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Abstract

Chloroplast engineering has matured considerably in recent years. It is emerging 
as a promising tool to address the challenges related to food security, drug production, 
and sustainable energy posed by an ever-growing world population. Chloroplasts 
have proven their potential by efficiently expressing transgenes, encapsulating 
recombinant proteins, and protecting them from cellular machinery, making it 
possible to obtain highly functional proteins. This quality has also been exploited 
by interfering RNA technology. In addition to the practical attributes offered by 
chloroplast transformation, such as the elimination of position effects, polycistronic 
expression, and massive protein production, the technique represents an advance in 
biosafety terms; however, even if its great biotechnological potential, crops that have 
efficiently transformed are still a proof of concept. Despite efforts, other essential 
crops have remained recalcitrant to chloroplast transformation, which has limited 
their expansion. In this chapter, we address the most recent advances in this area and 
the challenges that must be solved to extend the transformation to other crops and 
become the de facto tool in plant biotechnology.

Keywords: chloroplast, engineering, agronomical traits, biofuels, biopharmaceuticals, 
mass protein production

1. Introduction

It has recently been projected that the world population will reach 9.8 billion 
people in the next three decades, considering that plants provide about 80% of the 
food that is consumed and that traditional agriculture is inefficient [1–3], meeting 
their food and public health needs constitutes a challenge. Therefore, seeking to meet 
the requirements of this growth, biotechnology has used plants as platforms for the 
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production of proteins, and this has been exploited by different industries such as 
energetic, pharmaceutical, and agricultural, which have already obtained fortified 
foods, vaccines, antibodies, plants that exhibit resistance to pests and diseases as well 
as plants with low content of cell wall components [4].

Modified plants have usually been developed by inserting genes directly into the 
nuclear genome because of the facilities this offers, such as the possibility of using 
different transformation methods, high transformation frequencies, and the fact that 
different plant species can be transformed using a single vector type. However, the use 
of chloroplast transformation seems to be increasing because, although it has lower 
levels of transgene integration and there are difficulties in obtaining homoplasmic 
plants [5], it allows the containment of transgenes, which can even be expressed in 
a polycistronic way, it avoids position effects, and above all, increase the production 
levels of recombinant proteins. In addition, an advantage that can be exploited is that 
chloroplasts can function as biocapsules, accumulating proteins of therapeutic inter-
est, and these can pass through the digestive tract without disturbance [6, 7].

Although chloroplast transformation has been implemented in a broader set of 
plant species, it has not yet been satisfactorily implemented in important crops, such 
as cereals, considering that these provide about 50% of the proteins in the human diet 
[8], limits the expansion of this technology. However, although chloroplast trans-
formation still has challenges, it offers an opportunity to lower the production costs 
of recombinant proteins without biosafety concerns. In this chapter, we explore the 
advances in the genetic engineering of chloroplasts to produce proteins of industrial 
interest and the challenges that must be overcome to establish this technology as the 
preferred tool in the expression of recombinant proteins.

2. Genetics of the chloroplast

Chloroplasts are small organelles primarily associated with their role in the pho-
tosynthetic process, which is possible because they can obtain electrons from water 
[9, 10]. However, other major metabolic processes also occurred within them, such as 
the biosynthesis of phytohormones, vitamins, pigments, starch, or phenols [11, 12]. 
Also, the biochemical processes that occur in the chloroplast largely determine the 
plant’s adaptation to its environment [13, 14].

Even though the chloroplasts are semi-autonomous, the control of chloroplast bio-
genesis and the chloroplast metabolic processes is mainly under nuclear control because, 
from the ~3000 proteins that there are in the chloroplast, 97% of them are encoded by 
the nuclear genome and imported via the Toc/Tic machinery [15–17]. Nevertheless, 
some critical proteins are produced in the chloroplast. There are involved in the tran-
scription, replication, and translation, as well as the proteins that make up the complexes 
of NADPH plastoquinone oxidoreductase, cytochrome b6f, and the ATP-synthase 
subunit, as well as the photosystems I and II, envelope membrane proteins, ß-subunit of 
acetyl-CoA-carboxylase, and cytochrome C biogenesis [16, 18].

The proteins produced in the chloroplast are encoded by ~120 genes, which are 
arranged in a circular double-strand genome of quadripartite structure [16, 19, 20] of 
which, depending on the species and the tissue age, there are multiple copies [21], e.g., 
22 copies in potato leaves and 900 copies in wheat leaves. However, the reason for this 
is not yet known [22, 23].

It has been considered that most chloroplast genomes are highly conserved in 
terms of their organization and content. However, the length genome varies from 
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~150 to 220 kb and always appears to be associated with the contraction or expansion 
of the Inverted Repeat regions [11, 16, 24], which are essential to gene conservation, 
replication initiation, stabilization, and the evolution of the chloroplast genome 
[21, 25, 26]. Nevertheless, this is still under discussion because there are species of 
angiosperms (pea and alfalfa) and gymnosperms (pine) that lack these regions and 
species such as Euglena gracilis that have three sequences but, like repeated sequences 
clustered in tandem [27–29].

Chloroplast genomes are organized into nucleoids whose number, size, composi-
tion, and structural organization are varied, even between adjacent nucleoids [16]. 
These nucleoids are attached to the thylakoid membrane through different proteins 
such as MFP1, TCP34, and pTAC16, and seem to be involved in the regulation of gene 
expression through their association with different SWIB-domain proteins, CND41, 
sulfite reductase, and WHIRLY proteins [30–33]. In addition, there is strong evidence 
that nucleoids serve as platforms for forming ribosomes [34, 35]. Therefore, it is 
currently accepted that nucleoids participate in replication, transcription, translation, 
post-translational regulation of gene expression, and repair of chloroplast genomes.

Although the number of nucleoids and genomes per nucleoid is variable, it is con-
sidered that a nucleoid comprises 10 to 20 copies of plastid DNA. The large number 
of chloroplast genomes with the possibility of polycistronic expression has made 
chloroplast genetic engineering rapidly growing [36, 37].

3.  Incorporation of new traits in plants through chloroplast 
transformation

The growing demand for agricultural products has influenced the search for 
alternatives that maximize their production, including developing modified 
plants [38]. These crops have allowed an increase in agricultural production, which 
has also translated into higher profits for farmers [39, 40], to such a degree that by 
2018, the commercialization/planting of modified plants had already been adopted 
by 71 countries [41], which is a rapid growth rate given that it was introduced to the 
market in 1995, just 23 years prior. The incorporation of new characteristics to plants 
has maintained an interest in modified crops, so much so that to date, 88% of cotton 
and 82% of corn grown in the United States is genetically modified [42], and this 
trend continues, in March 2023 Brazil approved the wheat-HB4 (Triticum aestivum) 
crop that exhibits the Hahb-4 transcription factor from Helianthus annuus that confers 
drought stress tolerance, as reported by the International Service for the Acquisition 
of Agri-biotech Applications (event: IND-ØØ412–7) [43].

The development of the first modified plants was achieved by nuclear transforma-
tion with the intention of conferring resistance to biotic and abiotic stresses [44–46], 
and although this method of improvement has been maintained the leadership of 
plant genetic engineering, to date, we are still grappling with problems such as gene 
silencing, random transgene integration, inappropriate gene expression regulation, 
genomic instability, interference with other genes, and selection issues. These prob-
lems can affect the expression and function of the transgene, as well as its stability 
and heritability. Also, there is an ecological risk of the crop-to-crop gene flow [47–49].

To reduce the problems associated with nuclear transformation, biotechnology 
has gone deeper into the genetic engineering of chloroplasts, which considerably 
improves the expression levels of recombinant proteins and decreases the unwanted 
effects associated with modified crops.
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The genetic engineering of chloroplasts seems to be growing rapidly, which is pos-
sible thanks to the standardization of DNA delivery protocols, the understanding of the 
mechanisms that govern transformation efficiency, as well as the increase in sequenced 
chloroplast genomes, which have gone from 6768 in 2021 to 10,712 reported in the 
RefSeq database from the National Center for Biotechnology Information (NCBI) today, 
and of which 1072 of them have been reported only so far in 2023.

Although establishing chloroplast transformation in different crops has been chal-
lenging, it has already been successfully established in different species (Table 1), and 
currently, been developed plants that express enzymes of industrial value, antigenic 

Family Species Ref.

Plants Dicots Solanaceae Nicotiana sylvestris, Nicotiana 

tabacum var. Petit Havana, and 
Nicotiana benthamiana

[50–53]

Petunia hybrida var. Pink Wave [54]

Solanum melongena [55]

Solanum lycopersicum [56]

Capsicum annuum var. G4 [57]

Solanum tuberosum cv. Desirée and 
line 1607

[58, 59]

Brassicaceae Brassica napus cv. FY-4 [60]

Brassica oleracea var. capitata [61]

Brassica oleracea var. botrytis [62]

Lesquerella fendleri [63]

Brassica napus [64]

Arabidopsis thaliana [65]

Fabaceae Medicago sativa cv. Longmu 803 [66]

Glycine max [67]

Apiaceae Daucus carota cv. Half long [68]

Malvaceae Gossypium hirsutum cv. Coker310FR [69]

Asteraceae Artemisia annua [70]

Lactuca sativa cv. Verônica, cv Flora 
and cv. Cisco

[71–73]

Plantaginaceae Scoparia dulcis [74]

Cucurbitaceae Momordica charantia [75]

Amaranthaceae Beta vulgaris [76]

Salicaceae Populus alba [77, 78]

Monocots Poaceae Saccharum officinarum [79]

Oryza sativa var. Japonica line 19 
and Hwa-Chung

[80, 81]

Liverworts Marchantiaceae Marchantia polymorpha [82]

Moss Funariaceae Physcomitrella patens [83]

Algae Microalgae Isochrysidaceae Tisochrysis lutea [84]
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proteins for vaccine production, proteins of pharmaceutical interest, and proteins 
for the production of biofuels and biomaterials [36, 94–97], as well as proteins that 
confer resistance to pests and diseases [77, 98, 99].

3.1 Chloroplast transformation to confer resistance to pests

Annually, about 40% of agricultural products are lost before harvest due to attacks 
by insects, weeds, and plant pathogens, increasing by 20% after harvest [100]. 
Therefore, using pesticides has been one of the alternatives that have allowed control-
ling these losses, increasing their use in cropland from 1.55 kg Ha−1 in 1990 to 2.69 kg 
Ha−1 in 2019 [101].

The use of pesticides has contributed significantly to agricultural production. 
However, the emergence of pests resistant to these chemicals (>17,000 cases of 
resistance amongst 612 species globally by 2020) [102] has resulted in a greater 
reliance on higher doses and the introduction of new pesticides, which is a worrying 
trend since it can lead to environmental contamination, and more significant risks 
for human health; by the way, each year, millions of people around the world experi-
ence unintentional acute poisoning by pesticides (~385 million reported cases), of 
which 11,000 cases end in death [103]. Although this figure is already worrying in 
itself, it must be considered that 50% of pesticides are organophosphates. These are of 
particular concern since they pass from the roots to the leaves and can be consumed 
by the public, which increases the risk of poisoning [104–106].

Pursuing sustainable and effective alternatives to protect crops without the nega-
tive consequences of excessive pesticide use resulted in the introduction of the first 
insecticidal gene, Cry1Ab, to plants through nuclear transformation [44]. Since then, 
numerous studies have demonstrated the efficacy of Cry proteins against various 
pests, including Plutella xylostella Sesamia inferens, Chilo suppressalis, Herpitogramma 
licarisalis, Mycalesis gotama, Cnaphalocrocis medinalis, Scirpophaga incertulas, Naranga 
anescens, Parnara guttata, and Elasmopalpus lignosellus [107–111]. Cry proteins have 
also been tested to control nematodes, Phthiraptera, Orthoptera, mites, Coleoptera, 
Lepidoptera, Diptera, Hymenoptera, Hemiptera, and protozoa [112, 113]. The useful-
ness of these proteins has led to their continued study and exploration, with over 700 

Family Species Ref.

Monodopsidaceae Nannochloropsis oceanica [85]

Phaeodactylaceae Phaeodactylum tricornutum [86]

Red algae Cyanidiaceae Cyanidioschizon merolae [87]

Bangiaceae Pyropia yezoensis [88]

Porphyridiophyceae Porphyridium sp. UTEX 637 [89]

Green 

algae

Dunaliellaceae Dunaliella tertiolecta [90]

Haematococcaceae Haematococcus pluvialis [91]

Euglenaceae Euglena gracilis [92]

Chlamydomonadaceae Chlamydomonas reindhartii [93]

Table 1. 
Species transformed by stable chloroplast transformation.
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insecticidal proteins already reported (http://www.lifesci.sussex.ac.uk/home/Neil_
Crickmore/Bt/). However, insects’ resistance to Bt crops has been reported (from 3 
cases in 2005 to 16 in 2016), affecting crops containing Cry1Ab, Cry1Ac, Cry1A.105, 
Cry1Fa, Cry2Ab, Cry3Bb, mCry3A, eCry3.1Ab, and Cry34/35Ab [114, 115]. On the 
other hand, there is a direct observation of resistance by Diabrotica virgifera virgifera 
to the eCry3.1Ab protein in the field before the plants were commercialized [116, 117]; 
such resistance may increase through cross-resistance.

Although to reduce the risks of insect resistance to Bt crops have been used strate-
gies such as multiple toxins, protein engineering, ultra-high doses, and refugees [118], 
the existence of other risks of the nuclear transformation, such as ecological risks and 
collateral effects in the expression of the genes, have motivated the use of chloroplast 
engineering for the expression of proteins with insecticidal potential, which began 
with the expression of the Cry1Ac protein in tobacco chloroplast obtaining protection 
against lepidopteran Heliothis virescens, Helicoverpa zea and Spodoptera exigua [45].

Other Cry proteins such as Cry9Aa2, Cry1Ia5, Cry2Aa2, Cry1C, and Cry1Ab have 
also been expressed in chloroplast from soybean, cabbage, and poplar, including 
protecting the plants against Phthorimaea operculella, Hyphantria cunea, P. xylostella, 
Lymantria dispar, Anticarsia gemmatalis and Helicoverpa armigera [77, 119–123], and 
until today, the insects did not show resistance to Cry proteins compartmentalized 
in the chloroplast; therefore, the accumulation proteins in the chloroplast, either 
through their direct expression within it or by redirecting nuclear-expressed proteins 
to the chloroplast for storage, seems to be a viable option to avoid the development of 
resistance. Although this last option it as already been analyzed with the expression 
of Tvip3A*, Cry1Ac, Cry1Ah, and Cry2A proteins [124–127], and is very attractive 
because it benefits from the facilities offered by nuclear transformation, the compart-
mentalization of proteins does not eliminate the risks of environmental contamina-
tion, nor any other undesired effect caused by gene insertion into the nuclear genome. 
Therefore it requires a more detailed analysis.

Other proteins with insecticidal activity have been expressed using chloroplasts, 
such as a chloroperoxidase from Pseudomonas pyrrocinia and the pta gene from Pinellia 
ternata agglutinin being effective in the control of Alternaria alternata, Aspergillus 
flavus, Escherichia coli, Fusarium moniliforme, Pseudomonas syringae, Verticillium dahliae, 
Colletotrichum destructivum, and Fusarium verticillioides [128–130].

Although the Cry proteins with which Bt crops have been nuclearly armed have 
shown excellent performance in controlling different pests, the expression of lectins 
and other proteins with insecticidal capacity from Bacillus toyonensis and Lysinibacillus 
sphaericus has also been shown to be effective in controlling pests such as Alphitobius 
diaperinus, Spodoptera exigua, Cydia pomonella, Anthonomus grandis, Aedes aegypti, 
and Myzus persicae [131, 132]. Furthermore, while the expression of these proteins 
in chloroplasts has not been thoroughly investigated, it is important to note them 
because despite the efficacy of Bt crops in controlling Lepidoptera and Coleoptera, 
control of Hemiptera has not been entirely successful, as many Hemipteran species 
have now become significant pests of Bt crops [133, 134].

3.1.1 Expression of RNAi for pest control

In recent years, it has been proposed that the expression of interference RNA 
(RNAi) for pest control in the chloroplast is a promising alternative to protein expres-
sion, and although the RNAi has been achieved previously by nuclear transforma-
tion using both double-stranded RNA (dsRNA) and long hairpin RNA (hpRNA) 
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[135–137], the obtained level protection in plants has been insufficient for practical 
application [138].

One problem in achieving high levels of protection has been the impossibility of 
accumulating large amounts of unprocessed RNAi in the host because the nuclear-
expressed RNAi are processed by the cellular machinery leaving little raw RNAi 
available for ingestion by the host [139, 140]. Furthermore, when RNAi is ingested, 
the host’s digestive system degrades another part of the ingested RNAi, resulting in 
a reduced amount of RNAi available for effective interference [141]. Therefore, the 
chloroplast has been visualized as a viable solution because it offers three crucial 
advantages 1) there is no RNAi processing machinery in these organelles, 2) they can 
produce and accumulate large amounts of RNAi [142–144], and 3) the chloroplast 
acts as a natural bioencapsulation method to protect the RNAi when consumed by 
insects [145, 146].

There is limited information on RNAi expression in the chloroplast, but the pub-
lished reports show an area of high potential. For example, recently [138] expressed 
dsRNA targeting the MpDhc64C gene, a newly identified target gene whose silencing 
causes the lethality of the green peach aphid Myzus persicae. Results revealed that 
transplastomic plants exhibited significant resistance to aphids, which in turn showed 
reduced survival, decreased fecundity, and decreased weight of survivors, a similar 
effect to the obtained by Ren, Cao [147] with the use of dsRNA β-Actin to control of the 
beetle Henosepilachna vigintioctopunctata in transplastomic potato plants.

Other RNAi studies in chloroplasts have shown results that go the same way. In 
2015, Jin et al. [141] silenced the V-ATPase, chitin synthase (Chi gene), and cyto-
chrome P450 monooxygenase (P450 gene) from H. armigera using dsRNA, reducing 
the weight and growth of larvae. Also, a hpRNA targeting acetylcholinesterase (ACE 
gene) of H. armigera and a dsRNA targeting β-actin and Vps32 (ACT and SHR genes, 
respectively) from Colorado potato beetle provided substantial protection against H. 
armigera and reduced growth of larvae of Colorado potato beetle in transplastomic 
tobacco and potato plants [140, 143].

Although the RNAi expression in chloroplast has been successfully established 
with promising results of accumulation and stability, future studies should be focused 
on elucidating the ideal length of the RNAi since there are reports of dsRNA with a 
length of 200 nt more protective than a dsRNA of 60 nt or > 200 nt; also, it has been 
reported that the cellular machinery can degrade the long RNAi producing siRNA 
that have a less insecticidal effect [136, 140]. Therefore, the adequate length of the 
RNAi that must be expressed is still not entirely clear, and this is important because 
the length and type of RNAi, whether it is hpRNA or dsRNA, dramatically influences 
the accumulation [138, 142, 144].

Other aspects that should also be considered are the suitable target genes and the 
implementation of efficient RNAi delivery methods, even though topical RNAi has 
recently been reported and seems a cost-effective alternative [148]. Currently, micro-
injection and overall ingestion are the most used. Moreover, this last, in practice, 
should be carefully considered because there are pests that do not have direct contact 
with chloroplasts and considerably impair RNAi efficacy [149].

In 2017, was approved the first variety of transgenic maize Smartstax PRO®, 
which nuclearly express a dsRNA of the Snf7 (Sucrose non-fermenting 7) gene from 
D. virgifera virgifera [150–152], whose commercial launch was in 2022, which supports 
the idea that RNAi technology has great potential, and although there is no product 
developed from chloroplast transformation on the market yet, RNAi technology may 
help chloroplast engineering in this process.
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3.2 Chloroplast transformation to confer abiotic stress tolerance

Reactive oxygen species (ROS) are forms of oxygen partially reduced and pro-
duced during biotic and abiotic stress. Although ROS are commonly associated with 
stress, they are also produced under cellular respiration and photosynthetic processes 
[153]. Nevertheless, although ROS are produced in normal metabolic processes, the 
uncontrolled production of ROS causes an alteration of the correct function of the 
cells. Therefore, decreasing ROS in plants is still an essential target in biotechnology.

Nuclearly have been expressed genes to promote the tolerance to different abi-
otic stresses such as cold stress (CsWRKY46 gene) [154], oxidative stress (ScVTC2 
gene) [155], drought and salt stress tolerance (ZmSNAC13 and ZmWRKY86 gene, 
respectively) [156, 157], metal tolerance (OsMYB-R1 and SbMT-2 gene) [158–160], 
ROS decrease (CfAPX gene) [160] and tolerance to waterlogging (HaOXR2 gene) 
[161] and have been obtained satisfactory results; nevertheless, trying to improve 
the results obtained by nuclear expression, genes have been expressed in chloroplasts 
aimed at increasing the antioxidant pathway, intervening in the glycine betaine (GB) 
pathway such as codA gene from Arthrobacter globiformis [98, 162, 163].

Other proteins have also been expressed in the chloroplast, such as flavodoxin 
(fld gene) [164], arabitol dehydrogenase (ArDH) [165], otsB-A operon (trehalose 
phosphate synthase/phosphatase) [166], γ-tocopherol methyltransferase (TMT gene) 
[167], betaine aldehyde dehydrogenase (badh gene) [68], dehydroascorbate reductase 
(DHAR gene), superoxide dismutase (MnSOD gene), glutathione reductase (gor 
gene) [168], glutathione-S-transferase (GST gene) [162, 169], homogentisate phyt-
yltransferase (HPT gene), conferring tolerance to salt, cold, UV-B radiation, heavy 
metal, and osmotolerance.

Despite the potential and benefits of plastid transformation in protecting plants, 
it is challenging to confer abiotic stress resistance due to the involvement of various 
metabolic pathways. Therefore, providing a robust resistance would require multiple 
gene expressions. These must be carefully selected since the expression of certain 
types of genes can cause pleiotropic effects because the encoded proteins could 
interfere with the structure and function of the thylakoids or decrease the levels of 
ATP production [170, 171]. Nevertheless, despite the challenges of achieving stress 
resistance, the population’s constant growth requires finding strategies to address this 
need.

3.3 Expression of hydrolytic enzymes in chloroplasts

Lignocellulose residues are the most abundant raw material and a highly renew-
able carbon source on earth [172], and due to particularities as its abundance, avail-
ability, and sustainability is believed to be a solution to solve fossil fuel shortage 
[173–175], to such a degree that global ethanol and biodiesel production is projected 
to rise to 132 billion liters and 50 billion liters, respectively, by 2030 [176]. However, 
although lignocellulosic compounds are abundant [177, 178], a large part of this 
renewable energy is beyond our reach; that is, despite being produced each year 
more than 40 million tons of non-edible plant material, lignocellulose is not the most 
important feedstock for biofuel production because it is not efficiently processed 
[176, 179].

The processing problem is caused by the presence of lignin that imbibes both the 
cellulose as well as hemicellulose and limits its degradation [180–182]. Therefore, 
physical and chemical methods have been used to increase biomass degradation. 
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However, apart from the fact that these methods can represent a potential ecological 
risk, they increase production costs.

In the search for alternatives to improve biomass degradation, the use of multiple 
enzymes has been recurring, and in this sense, different organisms have been the 
source of them [183]; nevertheless, the hydrophobic nature of the substrate, the 
enzymes cost, the concentration of required enzymes, as well as the release of pheno-
lic compounds during the enzymatic reaction such as xylan that can inhibit enzyme 
activity, have limited their use [184–186], forcing the search for new and more 
efficient enzymes as well as an efficient method for their accumulation; therefore, 
the protein expression in the chloroplast it has presented as a promissory strategy to 
aboard the challenges of the degradation of lignocellulosic biomass.

The expression of enzymes capable of degrading cell wall polymers into chlo-
roplast has already been tested successfully. However, although different genes of pec-
tinases, manganese peroxidase, cutinase, and laccase enzymes from Fusarium solani, 
Streptomyces thermocarboxydus, Phanerochaete chrysosporium, Trichoderma reesei, and 
Pleurotus ostreatus has been tested with promissory results [187–190], cellulases have 
been the subject of the most intensive search because they represent 40% of plant 
biomass [177, 178].

Different cellulase enzymes have already been expressed in the chloroplastic 
compartment with satisfactory results, e.g., xylanases (xynA, xyl, xyn2, Xyl10B, xynA, 
xyn10A, and xyn11B genes) from Bacillus subtilis, Trichoderma reesei, Clostridium 
cellulovorans, Thermotoga maritima, Clostridium cellulovorans, and Alicyclobacillus 
acidocaldarius [191–194], as well as endo-, exo-glucanases, and β-glucosidases (cel6A, 
cel9A, cel6B, Cel6, Cel7, EndoV, CelK1, Cel3, TF6A, Bgl-1, bgl1C, EGPh, celA, and 
celB genes) from Trichoderma reesei, Thermomonospora fusca, Pyrococcus horikoshii, 
Chaetomium globosum, Paenibacillus sp., Phanerochaete chrysosporium, Aspergillus 
niger, and Thermotoga neapolitana [36, 195–200]. Despite the expressed proteins being 
functional, it should be considered that the microorganisms that possess efficient 
mechanisms for cellulose degradation have redundant genes often [201]. Therefore, 
high degradation depends not on a particular protein but on its enzymatic cocktail, 
which should be considered to improve enzymatic processes.

Regardless of the intense search for cell wall hydrolytic enzymes that have been car-
ried out, there is still a need to identify efficient cellulose enzymes [184] because they are 
critical factors in paper recycling, cotton processing, juice extraction, detergent produc-
tion, food industry, animal feed additives and largely determine the price of biofuels 
[202–204]. For this reason, it is necessary to use strategies that reduce cellulase enzyme 
production costs as much as possible to make them commercially viable on a larger scale. 
Further studies will continue to be carried out to express cellulases in chloroplasts.

3.4 Chloroplast engineering for the biopharmaceutical industry

Population growth implies a constant demand for medicines, representing a lucra-
tive opportunity for the pharmaceutical industry, which only in 2022 billed ~1.48 tril-
lion U.S. dollars, an increase of 4.23% concerning 2021. However, most of the world’s 
population cannot access medicines due to unaffordable prices [205–207]. Therefore, 
products with nutritional and pharmaceutical value are gaining importance to such 
an extent that there are currently 1775 products with different formulations, biosimi-
lars, and biobetters approved by the Foods and Drugs Administration (FDA) and 
European Medicines Agency (EMA) for use in humans [208], which can reduce the 
costs of medical treatments.
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Chloroplasts have already begun to contribute to the production of plasma pro-
teins, vaccines, antibodies, and enzymes [97, 209, 210], which is especially relevant 
since two of the current challenges in treatments with proteins for oral consumption 
are obtaining high protein concentrations and the possible degradation that they 
may experience when passing through the digestive system [206]. These challenges 
could be overcome by the accumulation and bioencapsulation of proteins in chloro-
plasts [211].

Two decades have passed since the first candidate antigen against a human disease 
was expressed [212], and since then, other proteins have been expressed, e.g., A27L 
immunogenic protein (A27L gene) [213], ESAT6, Mtb72F [214, 215], Angiotensin-
converting enzyme 2 (ACE2 gene), Angiotensin (1–7) (Ang-[1–7] gene) [7, 211], 
Coagulation factor VIII (F8 gene) [216], E7 Human papillomavirus antigen (E7 gene) 
[217], Coagulation Factor IX (F9 gene) [96], SAG1 Surface antigen (SAG1 gene) [95], 
EDIII-1, EDIII-3, EDIII-4 (ediii-1, ediii-3, and ediii-4 genes) [218], KETc1, KETc7, 
KETc12, GK1, TSOL18/HP6-Tsol [219], Griffithsin protein (grft gene) [220], S1D 
[221], and Human epidermal growth factor (hEGF gene) [94] in plants; and recently, 
was cloned the gene IL29 in alga to produce human interleukin 29. The proteins 
expressed in the chloroplastic compartment have been obtained in high concentra-
tions retaining their functionality, showing the potential value of expressing biophar-
maceutical proteins in chloroplasts [222].

One of the challenges currently faced by therapeutic proteins is to stimulate 
their passage through the epithelial mucosa [223]; however, this challenge has been 
efficiently addressed by expressing the proteins in the chloroplast fused with the 
cholera toxin B subunit (CTB), and this has already been tested with the expression 
of exendin-4 (CTB-EX4) and acid alpha-glucosidase (CTB-GAA) [6, 224]. Fusing the 
proteins to CTB is an important approach as it has been reported that it could help 
promote oral tolerance; however, other non-toxic fusion proteins have been reported, 
such as human transferrin, although there are no reports with this fused protein in the 
chloroplast.

There is a need for biobetters/biosimilars on the market, and expressing therapeu-
tic proteins in the chloroplast is not only feasible but could solve delivery and efficacy 
issues. To date, no one plant/chloroplast-based vaccine against human diseases is 
available to the public. On the other hand, although transplastomic plants have been 
cultivated for just over a decade with the consent of the United States Department of 
Agriculture Animal and Plant Health Inspection Service USDA-APHIS, they have not 
been scaled to the commercial level even though these plants do not fit USDA-APHIS 
regulation 7 CFR part 340 [206].

4. Conclusions

Given that the world population has been projected to increase by just over 20% 
in 30 years, it becomes evident that it will be necessary to adopt new technologies to 
face this situation in areas such as agriculture, energy, and pharmaceuticals, which are 
key sectors to guarantee well-being and sustainability in the future. For almost three 
decades, chloroplast transformation has shown important qualities that can help us 
address the challenges, offering greater efficiency and performance in the expression 
of modified genes and more precision and control in genetic modification accompa-
nied by greater environmental safety and biosafety. While some challenges need to 
be addressed, such as the optimization of regulatory regions, limited expression of 
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