
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

174,000 190M

TOP 1%154

6,400

Chapter

Verification of Generalizability in
Software Log Anomaly Detection
Models
Hironori Uchida, Keitaro Tominaga, Hideki Itai, Yujle Li

and Yoshihisa Nakatoh

Abstract

With recent rapid technological advances, the automatic analysis of software logs
has received particular attention. Currently, there is much research on the use of Deep
Learning in the field of software log anomaly detection, and they have reported high
accuracy of more than 0.9 in the f1-score. On the other hand, there are reports that it
has not been used in the field of software development. We conducted a generalized
evaluation against representative models for log anomaly detection to elucidate the
cause of this problem. Five models were used in the subject: four representative
models (two supervised and two unsupervised) and our proposed Neocortical Algo-
rithm (supervised). We used the commonly used Blue Gene/L supercomputer log
(BGL) dataset. The learning curves and cross-validation showed a tendency toward
overfitting in all models. In addition, a survey of the frequency of log patterns con-
firmed the need for a more diverse dataset, as many of the patterns are a series of
specific logs.

Keywords: anomaly detection, log analysis, log parsing, deep learning, software log,
software development

1. Introduction

Automatic analysis of software logs has attracted significant attention due to the
rapid development of technology in recent years. Currently, there are many studies
with Deep Learning in the field of software log anomaly detection, reporting high
accuracies surpassing 0.9 on the f1-score [1, 2]. On the other hand, it has been
reported that Deep Learning for software log anomaly detection is not widely
employed in the software development industry. The Loghub dataset, released by He
et al., is presently frequently used in the field of software log anomaly analysis [3].
While Loghub contains logs from various systems, only one type of log is available for
each system. Consequently, the accuracy of anomaly detection is assessed for only one
pattern, and a comprehensive evaluation using multiple datasets is not performed. As
a result, the effectiveness of the various anomaly detection models reported may be
limited to specific datasets.

1

Therefore, to assess the generalizability of representative anomaly detection
models across multiple dataset patterns, we initially conducted cross-validation using
the Blue Gene/L supercomputer log (BGL) dataset from Loghub. For this purpose, we
utilized the Deep-loglizer Toolkit developed by Chen et al. [4], which comprises four
models, namely, CNN, LSTM (supervised learning), Transformer, and Auto Encoder
(unsupervised learning). Additionally, we incorporated our proposed SPClassifier
(supervised learning) to make use of a total of five models.

The second approach to evaluating generality involves using the validation
datasets. In the study by Chen et al. that evaluates various models, the dataset is split
into two partitions: the training dataset and the test dataset [1]. At each epoch, the
models are evaluated on the test data, and the model with the highest accuracy in that
epoch is considered the optimal model to calculate the accuracy for the test dataset.
Given the potential for overfitting on the test dataset with this method, we split the
dataset into three separate datasets for evaluation: the training dataset, the validation
dataset, and the test dataset.

Furthermore, we examined the type and frequency of logs included in the dataset
to assess whether the dataset is suitable for generic evaluation.

In summary, this experiment aims to clarify the following three points:

1.Evaluation of generality through cross-validation: Investigating the variation in
accuracy due to differences in the types of logs included in the training and test
datasets.

2.Evaluation of generality using the validation dataset: Assessing the generality
using the validation dataset, which has not been included in previous benchmark
studies.

3. Investigation of the log structure included in the dataset: Examining the
similarity of the log structure in the commonly used BGL dataset to that used in
software development.

2. Study design

This study uses the Toolkit (Deep-loglizer) provided by Chen et al. This Toolkit
allows for flexibility in the model setup, including the ability to modify the loss
function and determine whether or not to incorporate semantic information from the
logs. We exclusively utilized sequential information in this experiment since our
experimental setup lacked the necessary computational resources to handle semantic
information. Notably, Chen et al. reported comparable accuracies with and without
semantic information.

2.1 The common workflow

The common parts of the workflow for anomaly detection used in this experiment
are shown in Figure 1. A standard anomaly detection model comprises four key steps:
(1) Log Parsing, (2) Log Grouping, (3) Log Representation, and (4) Deep Learning
Models [2]. Sections 2.1.1–2.1.4 provide an overview of each step and the specific
techniques used in this study.

2

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

2.1.1 Log parsing

The log contains different fields such as timestamp, process ID, and severity.
However, for the line-by-line anomaly label dataset, only the crucial log message
portion is extracted and used through log analysis. Log analysis is used to automati-
cally translate each log message into a specific event template (constant part) associ-
ated with the parameters (variable part). Various log analysis techniques are available,
such as frequent pattern mining, clustering, heuristics, etc. For this experiment, log
analysis was conducted using Drain (heuristic) [5], which has been used in bench-
mark studies. Drain uses fixed-depth analysis trees to speed up the analysis process
and encodes rules specifically designed for the analysis. The parameters used are as
follows: Similarity threshold = 0.5, Depth of all leaf nodes.

2.1.2 Log grouping

This step separates the logs into various groups. Typically, three types of windows
are employed for log grouping, namely, Fixed Window, Sliding Window, and Session
Window. Fixed Window is a grouping technique that splits the logs according to their
frequency of occurrence, whereas SlidingWindow segments the logs into window size
and step size. Session Window, on the other hand, leverages log identifiers to group
logs with the same execution path. For the current study, the Sliding Window of 10
and Sliding Step of 1 are utilized for log grouping.

2.1.3 Log representation

After grouping the logs, the logs are represented in the various formats required by
the DL model. In general, they are converted into (1) sequential vectors, (2) quanti-
tative vectors, and (3) semantic vectors. (1) Sequential vectors reflect the order of log

Figure 1.
Learning curve for CNN.

3

Verification of Generalizability in Software Log Anomaly Detection Models
DOI: http://dx.doi.org/10.5772/intechopen.111938

events within a window. (2) Quantitative vectors use the frequency of occurrence of
each log event within a log window. (3) Semantic vectors acquired from the language
model represent the semantic feature of log events.

In this experiment, the (1) sequential vector is used.

2.1.4 Deep learning models

After the log representation step, the extracted features are fed into a deep-
learning model for anomaly detection.

2.2 Evaluated models

In this experiment, we used a total of five models, consisting of two supervised
learning models, namely Convolutional Neural Network (CNN) [6] and Long Short-
Term Memory (LSTM) [7], and two unsupervised learning models, namely Auto
Encoder (AE) [8] and Transformer [9], in addition to our proposed SPClassifier [10].
An overview of each model and the Toolkit parameters used in this study is provided
in Section 2.2.1–2.2.5.

2.2.1 CNN (supervised model)

The input logs undergo the following preprocessing steps: first, they are converted
to IDs, then to vectors using logkey2vec, and finally fed into the CNN model. This
approach resulted in an impressive F-measure of 0.98 on the HDFS dataset. The
specific Toolkit parameters used for this experiment are as follows: “python
cnn_demo.py –label_type anomaly –feature_type sequential – 10.”

2.2.2 LSTM (supervised model)

This approach utilizes fixed-dimensional semantic vectors to represent log events
and employs an attention-based Bidirectional Long Short-Term Memory (Bi-LSTM)
classification model for anomaly detection. The Toolkit parameters used for this
experiment are as follows: “python lstm_demo.py –label_type anomaly –feature_type
sequential –use_attention –topk 50 –epochs 10”.

2.2.3 Auto encoder (unsupervised model)

The model consists of two Auto Encoders and one Isolation Forest; the Auto
Encoder is used for feature extraction and anomaly detection, and the Isolation Forest
is used for positive sample prediction. The parameters used in the Toolkit for this
experiment are as follows: “python ae_demo.py –feature_type sequential –
anomaly_ratio 0.8 –epochs 10.”

2.2.4 Transformer (unsupervised model)

Existing approaches exhibit limitations in their ability to generalize to new, unseen
log samples. To address this issue, Logsy was proposed as a novel method for anomaly
detection, utilizing a self-attention encoder network for hyperspherical classification.
Logsy formulates the log anomaly detection problem by discriminating between

4

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

regular training data from the target system and samples from auxiliary log datasets
that are easily accessible from other systems.

The parameters used in the Toolkit for this experiment are as follows: “python
transformer_demo.py –label_type next_log –feature_type sequential –topk 50 –epochs
10 –use_attention.”

2.2.5 SPClassifier (supervised model)

SPClassifier is a model with sparse features and internal representations suitable
for training in CPU environments [10]. The proposed method consists of one spatial
pooling layer [11, 12] and one Feedforward Neural Network for classification, which
identifies anomalous patterns from log data transformed into 2D features. The feature
transformation process involves converting the input log sequence into a sparse dis-
tributed representation (SDR), which is a binary sequence of fixed dimensions. In the
SDR, a specific percentage of the bits are set to 1, while the remaining bits are set to 0.
These transformed features serve as input to the spatial pooling stage. Spatial pooling
(SP) incorporates local suppression between adjacent mini-columns and implements a
k-wins-take-all computation. At any given time, only a small fraction of the mini-
columns with the most active inputs are active. Feed-forward connections to active
cells are adjusted at each time step based on Hebb’s learning rule. Additionally, a
homeostatic excitation control mechanism, referred to as “boosting,” operates on a
slower time scale. Boosting enhances the relative excitability of underactive mini-
columns, encouraging their activation and participation in the input representation.
Subsequently, the transformed SDRs obtained through spatial pooling are fed into a
classifier responsible for detecting anomalies. The employed classifier utilizes a single-
layer neural network. It takes as input a flat binary SDRs array representing the output
of the spatial pooling layer and predicts the abnormal or normal label. A softmax
function is employed as the activation function for the output of the network. The
network weights are updated during training using a formula based on the provided
label information.

wij wij þ α�

X

c�1

i¼0

1

c
� softmax

X

c�1

i¼0

wijzj

 !()

(1)

where wij is the weight between the j-th value of the flattened input zj and the i-th
output node of the neural network. c is the number of categories, c = 2 since normal
and abnormal categories are used for anomaly detection. α is a coefficient that controls
the speed of learning.

The parameters are shown in Table 1.

Parameter Value Description

Window size 10 Size of sliding window

Stride 1 Step size of sliding window

Input SDR Length 500 Number of dimensions of SDR transformation for a single template

index.

Input SDR Sparsity 0.15 Proportion of binary values equal to 1 across all dimensions post SDR

conversion.

5

Verification of Generalizability in Software Log Anomaly Detection Models
DOI: http://dx.doi.org/10.5772/intechopen.111938

2.3 Dataset

The BGL dataset collected from the supercomputer system Blue Gene/L was used
as the evaluation dataset for this experiment. This dataset contains log data labeled
with anomaly logs. It was sourced from Loghub [3], a renowned repository offering a
vast collection of log datasets that can be employed for AI-based log analysis.

2.3.1 Data selection strategies

In this study, a set of time series was used, where 80%of the available logswere
allocated for training and the remaining 20% for testing. The testing dataset was further
split into two halves, with the initial half used for validation purposes and the second half
used for testing. Such a partitioning strategy emulates a practical software development
scenario, where past logs are utilized for training and future logs are used for testing
purposes.

2.3.2 Different data grouping

There are two major data grouping techniques: window grouping and session
grouping. In this experiment, we used the window grouping approach, utilizing a

Parameter Value Description

Input Dimensions (500, 10) Shape of the coded image generated by stacking SDRs.

Column Dimension (830, 15) Shape of the columns in spatial pooling layer.

Potential Radius 7 Value that determines the input range over which one column has a

potential connection.

Potential Pct 0.1 Percentage of inputs with potential connections in the hypercube.

Global Inhibition True Whether to consider all columns as neighbors when determining the

active state of a column.

Local Area Density 0.1 Percentage of columns that can be active between neighbors.

Stimulus Threshold 6 Minimum number of synaptic connections required for a column to

be active.

SynPermActiveInc 0.14 Amount of increase in permanence value of active synapses at each

learning step.

SynPermInactiveDec 0.02 Amount by which the permanence value of inactive synapses

decreases with each learning step.

SynPermConnected 0.5 Minimumpermanence value at which a synapse is considered connected.

DutyCyclePeriod 1402 Length of time step considered when updating the boost factor based

on how often each column is active.

MinPctOverDutyCycles 0.2 Lower limit on how often a column has active input above the

stimulus threshold.

Boost Strength 7 Parameters that control the strength of the boost factor’s adaptive

effect.

WrapAround False Whether the first and last dimensions of the input are considered

adjacent in the mapping between input and column.

Table 1.
Parameter list for SPClassifier.

6

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

window size of 10 with a sliding value of 1. It is worth noting that the results obtained
using session windows outperform those obtained using fixed windows on the BGL
dataset, as previously reported by Le et al.. This result may be attributed to the fact
that the larger size of the input data augments the amount of information that can be
acquired, which facilitates the detection of anomalies. In this study, we selected to use
fixed grouping with a window size of 10, as we believe that anomaly detection at a
more detailed level is important, particularly in a developmental setting.

2.4 Evaluation metrics

2.4.1 Evaluation method

In the accuracy comparison, each model after training is used to verify the accu-
racy of anomaly detection for test data. The classification performance of each model
is evaluated by the F-measure value; F-measure is an evaluation index that indicates
the balance between detection accuracy and the number of anomalies detected. Here,
the F-measure is calculated as follows.

Precision ¼
TP

TPþ FP
(2)

Recall ¼
TP

TPþ FN
(3)

F �measure ¼
2 ∙Precision ∙Recall

Precisionþ Recall
(4)

where:
TP represents abnormal instances correctly classified by the model.
TN represents normal instances correctly classified by the model.
FP represents normal instances misclassified by the model.
FN represents abnormal instances misclassified by the model.

2.4.2 Learning curve

Each training set consisted of one epoch, and during training the model was
evaluated for accuracy using both training and validation data. The training range
consists of epochs 1 through 10. In experiments without a validation set, the test data
were evaluated as the validation set.

2.5 Objectives of the experiment

Objective 1: Generalizability evaluation with cross-validation.
To evaluate the generalizability of each model, we employed five-fold cross-

validation in this experiment. Four-fifths of the dataset was used as the training
dataset, while the remaining one-fifth was designated as the test dataset. The test
dataset was subsequently split in half, with the first half serving as the validation
dataset. By varying the split points and comparing the accuracy of anomaly detection,
we will explore the potential impact of training dataset bias and test dataset bias on
the performance of the system.

Objective 2: Generalizability evaluation with the validation dataset.

7

Verification of Generalizability in Software Log Anomaly Detection Models
DOI: http://dx.doi.org/10.5772/intechopen.111938

This experiment aims to evaluate the accuracy with and without the validation
dataset, as previous studies only split the dataset into training and test data. The test
data are used to determine the optimal model among multiple Epoch training runs;
however, there is a potential risk of over-training on the test data. Hence, this study
incorporates the validation dataset to assess whether over-training occurs. The dataset
segmentation method was the same as Obj1, with train 80%, validation 10%, and test
10%. Our previous studies have shown that the accuracy is extremely high when the
train dataset ratio is increased to 90% [13]. We attribute this result to the extreme
reduction in the number of unknown anomaly logs not present in the training dataset,
from 268 to 3, resulting in fewer opportunities to test the unknown anomaly logs. In the
actual field of development, the source code is updated daily and the logs are updated
accordingly. Therefore, we use 80% of the training data, a condition that includes a
large number of unknown anomaly logs, to measure the generality of the test.

Objective 3: Examination of Log Structure within the dataset.
In this section, we explore the dataset following the grouping of raw logs into fixed

groups with a window size of 10. It is essential to examine the types of logs contained in
the dataset to evaluate its versatility. For example, an application development site may
receive more than 10,000 different types of logs. Therefore, if the experimental dataset
comprises only 100 log types, it is inadequate in representing an actual development
site, and the accuracy of anomaly detection will be questionable. Thus, this experiment
aims to determine the number of log types and their frequency within the dataset.

3. Experimental results

We conducted five trials to eliminate errors in each experiment and evaluated the
results using their average.

3.1 Obj1: Generalizability evaluation with cross-validation

Table 2 presents the results obtained through cross-verification applied to the five
models. The table reveals the following four observations:

Types of cross verification F-measure

without/with

Recall Precision

CNN

Type A 0.217/0.216 0.124/0.122 0.886/0.945

Type B 0.961/0.925 0.992/0.971 0.932/0.885

Type C 0.837/0.698 0.961/0.962 0.750/0.581

Type D 0.718/0.514 0.699/0.151 0.777/0.040

Type E 0.971/0.755 0.996/0.996 0.949/0.636

Ave Without/With 0.741/0.622 0.755/0.683 0.859/0.782

LSTM

Type A 0.211/0.207 0.118/0.116 0.981/0.975

Type B 0.928/0.908 0.986/0.949 0.883/0.879

Type C 0.540/0.392 0.959/0.963 0.422/0.272

Type D 0.771/0.516 0.784/0.365 0.756/0.877

8

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

1.For all models, the accuracy is notably low when using the Type A dataset.

2.For all models, the accuracy is good when using Type B and Type E datasets.

3.When using the Type D dataset, the accuracy diminishes in supervised learning,
whereas unsupervised learning demonstrates higher accuracy compared to the
other four types of datasets.

4.When Type A dataset is used, unsupervised learning results in high precision and
low recall, while unsupervised learning results in high precision and low recall.

We attribute observation (4) to the contrasting characteristics of the two learning
methods. Supervised learning involves learning from the training data one-to-one,
making it proficient in correctly identifying the anomalous data on which it is trained.

Types of cross verification F-measure

without/with

Recall Precision

Type E 0.942/0. 909 0.994/0. 997 0.895/0.837

Ave Without/With 0.678/0.586 0.768/0.678 0.788/0.768

SPClassifier

Type A 0.176/0. 514 0.279/0. 427 0.595/0. 696

Type B 0.759/0.689 0.843/0.932 0.695/0.549

Type C 0.568/0.546 0.624/0.777 0.609/0.456

Type D 0.569/0.181 0.426/0.115 0.893/0.675

Type E 0.871/0.840 0.948/0.966 0.809/0.744

Ave Without/With 0.589/0.554 0.624/0.643 0.720/0.634

Auto encoder

Type A 0.160/0.118 0.954/0.588 0.087/0.080

Type B 0.226/0.214 0.982/0.975 0.128/0.120

Type C 0.019/0. 007 0.850/0. 669 0.010/0. 004

Type D 0.400/0. 315 0.666/0. 848 0.306/0. 218

Type E 0.362/0. 152 0.962/0. 994 0.232/0. 083

Ave Without/With 0.233/0.161 0.883/0.815 0.152/0.101

Transformer

Type A 0.159/0.159 0.963/0.961 0.087/0.087

Type B 0.457/0.429 0.709/0.712 0.338/0.307

Type C 0.257/0.243 0.521/0.451 0.172/0.166

Type D 0.587/0.508 0.519/0.484 0.675/0.562

Type E 0.865/0.810 0.911/0.911 0.824/0.744

Ave Without/With 0.465/0.430 0.725/0.704 0.419/0.373

Table 2.
Generalizability evaluation results by cross-validation.

9

Verification of Generalizability in Software Log Anomaly Detection Models
DOI: http://dx.doi.org/10.5772/intechopen.111938

However, it struggles to detect anomalous patterns outside its learning range, leading
to a significant drop in Recall. On the other hand, unsupervised learning often detects
patterns that deviate from the training data as abnormal, resulting in higher recall.
However, it also tends to identify non-anomalous data as abnormal, leading to a
substantially lower precision.

Figures 1 and 2 show the learning curves of the CNN and LSTM models, show-
casing their high accuracy. The data points on the graph represent the mean values
obtained from five experiments, with the upper and lower widths representing the
standard deviations. Figure 1 demonstrates a substantial variation for Type C, Type
D, and Type E.

These findings indicate that the cross-validation results exhibit significant varia-
tions in accuracy across different types, suggesting limited generality and versatility.

As an additional investigation, we examined the number of unknown normal and
abnormal logs in each split type. The results are presented in Table 3. The table
reveals that the Type A dataset, which yielded the poorest results, had the highest
number and diversity of abnormal logs. Conversely, the datasets used for testing Type

Types of cross verification Normal types

Test/validation

Anomaly types

Test/validation

Total anomaly logs

Test/validation

Type A 681/263 9/8 24,284/ 6881

Type B 64 /27 0 /1 0 /24

Type C 26 / 9 1 /0 24 / 0

Type D 8 /15 0 /0 0 /0

Type E 18 /98 0 /0 0 /0

Table 3.
Composition of unknown logs included in each dataset used for cross-validation.

Figure 2.
Learning curve for LSTM.

10

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

B, Type C, and Type D, which exhibited relatively good results, did not contain any
unknown anomaly logs. This suggests that the supervised learning method achieved
high accuracy primarily because it was tested with learned anomaly logs. These find-
ings highlight the susceptibility of the system to unknown anomaly logs and indicate
that it may not be universally applicable for certain purposes.

3.2 Obj2: Generalizability evaluation with the validation dataset

The comparison between the cases with and without the validation dataset, as
shown in Table 2, reveals the following characteristics:

1.The CNN, LSTM, and AE models show a decrease in accuracy when the
validation dataset is utilized.

2.The Transformer model maintains its accuracy even when the validation dataset
is used.

3.The SPClassifier model maintains a basic level of accuracy, but its performance
varies depending on the dataset type. Accuracy increases when Type A is used
and decreases when Type D is used.

Especially, the accuracy of the CNN and LSTM models decreased by 0.2 when the
validation dataset was employed, indicating a potential issue of over-training during
the validation phase. Furthermore, the precision values for both CNN and LSTM
significantly dropped when validation was used, resulting in a higher number of
instances where anomalous data were incorrectly identified as normal. This suggests
that over-training may occur during the validation stage, potentially impeding the
models’ ability to accurately detect anomalies in the test dataset.

The reason behind the observed characteristic (3) can be attributed to the learning
method employed by the SPClassifier. In this method, the Spatial Pooling layer gen-
erates similar firing patterns for similar inputs and distinct firing patterns for different
inputs. Consequently, we posit that utilizing a more complex dataset for validation
would lead to a more refined Classifier threshold, ultimately enhancing the accuracy
of the model.

3.3 Obj3: examination of log structure within the dataset

The experimental dataset was constructed from the BGL dataset using a sliding
grouping method (Window size = 10, Sliding = 1). Sequence Patterns were formed
based on templates delimited by Window, and the survey focuses on identifying the
number of distinct Sequence Patterns present. Table 3 showcases a total of 19
Sequence Patterns, which account for 80.3% of the dataset. Considering that there are
131,803 Sequence Patterns in total, the fact that the top 19 patterns represent such a
significant portion indicates a bias toward specific Sequence Patterns. It is noteworthy
that these 19 patterns are composed of only three templates, suggesting successive
repetitions of the same log.

While such Sequence Patterns are commonly observed in OS system logs and
network system logs, they are less prevalent in application development, which con-
stitutes a significant portion of software development. In large-scale application
development scenarios, where there are tens of thousands of diverse logs, the

11

Verification of Generalizability in Software Log Anomaly Detection Models
DOI: http://dx.doi.org/10.5772/intechopen.111938

simultaneous operation of multiple systems leads to the appearance of complex
Sequence Patterns in the output logs. Consequently, a model that exhibits high accu-
racy on a BGL dataset like this one may not achieve the same level of accuracy when
applied to application development due to the inherent differences in the log patterns.

4. Conclusion

In this experiment, our focus was to investigate the limited adoption of deep neural
network (DNN)-based anomaly detection methods in the development field. Existing
anomaly detection models tend to classify anomaly logs as normal when window
grouping is applied. Additionally, when incorporating validation data, the models
tend to overfit and exhibit stable learning curves from the initial epoch.

Furthermore, we delved into the structure of the BGL dataset employed in this
experiment and observed that certain logs appeared consecutively, with specific
Sequence Patterns accounting for a substantial portion of the dataset. In addition, we
performed a more in-depth examination of the structure of the BGL dataset used in
this experiment. Our findings revealed a recurring occurrence of specific logs within
the BGL dataset, along with the presence of certain Sequence Patterns that encompass
a significant fraction of the logs. It is crucial to note that in application development,
which constitutes a substantial aspect of software development, logs exhibit a greater
level of complexity and encompass a wide range of diverse Sequence Patterns. Con-
sequently, the existing representative model faces challenges when applied to the
realm of application development.

While the anomaly detection field often focuses on logs with repeated occurrences,
such as Super Computer logs or network systems, we aim to target anomaly detection
in logs associated with large-scale software development, including applications.
Therefore, our plans involve creating diverse datasets that reflect the characteristics of
the field under development and exploring the feasibility of employing multiple
anomaly detection systems in this context.

Acknowledgements

This work is supported by a grant from Panasonic System Design.

12

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

Author details

Hironori Uchida1*, Keitaro Tominaga2, Hideki Itai2, Yujle Li1 and Yoshihisa Nakatoh1

1 Kyushu Institute of Technology, Fukuoka, Japan

2 Panasonic System Design Co., Ltd., Kanagawa, Japan

*Address all correspondence to: uchida.hironori182@mail.kyutech.jp

© 2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

13

Verification of Generalizability in Software Log Anomaly Detection Models
DOI: http://dx.doi.org/10.5772/intechopen.111938

References

[1] Chen Z, Liu J, Gu W, Su Y, Lyu M.
Experience Report: Deep Learning-based
System Log Analysis for Anomaly
Detection. United States. Arxiv: https://a
rxiv.org/pdf/2107.05908.pdf [Accessed:
30 April 2023]

[2] Le V, Zhang H. Log-based anomaly
detection with deep learning: How far
are we? In: ICSE '22: Proceedings of the
44th International Conference on
Software Engineering. Software
Engineering. United States: Association
for Computing Machinery; 2022.
pp. 1356-1367

[3]He S, Zhu J, He P, Lyu MR. Loghub: A
Large Collection of System Log Datasets
towards Automated Log Analytics.
United States. 2020. Arxiv Website:
https://arxiv.org/pdf/2008.06448.pdf
[Accessed: 30 April 2023]

[4]Deep-loglizer. Available from:
https://github.com/logpai/deep-loglizer
[Accessed: 30 April 2023]

[5]He P, Zhu J, Lyu MR. Drain: An
Online Log Parsing Approach with Fixed
Depth Tree. 2017 IEEE International
Conference on Web Services (ICWS)

[6] Lu S, Wei X, Li Y, Wang L. Detecting
Anomaly in Big Data System Logs Using
Convolutional Neural Network. 2018
IEEE 16th Intl Conf on D; 2018

[7] Zhang X, Xu Y, Zhang H, Dang Y,
Xie C, Yang X, et al. Robust log-based
anomaly detection on unstable log data.
In: ESEC/FSE 2019: Proceedings of the
2019 27th ACM Joint Meeting on
European Software Engineering
Conference and Symposium on the
Foundations of Software Engineering.
Software Engineering. United States:
Association for Computing Machinery;
2019. pp. 807-817

[8] Farzad A, Gulliver TA. Unsupervised
log message anomaly detection. ICT
Express; 2020;6:229-237

[9]Nedelkoski S, Bogatinovski J,
Acker A, Cardoso J, Kao O. “Self-
Attentive Classification-Based Anomaly
Detection in Unstructured Logs” 2020
IEEE International Conference on Data
Mining (ICDM). Italy: IEEE; 2020

[10]Hirakawa R, Uchida H, Nakano A,
Tominaga K, Nakatoh Y. Large scale log
anomaly detection via spatial pooling.
Cognitive Robotics. Oct 2021;1:188-196.
DOI: 10.1016/j.cogr.2021.10.001

[11] Cui Y, Ahmad S, Hawkins J. “The
HTM spatial pooler—A neocortical
algorithm for online sparse distributed
coding.” Frontiers in Computational
Neuroscience. Nov 2017;11. DOI:
10.3389/fncom.2017.00111

[12] Li L, Zou T, Cai T, Niu T, Zhu Y. A
fast spatial Pool learning algorithm of
hierarchical temporal memory based on
Minicolumn’s self-nomination.
Computational Intelligence and
Neuroscience. 2021;2021. DOI: 10.1155/
2021/6680833

[13]Uchida H, Tominaga K, Itai H, Li Y,
Nakatoh Y. Investigation of Weaknesses
in Typically Anomaly Detection
Methods for Software Development.,
IHIET2023. (in press)

14

Anomaly Detection - Recent Advances, AI and ML Perspectives and Applications

