat the data regardless of the internal structure of the data.

In the proposed method, the files are classified according to

the internal structure of the bytes within these files. Then

each class is dealt with separately regarding chunking,

hashing, and comparison. This paper divided the data input

into many classes and used parallel tasks to process each

class independently. The proposed method improves the

deduplication ratio and processing speed. Several algorithms

were relied upon to complete this work. The most important

of these algorithms are shown in this section.

1) Two Threshold Two Divisors (TTTD): This

algorithm works better than older algorithms by

invalidating abnormally large chunks using the

fallback divisor to reduce chunk sizes. This

algorithm introduces a maximum and minimum

threshold value to reduce the variance between the

chunks [16]. When the chunk size reaches the

maximum value threshold, the algorithm uses the

fallback divisor and reruns the process to find a

divisor representing a specific content boundary.

However, this algorithm suffers from two main

problems. The first is that these operations increase

the number of fragments and the processing time of

the deduplication process. The second problem is

finding the second divisor, which wastes

unnecessary time finding other backup breakpoints

[17].

2) Statistical Features: This paper used three statistical

measures to describe a particular file's features:

Shannon's Entropy, Stander Division, and

Variance. The experiments have shown that

Entropy alone can be appropriate to determine the

selected data set required in this study; However,

we introduce Entropy, Stander Division, and

variance to get better results. Entropy [18] is one of

the most important techniques used to measure the

amount of disorder and randomness in the

information that makes up a particular file. It

provides the amount of information and

randomness in the given data regarding the number

of bytes per file [19].

X is a data vector, n is the alphabet size, and i is the number

of bits. The function is the probability of occurrence

of byte value I in the segment [18].

3) Pearson's correlation coefficient (R): is a metric for

determining the strength and direction of the

connection between two variables assessed at least

on an interval scale. Pearson correlation coefficient

is determined using (2):

Where R is the Correlation Coefficient of Pearson, N equals

the number of pairs of values, ∑xy is equal to the sum of the

products of x and y, is equal to the mean of the x values,

is equal to the mean of the values y, the Product of the

mean values, ∑x2 the sum of the squares of all x values,

∑y2 the sum of the squares of all y values [20].

4) K-Means: Divide data into clusters that share

similarities and differences from data from another

17

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

cluster. Using the K-Means clustering algorithm requires

some steps, including the following [21]:

Step 1: Select the K value to determine the number of

clusters.

Step 2: Choose a random K centroid.

Step 3: Place each data point inside one of the K clusters

based on its proximity to the data's centroid.

Step 4: Create a new centroid for each cluster based on the

variance calculation.

Step 5: Repeat step three and reassign all data points to the

new nearest centroid point for each cluster.

Step 6: If there is a change, go to step 4; otherwise, the

algorithm stops [22].

IV. DATASET

 Several tests were conducted to examine the proposed

method's performance based on three datasets from open-

source systems .The datasets have different characteristics,

and files belonging to datasets are of different sizes and

types. The first dataset includes several (three-dimensional

drawings plus the initials of the author Laurence D. Finston)

3DLDF files of (GNU's Not Unix) GNU source code

versions comprising 5,795 files with a data size of 2.27 GB.

The second dataset includes 309 versions of SQLite with a

file count of 212,741 and a data size of 6.44 GB.

Meanwhile, the third dataset, three versions of Linux source

code Linux-4.9.311, Linux-4.19.239, and Linux-5.4.190,

contains 183,779 Files and a data size of 2.17 GB [14].

ACKNOWLEDGMENT

 The preferred spelling of the word “acknowledgment”

in America is without an “e” after the “g.” Try to avoid the

stilted expression, “One of us (R. B. G.) thanks …” Instead,

try “R.B.G. thanks …” Put sponsor acknowledgments in the

unnumbered footnote on the first page.

V. PROPOSED METHOD

The fundamental issue with the data deduplication
technique is that it needs a costly computing effort to
eliminate duplicate data due to the massive amount of big
data. Therefore, this article aims to shorten the computation
and time needed to complete the data deduplication stages.
The chunking and hashing stages often need the most
calculations and time. The proposed method removes
redundant data by classifying the input data into several
classes. It uses the parallel algorithm to remove redundant
data based on task parallelism, the parallelism of independent
data, and asynchrony. Furthermore, it uses parallel to speed
up the elimination of duplicate data. Data deduplication
processes are divided into four stages (chunking,
fingerprinting, indexing, and writing). This method relieves
the bottleneck of the deduplication system, especially in the
chunking and fragmentation stages. Files belonging to each
class are processed sequentially after being converted into a
stream of bytes. Figure (1) describes the general framework
of the proposed method.

Fig. (1) The proposed method

A. Files classification

After the dataset is passed to the data deduplication system,
the files are initially classified according to their file
extension, resulting in several classes equal to the number of
extensions. As a result, some classes are large or small. To
achieve a reasonable number of classes, the highest-size
extension classes are divided into lower-size subclasses, and
the small extension classes are merged. The proposed
algorithm tries to make the size of classes as close as
possible based on the threshold value, as when the classes are
close in size, this increases the performance in parallel
processing. Figure (2) show classified data into several
classes.

Divide Large Extension Class: Larger extension classes are
divided into smaller subclasses. This method is used if the
extension class size exceeds the threshold value. The
extension classes are divided into several subclasses. Some
statistical features are extracted from each file that belongs to
subclasses. First, three features (Entropy, standard deviation,
and variance) are computed for each file belonging to a given
extension. Next, the K-mean algorithm clusters the files with
similar features: files with Approximately the Same Entropy,
variance, and stander division gather in the same cluster.

Merge Small Extension Class: This method aggregates
extension classes of small size into classes of larger size. The
sizes of the resulting classes are as close as possible. First, a
histogram is calculated for each extension class. Next, the
strength of the correlation coefficient between the histograms
is calculated. Finally, using a Pearson matrix for grouped
extension classes with a strong correlation into a single class.

Input file

Compute The Divisors List for Each Class

Divide File into Variable Chunks

Compute Hash function for Each Chunk

If Chunking

Match

Save New Chunk in Unique Data
Container

Create Chunk Reference in Metadata
Table

Add Chunk Hashes to The Index Table

Create Logical Reference to The
Chunk Metadata Table

Delete The New Chunk

End

File Classification

Indexing and Matching

Yes No

18

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

Fig. (2) Classifying data into several classes

B. Parallel Processing

In the data deduplication process, the chunking and the
hashing are very costly in terms of time-consuming and
process computations. The proposed method is designed to
make efficient use of multicore processor computing. CDC-
based deduplication systems generally have four stages
(chunking, fingerprinting, indexing, and writing). These
stages operate dependently on each other. Therefore, it can
be processed sequentially in each data class.

The dataset is divided into classes, and each class is
assigned one task for a parallel process. For example, all files
belonging to Class 1 can perform all subtasks on them(data
chunking, finding proper divisors, fingerprinting, and
indexing) until they are stored on the hard drive. All class
operations are performed entirely independently from the rest
of the classes. First, all files belonging to the class are
converted to a stream of bytes. Then, a sequence of bytes is
generated for each class. The class size is usually more than
1 GB; if it's, buffer storage is used to deal with these classes.
Figure (3) shows the parallel processing for each class
independently.

1) LIST OF DIVISORS

The new method proposed a set of divisors for each class
where a list of divisors is computed based on the frequency
of the byte pairs within each class. This list of divisors is
derived for each class based on the properties of the files that
belong to that class. For example, some byte pairs have more
frequency through statistical analysis than other pairs.
Therefore, it starts by counting the number of times each pair
of bytes appears or occurs in a given class.

Fig. (3) Parallel processing for each class independently

Then the list of divisors is extracted according to the
frequency of the byte pairs of each class, and this list is
ordered from the highest frequency to the lowest frequency
in descending order. Finally, each class defines the number
of pairs of high-order bytes as divisors. The optimal number
of divisors gives the best results determined by the
experiment. Choosing the correct and perfect number of
divisors required for each class improves deduplication
results and increases DR.

2) CHUNKING

A new chunking method to improve The Two Divisors
Two Threshold TTTD algorithm is proposed, where a list of
D-divisors for each class in the dataset based on the dataset's
contents is used to divide the stream of the input class into
small, non-overlapping parts. It converts all files belonging
to one class to a stream of bytes. A sequence of bytes is
generated for each class. This leads to very few tail chunks,
equal to the number of classes, only one tail chunk for each
class. This method improves the deduplication ratio. Instead
of using two divisors of (TTTD), the proposed method
generates a list of divisors based on each class's content.
These dividers define breakpoints to divide files into parts
called fragments.

The new technique employs the minimum (Tmin) to

decrease the number of too-small chunks and the maximum

(Tmax) to decrease the number of too-large chunks. Deviser

D is used to establish breakpoints. The scan begins with the

minimum threshold value (Tmin) and ends with the highest

threshold value (Tmax) to discover divisors by comparing

each pair of bytes with the list of divisors and establishing

breakpoints. If no breakpoints are given, the value (Tmax) is

used as the breakpoint. Unlike prior approaches that divided

files into fixed or variable sizes, the new method selects the

divisors based on categorizing data sets, file formats, and the

Divide Large
Extension Class
to Many
Subclasses

Merge Small
Extension
Classes into
Fewer Classes

No

Dataset
Classification

Compute a Histogram for Each
Extension Class

Input
Dataset

Classify Dataset Based

on Extension

Compute Entropy, STD And
Variance Values for Each File in
The Extension Class

If the Size of
the Extension
Class >
Threshold

Yes

Group Extension Class Using
Pearson Matrix and Create a
Class for Each Group.

Compute Pearson Coefficient for
Each Two Histogram

Create Class for Each Group

Using K-Mean Algorithm for
Clustering Files

Class1 Class2 Class3 …

Divisors Divisors Divisors …

Chunking Chunking Chunking …

Core1

Core2

……

CPU

Chunkin
g and
Hashing

Indexing

Storge

Index Index Index …

Store Store Store …

Hashing Hashing Hashing …

Local Cash

Hashing
Indices

RAM

Hard Disk

unique data
stored

Metadata

Hash
indexing

Dataset Classes

19

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

frequency of byte pair occurrences, producing better

deduplication results. Figure 4 shows that the chunk size

between the last breakpoint and the class endpoint can be

greater than 0 bytes and less than or equal to the maximum

value (Tmax).

Fig. (4) Divide the stream of bytes in the class into Chunks based on

Tmin,Tmax, and divisors

3) HASHING

Identifying duplicate chunks of data quickly is one of the
most critical challenges in deduplicating data. Finding
duplicate data by comparing bytes is useless and requires
many input and output operations. Most data deduplication
systems rely mainly on fingerprinting data to remove
duplicate data. Fingerprint functions are the most important
procedure in data removal. Fingerprints are the same if and
only if the data chunk is the same. The MD5 and SHA-1
Functions are among the known functions that are used for
fingerprinting. The MD5 function provides faster
computation than the SHA-1 function, which has a more
negligible collision probability. The MD5 hash is 128 bits,
and SHA-1 is 160 bits. In this paper, we use MD5 as the
fingerprinting function. Parallel processing is used to speed
up the fingerprinting procedure.

4) INDEXING AND WRITHING

The comparing process includes the divisor, size, and

MD5 hash function of two chunks from the same class to

find the identical. In previous deduplication techniques, the

chunk is compared with all other chunks in the hash index

table and is not considered a file type; therefore, these

methods are inefficient and time-consuming. The new

technique speed up the comparison procedure as a new

chunk is compared with chunks of the same class. In

addition, parallelism at this level expedites the comparing

and storing processes. When two chunks match, the metadata

that defines the current chunk is updated, and the new chunk

is removed. If the new chunk is not duplicated, the new

chunk information is added to the metadata table, and then

the new chunk is placed in the non-duplicate data container.

5) EXPERIMENTAL AND RESULT

The proposed method is evaluated using the following
computer characteristics: Windows 11 operating system,
CPU Intel(R) Core i5-10300H with 4 cores, Random-Access

Memory RAM 16 GB, and programming language C#
Visual Studio 2022. In addition, three criteria were used to
measure efficiency: the time required to finish the
deduplication process, the data Deduplication Rate (DR), as
mentioned in (3), and throughput, which reflects the quantity

of data the system can process in a given period, as shown in
(4).

Parallel processing has been widely used to improve the
efficiency of software systems. For example, multicore
processors can speed up the ability to remove redundant data
using a parallel process. The proposed method uses task
parallelism, the parallelism of independent data, and
asynchrony. In the beginning, data is classified before
entering into the deduplication system, and parallel
processing saves storage space and reduces the time used by
the deduplication ratio. Figure (5) shows the relationship
between the throughput and the number of processor cores.
The throughput reaches the maximum when using 4 parallel
cores to process the four stages of data deduplication
(chunking, fingerprinting, indexing and writing). According
to the experiment's findings, most chunks were decided by
the divisor when chunk sizes were between 128 and 512
bytes for the Tmin and Tmax values.

20

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

Fig. (5) Relationship of Throughput and Task Number

Figure (6) shows that each class is processed using one

processor core. Increasing the number of classes reduces the

time required to remove redundant data because each class is

processed simultaneously with the rest. For example, each

dataset is classified into 1,2,3,4 classes using histogram and

k-mean algorithms. Therefore, when using 4 cores, the

redundant removal data processing time is less than in other

cases (1,2 and 3 cores).

Fig. (6) Comparison of the Number Core and Deduplication Time

The deduplication ratio dropped slightly when the number of
cores increased due to the data division into classes and the
matching of similar chunks in each class separately.
However, the increase in speed obtained from applying the
proposed method is much more than a simple decrease in the
deduplication ratio. Figure (7) shows the relationship
between the deduplication ratio and the number of cores.

Fig. (7) Comparison of the Number Core and Deduplication Ratio

The proposed chunking algorithm proved its efficiency

by the results in Table 1, where most chunks are obtained

using the list of divisors generated using the proposed

method. The divisor list is determined based on the dataset's

properties. While the divisors obtained using (Tmax) were

few. Also, all files of the same class are converted to a

stream of bytes; this reduces the number of chunks of type

(tail), while in the case of converting each file to a stream of

data individually, the number of chunks of type (tail) is

enormous. Furthermore, the number of chunks (tail) was one

for each class, which increased the data deduplication ratio.

The performance of the proposed method has been compared

with two published deduplication approaches. The results

revealed the superiority of the proposed methods in

distinguishing more duplicate chunks as efficiently as

possible compared to the latest versions. Table II shows

comparing the proposed method with the two methods,

TTTD and BSW, for the Deduplication Ratio.

TABLE II. COMPARING THE PROPOSED METHOD WITH THE TWO METHOD

Dataset TTTD BSW Proposed Method

Dataset1 2.13 1.7 15

Dataset2 16.7 13.5 35

Figure (8) shows the Deduplication Ratio for the proposed

method compared to the other methods, TTTD and BSW.

Fig. (8) Comparison proposed method with TTTD and BSW methods

6) CONCLUSION

The data deduplication technique's fundamental problem

is time-consuming and requires expensive computing effort.

This work presents a new method to speed up the

deduplication process using parallel processing by taking

advantage of multicore processors. It removes redundant data

by classifying the input into several classes using the

histogram similarity and k-mean algorithm. The proposed

solution ensures high performance of deduplication

operations and efficient use of system resources.

Experimental evaluation showed that the proposed data

deduplication method yielded more effective and faster

results than the other approach, which does not rely on data

classification and parallel processing. When using a

processor with four cores, the speed is 55% to 250% faster

than when using a single-core processor; also, throughput is

45% to 200% higher. Furthermore, generating the list of

divisors for each class based on the content of files and

converting each class to one stream of bytes increased the

deduplication ratio. The proposed method is about 7 times

higher than that of TTTD and about 10 times higher than

BSW. In future work, the proposed method can be extended

by dealing with real datasets and using a dynamic method for

defining the divisor list for each class used in dividing the

TABLE I. NUMBER OF DIVISORS, TMIN, TMAX AND TAIL

Dataset
Type of

Stream
Tmin Tmax divisors tail

Dataset1
File 15 903,265 14,130,831 5,780

Class 0 903,916 14,133,099 4

Dataset2
File 733 1,281,967 40,733,806 189,970

Class 0 1,282,342 40,825,449 4

Dataset3
File 4,243 18,428 16,080,753 179,707

Class 0 19,649 16,149,337 4

21

Iraqi Journal for Computers and Informatics

Vol. [49], Issue [1], Year (2023)

files into chunks to increase the efficiency of eliminating

redundant data.

REFERENCES

[1] G. Sujatha and J. R. Raj, “A Comprehensive Study of Different
Types of Deduplication Technique in Various Dimensions,” A

Compr. Study Differ. Types Deduplication Tech. Var. Dimens.,

vol. 13, no. 3, pp. 316–324, 2022.

[2] H. A. S. Jasim and A. A. Fahad, “New techniques to enhance
data deduplication using content based-TTTD chunking

algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, pp. 116–

121, 2018.

[3] Y. Cui, Z. Lai, X. Wang, and N. Dai, “QuickSync: Improving

Synchronization Efficiency for Mobile Cloud Storage Services,”

IEEE Trans. Mob. Comput., vol. 16, no. 12, pp. 3513–3526,

2017.

[4] N. Sharma, A. V. Krishna Prasad, and V. Kakulapati, “Data

deduplication techniques for big data storage systems,” Int. J.
Innov. Technol. Explor. Eng., vol. 8, no. 10, pp. 1145–1150,

2019.

[5] P. Prajapati and P. Shah, “A Review on Secure Data
Deduplication: Cloud Storage Security Issue,” J. King Saud Univ.

- Comput. Inf. Sci., no. xxxx, 2020.

[6] S. T. Ahmed and L. E. George, "Lightweight hash-based

deduplication system using the self-detection of most repeated
patterns as chunks divisors," J. King Saud Univ. - Comput. Inf.

Sci., no. xxxx, 2021, doi: 10.1016/j.jksuci.2021.04.005.

[7] F. Ni, X. Lin, and S. Jiang, “SS-CDC: A two-stage parallel
content-defined chunking for deduplicating backup storage,” in

SYSTOR 2019 - Proceedings of the 12th ACM International

Systems and Storage Conference, 2019, pp. 86–96.

[8] F. Ni, X. Lin, and S. Jiang, “SS-CDC: A two-stage parallel

content-defined chunking for deduplicating backup storage,”

SYSTOR 2019 - Proc. 12th ACM Int. Syst. Storage Conf., pp. 86–

96, 2019, doi: 10.1145/3319647.3325834.

[9] W. Xia, D. Feng, H. Jiang, Y. Zhang, V. Chang, and X. Zou,

“Accelerating content-defined-chunking based data deduplication
by exploiting parallelism,” Futur. Gener. Comput. Syst., vol. 98,

pp. 406–418, 2019, doi: 10.1016/j.future.2019.02.008.

[10] P. Sobe, D. Pazak, and M. Stiehr, “Parallel Processing for Data

Deduplication,” PARS-Mitteilungen, vol. 32, pp. 109–118, 1AD.

[11] H. Fan, G. Xu, Y. Zhang, L. Yuan, and Y. Xue, “CSF: An

efficient parallel deduplication algorithm by clustering scattered

fingerprints,” Proc. - 2019 IEEE Intl Conf Parallel Distrib.
Process. with Appl. Big Data Cloud Comput. Sustain. Comput.

Commun. Soc. Comput. Networking,

ISPA/BDCloud/SustainCom/SocialCom 2019, pp. 602–607, 2019.

[12] P. Sangat, D. Taniar, and C. Messom, “ATrie Group Join: A

Parallel Star Group Join and Aggregation for In-Memory

Column-Stores,” IEEE Trans. Big Data, vol. 8, no. 4, pp. 1020–

1033, 2020.

[13] C. Ordonez, S. T. Al-Amin, and X. Zhou, "A Simple Low-Cost

Parallel Architecture for Big Data Analytics," Proc. - 2020 IEEE

Int. Conf. Big Data, Big Data 2020, pp. 2827–2832, 2020.

[14] A. S. M. Saeed and L. E. George, “Fingerprint-based data

deduplication using a mathematical bounded linear hash
function,” Symmetry (Basel)., vol. 13, no. 11, pp. 1–19, 2021,

doi: 10.3390/sym13111978.

[15] R. Gururaj, M. Moh, T. S. Moh, P. Shilane, and B. Bhanjois,

“Performance Centric Primary Storage Deduplication Systems

Exploiting Caching and Block Similarity,” 2022.

[16] K. Eshghi and H. K. Tang, “A framework for analyzing and

improving content-based chunking algorithms,” Hewlett-Packard
Labs Tech. Rep. TR, no. August, 2005, [Online]. Available:

http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/H

PL-2005-30R1.pdf%5Cnpapers3://publication/uuid/053B1556-

804C-4F39-BD0B-2EBD9C047F30

[17] E. Manogar, “A smart hybrid content de ned chunking algorithm
for data deduplication in cloud storage,” Anna Univ. Chennai

Abirami, 2022.

[18] J. Natal, I. Ávila, V. B. Tsukahara, M. Pinheiro, and C. D.
Maciel, “Entropy: From thermodynamics to information

processing,” Entropy, vol. 23, no. 10, pp. 1–14, 2021, doi:

10.3390/e23101340.

[19] Y. Zhang et al., “A Fast Asymmetric Extremum Content Defined
Chunking Algorithm for Data Deduplication in Backup Storage

Systems,” IEEE Trans. Comput., vol. 66, no. 2, pp. 199–211,

2017.

[20] E. Isaac and E. Chikweru, “Test for Significance of Pearson’s

Correlation Coefficient,” Int. J. Innov. Math. Stat. Energy

Policies, vol. 6, no. 1, pp. 11–23, 2018, [Online]. Available:

www.seahipaj.org

[21] X. Chu, J. Lei, X. Liu, and Z. Wang, “KMEANS Algorithm

Clustering for Massive AIS Data Based on the Spark Platform,”
2020 5th Int. Conf. Control. Robot. Cybern. CRC 2020, pp. 36–

39, 2020, doi: 10.1109/CRC51253.2020.9253451.

[22] Z. Wang, Y. Zhou, and G. Li, “Anomaly Detection by Using
Streaming K-Means and Batch K-Means,” 2020 5th IEEE Int.

Conf. Big Data Anal. ICBDA 2020, pp. 11–17, 2020.

