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Chapter

Enabling Neuromorphic
Computing for Artificial
Intelligence with
Hardware-Software Co-Design
Bojing Li, Duo Zhong, Xiang Chen and Chenchen Liu

Abstract

In the last decade, neuromorphic computing was rebirthed with the emergence of
novel nano-devices and hardware-software co-design approaches. With the fast
advancement in algorithms for today’s artificial intelligence (AI) applications, deep
neural networks (DNNs) have become the mainstream technology. It has been a new
research trend to enable neuromorphic designs for DNNs computing with high com-
puting efficiency in speed and energy. In this chapter, we will summarize the recent
advances in neuromorphic computing hardware and system designs with non-volatile
resistive access memory (ReRAM) devices. More specifically, we will discuss the
ReRAM-based neuromorphic computing hardware and system implementations,
hardware-software co-design approaches for quantized and sparse DNNs, and
architecture designs.

Keywords: neuromorphic computing, ReRAM, deep neural network, processing-in-
memory, hardware-software co-design

1. Introduction

The explosive growth of data and the increasing scale and complexity of deep
learning models have made traditional von Neumann architectures inefficient in
terms of speed and energy for AI processing. As a result, novel computer architecture
and hardware are gaining increasing attention due to their potential to break the
“memory wall” constraints in traditional von Neumann architectures. Neuromorphic
computing, which is inspired by the functioning of the human brain and now refers to
the hardware implementation of artificial neural networks, has been extensively
explored and has demonstrated great potential to revolutionize AI processing. By
leveraging new nano-devices such as resistive memory (ReRAM), significant progress
has been made in this area. Artificial synapses [1–12] and neurons [13–19], and
corresponding neuromorphic circuits and hardware systems have been successfully
investigated [11, 20–29].
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The two-terminal ReRAM device forms a high-density crossbar structure, enabling
highly efficient vector-matrix computation naturally [30]. It is worth noting that
challenges still exist in applying the ReRAM crossbar to neural network implementa-
tion due to factors such as inherent sneak-path leakage, signal noise, and limited
conductance states, which can degrade computing accuracy. To address these chal-
lenges, various hardware-software co-design methodologies have been proposed
[31–41]. For example, researchers explored specialized circuits and algorithms to
tolerate the sneak-path current and guarantee the computing accuracy [11, 25–29].
Hardware-adaptive neural network pruning was also been investigated to promote
computational efficiency with reduced hardware design and computing energy costs.
In addition, several works have focused on improving the computing reliability and
security in ReRAM-based neuromorphic computing systems.

The ReRAM, along with its neuromorphic designs, has inspired the development
of ReRAM-based in-memory processing accelerators. These accelerators, including
PRIME [42], ISAAC [43], and PipeLayer [44], were designed to accelerate the
training and inference of convolution neural networks (CNNs). Based on these
fundamental explorations, researchers have designed accelerators for various neural
networks and applications, such as ReRAM-based accelerators for GANs [45], RNNs
[46, 47]. These accelerators demonstrated improved speed and energy efficiency
compared to traditional computing platforms such as CPUs and GPUs. With the
continuous advancement of ReRAM technology, the ReRAM-based neuromorphic
engines are being applied in broader domains [48–61].

In this chapter, we will summarize recent research in ReRAM-based neuromorphic
computing. The aforementioned research areas, including hardware implementation,
hardware-software co-design, and accelerator architecture, will be covered.

2. ReRAM-based neural network implementation

The emerging ReRAM device has shown superior performance in neuromorphic
computing. The ReRAM device is promising to enable highly parallel, ultra-low-power
computing in memory for AI applications owing to its structural simplicity, low power
consumption, and ease of integration. Hardware implementations of artificial neurons
and synapses play an important role in neuromorphic computing, attracting consid-
erable attention over the past few decades. The fundamental function of artificial
neurons is to emulate potential accumulation processes and spike generation func-
tions. Meanwhile, artificial synapses are designed to implement various synaptic plas-
ticities and learning weight signals. These plasticities are crucial for the learning
function in neuromorphic computing. Based on the artificial neurons and synapses,
neuromorphic hardware systems are built for the whole neural network functions. In
this section, we will provide an overview of the hardware implementation of ReRAM-
based neuromorphic synapses, neurons, and hardware systems.

2.1 ReRAM-based artificial synapses

The performance of synaptic devices directly impacts the learning accuracy and
efficiency of a neuromorphic computing system. ReRAM devices are widely utilized
to implement synaptic plasticities, such as signal weighting, short-term potentiation/
depression (STP/STD), long-term potentiation/depression (LTP/LTD), and spiking-
time dependent plasticity (STDP).
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The typical ReRAM device is in a metal/insulator/metal (MIM) structure [62] as is
depicted in Figure 1, where the device consists of the bottom electrode (BE), top
electrode (TE), and oxide layers. As illustrated in Figure 2, ReRAM devices can be
switched between a high resistance state (HRS) and a low resistance state (LRS)
with the unipolar or bipolar operation. This nonlinear feature resembles
biological synapses, whose weight changes in response to stimuli passing from pre- to
post-synaptic neurons.

In 2010, Lu proposed the first resistive synapse and demonstrated its function of
STDP [1]. To achieve the synaptic function of STDP, well-designed shapes of neuronal
pulses were also required. Therefore, Yu et al. proposed a metal oxide ReRAM-based
synapse and an energy-efficient signal scheme for synapse programming, which
involved tuning the pulse amplitude in each time slot [2]. As a further study, Ohno
et al. proposed an inorganic synapse using Ag2S [3], showing that a single proposed
synapse device exhibits both time-dependent STP and LTP features of a biological
synapse by adjusting the repetition rate of input stimuli without the special design
needs of neuronal pulses. Later, Li et al. demonstrated a chalcogenide resistive elec-
tronic synapse with an Ag/AgInSbTe/Ag structure to implement STDP function [5], in
which the synaptic weights were modified with the cooperation of pre- and post-
synaptic spikes and the growth of the weights was more stable by utilizing synaptic
saturation mechanism. To eliminate the resistant fluctuations issue [6], Gao et al.
proposed an oxide-based 3D vertical structure synapse and simulated a single synapse
by using the mean value of a group of resistive switching devices.

Figure 1.
The typical structure of ReRAMs devices and their switching states [62].

Figure 2.
I-V curves for ReRAM devices on unipolar and bipolar operations [62].
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Challenges in applying the ReRAM devices in neuromorphic computing were
further explored and novel ReRAM-based synapses were proposed. Woo et al. ana-
lyzed the TiN/HfO2/Ti/TiN ReRAM-based synapse and observed deteriorated accu-
racy drop of the neuromorphic computing under abrupt SET switching operation [8].
Based on this observation, they proposed an optimized ReRAM-based synapse with an
Al electrode on top to improve the accuracy of the RerAM-based neuromorphic
computing. To address the issue of abrupt SET switching, Wu et al. found that
increasing the temperature led to the transition from abrupt switching to analog
switching [9]. Therefore, they proposed a HfOx/TEL ReRAM-based synapse, which
incorporated a thermal enhanced layer (TEL) to confine heat for realizing analog
switching. Kim et al. proposed a Ni/SiNx/AlOy/TiN ReRAM-based synapse, where the
AlOy layer reduces current overshoot, resulting in a smooth reset switching transition
to enhance analog switching performance [10]. Sun et al. proposed an XNOR-ReRAM
synapse that enables equivalent XNOR and bit-counting operations to be carried out
in parallel in binary neural networks (BNN) [11]. Roy et al. improved the reliability of
HfO2 ReRAM devices through processes of Al-doping, ozone treatment, and post-
deposition annealing [12].

2.2 ReRAM-based artificial neurons

Researchers have started to investigate ReRAM-based neuron designs with low
design and computation costs for a few years. By leveraging the threshold transition
characteristic of ReRAM devices, the dynamic process of pulse generation and reset-
ting of neurons can be accurately represented. In addition, the ReRAM devices hold
unique nonlinear features and flexible structures to achieve the rich kinetic properties
of neurons. Furthermore, the nanoscale properties of ReRAM devices enable neurons
with high power efficiency with the capability of achieving neuron functions with one
or a few devices.

The ReRAM-based analog integrate-and-fire (I&F) neurons have been extensively
explored. In 2016, Mehonic et al. implemented the Hodgkin-Huxley (H-H) neural
model and leaky integrate-and-fire (LIF) neural model using silicon oxide ReRAM
devices [13]. As is depicted in Figure 3, the charging and discharging process of
neurons in the LIF model was successfully implemented. Compared to traditional
hybrid analog/digital CMOS silicon neurons, the proposed ReRAM neurons

Figure 3.
The hardware implementation and equivalent circuits of LIF neural model with silicon oxide ReRAMs [13].
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significantly simplified the hardware design. Similarly, Kwon et al. proposed a
ReRAM-based analog integrate-and-fire (I&F) neuron circuit without capacitors,
which greatly reduces power consumption, delay, and neuron size [15]. Zhang et al.
implemented a new I&F neuron based on an Ag/SiO2/Au threshold switching ReRAM
device [16]. The proposed neuron can achieve four critical neuron functions, including
all-or-nothing spiking, threshold-driven spiking, a refractory period, and a strength-
modulated frequency response. As the first attempt, Lashkare et al. proposed a
Pr0:7Ca0:3MnO3 (PCMO) ReRAM device to implement an integrate-and-fire (I&F)
neuron with all the neuronal functionalities—integration, reset, threshold comparison,
spike, etc., by only utilizing a single device without any external control circuits [17].

In addition, the ReRAM-based neuron implementations have been extended to a
large scale. For example, spiking neural networks on a large scale were achieved based
on PCMO ReRAM-based neurons [17]. Lin et al. implemented neurons with a one-
transistor-one-ReRAM (1T1R) structure device and integrated the neurons within the
synaptic crossbar to build more dense and high-throughput process element [18].

2.3 Neuromorphic system implementation

The CMOS-based neuromorphic chips have several limitations that hinder their
further development and applications [20–23]. Firstly, on-chip memory based on
SRAM is area inefficient and can hardly store the weights of a large-scale neural
network. In addition, the power consumption of off-chip storage using DRAM is more
than 100 times higher than that of on-chip memory. The ReRAM device, on the other
hand, offers advantages such as low programming voltage, fast switching speed, high
integration density, and excellent performance scalability, which make it a promising
candidate for neuromorphic computing system implementation.

In the last 10 years, ReRAM-based neuromorphic computing systems for artificial
neural network implementation have been extensively studied. In 2012, Hu et al.
proposed a neuromorphic hardware system using ReRAM crossbar arrays to achieve
recall functions of Brain-State-in-a-Box (BSB) network [24]. In the hardware imple-
mentation, the resistive crossbar naturally performs the intensive vector-matrix mul-
tiplication, which is the basic computation in the neural network model in parallel.
The signal strength was represented by the voltage amplitude and analog neurons
with circuitry (e.g., amplifier, analog-to-digital converter) were utilized. Two years
later, Hu et al. further implemented the training functions of the BSB model with
ReRAM crossbar arrays and alleviated the noise issues found in the previous works,
and impacted the computing accuracy [25]. They introduced an iterative scheme for
training that uses the sign of inputs and magnitude differences between outputs and
inputs, which significantly reduced the circuit design complexity. The analog designs
of the neuromorphic systems are vulnerable to signal variations and introduce
extremely heavy hardware design and area costs due to the large analog circuit com-
ponents. With the target of solving the above challenges, in 2015, Liu et al. proposed
spiking neuromorphic systems, where input signals were represented by spikes and
the need for large-scale analog circuits was significantly reduced [26]. In their works,
spiking neuromorphic systems with 1T1R resistive crossbar arrays were implemented
for feedforward and Hopfield networks on digital image recognition with IBM 130 nm
technology. The 1T1R structure is utilized to control the impact of the sneak path and
thus guarantee computing accuracy and a novel Integrate-and-Fire Circuit (IFC) with
high-speed and low-power consumption was developed.
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With the continuous growing of artificial neural networks in scale and complexity,
there is an urgent need to improve computing efficiency in speed and energy.
Neuromorphic systems for large-scale and complex neural networks were developed
accordingly. For example, Yakopcic et al. implemented the first deep convolutional
neural network (CNN) on ReRAM-based crossbars with all data represented in 16
values without classification accuracy degradation [27]. The proposed neuromorphic
hardware also achieved parallel computing of the convolution operations. Wen et al.
implemented a long short-term memory (MLSTM) network using ReRAM cross-
bars [29]. The neural network training process is in extremely high demand of com-
puting resources, while its speed and energy efficiency are highly constrained.
Therefore, researchers also explored neuromorphic computing systems that can
support neural network training besides inference. For example, Yao et al.
implemented parallel online training for gray-scale face classification using an
integrated 1024-cell array [28].

3. Neuromorphic hardware-software Co-design

3.1 Algorithm-driven neuromorphic hardware optimizations

The accuracy of data representation in neural network models has a significant
impact on computing accuracy. It is worth noting that ReRAM devices face challenges
in providing high-precision computing due to manufacturing and hardware design
costs although analog conductance states can be ideally achieved. Therefore, ReRAM
devices with the limited physical precision pose a severe challenge to neuromorphic
computing accuracy.

Researchers have attempted to alleviate the accuracy loss caused by the limited
precision through hardware-software co-optimization. For example, Wang et al. pro-
posed a new quantization regularization according to the computing characteristics of
ReRAM devices and leverage different levels of regularization for different network
layers [31]. They also minimized the impact of quantization by dynamical bias tuning
under the fixed weights. Their quantization method achieved minimal accuracy loss
under the limited resolution of synaptic weights. Yang et al. investigated a novel
approach that processed quantization and training concurrently by optimizing the
calculation of continuous weights and quantized weights in stochastic gradient
descent [32]. Researchers found that quantizing partial sums was an effective
approach to performing high-precision calculations in the ReRAM-based
neuromorphic computing system. A team from the University of Illinois at Urbana-
Champaign developed a comprehensive quantization approach that considered
inputs, weights, and partial sums [33]. They developed a deep reinforcement learning-
based search method that can automatically discover the best-mixed configuration to
identify the optimal precision configurations of these three types of data. Table 1
presents a comparison of the accuracy achieved by these quantization methods.

DNN models are becoming increasingly complex and involve tremendous param-
eters. It was noted that sparsity exists in the neural networks, which indicates that a
significant number of parameters are redundant and can be pruned without causing
accuracy loss [34, 35]. In the ReRAM-based neuromorphic designs, pruned neural
networks can ideally reduce hardware costs and improve computation speed and
energy efficiency. Therefore, identifying and eliminating redundancies is crucial to
enhance computational efficiency while maintaining accuracy. SNrram [63]
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Dataset Model Base-

quantization

Ideal

Acc

Base

Acc

Proposed

quantization

Wang et al. [31] MNIST MLP 1-level 98.39% 95.97% 98.00%

MNIST LeNET 1-level 99.15% 90.77% 98.96%

CIFAR-10 CNN 1-level 82.12% 17.80% 76.59%

Yang et al. [32] MNIST MLP 2-level 97.51% 85.98% 94.53%

MNIST LeNET1 2-level 99.00% 69.24% 98.75%

CIFAR-10 LeNET2 2-level 76.99% 26.20% 73.04%

Huang et al. [33] — LeNET mix-level 97.27% — 96.09%

Table 1.
The accuracy comparison of quantization methods.

Software design Hardware design Performance

Snrram

[63]

Normalizing sparsity in weight

and activation into the same

format and eliminate

redundancy

IRU* units store sparse indexes

and corresponding peripheral

circuit design

Pruned connection(%):

62.7, 82.7, 96.2 in VGG, MLP,

Lenet

Saved resource(%): 53.2,

81.3, 75 in VGG, MLP, Lenet

Speedup: 1.53x, 3.41x in

VGG, Lenet

Recom

[64]

• SWOF† positively finds and

eliminates sparse

redundancy in weights and

activations

• IPMC‡ to improve pipeline

computing efficiency

Column fetching unit for

SWOF† and corresponding

peripheral circuit design

Energy saving: 3.7x, 3.07x,

1.59x in Lenet, Alexnet,

Caffenet

Speedup: 4.81x, 4.40x, 2.25x

in Lenet, Alexnet, Caffenet

Pim-

prune

[65]

Dividing into blocks and use

structural pruning to avoid

dislocation problem when

focusing on row sparsity and

column sparsity

simultaneously

• Modules to store sparsity

table for both row and

column

• Explore optimal energy-

efficiency hardware design

Pruned accuracy(%)(lost):

93.84 (�0.30), 93.23(�0.47),

68.72(�1.04) in Resnet,

VGG, Resnet

Compression rate: 24.85x,

26.85x, 3.56x in Resnet, VGG,

Resnet

Sme

[66]

• Quantization and encoding

scheme to increase bit-level

sparsity

• Bit-slicing scheme to

accumulate the 0-bits to the

same crossbars and

decouple crossbar structure

• Squeeze-out pruning

method to eliminate

redundancy

• Buffer connection to

support squeeze-out

algorithm and peripheral

circuits design to support

activation results splicing

• Low overhead and

orthogonal hardware design

that can combine with other

research

Pruned accuracy(%)(lost):

93.6 (+0.1), 94.19(+0.05),

76.03(�0.1), 71.57(�0.31) in

VGG, Resnet, Resnet,

Mobilenet

Register reduction(%):

77.80, 96.80 compared to

Pim-Prune, SRE

Energy efficiency: 2.3x in

Resnet

Area efficiency: 6.1x in

Resnet

*IRU represents indexing register unit.†SWOF represents structurally compressed weight oriented fetching.‡IPMC
represents in-layer pipeline for memory and computation.

Table 2.
The comparison of pruning methods.
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introduced a sparsity transfer algorithm to standardize sparsity in weights and activa-
tion and an indexing register unit was designed to store sparsity indexes and parse the
data. Later, researchers proposed ReCom, another hardware and software co-design
accelerator for high-sparsity networks based on ReRAM [64]. ReCom utilized a group
lasso algorithm to standardize the shape of filters and accomplish pruning by
compressing sparse weights through the regularization of each layer. Other methods
besides regularization for ReRAM-based network pruning have been proven to be
effective [65, 66]. Table 2 illustrates a comparison of these pruning methods.

3.2 Hardware-driven hardware-software co-optimization

In ReRAM-based neuromorphic systems, process variation [67, 68], circuit noise
[69, 70], retention issues, and endurance issues [71–73] greatly impact its practical
applications in real world [74].

Bit failure in resistive devices is a common fault in high-density crossbar arrays.
The ReRAM device is unable to switch its conductivity in response to the writing
voltage when the failure occurs, which causes fixed resistive devices that are
expressed as constant weights in neural network computation. These fixed resistive
devices may destroy the overall neural network accuracy. To solve this challenge, Liu
et al. first proposed a novel hardware and software co-design approach to improve
computational accuracy in neuromorphic designs with high defects [75]. The pro-
posed approach had two strategies: network retraining (software) and redundant
resistive devices (hardware). The network retraining consisted of a standard weight-
tuning process and a retraining method that prevented the weights at defective resis-
tive devices from being updated. The redundant resistive device strategy deployed
additional columns for highly significant weights with defects. Similarly, researchers
at Northeastern University proposed a hierarchical progressive pruning method to
improve the fault tolerance of ReRAM computing under stuck-off defects and a
corresponding differential mapping scheme to support their method for both stuck-on
and stuck-off defects [76].

A series of research works have utilized network retraining techniques to minimize
the accuracy loss introduced by the imperfect hardware [77–79]. Nevertheless, as the
location and quantity of defective resistive devices can differ for each ReRAM-based
chip, it is necessary to retrain the network for every instance, leading to an enormous
computational burden. To address this challenge, researchers at Purdue University
proposed CxDNN, a solution that combines hardware-software compensation tech-
niques for DNNs [80]. CxDNN consists of three optimization steps: a quantization
and conversion algorithm, a re-training method, and hardware compensation. The
quantization and conversion algorithm extracts a fixed-point neural network from
open-access weights based on the accuracy of inputs, weights, and ADC/DAC com-
ponents. The re-training process mitigates accuracy loss resulting from the nonlinear
representation of components such as ADC/DAC, and leverages the available weights
to accelerate calculation. Finally, the hardware compensation mechanism adjusts the
compensation factor of each column in crossbar arrays based on relative and absolute
errors to reduce accuracy loss caused by hardware limitations.

In addition to the aforementioned permanent defects, ReRAM-based systems can
also experience instabilities during processing, including noise [81], drifting [82], and
programming errors [83]. To mitigate these issues during computation, researchers
proposed FTNNA, a ReRAM-customized advanced error-correcting output code
(ECCO) scheme [84]. FTNNA applied collaborative logistic classifiers to replace the
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classic softmax function and adjusts the weights of these classifiers through transfer
learning. Furthermore, they designed a variable-length decode-free coding scheme to
reduce neural competition [84]. This approach resulted in significant accuracy
improvements without the need for any hardware-specific calibration. Researchers at
Tsinghua University proposed a re-configurable redundancy scheme to rescue accu-
racy degradation caused by stocked resistive devices [85]. Many other studies are
dedicated to addressing various aspects of ReRAM technology, such as stuck failures
[86, 87], temperature [88], IR-drop [89, 90], and other factors, to enhance the error
tolerance of ReRAM-based neuromorphic computing.

4. ReRAM-based in-memory computing architectures

In today’s DNN-based AI, the concept of neuromorphic computing has been
expanded to non-von Neumann architecture computing paradigms that integrate
processing and memory on a single chip. The successful hardware implementation of
synapses and neurons with ReRAM devices has enabled the prosperous development
of ReRAM-based in-memory accelerators for various DNN applications, including
convolutional neural networks (CNNs), graph neural networks (GNNs), etc. These
accelerators have demonstrated significant computing speedup and energy efficiency
in AI applications such as image processing and language processing. In this chapter,
we discuss early exploration of ReRAM-based accelerators and computing architec-
tures for various DNNs and applications.

4.1 ReRAM-based in-memory computing accelerators

With the successful exploration of ReRAM-based neuromorphic hardware,
researchers also started to explore architecture-level innovations by developing novel
ReRAM-based in-memory processing accelerators.

In 2016, researchers proposed a ReRAM-based neural network accelerator for
DNN applications—PRIME [42] with novel in-memory processing architecture. As is
shown in Figure 4, unlike previous in-memory processing architectures that integrate
additional processing units to memory, PRIME has full-function (FF) subarrays that

Figure 4.
(a) Traditional shared memory-based processor-coprocessor architecture, (b) processing in-memory approach
using 3D integration technologies, (c) PRIME design [42].
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can act as a memory unit for data storage or perform matrix multiplication in DNN
computation. The FF subarrays mainly consist of the components: (1) decoders and
drivers that provide analog inputs to ReRAM crossbar arrays by controlling voltage
through amplifiers, latches, etc.; (2) multiplexers that are used to support subtraction
and the sigmoid activation function; (3) sense amplifiers to sense computing results
from the ReRAM devices and support ReLU functions with the additional hardware
units. PRIME maximum reuses the periphery circuits to enable the switch of ReRAM
between storage and computing with reduced design costs. Moreover, PRIME pro-
posed high-precision NN acceleration based on its architecture and provided soft-
ware/hardware interfaces for developers.

In the same year, researchers at the University of Utah introduced ISAAC, a
comprehensive ReRAM-based accelerator, aimed at offering high-speed and energy-
efficient computations of convolutional neural networks (CNNs) [43]. The ISAAC is a
multi-stage architecture, which includes tiles, IMAs, and ReRAM crossbar arrays, as
illustrated in Figure 5. The fundamental component used for deploying a neural
network layer is IMAs, where several IMAs share eDRAM activation components and
other peripheral circuits. ISAAC presented an inter-layer pipeline coupled with a
buffer optimization strategy. ISAAC processed all layers in a CNN concurrently and
redeployed layers to maintain the pipeline’s continuity, and hence improved overall
throughput and computational efficiency were achieved. The subsequent layer started
processing as soon as the output feature maps of the current layer meet the size
requirement of the convolution kernels of the next layer instead of waiting for the
final results. This strategy significantly reduced the capacity requirement and on-chip
space occupation of eDRAM. In addition, ISAAC developed an encoding scheme to
reduce the ADC resolution needs to 1-bit, which can significantly reduce hardware
costs and improve computing efficiency. The ISAAC achieved significant improve-
ment in computing throughput, energy, and computational density compared to
previous designs.

Although previous architectures demonstrated high computing efficiency, limita-
tions still exist. For example, they were designed only for inference and did not

Figure 5.
Architecture and pipeline of ISAAC [43].
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support the training process. The computing pipelines were deep and may introduce
pipeline bubbles. Therefore, in 2017, a novel ReRAM-based in-memory computing
architecture Pipelayer was proposed aiming to solve this challenge [44]. The proposed
architecture is based on PRIME and ISAAC and can support the training process. In
addition, PipeLayer has optimized inter-layer and intra-layer pipelines to achieve high
throughput in both training and inference. The same as PRIME, the ReRAM subarrays
were utilized for both storage and computing with the capability of functionality
shifting. During the training process, the error is obtained after comparing the labels
and loss function in the last forward cycle. In the error backpropagation process,
weights and errors, which were also calculated in the ReRAM morphable subarrays
and saved in storage subarrays, were updated by the layer errors and partial deriva-
tives and passed to the previous layer. It is noted that the depth of logical cycles was
independent of the number of NN layers, preventing potential issues arising from
deep pipelines, such as stall, bubble, and latency. In addition, PipeLayer introduced a
parameter to repeatedly deploy operators, building a trade-space-for-time intra-layer
parallel pipeline. This intra-layer pipeline, together with the inter-layer pipeline,
supports the high throughput of PipeLayer. The comparison of these ReRAM-based
in-memory computing accelerators is shown in Table 3.

4.2 ReRAM-based accelerators for various DNNs and applications

After the great success of the ReRAM-based neuromorphic accelerators, custom-
ized ReRAM accelerators tailored for specific types of neural networks and applica-
tions are also emerging. For example, generative adversarial networks (GANs) [91]
require frequent data transmission between the generative and adversarial networks,
which makes them highly demanding in terms of memory, computational resources,
and data transfer. ReGAN, a ReRAM-based accelerator for GANS, has been designed
to leverage the advantages of processing in-memory and ReRAM crossbar arrays, as
well as optimized parallel computation and data dependency, to achieve significantly
high performance and energy efficiency [45]. To expedite the execution of recurrent
neural networks (RNNs), ReRAM accelerators tailored to various RNN configurations
were proposed [46].

In graph processing tasks, high data transfer costs have led researchers to focus on
the optimization of memory access [92]. ReRAM architecture’s inherent in situ com-
puting can minimize these overheads. GraphR was the first to introduce a ReRAM-
based architecture for graph computation [51]. The feasibility of ReRAM for graph
processing was analyzed, and sparse matrix-vector multiplications were applied to

CE*

(GOPS/s/mm2)

PE†

(GPOS/s/W)

Large data

mapping

Data precision Support

Train/Inf

PRIME [42] 1230 2100 Crossbar (Analog) 6-bit (In.) & 8-bit

(Wt.)

Inf

ISAAC [43] 479.0 380.7 Crossbar (Analog) 16-bit Fixed Inf

PipeLayer

[44]

1485 142.9 Bitline-wise

Keral/X-bar

16-bit Train & Inf

*CE represents computation efficiency.†PE represents power efficiency.

Table 3.
The comparison of ReRAM-based in-memory computing accelerators.
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data blocks of compressed representation. This approach designed ReRAM-based
graph engine to accelerate the network with parallel computation, while a drawback
of additional useless multiplications with zero due to sparsity still exists. Subse-
quently, Spara presented a novel vertex mapping strategy to address this challenge
[52]. There are also ReRAM-based architectures for graph processing focus on sparsity
[53, 54], three-dimensional architecture [55, 56], regularization, redundant computa-
tion [57], etc.

Transformers, one of the most advanced models in current natural language
processing (NLP), present several challenges to the ReRAM-based neuromorphic
computing [93]. For example, one layer’s input includes the results of the previous
layer due to the self-attention mechanism, generating data dependencies that result in
bubbles in the traditional interlayer pipeline. The calculation of scaled dot-product
attention significantly differs from traditional multiply-accumulate operations in
CNNs. ReTransformer [58] and ReBERT [59] are dedicated to addressing these chal-
lenges. ReTransformer mathematically decomposed matrix multiplication into two
steps, reducing the pipeline bubbles by performing the first initialization step and the
second calculation step sequentially in two separate cycles. ReBERT concentrated on
the attention mechanism and proposed a window self-attention mechanism with a
corresponding window size search algorithm to support the ReRAM crossbar arrays
and achieved significant speedup and energy performance. There are also other
ReRAM-based architectures for NLP, including sparsity attention [60], and BERT
deployment [61], etc.

5. Conclusions

In this chapter, we gave an overview of the implementation of ReRAM-based
neuromorphic computing engines in the last several years. The overview covers hard-
ware designs of synapses and neurons, neural network implementation, hardware and
software co-design, and novel architectural designs. The ReRAM-based synapses and
neurons give a rebirth of neuromorphic computing through its ultra-small scale,
inherent synaptic plasticity property, and capability to enable high-parallelism neural
network operations. Accordingly, neuromorphic computing systems for different
neural networks were implemented with significantly high computing efficiency in
speed and energy compared to the traditional computing platform. Hardware-
software co-design is a widely utilized approach to overcome the ReRAM-based
hardware limitations such as limited resistive states, stuck-at-fault, signal fluctuation.
Novel in-memory computing architectures are also extensively explored based on the
ReRAM-based neuromorphic engine and various techniques are explored to overcome
the challenges in neural network computing and optimize computing efficiency.
With the prosperous advancement of ReRAM-based neuromorphic computing,
specialized accelerators for various neural networks and applications are also under
extensive study.
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