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Abstract. In this paper, we study an integral boundary value problem involving a Hadamard-type
fractional differential equation. Using fixed point theory and upper-lower solutions, we present
some sufficient conditions to obtain existence theorems of positive solutions for the problem.
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Keywords: Hadamard-type fractional differential equations, integral boundary value problems,
positive solutions, fixed point methods, upper-lower solution methods.

1 Introduction

In this paper, we study the existence of positive solutions for the following integral
boundary value problem involving the Hadamard-type fractional differential equation:

HDµ
a+x(t) + f

(
t, x(t)

)
= 0, t ∈ (a, b),

x(a) = x′(a) = 0, x(b) =

b∫
a

h(t)x(t)
dt

t
,

(1)
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2 J. Xu et al.

where a, b, µ are real positive numbers with a < b < +∞, 2 < µ < 3, HDµ
a+ is the

Hadamard fractional derivative of order µ, and f , h satisfy the following conditions.

(H1) h : [a, b] → R+ with h(t) 6≡ 0, t ∈ [a, b], and
∫ b
a
h(t)(ln(t/a))µ−1/tdt ∈

[0, (ln(b/a)µ−1).
(H2) f ∈ C([a, b]× R+,R+).

The theory of fractional differential equations plays an important role in biology,
physics, medicine, etc., and most of the research has focused on the Riemann–Liouville
or the Caputo-type fractional derivative. The Hadamard fractional derivative is another
kind of fractional derivative and differs from the usual ones in the sense that the kernel
of the integral contains a logarithmic function of arbitrary exponent. For background
material of the Hadamard fractional derivative and integral, we refer the reader to the
papers [1–10, 14, 15, 17, 19–22, 24, 27–29].

In [14] the authors used the Banach and Schauder fixed point theorems to study
the existence and uniqueness of solutions for integral boundary conditions of implicit
fractional differential equations involving the Hadamard fractional derivative

HDϑ
b+x(t) = g

(
t, x(t),HDϑx(t)

)
, t ∈ (b, τ),

x(b) = 0, x(τ) = λ

σ∫
0

x(s) ds, σ ∈ (b, τ), λ ∈ R,

where ϑ ∈ (1, 2]. In [24] the authors used the five functional fixed point theorems to study
the multiplicity of positive solutions for the system of Hadamard fractional multipoint
boundary value problems

HDq
1+u(t) + f1

(
t, u(t), v(t)

)
= 0, 1 < t < e,

HDq
1+v(t) + f2

(
t, u(t), v(t)

)
= 0, 1 < t < e,

u(1) = δu(1) = 0, u(e) =

m−1∑
i=1

aiu(ξi),

v(1) = δv(1) = 0, v(e) =

n−1∑
j=1

bjv(ηj),

where q ∈ (2, 3], and in [19] the authors used the Schauder fixed point theorem to
study the existence of solutions for the following Hadamard-type fractional differential
equation:

HDα
1+u(t) + q(t)f

(
t, u(t),HDβ1

1+u(t),HDβ2

1+u(t)
)

= 0, 1 < t < +∞,

u(1) = 0,

HDα−2
1+ u(1) =

+∞∫
1

g1(s)u(s)
ds

s
, HDα−1

1+ u(+∞) =

+∞∫
1

g2(s)u(s)
ds

s
,

where 2 < α 6 3, 0 < β1 6 α− 2 < β2 6 α− 1.
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The hypothesis characterized by the first eigenvalue of linear operators are important
tools to study boundary value problems (see, for example, [12, 13, 23, 25, 26, 30]), and
in [30] the authors used the fixed point index to study positive solutions for the following
nonlinear fractional differential equation with integral boundary conditions:

Dα
0+u(t) + h(t)f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u(1) = λ

η∫
0

u(s) ds,

where 3 < α 6 4, 0 < η 6 1, 0 6 ληα/α < 1, and Dα
0+ is the standard Riemann–

Liouville derivative.
Motivated by the works mentioned above, in this paper, we use the Krein–Rutman

theorem to study the first eigenvalue of the corresponding linear operator, and using the
fixed point index, we obtain the existence of positive solutions for (1). When the non-
linearity f is nondecreasing about the second variable, we use the upper-lower solution
method to obtain two extremal positive solutions for (1), and we provide two iterative
sequences for these solutions. Also, using the Leggett–Williams fixed point theorem, we
obtain multiplicity of positive solutions for (1). Finally, some examples are provided to
illustrate our results.

2 Preliminaries and lemmas

First, we provide some basic material for Hadamard-type fractional calculus.

Definition 1. (See [3,15].) Let a > 0. Then the Hadamard fractional left integral of order
µ > 0 of a function x : [a,∞)→ R is defined as

HIµa+x(t) =
1

Γ(µ)

t∫
a

(
ln
t

τ

)µ−1
x(τ)

dτ

τ
, t > a.

Definition 2. (See [3, 15].) Let a > 0. Then the Hadamard fractional left derivative of
a function x : [a,∞)→ R, tn−1x(n−1)(t) ∈ AC[a,∞), n ∈ N, of order µ ∈ (n− 1, n)
is defined as

HDµ
a+x(t) =

1

Γ(n− µ)

(
t

d

dt

)n t∫
a

(
ln
t

τ

)n−µ−1
x(τ)

dτ

τ
, t > a.

Lemma 1. (See [3,7,15].) For µ ∈ (n−1, n), n ∈ N, y ∈ L[a,∞), a > 0, the Hadamard
fractional differential equation HDµ

a+x(t) + y(t) = 0, t > a, has a general solution

x(t) =

n∑
k=1

ck

(
ln
t

a

)µ−k
− 1

Γ(µ)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ
, t > a,

where ck ∈ R, k = 1, 2, . . . , n.
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Now, we consider the Green’s function for our problem.

Lemma 2. Suppose (H1) holds and µ ∈ (2, 3), y ∈ L[a, b]. Then the Hadamard-type
fractional boundary value problem

HDµ
a+x(t) + y(t) = 0, t ∈ (a, b),

x(a) = x′(a) = 0, x(b) =

b∫
a

h(t)x(t)
dt

t
,

(2)

has a solution

x(t) =

b∫
a

H(t, τ)y(τ)
dτ

τ
, t ∈ [a, b],

where

H(t, τ) = G(t, τ) +
(ln t

a )µ−1

A

b∫
a

h(t)G(t, τ)
dt

t
,

G(t, τ) =
1

Γ(µ)(ln b
a )µ−1

{
(ln t

a )µ−1l(ln b
τ )µ−1− (ln t

τ )µ−1(ln b
a )µ−1, a6τ6 t6b,

(ln t
a )µ−1(ln b

τ )µ−1, a6 t6τ6b,

A =

(
ln
b

a

)µ−1
−

b∫
a

h(t)

(
ln
t

a

)µ−1
dt

t
.

Proof. From Lemma 1 we have for t ∈ [a, b],

x(t) = c1

(
ln
t

a

)µ−1
+ c2

(
ln
t

a

)µ−2
+ c3

(
ln
t

a

)µ−3
− 1

Γ(µ)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ
,

where ci ∈ R, i = 1, 2, 3. Using x(a) = x′(a) = 0, we obtain c2 = c3 = 0. Therefore,

x(t) = c1

(
ln
t

a

)µ−1
− 1

Γ(µ)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ
, t ∈ [a, b].

Consequently, we obtain

x(b) = c1

(
ln
b

a

)µ−1
− 1

Γ(µ)

b∫
a

(
ln
b

τ

)µ−1
y(τ)

dτ

τ
=

b∫
a

h(t)x(t)
dt

t

= c1

b∫
a

h(t)

(
ln
t

a

)µ−1
dt

t
− 1

Γ(µ)

b∫
a

h(t)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ

dt

t
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and

c1 =
1

AΓ(µ)

b∫
a

(
ln
b

τ

)µ−1
y(τ)

dτ

τ
− 1

AΓ(µ)

b∫
a

h(t)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ

dt

t
.

As a result, we have

x(t) =
(ln t

a )µ−1

AΓ(µ)

b∫
a

(
ln
b

τ

)µ−1
y(τ)

dτ

τ
−

(ln t
a )µ−1

AΓ(µ)

b∫
a

h(t)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ

dt

t

− 1

Γ(µ)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ

=
(ln t

a )µ−1

AΓ(µ)

b∫
a

(
ln
b

τ

)µ−1
y(τ)

dτ

τ
−

(ln t
a )µ−1

AΓ(µ)

b∫
a

h(t)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ

dt

t

− 1

Γ(µ)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ
+

1

Γ(µ)(ln b
a )µ−1

b∫
a

(
ln
t

a

)µ−1(
ln
b

τ

)µ−1
y(τ)

dτ

τ

− 1

Γ(µ)(ln b
a )µ−1

b∫
a

(
ln
t

a

)µ−1(
ln
b

τ

)µ−1
y(τ)

dτ

τ

=

b∫
a

G(t, τ)y(τ)
dτ

τ
+

∫ b
a
h(t)(ln t

a )µ−1dtt
AΓ(µ)(ln b

a )µ−1

b∫
a

(
ln
t

a

)µ−1(
ln
b

τ

)µ−1
y(τ)

dτ

τ

−
(ln t

a )µ−1

AΓ(µ)

b∫
a

h(t)

t∫
a

(
ln
t

τ

)µ−1
y(τ)

dτ

τ

dt

t

=

b∫
a

G(t, τ)y(τ)
dτ

τ
+

(ln t
a )µ−1

AΓ(µ)(ln b
a )µ−1

[ b∫
a

h(t)

( b∫
a

(
ln
t

a

)µ−1(
ln
b

τ

)µ−1
y(τ)

dτ

τ

−
t∫
a

(
ln
t

τ

)µ−1(
ln
b

a

)µ−1
y(τ)

dτ

τ

)
dt

t

]

=

b∫
a

G(t, τ)y(τ)
dτ

τ
+

(ln t
a )µ−1

A

b∫
a

h(t)

b∫
a

G(t, τ)y(τ)
dτ

τ

dt

t

=

b∫
a

H(t, τ)y(τ)
dτ

τ
. �
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Remark 1. In Lemma 2.4 of [7], the following problem was considered:

HDµ
a+x(t) + y(t) = 0, t ∈ (a, b),

x(a) = x′(a) = x(b) = 0,
(3)

and the solution can take the form x(t) =
∫ b
a
G(t, τ)y(τ)/τ dτ , where G is defined in

Lemma 2.

Although we consider the integral boundary value problem, we do not construct new
Green’s functions for our problem. Indeed, if (2) is regarded as a perturbation of (3), then
our Green’s functions can be obtained from (3), and thus we can use the properties of G
to study H .

Lemma 3. (See [7]). For t, τ, s ∈ [a, b], we have

(i) G(t, τ) 6
v(τ)

Γ(µ)(ln b
a )
, (ii) G(t, τ) >

u(t)v(τ)

Γ(µ)(ln b
a )µ+1

,

where u(t) = (ln(t/a)µ−1 ln(b/t), v(t) = ln(t/a) ln(b/t)µ−1.

Lemma 4. For t, τ, s ∈ [a, b], we have

(i) H(t, τ) 6
v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]
,

(ii) H(t, τ) >
u(t)v(τ)

Γ(µ)(ln b
a )µ+1

.

This is directly from Lemma 3, so we omit its proof.
For x ∈ C[a, b], let ‖x‖ = maxt∈[a,b] |x(t)|. Then (C[a, b], ‖·‖) is a Banach space.

For r > 0, Br := {x ∈ C[a, b]: ‖x‖ < r} is a bounded and open subset in C[a, b],
and P := {x ∈ C[a, b]: x(t) > 0, t ∈ [a, b]} is a cone of C[a, b]. Define an operator
T : C[a, b]→ C[a, b] as follows:

(Tx)(t) =

b∫
a

H(t, τ)f
(
τ, x(τ)

)dτ

τ
, x ∈ C[a, b], t ∈ [a, b].

Note that the nonnegativity and continuity of H , f imply that T : P → P is a completely
continuous operator, and the existence of positive solutions for (1) is equivalent to that of
positive fixed points of T .

Define a linear operator L : P → P as follows:

(Lx)(t) =

b∫
a

H(t, τ)x(τ)
dτ

τ
, x ∈ C[a, b], t ∈ [a, b].
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Then L is a linear operator, and for all n ∈ N+, from Lemma 4(ii) we have

∥∥Ln∥∥ = max
t∈[a,b]

b∫
a

b∫
a

· · ·
b∫
a

H(t, y1)H(y1, y2) · · ·H(yn−1, yn)
dy1
y1

dy2
y2
· · · dyn

yn

> max
t∈[a,b]

u(t)

b∫
a

b∫
a

· · ·
b∫
a

v(y1)

Γ(µ)(ln b
a )µ+1

u(y1)v(y2)

Γ(µ)(ln b
a )µ+1

· · ·

× u(yn−1)v(yn)

Γ(µ)(ln b
a )µ+1

dy1
y1

dy2
y2
· · · dyn

yn

= max
t∈[a,b]

u(t)

b∫
a

v(τ)

Γ(µ)(ln b
a )µ+1

dτ

τ

( b∫
a

u(τ)v(τ)

Γ(µ)(ln b
a )µ+1

dτ

τ

)n−1
.

By the Gelfand theorem we have

r(L) = lim
n→+∞

n

√∥∥Ln∥∥ > b∫
a

u(τ)v(τ)

Γ(µ)(ln b
a )µ+1

dτ

τ
> 0,

where r(L) denotes the spectral radius of L. Then the Krein–Rutman theorem [16] asserts
that L has an eigenfunction ϕ ∈ P \ {0} corresponding to its first eigenvalue λ1 =
(r(L))−1, i.e.,

ϕ = λ1Lϕ. (4)

Lemma 5. (See [11].) Let E be a Banach space, P a cone in E, and Ω(P ) a bounded
open set in P . Suppose T : Ω(P ) → P is a continuous compact operator. If there exists
u0 ∈ P \ {0} such that

u− Tu 6= µu0 ∀u ∈ ∂Ω(P ), µ > 0,

then the fixed point index i(T,Ω(P ), P ) = 0.

Lemma 6. (See [11].) Let E be a Banach space, P a cone in E, and Ω(P ) a bounded
open set in P with 0 ∈ Ω(P ). Suppose T : Ω(P )→ P is a continuous compact operator.
If

Tu 6= µu ∀u ∈ ∂Ω(P ), µ > 1,

then the fixed point index i(T,Ω(P ), P ) = 1.

Let E be a real Banach space with cone P . A map β : P → [0,+∞) is said to be
a nonnegative continuous concave functional on P if β is continuous and

β
(
tx+ (1− t)y

)
> tβ(x) + (1− t)β(y)
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for all x, y ∈ P and t ∈ [0, 1]. Let ã, b̃ be two numbers such that 0 < ã < b̃, and let β be
a nonnegative continuous concave functional on P . We define the following convex sets:

Pã =
{
x ∈ P : ‖x‖ < ã

}
, ∂Pã =

{
x ∈ P : ‖x‖ = ã

}
,

P ã =
{
x ∈ P : ‖x‖ 6 ã

}
, P (β, ã, b̃) =

{
x ∈ P : ã 6 β(x), ‖x‖ 6 b̃

}
.

Lemma 7. (See [18].) Let T : P c̃ → P c̃ be completely continuous, and let β a
nonnegative continuous concave functional on P such that β(x) 6 ‖x‖ for x ∈ P c̃.
Suppose there exist 0 < d̃ < ã < b̃ 6 c̃ such that

(i) {x ∈ P (β, ã, b̃): β(x) > ã} 6= ∅ and β(Tx) > ã for x ∈ P (β, ã, b̃),
(ii) ‖Tx‖ < d̃ for ‖x‖ 6 d̃,

(iii) β(Tx) > ã for x ∈ P (β, ã, c̃) with ‖Tx‖ > b̃.

Then T has at least three fixed points x1, x2, x3 in P c̃ such that

‖x1‖ < d̃, ã < β(x2), and ‖x3‖ > d̃, β(x3) < ã.

Definition 3. We say that x ∈ E is an upper solution of (1) if

−HDµ
a+x(t) > f

(
t, x(t)

)
, t ∈ (a, b),

x(a) = x′(a) = 0, x(b) >

b∫
a

h(t)x(t)
dt

t
.

Definition 4. We say that x ∈ E is a lower solution of (1) if

−HDµ
a+x(t) 6 f

(
t, x(t)

)
, t ∈ (a, b),

x(a) = x′(a) = 0, x(b) 6

b∫
a

h(t)x(t)
dt

t
.

Lemma 8. Suppose that (H1) holds and x ∈ E satisfies

−HDµ
a+x(t) > 0, t ∈ (a, b),

x(a) = x′(a) = 0, x(b) >

b∫
a

h(t)x(t)
dt

t
.

(5)

Then x(t) > 0, t ∈ [a, b].

Proof. Let −HDµ
a+x(t) = z(t) and M = x(b) −

∫ b
a
h(t)x(t)/tdt. From (5) we have

z(t) > 0, M > 0, t ∈ [a, b]. Therefore, we obtain the following auxiliary linear boundary
value problem:

HDµ
a+x(t) + z(t) = 0,

x(a) = x′(a) = 0, x(b) =

b∫
a

h(t)x(t)
dt

t
+M.
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From Lemma 2 we have

x(t) =

b∫
a

H(t, τ)z(τ)
dτ

τ
+
M

A

(
ln
t

a

)µ−1
, t ∈ [a, b].

Note the nonnegativity of H , z, M , A, we obtain

x(t) >
M

A

(
ln
t

a

)µ−1
> 0, t ∈ [a, b].

This completes the proof.

3 Main results

Let λ1 = r−1(L). Now, we present our first main result.

Theorem 1. Suppose that (H1)–(H2) and the following conditions hold:

(H3) lim infx→0+ f(t, x)/x > λ1 uniformly on t ∈ [a, b],
(H4) lim supx→+∞ f(t, x)/x < λ1 uniformly on t ∈ [a, b].

Then (1) has at least one positive solution.

Proof. From (H3) there exists r1 > 0 such that

f(t, x) > λ1x, x ∈ [0, r1], t ∈ [a, b]. (6)

For all x ∈ ∂Br1 ∩ P , from (6) we have

(Tx)(t) >

b∫
a

H(t, τ)λ1x(τ)
dτ

τ
:= (L1x)(t), t ∈ [a, b]. (7)

Then r(L1) = 1, and there exists x∗ ∈ P \ {0} such that

L1x
∗ = r(L1)x∗ = x∗. (8)

Now, we shall prove that

x− Tx 6= µx∗, x ∈ ∂Br1 ∩ P, µ > 0. (9)

On the contrary, assume that there exist x0 ∈ ∂Br1 ∩ P , µ0 > 0 such that x0 − Tx0 =
µ0x

∗. Then µ0 > 0 and x0 = Tx0 + µ0x
∗. Let µ∗ = sup{µ: x0 > µx∗}. Then

µ∗ > µ0 > 0, x0 > µ∗x∗, and from (7)–(8) we have

x0 = Tx0 + µ0x
∗ > L1x0 + µ0x

∗ > L1µ
∗x∗ + µ0x

∗ = µ∗x∗ + µ0x
∗.

This contradicts the definition of µ∗. Therefore, (9) holds, and Lemma 5 implies that

i(T, Br1 ∩ P, P ) = 0. (10)
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From (H4) there exist δ1 ∈ (0, λ1) and c1 > 0 such that f(t, x) 6 (λ1 − δ1)x + c1,
x > 0, t ∈ [a, b]. Consequently, we have

(Tx)(t) 6

b∫
a

H(t, τ)
[
(λ1 − δ1)x(τ) + c1

]dτ
τ

= (λ1 − δ1)(Lx)(t) + c1

b∫
a

H(t, τ)
dτ

τ
.

Let

(L2x)(t) = (λ1 − δ1)(Lx)(t) and x(t) = c1

b∫
a

H(t, τ)
dτ

τ
.

Then r(L2) = 1− δ1/λ1 < 1, which implies that (I − L2)−1 exists and

(I − L2)−1 = I + L2 + L2
2 + · · ·+ Ln2 + · · · . (11)

Define a set
S = {x ∈ P : Tx = µx, µ > 1}.

Now, we prove that S is bounded in P . Indeed, if x ∈ S, we have

x(t) 6 (Tx)(t) 6 (L2x)(t) + x(t), t ∈ [a, b].

This gives (I − L2)x 6 x. Note that (11) implies that (I − L2)−1 : P → P , and hence
we have ‖x‖ 6 ‖(I −L2)−1x‖. As a result S is bounded. Now, we can take R1 > supS
and R1 > r1 such that Tx 6= µx, x ∈ ∂BR1

∩ P , µ > 1. Lemma 6 implies that

i(T, BR1
∩ P, P ) = 1. (12)

From (10) and (12) we have

i
(
T, (BR1 \Br1) ∩ P, P

)
= i(T, BR1 ∩ P, P )− i(T, Br1 ∩ P, P )

= 1− 0 = 1.

Then T has a fixed point in (BR1
\ Br1) ∩ P , i.e., (1) has at least one positive solution.

This completes the proof.

To obtain our next main result, we study the conjugate operator of L denoted by L∗.
Let P ∗ be the conjugate cone of P , and let L∗ can be expressed as

(L∗x)(t) =

b∫
a

H(τ, t)x(τ)
dτ

τ
, x ∈ P, t ∈ [a, b].

By the Krein–Rutman theorem [16] there exists g∗(t) > 0 with g∗(t) 6≡ 0, t ∈ [a, b]
(g∗ ∈ P ∗) such that

L∗g∗ = r(L)g∗. (13)
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Lemma 9. Let P0 ={x∈P :
∫ b
a
x(t)g∗(t)/t dt>ω0‖x‖}. Then L(P )⊂P0, where w0 =∫ b

a
ω(t)g∗(t)/tdt, and w is given in the proof.

Proof. From Lemma 4(i)–(ii) we have

H(t, τ) >
u(t)v(τ)

Γ(µ)(ln b
a )µ+1

=
u(t)

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]

> ω(t)H(s, τ), t, s, τ ∈ [a, b],

where

ω(t) =
u(t)

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]
, t ∈ [a, b].

If x ∈ P , we have

b∫
a

(Lx)(t)g∗(t)
dt

t
=

b∫
a

b∫
a

H(t, τ)x(τ)
dτ

τ
g∗(t)

dt

t
>

b∫
a

b∫
a

ω(t)H(s, τ)x(τ)
dτ

τ
g∗(t)

dt

t

= ω0(Lx)(s), s ∈ [a, b].

This implies that
b∫
a

(Lx)(t)g∗(t)
dt

t
> ω0‖Lx‖.

This completes the proof.

Theorem 2. Suppose that (H1)–(H2) and the following conditions hold:

(H5) lim supx→0+ f(t, x)/x < λ1 uniformly on t ∈ [a, b],
(H6) lim infx→+∞ f(t, x)/x > λ1 uniformly on t ∈ [a, b].

Then (1) has at least one positive solution.

Proof. From (H5) there exist r2 > 0 and δ2 ∈ (0, λ1) such that

f(t, x) 6 (λ1 − δ2)x, x ∈ [0, r2], t ∈ [a, b]. (14)

Now, we claim that
Tx 6= µx, x ∈ ∂Br2 ∩ P, µ > 1. (15)

On the contrary, assume that there exist x1 ∈ ∂Br2 ∩ P , µ1 > 1 such that

Tx1 = µ1x1. (16)
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Define the Nemytskii operator F : P → P by (Fx)(t) := f(t, x(t)). Then by Lemma 9
we have

x1 =
1

µ1
Tx1 =

1

µ1
L ◦ F (x1) ∈ P0. (17)

Using (14) and (16), we obtain

x1(t) 6 (Tx1)(t) 6 (λ1 − δ2)

b∫
a

H(t, τ)x1(τ)
dτ

τ
. (18)

Multiply (18) by g∗(t) on both sides and integrate over [a, b], then use (13) to obtain

b∫
a

x1(t)g∗(t)
dt

t
6 (λ1 − δ2)

b∫
a

b∫
a

H(t, τ)x1(τ)
dτ

τ
g∗(t)

dt

t

= r(L)(λ1 − δ2)

b∫
a

x1(τ)g∗(τ)
dτ

τ
.

Note that λ1 = r−1(L), then we have

b∫
a

x1(t)g∗(t)
dt

t
= 0.

From (17) we have ‖x1‖ = 0, which contradicts x1 ∈ ∂Br2 ∩ P . As a result, (15) holds.
From Lemma 6 we obtain

i(T, Br2 ∩ P, P ) = 1. (19)

From (H6) there exist δ3 > 0 and c2 > 0 such that

f(t, x) > (λ1 + δ3)x− c2, x > 0, t ∈ [a, b]. (20)

Now, we claim that there exists R2 > r2 such that

x− Tx 6= µϕ, x ∈ ∂BR2
∩ P, µ > 0, (21)

where ϕ is defined by (4). If the claim (21) is false, then there exist x2 ∈ ∂BR2 ∩ P ,
µ2 > 0 such that

x2 − Tx2 = µ2ϕ. (22)

Consequently, we have

x2 = Tx2 + µ2ϕ = L ◦ F (x2) + µ2λ1Lϕ ∈ P0.

From (20) and (22) we have

x2(t) > (Tx2)(t) >

b∫
a

H(t, τ)
[
(λ1 + δ3)x2(τ)− c2

]dτ
τ
. (23)
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Multiply (23) by g∗(t) on both sides and integrate over [a, b], then use (13) to obtain

b∫
a

x2(t)g∗(t)
dt

t
>

b∫
a

b∫
a

H(t, τ)
[
(λ1 + δ3)x2(τ)− c2

]dτ
τ

(t)g∗(t)
dt

t

= r(L)

b∫
a

g∗(τ)
[
(λ1 + δ3)x2(τ)− c2

]dτ
τ
.

Solving this inequality, we obtain

b∫
a

x2(t)g∗(t)
dt

t
6 c2δ

−1
3

b∫
a

g∗(τ)
dτ

τ
.

Note that x2 ∈ P0, and then we have

‖x2‖ 6 c2(δ3ω0)−1
b∫
a

g∗(τ)
dτ

τ
.

Now, if we take

R2 > max

{
r2, c2(δ3ω0)−1

b∫
a

g∗(τ)
dτ

τ

}
,

then (22) does not hold. This implies that (21) holds, and from Lemma 5 we have

i(T, BR2
∩ P, P ) = 0. (24)

From (19) and (24) we have

i
(
T, (BR2

\Br2) ∩ P, P
)

= i(T, BR2
∩ P, P )− i(T, Br2 ∩ P, P )

= 0− 1 = −1.

Then T has a fixed point in (BR2
\ Br2) ∩ P , i.e., (1) has at least one positive solution.

This completes the proof.

In what follows, we shall use Lemma 7 to study the existence of three positive solu-
tions for (1). We first provide a useful lemma.

Lemma 10. Let P1 = {x∈P : mint∈[t0,t1] x(t)> γ1‖x‖}. Then T (P )⊂P1, where t0 ∈
(a,

µ
√
abµ−1), t1 ∈ (

µ
√
abµ−1, b),

γ1 =
min{u(t0), u(t1)}

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]
,

and u is defined as in Lemma 3.
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Proof. From Lemma 4, if x ∈ P , we have

(Tx)(t) 6

b∫
a

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]
f
(
τ, x(τ)

)dτ

τ
, t ∈ [a, b],

and

(Tx)(t) >

b∫
a

u(t)v(τ)

Γ(µ)(ln b
a )µ+1

f
(
τ, x(τ)

)dτ

τ

=
u(t)

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]

×
b∫
a

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]
f
(
τ, x(τ)

)dτ

τ
.

This implies that

(Tx)(t) >
u(t)

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]
‖Tx‖, t ∈ [a, b]. (25)

Next, we prove that
min

t∈[t0,t1]
u(t) = min

{
u(t0), u(t1)

}
. (26)

Note that u(a) = u(b) = 0 and

u′(t) =
1

t

(
ln
t

a

)µ−2[
(µ− 1) ln b+ ln a− µ ln t

]
.

Clearly, u has a unique stationary point t =
µ
√
abµ−1 in [t0, t1], and thus (26) holds.

Therefore, by (25) we have

min
t∈[t0,t1]

(Tx)(t) > min
t∈[t0,t1]

u(t)

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]
‖Tx‖ = γ1‖Tx‖.

This completes the proof.

Theorem 3. Let (H1)–(H2), (H4) hold with λ1 replaced by ζ−11 . Suppose there exist
ã > d̃ > 0 such that the following conditions are satisfied:

(H7) f(t, x) 6 d̃/ζ1, x ∈ [0, d̃], t ∈ [a, b],
(H8) f(t, x) > ã/ζ2, x ∈ [ã, ã/γ1], t ∈ [a, b],

where

ζ1 >
[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ](ln b
a )µ

Γ(µ+ 2)
, 0 < ζ2 <

min{u(t0), u(t1)}
Γ(µ+ 2)

.

Then (1) has at least three positive solutions.
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Proof. Let P1 be defined as in Lemma 10. For x ∈ P1, define β(x) = mint∈[t0,t1] x(t).
Then β is a nonnegative continuous concave functional on P1, and the following inequal-
ity holds: β(x) 6 maxt∈[a,b] x(t) = ‖x‖, x ∈ P1. From (H4) there exist δ5 ∈ (0, ζ−11 )
and c4 > 0 such that

f(t, x) 6 (ζ−11 − δ5)x+ c4, x > 0, t ∈ [a, b]. (27)

Choose c̃ > max{ã/γ1, c4/δ5}. When ‖x‖ 6 c̃, from (27) and Lemma 4(i) we have

(Tx)(t) 6 max
t∈[a,b]

b∫
a

H(t, τ)f
(
τ, x(τ)

)dτ

τ
6 max
t∈[a,b]

b∫
a

H(t, τ)
[(
ζ−11 −δ5

)
x(τ) + c4

]dτ
τ

6

b∫
a

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln ba)µ−1

A

b∫
a

h(t)
dt

t

]
dτ

τ

[(
ζ−11 − δ5

)
c̃+ c4

]
= ζ1

[(
ζ−11 − δ5

)
c̃+ c4

]
6 c̃.

This implies that T : P c̃ → P c̃.
Now, we show that {x ∈ P (β, ã, ã/γ1): β(x) > ã} 6= ∅ and β(Tx) > ã for all

x ∈ P (β, ã, ã/γ1). In fact, choose x(t) ≡ (ã+ ã/γ1)/2 > ã, so x ∈ {x ∈ P (β, ã, ã/γ1):
β(x) > ã}. Moreover, for x ∈ P (β, ã, ã/γ1), β(x) > ã, and we have ã/γ1 > ‖x‖ >
β(x) > ã. Therefore, by (H8) we obtain

β(Tx) = min
t∈[t0,t1]

b∫
a

H(t, τ)f
(
τ, x(τ)

)dτ

τ
> min
t∈[t0,t1]

b∫
a

u(t)v(τ)

Γ(µ)(ln b
a )µ+1

f
(
τ, x(τ)

)dτ

τ

>
min{u(t0), u(t1)}

Γ(µ)(ln b
a )µ+1

b∫
a

v(τ)f
(
τ, x(τ)

)dτ

τ
>

min{u(t0), u(t1)}
Γ(µ)(ln b

a )µ+1

b∫
a

v(τ)
ã

ζ2

dτ

τ

> ã.

Next, we assert that ‖Tx‖ < d̃ for ‖x‖ 6 d̃. In fact, if x ∈ P d̃, from (H7) we have

‖Tx‖ 6 max
t∈[a,b]

b∫
a

H(t, τ)f
(
τ, x(τ)

)dτ

τ

6 max
t∈[a,b]

b∫
a

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]
f
(
τ, x(τ)

)dτ

τ

6

b∫
a

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]
d̃

ζ1

dτ

τ
< d̃.

Hence, T : P d̃ → Pd̃ for x ∈ P d̃.
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Finally, we assert that if x ∈ P (β, ã, c̃) and ‖Tx‖ > ã/γ1, then β(Tx) > ã. To see
this, if x ∈ P (β, ã, c̃) and ‖Tx‖ > ã/γ1, then from Lemma 7 we have

β(Tx) = min
t∈[t0,t1]

b∫
a

H(t, τ)f
(
τ, x(τ)

)dτ

τ
> min
t∈[t0,t1]

b∫
a

u(t)v(τ)

Γ(µ)(ln b
a )µ+1

f
(
τ, x(τ)

)dτ

τ

=
min{u(t0), u(t1)}

Γ(µ)(ln b
a )µ+1

b∫
a

v(τ)f
(
τ, x(τ)

)dτ

τ

=
min{u(t0), u(t1)}Γ(µ)(ln b

a )

Γ(µ)(ln b
a )µ+1[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]

×
b∫
a

v(τ)

Γ(µ)(ln b
a )

[
1 +

(ln b
a )µ−1

A

b∫
a

h(t)
dt

t

]
f
(
τ, x(τ)

)dτ

τ

> γ1‖Tx‖.

Consequently, we have

β(Tx) > γ1‖Tx‖ > γ1 ·
ã

γ1
= ã.

As a result, all the conditions of Lemma 7 are satisfied by taking b̃ = ã/γ1. Hence, T has
at least three fixed points, i.e., (1) has at least three positive solutions x1, x2, and x3 such
that

‖x1‖ < d̃, ã < β(x2), and ‖x3‖ > d̃ with β(x3) < ã.

This completes the proof.

Theorem 4. Let (H1)–(H2) hold. Assume that the following conditions are satisfied:

(H9) w0, v0 ∈ E are, respectively, the upper and lower solutions of problem (1) with
v0(t) 6 w0(t), t ∈ [a, b],

(H10) f is nondecreasing about the second variable, i.e., f(t, x) > f(t, y) if x > y
for t ∈ [a, b].

Then there exist monotone iterative sequences {vn}, {wn} ⊂ [v0, w0] such that vn → v∗,
wn → w∗ as n → ∞ uniformly in [v0, w0], and v∗, w∗ are a minimal and a maximal
positive solution of (1) in [v0, w0], respectively.

Proof. We first define two sequences {vn}∞n=0 and {wn}∞n=0, which satisfy the following
Hadamard-type fractional differential equations:

−HDµ
a+vn(t) = f

(
t, vn−1(t)

)
, t ∈ (a, b),

vn(a) = v′n(a) = 0, vn(b) =

b∫
a

h(t)vn(t)
dt

t

(28)
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and

−HDµ
a+wn(t) = f

(
t, wn−1(t)

)
, t ∈ (a, b),

wn(a) = w′n(a) = 0, wn(b) =

b∫
a

h(t)wn(t)
dt

t
.

(29)

From Lemma 2, (28)–(29) are, respectively, equivalent to the following integral equations:

vn(t) =

b∫
a

H(t, τ)f
(
τ, vn−1(τ)

)dτ

τ
= (Tvn−1)(t),

wn(t) =

b∫
a

H(t, τ)f
(
τ, wn−1(τ)

)dτ

τ
= (Twn−1)(t).

Note that w0 > v0, from (H10) we have

w1(t) =

b∫
a

H(t, τ)f
(
τ, w0(τ)

)dτ

τ
>

b∫
a

H(t, τ)f
(
τ, v0(τ)

)dτ

τ
= v1(t), t ∈ [a, b].

Using mathematical induction, it is easy to verify that wn(t) > vn(t), t ∈ [a, b], n =
1, 2, . . . .

Next, we prove that v0(t) 6 v1(t) 6 w1(t) 6 w0(t), t ∈ [a, b]. Let zv(t) =
v1(t)− v0(t), t ∈ [a, b]. Then we have

−HDµ
a+zv(t) = −HDµ

a+

[
v1(t)− v0(t)

]
= −HDµ

a+v1(t) + HDµ
a+v0(t)

> f
(
t, v0(t)

)
− f

(
t, v0(t)

)
= 0,

zv(a) = v1(a)− v0(a) = 0, z′v(a) = v′1(a)− v′0(a) = 0,

zv(b) = v1(b)− v0(b) >

b∫
a

h(t)v1(t)
dt

t
−

b∫
a

h(t)v0(t)
dt

t
=

b∫
a

h(t)zv(t)
dt

t
,

and from Lemma 8 we have zv(t) > 0, i.e., v1(t) > v0(t), t ∈ [a, b].
Let zw(t) = w0(t)− w1(t), t ∈ [a, b]. Then we have

−HDµ
a+zw(t) = −HDµ

a+

[
w0(t)− w1(t)

]
= −HDµ

a+w0(t) + HDµ
a+w1(t)

> f
(
t, w0(t)

)
− f

(
t, w0(t)

)
= 0,

zw(a) = w0(a)− w1(a) = 0, z′w(a) = w′0(a)− w′1(a) = 0,

zw(b) = w0(b)− w1(b) >

b∫
a

h(t)w0(t)
dt

t
−

b∫
a

h(t)w1(t)
dt

t
=

b∫
a

h(t)zw(t)
dt

t
,

and from Lemma 8 we have zw(t) > 0, i.e., w0(t) > w1(t), t ∈ [a, b].
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Now, we prove that w1, v1 are upper and lower solutions of problem (1), respectively.
In fact, from (28) and (H10) we have

−HDµ
a+v1(t) = f

(
t, v0(t)

)
6 f

(
t, v1(t)

)
, t ∈ (a, b),

v1(a) = v′1(a) = 0, v1(b) =

b∫
a

h(t)v1(t)
dt

t
,

and from Definition 4 v1 is a lower solution for (1). Furthermore, from (29) and (H10)
we have

−HDµ
a+w1(t) = f

(
t, w0(t)

)
> f

(
t, w1(t)

)
, t ∈ (a, b),

w1(a) = w′1(a) = 0, w1(b) =

b∫
a

h(t)w1(t)
dt

t
.

Using Definition 3, w1 is an upper solution for (1).
For w2, v2, w1, v1, we can repeat the above process. We obtain

v1(t) 6 v2(t) 6 w2(t) 6 w1(t), t ∈ [a, b],

and w2, v2 are upper and lower solutions for (1), respectively.
Using mathematical induction, we obtain

v0(t) 6 v1(t) 6 · · · 6 vn(t) 6 · · · 6 wn(t) 6 · · · 6 w1(t) 6 w0(t), t ∈ [a, b].

It is easy to conclude that {vn}∞n=0 and {wn}∞n=0 are uniformly bounded in E, and from
the monotone bounded theorem we have

lim
n→∞

vn(t) = v∗(t), lim
n→∞

wn(t) = w∗(t), t ∈ [a, b].

Note that T is a completely continuous operator, and then

v∗(t) = (Tv∗)(t), w∗(t) = (Tw∗)(t), t ∈ [a, b],

i.e., v∗, w∗ are solutions for (1).
Next, we need to prove that v∗ and w∗ are extremal solutions for (1) in [v0, w0]. Let

u ∈ [v0, w0] be any solution for (1). We assume that vm(t) 6 u(t) 6 wm(t), t ∈ [a, b],
for some m. Let p(t) = u(t) − vm+1(t), q(t) = wm+1(t) − u(t). Then from (1), (28),
and (H10) we have

−HDµ
a+p(t) = −HDµ

a+

[
u(t)− vm+1(t)

]
= −HDµ

a+u(t) + HDµ
a+vm+1(t)

= f
(
t, u(t)

)
− f

(
t, vm(t)

)
> 0, t ∈ (a, b),

p(a) = p′(a) = 0, p(b) =

b∫
a

h(t)p(t)
dt

t
.
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Lemma 8 implies that p(t) > 0, i.e., u(t) > vm+1(t), t ∈ [a, b].
By (1), (29), and (H10) we have

−HDµ
a+q(t) = −HDµ

a+

[
wm+1(t)− u(t)

]
= −HDµ

a+wm+1(t) + HDµ
a+u(t)

= f
(
t, wm(t)

)
− f

(
t, u(t)

)
> 0, t ∈ (a, b),

q(a) = q′(a) = 0, q(b) =

b∫
a

h(t)q(t)
dt

t
.

Lemma 8 implies that q(t) > 0, i.e., wm+1(t) > u(t), t ∈ [a, b].
Therefore, applying mathematical induction, we obtain vn(t) 6 u(t) 6 wn(t) for any

n ∈ N, t ∈ [a, b]. Taking the limit, we conclude v∗(t) 6 u(t) 6 w∗(t), t ∈ [0, 1]. This
completes the proof.

4 Examples

Let a = 1, b = e, µ = 2.5, t0 = e2/5, t1 = e4/5, h(t) = ln t, t ∈ [1, e]. Then
(ln(b/a))µ−1 = 1

∫ b
a
h(t)(ln(t/a))µ−1/tdt = 2/7, A = 5/7, µ

√
abµ−1 = e3/5, and

γ1 =
min{u(t0), u(t1)}

(ln b
a )µ[1 +

(ln b
a )
µ−1

A

∫ b
a
h(t)dt

t ]
=

0.143

1.7
= 0.084.

Example 1. Let f(t, x) = xσ1 , σ1 ∈ (0, 1), t ∈ [a, b], x ∈ R+. Then (H2)–(H4) hold,
and from Theorem 1 we have that (1) has at least one positive solution.

Example 2. Let f(t, x) = xσ2 , σ2 ∈ (1,+∞), t ∈ [a, b], x ∈ R+. Then (H2), (H5)–(H6)
hold, and from Theorem 2 we have that (1) has at least one positive solution.

Example 3. Let ã = 10, d̃ = 1, ζ1 = 0.156, ζ2 = 0.02, and

f(t, x) =


t+ 3x, x ∈ [0, 1], t ∈ [1, e],

t+ 497
9 x− 470

9 , x ∈ [1, 10], t ∈ [1, e],

t+ 500, x ∈ [10, 120], t ∈ [1, e],

t+ 10
√

125
6 x, x > 120, t ∈ [1, e].

Then

lim sup
x→+∞

f(t, x)

x
= lim sup

x→+∞

t+ 10
√

125
6 x

x
= 0

uniformly on t ∈ [1, e], and

f(t, x) 6 e + 3 6
d̃

ζ1
= 6.41, x ∈ [0, 1], t ∈ [1, e],

f(t, x) > 1 + 500 >
ã

ζ2
= 500, x ∈ [10, 119.05] ⊂ [10, 120], t ∈ [1, e].
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Therefore, (H2), (H4), and (H7)–(H8) hold, and from Theorem 3 we have that (1) has at
least three positive solutions.

Example 4. We use the Example 1 to illustrate Theorem 4.
Step 1. For t, τ ∈ [a, b], we have

(i) H(t, τ) 6
ξA(ln t

a )µ−1
(
ln b

τ )µ−1

Γ(µ)(ln b
a )µ−1

, (ii) H(t, τ) >
ξA(ln t

a )µ−1(ln b
τ )µ ln τ

a

Γ(µ)(ln b
a )µ+1

,

where

ξA =

[
1 +

1

A

b∫
a

h(t)

(
ln
t

a

)µ−1
dt

t

]
.

From the definition of H we have

H(t, τ) 6
(ln t

a )µ−1(ln b
τ )µ−1

Γ(µ)(ln b
a )µ−1

[
1 +

1

A

b∫
a

h(t)

(
ln
t

a

)µ−1
dt

t

]
, t, τ ∈ [a, b].

Furthermore, from [7, pp. 6 and 7] we have

(i) For a 6 τ 6 t 6 b, we obtain

G(t, τ) >
1

Γ(µ)(ln b
a )µ+1

(
ln
t

a

)µ−1(
ln
b

τ

)µ[
ln
t

a
−

(ln b
a )µ+1(ln t

τ )µ−1

ln b
τ (ln t

a )µ−1(ln b
τ )µ

]
>

1

Γ(µ)(ln b
a )µ+1

(
ln
t

a

)µ−1(
ln
b

τ

)µ
ln
τ

a
.

(ii) For a 6 t 6 τ 6 b, we obtain

G(t, τ) =
1

Γ(µ)(ln b
a )µ−1

(
ln
t

a

)µ−1(
ln
b

τ

)µ−1
>

1

Γ(µ)(ln b
a )µ−1 ln b

a ln b
a

(
ln
t

a

)µ−1(
ln
b

τ

)µ−1
ln
b

τ
ln
τ

a

=
1

Γ(µ)(ln b
a )µ+1

(
ln
t

a

)µ−1(
ln
b

τ

)µ
ln
τ

a
.

Consequently, we have

H(t, τ) >
(ln t

a )µ−1(ln b
τ )µ ln τ

a

Γ(µ)(ln b
a )µ+1

[
1 +

1

A

b∫
a

h(t)

(
ln
t

a

)µ−1
dt

t

]
, t, τ ∈ [a, b].
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Step 2. Let θ ∈ P with θ(τ) 6≡ 0, τ ∈ [a, b]. Then there exist 0 < κ1θ 6 κ2θ such
that

κ1θ

b∫
a

H(t, τ)
dτ

τ
6

b∫
a

H(t, τ)θ(τ)
dτ

τ
6 κ2θ

b∫
a

H(t, τ)
dτ

τ
, t ∈ [a, b],

where

κ1θ =
µ

(ln b
a )µ+2

b∫
a

(
ln
b

τ

)µ
ln
τ

a
θ(τ)

dτ

τ

and

κ2θ =
(µ+ 1)(µ+ 2)

(ln b
a )µ

b∫
a

(
ln
b

τ

)µ−1
θ(τ)

dτ

τ
.

Using Step 1(i)–(ii), we have

b∫
a

H(t, τ)
dτ

τ
6

b∫
a

ξA(ln t
a )µ−1(ln b

τ )µ−1

Γ(µ)(ln b
a )µ−1

dτ

τ
=

ξA ln b
a

Γ(µ+ 1)

(
ln
t

a

)µ−1
and

b∫
a

H(t, τ)
dτ

τ
>

b∫
a

ξA(ln t
a )µ−1(ln b

τ )µ ln τ
a

Γ(µ)(ln b
a )µ+1

dτ

τ

=
ξA ln b

a

(µ+ 1)(µ+ 2)Γ(µ)

(
ln
t

a

)µ−1
.

Consequently, we have

b∫
a

H(t, τ)θ(τ)
dτ

τ

6

b∫
a

ξA(ln t
a )µ−1(ln b

τ )µ−1

Γ(µ)(ln b
a )µ−1

θ(τ)
dτ

τ

=
ξA ln b

a

(µ+ 1)(µ+ 2)Γ(µ)

(
ln
t

a

)µ−1
(µ+ 1)(µ+ 2)

(ln b
a )µ

b∫
a

(
ln
b

τ

)µ−1
θ(τ)

dτ

τ

6 κ2θ

b∫
a

H(t, τ)
dτ

τ
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and
b∫
a

H(t, τ)θ(τ)
dτ

τ

>

b∫
a

ξA(ln t
a )µ−1(ln b

τ )µ ln τ
a

Γ(µ)(ln b
a )µ+1

θ(τ)
dτ

τ

=
ξA ln b

a

Γ(µ+ 1)

(
ln
t

a

)µ−1
µ

(ln b
a )µ+2

b∫
a

(
ln
b

τ

)µ
ln
τ

a
θ(τ)

dτ

τ

> κ1θ

b∫
a

H(t, τ)
dτ

τ
.

Step 3. Establishing the upper and lower solutions for (1) with f(t, x) = xσ1 , σ1 ∈
(0, 1), t ∈ [a, b], x ∈ R+.

Let

ξρ(t) =

b∫
a

H(t, τ)f
(
τ, ρ(τ)

)dτ

τ
, where ρ(t) =

b∫
a

H(t, τ)
dτ

τ
.

Lemma 2 implies that

HDµ
a+ξρ(t) + f

(
t, ρ(t)

)
= 0, t ∈ (a, b),

ξρ(a) = ξ′ρ(a) = 0, ξρ(b) =

b∫
a

h(t)ξρ(t)
dt

t
,

(30)

and from Step 2 there exist 0 < κ1ρ 6 κ2ρ such that

κ1ρρ(t) 6 ξρ(t) =

b∫
a

H(t, τ)f
(
τ, ρ(τ)

)dτ

τ
6 κ2ρρ(t), t ∈ [a, b].

Let ξ1(t) = ϑ1ξρ(t), ξ2(t) = ϑ2ξρ(t), t ∈ [a, b], where

0 < ϑ1 < min

{
1

κ2ρ
, κ

σ1/(1−σ1)
1ρ

}
, ϑ2 > max

{
1

κ1ρ
, κ

σ1/(1−σ1)
2ρ

}
.

Then we easily obtain

ξi(a) = ξ′i(a) = 0, ξi(b) =

b∫
a

h(t)ξi(t)
dt

t
, i = 1, 2.
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Moreover,

f
(
t, ξ1(t)

)
= f

(
t, ϑ1ξρ(t)

)
= f

(
t, ϑ1

ξρ(t)

ρ(t)
ρ(t)

)
=

[
ϑ1
ξρ(t)

ρ(t)
ρ(t)

]σ1

=

[
ϑ1
ξρ(t)

ρ(t)

]σ1

f
(
t, ρ(t)

)
> (ϑ1κ1ρ)

σ1
(
t, ρ(t)

)
> ϑ1f

(
t, ρ(t)

)
,

and from (30) we have

−HDµ
a+ξ1(t) = −ϑ1HDµ

a+ξρ(t) = ϑ1f
(
t, ρ(t)

)
6 f

(
t, ξ1(t)

)
.

So Definition 4 implies that ξ1 is a lower solution for (1).
Also, we have

ϑ2f
(
t, ρ(t)

)
= ϑ2f

(
t,
ρ(t)

ξ2(t)
ξ2(t)

)
= ϑ2f

(
t,

ρ(t)

ϑ2ξρ(t)
ξ2(t)

)
= ϑ2

[
ρ(t)

ϑ2ξρ(t)

]σ1

f
(
t, ξ2(t)

)
> ϑ2

(
1

ϑ2κ2ρ

)σ1

f
(
t, ξ2(t)

)
> f

(
t, ξ2(t)

)
,

and we have

−HDµ
a+ξ2(t) = −ϑ2HDµ

a+ξρ(t) = ϑ2f
(
t, ρ(t)

)
> f

(
t, ξ2(t)

)
.

So Definition 3 implies that ξ2 is an upper solution for (1).
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