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Abstract
The paper develops a hybrid algorithm for predicting a linear dynamic system based on a combination of an adaptive Kalman 

filter with preprocessing using a wavelet packet analysis of the initial data of the background of the system under study.
Being based on Fourier analysis, wavelet analysis and wavelet packet analysis are quite acceptable for time-frequency ana-

lysis of a signal, but they cannot be performed recursively and in real time and, therefore, cannot be used for dynamic analysis of 
random processes. In combination with the Kalman filter, a combination of the characteristics of the multiple-resolution wavelet 
transform and the recurrent formulas of the Kalman filter in real time is obtained.

Since the original signal is usually given in the form of discrete measurements, to implement their convolution used in the 
Kalman filter, it is necessary to use cyclic convolutions with periodic continuation of the signal for any time interval. In the case of 
different values of the original signal at the ends of the considered time interval [0,T], the periodized signal can have large values and 
sharp different amplitude at the ends of the periodization interval.

To smooth out the values of the periodized signal at the ends of the periodization interval, a cascade decomposition and 
recovery algorithm was used using Dobshy boundary wavelets with a finite number of moments. Signal recovery is performed in  
a series of operations comparable to the duration of the time interval under consideration.

The smoothed signal obtained in this way is used as a Kalman filter platform for predicting the dynamic system under study.
Taking into account that the correlation functions of the noise in the observation equation and the phase state of the system 

are usually unknown, the adaptation of the Kalman filter to these noises (interference) is carried out on the basis of a zeroing se-
quence. The manuscript does not contain related data.
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1. Introduction
With the usual orthogonal multiple-scale (multi-resolution) wavelet decomposition (wavelet 

analysis) of the signal [1], the approximating coefficients are decomposed into approximating and 
detailing coefficients of a lower level, and then this procedure is applied at a subsequent level to the 
obtained approximating coefficients at the previous level. At the same time, the detailing coeffi-
cients are not considered further [2].
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In contrast to the wavelet analysis, in the wavelet packet analysis [3], the same decomposi-
tion method also decomposes the detailing coefficients. This approach provides a richer analysis 
based on a binary coefficient tree starting from the original signal [4, 5].

With the help of wavelet packet analysis, elementary measurements can be divided into two com-
ponents: the «trend» of measurements, which characterizes the main (correct) course of the process, and 
the «fluctuation» of measurements generated by high-frequency noise (interference) of measurements.

Wavelet packet analysis (WPA), as a well-known powerful method, is intensively used in the 
study of propagation processes of various signals [6−10].

Being based on Fourier analysis, wavelet and wavelet packet analysis are well acceptable for 
time frequency analysis of a signal. However, a multiscale analysis based on the decomposition of 
wavelet coefficients is carried out over a certain period of time and cannot be performed recursive-
ly and in real time (real-time). Therefore, by itself it cannot be used for dynamic analysis of random 
processes [11]. But in combination with the Kalman filter [12, 13], a combination of the multi-re-
solving characteristics of the wavelet transform and the recursive characteristics of the Kalman 
filter in real time is obtained. This combination is successfully used for the analysis and evaluation 
of a random process and dynamic systems in various fields of science and technology [14, 15].

The aim of this study is to develop an algorithm for the numerical implementation of a com-
bination of wavelet-packet analysis of discrete signals given by time series of observations over  
a finite period of time with a Kalman filter for linear dynamical systems.

2. Materials and methods
Problem statement. Following [11], let’s consider a linear dynamical system:

 
v A v B u

w C v D u
k k k k k k k

k k k k k k

+ = + +
= + +





1 Γ ξ
η

, (1)

where Ak, Bk, Гk, Ck, Dk, uk are the given functions of the time parameter k.
Let’s assume that the phase state of the system is onedimensional {ξk} and {ηk} are se-

quences of white Gaussian noises (i.e. noises with independent normally distributed values) and the 
following characteristics are given:

E x x D x P E Qk k k j k kj0 0 0 0[ ] = [ ] = [ ] =   =, , ,cov ,ξ ξ ξ ξ δ

cov , ,cov , ,cov ,,ξ η η η η δ ηk k k k j k kj kx E R x0 0 0( )  = [ ] =   = ( )  = 0,

where E and D are the signs of mathematical expectation and variance, respectively; δkj is the Kro-
necker symbol.

Because of the presence in the system as deterministic quantities stochastic variables {ξk} 
and {ηk} (1) is called a linear deterministic stochastic system. Let’s decompose this system into  
the sum of a linear deterministic system:
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and linear (purely) stochastic system:
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,
 (3)

where wk = sk+yk and uk = zk+xk. The advantage of this decomposition is that the solution of the 
linear deterministic system (2) is well known and is represented by the so-called transfer equation:

 z A A z A A B uk k k i i i
i

k

= −( ) + −( ) ⋅− − − − −
=
∑1 0 0 1 1 1 1

1

. (4)
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Therefore, it is sufficient to describe the optimal estimate of xk for xk from the stochastic 
system (5). Then the estimate of uk for uk will be written as:

  

u z xk k k= + . (5)

According to [11], the optimal estimate xk j  of the value xk, taking into account the one- 
dimensionality of the phase state of the system, is determined by the least squares method and  
is written as:

 

x C R y D uk k k k k k= ( ) −( )−3 . (6)

The estimate (6) is denoted by xk j  for the given values y0, y1, …, yj. By definition [11]: 
1) when j kx xk k k= =  and the evaluation process is called the digital filtering process; 
2) when j kxk j<   is called the forecast for xk, and the evaluation process is called the digital 

prediction process; 
3) when j kxk j>   is called smoothing estimation, and the process of obtaining it is called the 

process of digital smoothing.
Since the values of Rk are usually unknown in practice, let’s propose (section 2) to construct 

an estimate of xk using a wavelet packet analysis that smooths out the possible «outliers» of the 
signal, x[n], given at n∈0, 1, …, N–1.

The Kalman algorithm for system (3) is described by recurrent relations:
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and the gain function Kk is calculated from the relations:

 

P A P Q

K P C C P R k

k k k k

k k k k k

( ) ( ) ,

( ) [ ( ) ( )]

( ) ( ) ( )− = + +

= − − +⋅
− − −

−

1
2

1 1

2 1,,

( ) ( ) ( ), ( ) ,P P K C P P Pk k k k k+ = − − − − =








 0 0

 (8)

(7), (8) with substitutions     

x x k x x x xk k k k k−( ) = ( ) +( ) = +( ) = −( )∗
−, , 1  and P P k P P kk k−( ) = ( ) +( ) = ( )∗ ,  

P P k P P kk k−( ) = ( ) +( ) = ( )∗ ,   coincide with the corresponding formulas from [12].
Covariance functions Qk, Rk are usually unknown in practice. In this regard, in [16] a me-

thod of estimating Qk, Rk by their a priori estimates was proposed (in our calculations, as in [17]) 
Qk ≡ Rk ≡ 10–5 was taken as a priori estimates based on the updating sequence:

 v y yk k k= − −( )

, (9)

where  

y C xk k k−( ) = −( ) In this case, the estimates for Rk and Qk–1, in (10) are calculated using  
the formulas:
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Estimates 


Cvk
 are calculated by averaging over a sliding time window of size N0, N0 << N (N is 

the total number of observations yk).
The result is an adaptive Kalman filter resulting in optimal estimates of x_k states that can 

be used to construct a one-step predictor:

 x A xk p
np

k k+ = +( )

, (11)
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and p-step predictor:

 x A xk p
np

j k
j k

k p

+
=

+ −
= +( )









∏ 

1

, (12)

E e A y x Pk k k k k k+ +[ ] = − +( )( ) = −( )1 1
2, ;σε

 E e A E kk p jj k

k p
+ =

+ −  = ( )⋅ +[ ]∏ 1
1 , (13)

σεk j
j k

k p

k k p j
i j

k p

A P Q A+
=

+ −

+ −
= +

+ −
=









 − + +









∏ ∏1

2 2
1

1
2

1

1

( )



=

+ −

∑ Q j
j k

k p 2

.

The forecast based on these formulas is obtained under the assumption that the process 
model remains unchanged at the lead interval. The mean value and variance of the forecast error 
are calculated using the formulas [13].

2. Materials and methods
In wavelet packet analysis (WPA), the improvement of wavelet analysis (WA) is carried 

out by additional processing of the high-frequency component of the analyzed signal. As a result, 
a «complete» balanced tree is obtained, the branches of which correspond to a set of subspaces 
with bases constructed as for a one-sided tree according to WA. The functions and filters that gene-
rate these bases are called wavelet packets and packet filters, respectively.

Orthonormal bases of wavelet packets use so-called conjugate mirror filters, with the help 
of which the frequency axis is divided into separate intervals of various sizes. Let’s consider  
a wavelet packet analysis based on a discrete wavelet transform (discrete wavelet trans form – DWT) 
for discrete signals f [n], n∈Z (Z is a set of integers, except 0) belonging to a real linear Hilbert  
space I2(Z) with a scalar product:

 < [ ] [ ] > = [ ] [ ]
=−∞

+∞

∑f n g n f n g n
n

,  (14)

with a finite norm:

 < > = [ ] < ∞
=−∞

+∞

∑f f f n
n

, 2  (15)

determining the energy of the signal.
By definition [2], a discrete filter h[n], whose Fourier transform, 



h k[ ] satisfies the conditions:

 
 

h k h k k Z( ) , ,
2 2

2+ +[ ] = ∈π  (16)

 


h 0 2[ ] = , (17)

it is called a conjugate mirror filter. It is known [18] that if φ[n]€I2(Z) periodized with period N, 
where N is the length of the carrier h[n], the Fourier transform 



h k[ ] satisfies conditions (16), (17) 
and, therefore, such a function h[n] is a conjugate mirror filter.

In WPA, the space Vj of a multiple-scale approximation is decomposed into the sum of 
the space Vj+1 of lower resolution 2–( j+1) and the space of details Wj+1 (complement Vj+1 to Vj) 
by splitting the orthogonal basis { ( )}ϕ j

j
n zt n− ⋅ ∈2  of the spaces Vj on two new orthogonal bases 

{ ( )}ϕ j
j

n zt n+ ∈− ⋅1 2  of the space Vj+1 and { ( )}Ψ j
j

n Zt n+
+

∈− ⋅1
12  of the spaces Wj+1. The expansion of 

functions ϕ j p jV+ +∈1 1,  and Ψ j p jW+ +∈1 1,  on the basis) ϕ ϕj n j
j

n Zt n, { ( )}= − ⋅ ∈2  space Vj:
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defined by a pair of conjugate mirror filters h[n] and g[n], where g[n] is related to h[n] by equality:

 g n h nn[ ] = − −[ ]−( ) .1 11  (20)

According to [3], for any space Uj with an orthonormal basis {θj(t–2j∙n)}n∈Z, using a pair of 
conjugate mirror filters h[n] and g[n] connected by condition (20), it is possible to construct families:
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combining which into a family:
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there is an orthonormal basis of the space Uj.
In WPA, instead of splitting approximation spaces Vj to construct spaces Wj+1 (as is done  

in WA), it is possible to put Uj = Wj and split these spaces to obtain new bases (21). Continuing recur-
sively splitting (21), let’s obtain a binary tree whose root is the approximation space Vj, if the signal in 
question is approximated with a scale of 2L. For a finite signal of length N, let’s assume. N–1 = 2L (L<0).

The VL space admits an orthogonal basis of scaling functions { ( )}ϕL
j

n Zt n− ⋅ ∈2  with:

ϕ ϕL
L Lt t( ) ( ).= ⋅− −2 22

Let’s mark with indexes ( j, p) any node of a binary tree, where j–L ≥ 0 is the depth of the node 
on the tree and p is the number of nodes on the left at the same depth j–L. Each node ( j, p) corre-
sponds to a space, Wj

p which admits an orthonormal basis { ( )}ψ j
j

n Zt n− ⋅ ∈2  for all nodes lying on the 
path down the tree with a starting point from node ( j, p). On at the root of the tree there is W VL L

0 = .
Let B t nj

p j
n Z= − ⋅ ∈{ ( )}ψ 2  { ( )}ψ j

j
n Zt n− ⋅ ∈2  be an orthonormal basis for, Wj

p constructed  
in node ( j, p). The two wavelet packets of orthogonal bases generated by this node are determi-
ned by the relations (21):
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Since the family ψ j
j
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2  is orthonormal, then:
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In accordance with (20) of the family:
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where ⊕ is the sign of the direct sum of spaces in the sense that W Wj
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Recursive splitting (26) defines a binary tree of wavelet packet spaces. Each parent node of 
this tree has two branches (two descendants) representing two orthogonal subspaces.

The most common input discrete signal b[n] = f(N –1∙n) is obtained using a finite resolution 
device that averages the input analog signal. If the sampling step is equal to N –1, then to calculate 
the wavelet coefficients, it is necessary to associate with b[n] the function VL, approximated with 

a scale of 2L = N –1 in order to calculate aL[n] = < f, φL,n >, where ϕ ϕj n j

t n

j, =
−





1
2 2

 and the family 

ϕ j n n Z,{ } ∈
 is an orthonormal basis of the space Vj for all j∈Z.

For this purpose, the relation is used in [2]:

 b n N a n f N nL[ ] = [ ] ≈ ⋅− −1 2 1( ),  (27)

from where is determined:

 a n b n N f N n NL [ ] = [ ]⋅ ≈ ⋅( )− −1 2 1 1 2/ ,  (28)

where N 1/2 is the normalizing factor.
With a discrete signal at the input, b[n], s1elected with a step N –1 = 2L is associated, the  

f∈VL of which expansion coefficients aL[n] = < f, φL,n > satisfy the equality (28). For any node ( j, p) 
of the wavelet packet tree, the coefficients of the wavelet packet are denoted as:

 d n f t t nj
p

j
p j[ ] =< ( ) − ⋅( ) >, .ψ 2  (29)

For the root of the tree, d n a nL l
0 [ ] = [ ] are calculated according to (28).

Denote by x  the signal obtained by substituting zeros between each two consecutive counts 
of x (decimation ↑2), i.e. an incomplete sample is formed, determined by the function:

 

x n
x n n p

n p
[ ] [ ] =
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, ,

, .

2

0 2 1
 (30)

Such an incomplete sample is used in decomposition, and in reconstruction, an incomplete 
sample obtained using decimation ↓2 is used, according to which all odd samples are removed from 
the signal x[n]. Then, when decomposing, the coefficients are calculated as:
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and when restoring (reconstruction) as:

 d k d h k d g kj
p

j
p

j
p[ ] = ∗ [ ] + ∗ [ ]+

+
+

+
 

1
2 1

1
2 1 . (32)

Here * is the sign of a discrete convolution sample of two signals f1[n] and f2[n], defined  
by the formula:

 f n f n f n p f f p f f p f n f
p p

3 1 2 1 2 2 1 2 1[ ] = [ ]⋅ −[ ] = ∗ [ ] = ∗ [ ] = [ ]⋅
=−∞
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∑
∞∞

∑ −[ ]n p . (33)

Denoting by x n x n[ ] = −[ ] formulas (31) and (32) in expanded form, taking into account the 
definition of discrete convolution (32) can be written as:
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 d k h k n d n g k n d nj j
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=−∞
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=−∞
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Iteration of equations (31) (or, which is still (34) along the branches of the wavelet packet 
tree calculates all the coefficients of the wavelet packet (Fig. 1, a [2]). And by the coefficients 
of the wavelet packet on the leaves of the internal nodes ( j, p) of the tree, DL

0 is restored at the  
top of the tree (Fig. 1, b [2]).

Fig. 1. A set of filters for the decomposition of a wavelet packet:  
a – with subsequent filtering; b – recovery with substitution and filtering at the output.

In this case, the convolutions in (31)–(35) are replaced by cyclic convolutions if aL is a finite 
signal of length 2L = N. Previously, the signals f[n] h[n] and g[n] continue periodically with a period 
of N, according to the definition 



f n f n N[ ] [ mod ],=  h n h n N[ ] [ mod ],=  g n g n N[ ] [ mod ],=  where  
n mod N is the remainder when dividing n by N (for n < N, n mod N = n is assumed).

The cyclic convolution of two signals fnep[n] and f nep[n] with period N (denoted by ) is 
defined as the sum of their period:

 f h n f p h n p f n p h pnep nep nep nep nep nep

p

N

p

N

 [ ] = [ ] −[ ] = −[ ] [ ]
=

−

=
∑ ,

0

1

0

−−

∑
1

 (36)

the signal received in this case, depending on n, also has a period of N.
As a filter h[n], a Daubechies filter with a compact carrier of length M is usually used, then 

the values of the filter g[n] for n = k are determined by the formula:

 g hk
k

M k= −( ) − −1 2 1 . (37)

In calculations using formulas (31), (32), it is easiest to use the Haar filter (a special case of 
the Daubechies filter for M = 1):

 h n
n

n
[ ] = =





1 2 0 1

0

, . ,

, ,

when

with others
 (38)

since the Haar filter hH is the only conjugate mirror filter with a compact carrier, the transfer func-
tion (i.e. the Fourier transform 



h uH ( ) of which has a linear complex phase [19].
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3. The results
It should be borne in mind that the periodized signals in the case of f(0) ≠ f(1) may have large 

values and sharp different amplitude at the ends of t = 0 and t = 1 of the interval [0, 1]. For discrete sig-
nals given by counts at n = 0,1, ..., N–1 these sharp transitions will take place at the boundaries n = 0 
and n = N−1 of the interval [0, N–1]. To avoid this, the boundary wavelets described in [2] are used.

Since for the combination of wavelet packet analysis with the Kalman filter, we are mainly 
interested in the behavior of the wavelet packet coefficients at point n = N–1, then as a platform for 
applying the Kalman filter, the reconstructed signal a nL [ ] obtained as a result of the wavelet packet 
analysis will be replaced at points n = 0 and N = 1 by the values the source signal b[n]. Based on 
the corrected signal a[n] obtained in this way, let’s calculate, for n = N–1, a boundary wavelet con-
structed on the basis of a Daubechies wavelet with a carrier of length 2p. Let’s shift the Daubechies 
scaling function so that its carrier is [–p+1, p] and the Daubechies wavelet has p zero moments.

For p = 2, let’s use the boundary filters, H G h gk e
np

k e
np

k m
np

k m
np

, , , ,, , ,  the values of which are given 
in [2] and are given below in the form of Table 1.

Table 1
Left and right boundary coefficients for a Daubechies wavelet with p = 2 zero moments

k l Hk
le
1 Gk

le
1 k m hk

le
1 gk

le
1

0 0 0.603332511 –0,796543616 0 2 –0.398312997 –0.258792248
0 1 0.690895531 0.546392714 1 2 0.850088102  0.227428117
1 0 0.037517460 0.010037224 1 3 0.223820357 –0.836602821
1 1 0.457327659 0.122351043 1 4 –0.129222743 0.483012921
k l Hk

np
1 Gk

np
1 k m hk

np
1 gk

np
1

–2 –2 0.190151418 –0.363906959 –2 –5 0.443149049 0.235575950
–2 –1 –0.194233407 0.371718966 –2 –4 0.767556669 0.401069519
–1 –2 0.434896998 0.801422962 –2 –3 0.374955331 –0.717579999
–2 –1 0.870508753 –0.257512919 –1 –3 0.230389043 –0.539822500
– – h[–1] h[0] – – h[1] h[2]
– – 0.482962913 0.8365303 – – 0.224143868 –0.129409522

When N–1 = 2L, L = –4, it is necessary to restore the value of the signal a4 [15]. In this case, 
it is possible to apply it in a truncated form (only for the right filters) for N > p, formulas for the 
wavelet coefficients aj[k] and dj[k], proposed by Cohen A., Daubechies I., Vial P. [20].

If p ≤ k < 2–j–p,
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If –p ≤ k < 0,

 

a k H a l h jj
j

k l
np

j
j

k m
np

m p k

p

2 21
1

2 1

1
−

−
− +

=− + +

− −

+  = ⋅ +  + ⋅∑, , ,
ll p

j
j

k l
np

j
j

m p k

p

d k G a l g

=−

−

−
−

− +

=− + +

− −

∑

∑+  = ⋅ +  +

1

1
1

2 1

1

2 2, kk m
np

j
j

m p k

p

a m, .⋅ + −
− +

=− + +

− −

∑ 1
1

2 1

1

2  (40)

The cascade algorithm (39)–(40) decomposes aL[n] into a discrete wavelet transform aj[n], 
{dj} in O(N) operations. The largest scale 2 J must satisfy the inequality 2 J ≤ (2p)–1 since at all scales 
the number of boundary coefficients remains equal to 2p. 

Recovery formulas.
If 3p–1 ≤ l ≤ 2–j+1–3p,

a h l k a k g l k d kj l j j
kk

− [ ]
=−∞

+∞

=−∞

+∞
= −[ ] [ ] + −[ ] [ ]∑∑1 2 2 .
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If –p–1 ≥ l ≥ –3p+1,
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If –1 ≥ l ≥ –p,
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The original signal aL[n] is reconstructed from the orthogonal wavelet representation 
a n d nj j L j J[ ],{ [ ]} £ £[ ] by sequential recurrent use of equations (38)–(43). Recovery is performed  
in O(N) operations.

In formulas (39)–(43) h[n] and g[n] are low-frequency and high-frequency Dob filters with 
the number of moments p. When p = 2,

h h h n hn0 2 3
1

4 2
3 3

1

4 2
3 3

1

4 2
1 3 0 1 2 3 0= +( ) = −( ) = −( ) ≠ =, , , , , , .for

The coefficients gk are calculated by the formula (32) with M = 2.
The order of using formulas (39), (43) will be shown by an example.
Example. Let the signal a[n] be given by counts at points n = 0,1, …, N–1, where N–1 = 2L, L = –4. 

It is required to restore aL[n] at n = 15, i.e. at the end of the interval [0, 15] using boundary wavelets 
and Daubechies wavelets with p = 2.

Solution: According to the discrete convolution formula (33), using a low-frequency fil-
ter h[n] Daubechies with p = 2 and the corresponding highfrequency filter g[n], determined by  
the ratio (43), after the periodization of these filters with period N, let’s calculate:
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Assuming now j = –3, l = –1, k = –2.1, using the filters Hk l
np
,  and Gk l

np
,  from Table 1, using the 

formula (43) let’s find:

a H a H a G d Gnp np np
− − − − − − − − − −[ ] = ⋅ [ ] + ⋅ [ ] + [ ] +4 11 3 2 1 3 11 3 215 7 6 7, , , , 11 3 6np d− [ ].

Let’s now assume that in the signal d k a k− −=4
0

4[ ] [ ] reconstructed using (42), the wavelet 
packet coefficient a–4[15] is replaced by the value of the boundary wavelet and let’s consider the 
received signal a–4[k] with counts k = 1,2, …, N–1 as a platform for the adaptive Kalman filter.  
The value a–4[k] at k = 0 is excluded from further consideration, due to the possible appearance of 
a large value a–4[0] in the wavelet–packet analysis of the periodized (for the use of discrete convo-
lution) signal a[n], n = 0,1, ..., N–1.

4. Discussion
The obtained results of the study are interpreted as follows.
The wavelet packet signal processing includes the identification of both the low-frequen-

cy component and a more detailed recovery of the high-frequency component, characterizing the 
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noise (errors) of observations and external interference. Thus, it is possible to estimate the correla-
tion functions of the equation of state and observations. The main difference between the wavelet 
packet analysis and the classical wavelet analysis is the most refined interference estimation used 
by us when adapting the Kalman filter. Multiple-scale time-frequency analysis of a signal in the 
case of wavelet-packet decomposition is carried out over a certain period of time and therefore 
cannot be performed separately recursively and in real time, which limits their use for dynamic 
analysis of random processes, in particular, for dynamic systems with a random fluctuation com-
ponent. The combination of a wavelet analysis package with a Kalman filter allows to analyze and 
obtain predictive estimates of a random process and dynamic systems. In the absence of informa-
tion about correlation functions, optimal signal estimation using the least squares method becomes 
inapplicable for state noise and observations. Such an assessment was carried out by us on the 
basis of preliminary wavelet packet signal processing. To predict a discrete signal given by a finite 
number of observations N, a cyclic discrete convolution is used, continued outside the observation 
interval [0,T] with a period N. Taking into account the possible appearance of discontinuities of the 
first kind at the ends of time intervals extreme T, let’s propose to replace the wavelet packet value 
of the signal at t = T with the value of the boundary wavelet. To avoid the appearance of wavelet 
coefficients with large amplitudes at the boundaries of the periodization segments, it is necessary 
to construct boundary wavelets having as many zero moments as the original signals. For this 
purpose, Daubechies wavelet with the number of zero moments of the signal, and a fast cascade 
discrete algorithm Cohen, Daubechies, Vial [18] decomposing the studied signal into a discrete 
wavelet transform in O(N) operations were used. When implementing the wavelet-packet decom-
position into [0,T], the most convenient Haar filter in numerical calculations was used, which, in 
comparison with other Daubechies filters, is the only conjugate mirror filter with a compact carrier 
that has a linear complex phase [2].

To construct an adaptive Kalman filter, it is proposed [20] a priori estimates with ave-
raging over a time window of size N0 << N for calculating the correlation functions of noise. 
The hybrid Kalman filtering algorithm described in the paper with preliminary wavelet packet 
processing is designed for the analysis and prediction of linear dynamical systems. For further 
development of this approach, its application is envisaged for the extended Kalman filter in 
the case of nonlinear dynamical systems based on their linearization using the approximating  
Taylor decomposition.

5. Conclusions
Due to the lack in the general case of information about the covariance functions Qk and Rk 

for the state and observations noises, it is impossible to use an optimal estimate xk of the signal xk 
depending on Rk. Therefore, before applying the Kalman filter, it is proposed to perform pre-wave-
let batch processing of the signal.

Wavelet packet decomposition and signal recovery is associated with the use of cyclic dis-
crete convolution of a periodized signal with period N. However, the periodization of the signal can 
lead to sharp changes in its amplitude at the ends of the considered time interval. In this regard, it 
is necessary to replace the wavelet packet value of the signal at the right end of the interval with the 
value of the boundary wavelet.

The smoothed signal value obtained in this way (with the exception of the wavelet packet 
value at the left end of the interval) is used as a platform for the adaptive Kalman filter used in the 
work for one-step and multi-step prediction of the dynamic system under study.
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