
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

174,000 190M

TOP 1%154

6,400



Chapter

Utilized System Model Using
Channel State Information
Network with Gated Recurrent
Units (CsiNet-GRUs)
Hany Helmy, Sherif El Diasty and Hazem Shatila

Abstract

MIMO: multiple-input multiple-output technology uses multiple antennas to use
reflected signals to provide channel robustness and throughput gains. It is advanta-
geous in several applications like cellular systems, and users are distributed over a
wide coverage area in various applications such as mobile systems, improving channel
state information (CSI) processing efficiency in massive MIMO systems. This chapter
proposes two channel-based deep learning methods to enhance the performance in a
massive MIMO system and compares our proposed technique to the previous
methods. The proposed technique is based on the channel state information network
combined with the gated recurrent unit’s technique CsiNet-GRUs, which increases
recovery efficiency. Besides, a fair balance between compression ratio (CR) and
complexity is given using correlation time in training samples. The simulation results
show that the proposed CsiNet-GRUs technique fulfills performance improvement
compared with the existing literature techniques, namely CS-based methods Conv-
LSTM CsiNet, LASSO, Tval3, and CsiNet.

Keywords: massive MIMO, FDD, compressed sensing, deep learning, conventional
neural network

1. Introduction

For fifth-generation wireless communication systems, the massive multiple-input
multiple-output (MIMO) system is recognized as a powerful technology.

Such a system can significantly reduce multi-user interference and offer a multi-
fold boost in cell throughput by outfitting a base station (BS) with hundreds or even
thousands of antennas in a dispersed or centralized way. Utilizing channel state
information (CSI) at base stations is the primary method for obtaining this potential
benefit (BSs). The downlink channel state information (CSI) in modern frequency
division duplex (FDD) MIMO systems (such as long-term evolution Release-8) is
collected at the user equipment throughout the training phase and transmitted back to
the BS via feedback links.

1



To minimize feedback overhead, vector quantization or codeword-based tech-
niques are frequently used. The feedback quantities generated from these methods are
not permitted in a massive MIMO system since they must be scaled linearly with the
number of transmit antennas. As shown in [1], the difficulty of CSI feedback in
massive MIMO systems has inspired several studies. By using the spatial and temporal
correlation of channel state information (CSI), which describes how a signal travels
from the transmitter to the receiver and represents the combined effect of, for exam-
ple, scattering, fading, and power decay with distance, these works have primarily
concentrated on reducing feedback overhead. To minimize feedback overhead, vector
quantization or code-word-based techniques are frequently used. To minimize feed-
back overhead, vector quantization or codeword-based techniques are frequently
used. The feedback quantities generated from these methods are not permitted in a
massive MIMO system since they must be scaled linearly with the number of transmit
antennas. As shown in [1], the difficulty of CSI feedback in massive MIMO systems
has inspired several studies. By using the spatial and temporal correlation of channel
state information (CSI), which describes how a signal travels from the transmitter to
the receiver and represents the combined effect of, for example, scattering, fading,
and power decay with distance, these works have primarily concentrated on reducing
feedback overhead. To minimize feedback overhead, vector quantization or code-
word-based techniques are frequently used.

A difficult issue in wireless communications systems is channel estimate during
auto-encoding. Most of the time sent signals are reflected and scattered as they reach
the receiver. The channel moves over time as a result of the mobility of the transmit-
ter, receiver, or scattering objects. Deep learning (DL) trains massive, multilayered
neural networks using lots of training data to approximate how the human brain does
a particular activity. Channel State Information Networks (CsiNet), which we created
as CSI sensing (or encoder) and recovery (or decoder) networks, include the features
listed below in the auto-encoder system (Figure 1).

Figure 1.
Enhanced multiple-access for mmWave massive MIMO [2].

2

Deep Learning and Reinforcement Learning



• Encoder: CsiNet learns transformation from original channel matrices to
compress representations (codewords) through training data.

• Decoder: CsiNet learns inverse transformation from codewords to original
channels; The inverse transformation is not iterative and multiple orders of
magnitude faster than iterative algorithms. The algorithm is agnostic to human
knowledge of channel distribution and instead directly learns to use the channel
structure from training data effectively.

User equipment encodes channel matrices into codewords using the encoder; after
the codewords are returned to the BS, it uses the decoder to reconstruct the original
channel matrices. The technique can be applied as a feedback protocol in FDD MIMO
systems. The autoencoder [3] in deep learning, which is used to learn an encoding for
a set of data types for dimensionality reduction, and CsiNet are closely related. To
recreate accurate models from CS data, several deep learning (DL) architectures have
recently been designed and introduced in [4–6].

DL shows state-of-the-art performance in natural-image reconstruction,
but because wireless channel reconstruction is more difficult than image
reconstruction, it can also demonstrate that this capability is unclear. The DL-based
CSI reduction and recovery strategy is introduced in the current work. The
most significant research appears to be [7], in which a closed-loop MIMO
system implements DL-based CSI encoding. It differs from previous research that
did not consider CSI recovery by demonstrating that, as compared to current CS-
based methods, CSI can be recovered with a significantly increased reconstruction
quality by DL.

2. The structure of channel state information network (CsiNet)

The structure of CsiNet [8] according to Depth wise Separable Convolution in
feature recovery reconstruction illustrated in detail, CsiNet remarkably outperforms
the CS-based methods. Introducing the CSI network feedback process, which con-
siders a single-cell FDD massive MIMO-OFDM framework, where there is Nt (≫1)
transmit antennas at the BS and a single receiver antenna at the UE, OFDM is with Nc

subcarriers the received signal at the nth subcarrier can be communicated as:

yn ¼
~h
H

n vnxn þ zn (1)

where ~h
H

n and ynϵ  Nt x 1 is the channel frequency response vector and the pre-

coding vector at the nth subcarrier, separately, xn represents the transmitted informa-

tion image, zn is the additive noise or obstruction and �ð ÞH is a conjugate transpose. In
the FDD system, improving feedback links through UE and BS, focus on the feedback
scheme which allows autoencoder processing, assume:

Ĥ = ~h1 … h̃Nc

h iH
ϵ N ̃c x Nt in CSI stacked in the spatial frequency domain, which

means the UE should return Ĥ to the BS through feedback links, and in the feedback
system, the total number parameter is NtÑc, using a 2D (DFT) discrete Fourier

transform, which introducing ~H can be improved in the angular-delay domain to
reduce feedback overhead:

3

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



H ¼ Fd � ~HFH
a (2)

where Fd and Fa are Ñc X Ñc and NtX Nt DFT matrices, respectively. So, consid-
ering the COST 2100 as was illustrated in [9] channel model as shown in Figure 2.
depending on a uniform linear array (ULA), H has a small fraction of significant
components. According to the delay domain, the first Nc rows of H contain values,
retain the firstNc Rows ofH and remove remaining rows. In a massive MIMO system,
the total number of feedback parameters can be reduced to N = Nc Nt. So, we design
the encoder S,

S ¼ f en Hð Þ (3)

We can convert H into a codeword M vector, where M < N, and design the
decoder inverse transformation from the codeword to H original channel.

H ¼ f de Sð Þ (4)

The European Cooperation in Science and Technology COST 2100 channel model
is a GSCM that can reproduce the stochastic properties of massive MIMO channels

Figure 2.
A plot of the strength of H ϵ ℂ

32x32 [8].

4

Deep Learning and Reinforcement Learning



over time, frequency, and space. A multi-path component MPC is characterized in
delay and angular domains by its delay, angle of departure (Azimuth of Departure
(AoD), Elevation of Departure (EoD), and angle of arrival (Azimuth of Arrival
(AoA), Elevation of Arrival (EoA)). The MPCs with similar delays and angles are
grouped into multi-path clusters. The MATLAB implementation of C2CM supports
both single-link and multiple-link MIMO channel access indoor (285 MHz) and semi-
urban (5.3 GHz) channel scenarios. An overview of the C2CM is presented in a
detailed description of the channel model. The parameterization of the C2CM in
indoor scenarios is detailed while discussing semi-urban scenarios. On the other hand,
it gives the massive multiple-input multiple-output MIMO extensions of the C2CM;
The C2CM is implemented in MATLAB, while the semi-urban channel scenario is
implemented in [9]. Furthermore, the MATLAB implementation of C2CM with mas-
sive MIMO extensions. However, the data generated in these MATLAB
implementations are not presented as potential datasets to validate multi-path clus-
tering methods and even in the well-known clustering approaches.

3. Recurrent unit system model

3.1 The structure

It can adaptively capture capable of adaptively capturing dependencies from
lengthy data sequences without removing data from previous stages of the sequence
due to the gated recurrent unit structure [10]. This is accomplished by its gating units,
which are related to those in long short-term memory LSTMs, and which resolve the
vanishing/exploding gradient problem of conventional RNNs. These gates control the
information that should be retained or discarded at each time step. The GRU operates
like an RNN, except for its internal gating mechanisms, where sequential input data is
absorbed by the GRU cell at each time step along with memory, also known as the
hidden state [11]. The RNN cell and the following input data in the sequence are then
fed with the hidden state once more (Figure 3).

Fully gated unit
Initially, for t = 0, the output vector is h0 = 0.

zt ¼ ρg Wzxt þUZht�1 þ bzð Þ (5)

rt ¼ ρg Wrxt þUrht�1 þ brð Þ (6)

ht ¼ zt ʘ ht�1 þ 1� ztð Þ ʘ ϕh Whxt þUh rt ʘ ht�1ð Þ þ bnð Þ (7)

Were, xt input vector, ht output vector, zt update gate vector, rt reset gate vector
and W, U, and b denote matrices and vectors, respectively.

Activation functions: �ρg Original sigmoid activation, ϕh For the initial hyper-

bolic tangent, Alternative activation functions can be used, provided the ρg(x) € [0,1].

It is possible to construct alternative forms by modifying zt and rt.
GRU’s ability to hold on to long-term dependencies or memory stems from the

gated recurrent unit cell’s computations to produce the hidden state. At the same time,
LSTMs have two different states passed between the cell state and hidden state, which
carry the long and short-term memory, respectively GRUs only have one hidden state
transferred between time steps. This hidden state can hold both long-term and short-

5

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



term dependencies at the same time due to the gating mechanisms and computations
that the hidden state and input data go through.

The GRU cell contains only two gates: The Update gate and the Reset gate; like the
gates in LSTMs, the GRU gates are trained to selectively filter out any irrelevant
information while keeping what’s useful. These gates are essentially vectors containing
values between 0 and 1, multiplying with the input data or hidden state.

A zero (0) value in the gate vectors indicates that the input or hidden state’s
corresponding data is unimportant and will, therefore, return as a zero.

On the other hand, a one (1) value in the gate vector means that the corresponding
data is essential and will be used. Reset gate: In the first step, we’ll create the Reset
gate; this gate is derived and calculated using both the hidden state from the previous
time step and the input data at the current time step (Figure 4).

Figure 3.
Gated recurrent unit, fully gated version [12].

Figure 4.
Reset gate flow [13].

6

Deep Learning and Reinforcement Learning



Mathematically, this is achieved by multiplying the previous hidden state and
current input with their respective weights, summing before passing the sum through
the sigmoid function.

The sigmoid function will transform the values to fall between 0 and 1, allowing
the gate to filter between the less-important and more-important information in the
subsequent steps.

Gatereset ¼ σ W inputreset � xt þWhiddenreset � ht�1

� �
(8)

When the entire network is trained through back-propagation, the weights in the
equation will be updated such that the vector will learn to retain only the valuable
features. The previous hidden state will first be multiplied by a trainable weight and
will then undergo an element-wise multiplication Hadamard product with the reset
vector. This operation will decide which information will be kept from the previous
time steps and the new inputs.

Simultaneously, the current input will also be multiplied by a trainable weight
before being summed with the reset vector’s product and the previous hidden state
above. Finally, a non-linear activation tanh function will be applied to the result to
obtain r in the equation below.

r ¼ tanh gatereset⊙ Wh1 � ht�1ð Þ þWx1 � xt
� �

(9)

Update gate: next, we’ll create the Update gate, like the Reset gate; the gate is
computed using the previous hidden state and current input data (Figure 5). Both the
Update and Reset gate vectors are created using the same formula, but the weights
multiplied with the input and hidden state are unique to each gate, which means that
each gate’s final vectors are different; This allows the gates to serve their specific
purposes.

Figure 5.
Update gate flow [13].

7

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



gateupdate ¼ σ W inputupdate � xt þWhiddenupdate � ht�1

� �
(10)

The Update vector will undergo element-wise multiplication with the previous
hidden state to obtain u in our equation below, which will be used to compute our
final output later.

u ¼ gateupdate⊙ht�1 (11)

The Update vector will also be used in another operation later when obtaining our
final output.

The purpose of the Update gate here is to help the model determine how much of
the past information stored in the previous hidden state needs to be retained for the
future. Combining the outputs: In the last step, we will be reusing the Update gate and
obtaining the updated hidden state (Figure 6).

This time, we will be taking the element-wise inverse version of the same Update
vector (1—Update gate) and doing an element-wise multiplication with our output
from the Reset gate, r. This operation’s purpose is for the Update gate to determine
what portion of the new information should be stored in the hidden state. Lastly, the
result of the above operations will be summed with our output from the Update gate
in the previous step, u.

This will give us our new and updated hidden state; We can use this new hidden
state as our output for that time step by passing it through a linear activation layer.

ht ¼ r⊙ 1� gateupdate

� �
þ u (12)

The Reset gate determines which parts of the previous hidden state are to be
combined with the current input to propose a new hidden state, and the Update gate
determines how much of the previous hidden state is to be retained and what part of
the new proposed hidden state derived from the Reset gate is to be added to the final

Figure 6.
Final output computations [13].

8

Deep Learning and Reinforcement Learning



hidden state. This solves the Vanishing/Exploding Gradient Problem. The network
chooses which components of the previous hidden state to keep in memory while
discarding the rest when the Update gate is first multiplied with it. When it uses the
Reset gate’s inverse gate to filter the proposed new hidden state from the Update gate,
it then fills in the gaps in the information that were previously missing. The network
can maintain long-term dependencies as a result. If the Update vector values are close
to 1, the Update gate may decide to keep most of the previous memories in the hidden
state rather than recalculating or altering the hidden state entirely.

When training a recurrent neural network RNN, the vanishing or exploding
gradient problem can happen, especially if the RNN is processing lengthy
sequences or has multiple layers. The network’s weight is updated in the right direc-
tion and by the right amount using the error gradient that was calculated during
training. However, this gradient is determined using the chain rule, beginning at the
end of the network. As a result, for long sequences, the gradients will undergo con-
tinuous matrix multiplications and either disappear (vanish) or explode (explode)
exponentially.

A gradient that is too small will prevent the model from effectively updating its
weights, whereas a gradient that is too large will make the model unstable.

Due to the addictive nature of the Update gates, the long short-term memory
(LSTM) and gated recurrent units (GRUs) can keep most of the existing hidden state
while adding new content on top of it, unlike traditional RNNs that always replace the
entire hidden state content at each time step.

This prevents the additional operations from causing the error gradients to vanish
or explode too quickly during backpropagation. Utilizing alternative activation func-
tions, like ReLU, which does not result in a small derivative, is the simplest solution.
Another option is residual networks, which offer residual connections directly to
earlier layers. In a feedforward network (FFN), the backpropagated error signal
typically decreases (or increases) exponentially as a function of the distance from the
final layer. This technique is referred to as the vanishing gradient.

4. Design of the CsiNet-GRUs system model

We enhance the architecture in this chapter by considering time correlation. The
recurrent convolutional architecture that has been used to represent and reconstruct
images successfully provides references for our work. The basic idea is to extract
spatial features and inter-frame correlation using convolutional neural networks
(CNN) and recurrent neural networks (RNN), respectively. The following is a sum-
mary of our contribution to this chapter. CsiNet is extended with a gated recurrent
unit network, a common type of recurrent neural network, and a DL-based CSI
feedback protocol for FDD MIMO systems is proposed (RNN). CsiNet-GRUs is a
proposed network that modifies the CNN-based convolutional neural network
CsiNet for channel state information compression and initial recovery and uses a
gated recurrent unit technique to extract time correlation for further resolution
improvement.

CsiNet-GRUs exhibit remarkable robustness to compression ratio (CR) reduction
and enable real-time and extensible channel state information (CSI) feedback
applications without considerably increasing overhead compared with CsiNet, to
reduce feedback overhead, we can exploit the following observations: Observation 1
(angular-delay domain sparsity): Ht can be transformed into an approximately

9

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



sparsified matrix H0
t in the angular-delay domain via 2D discrete Fourier transform

(2D-DFT) byH0
t = FdHt Fa, where Fd ∈

Nc�Nc and Fa∈
Nt�Nt are two DFT matrices.

First, due to limited multipath time delay, performing DFT on frequency domain
channel vectors (i.e., column vectors of Ht) can transform Ht into a sparse matrix in
the delay domain, with only the first N0

c (<Nc) rows have distinct non-zero values.
Secondly, the channel matrix is sparse in a defined angle domain by performing DFT
on spatial domain channel vectors (i.e., row vectors of Ht) If the number of transmit
antennas, Nt ! +∞, is very large. Usually, H0

t is only approximately sparse for finite
Nt which challenges conventional compressed sensing methods. Therefore, we will
propose a DL-based feedback architecture without sparsity prior constraint. We
perform sparsity transformation to decrease parameter overhead and training
complexity.

We retain the first N0
c non-zero rows and truncate H0

t to a N0
c � Nt matrix, H00

t ,
which reduces the total number of parameters for feedback to N = N0

cNt.
Observation 2 (correlation within coherence time): The user equipment motion

during communication results in a Doppler spread, time-varying characteristics of
wireless channels with the maximum movement speed denoted as v, coherence time
can be calculated as:

∆t ¼
C

2 v fo
(13)

where f0 is the carrier frequency, and c is the speed of light. The CSI within ∆t is
considered correlated with one other. Therefore, instead of independently recovering
CSI, the BS can combine the feedback and previous channel information to enhance
the subsequent reconstruction.

We set the feedback time interval as δt and place T adjacent instantaneous
angular-delay domain channel matrices into a channel group, i.e.,

H00
t

� �T

t¼1
¼ H00

1 , …H00
t , … ,H00

T

� �
(14)

The group exhibits correlation property if T satisfies 0 ≤ δt � T ≤ ∆t.
In this chapter, we design an encoder, St = f en (H00

t ), at the UE to compress each

complex-valuedH00
t of H00

t

� �T

t¼1
into an M-dimensional real-valued codeword vector St

(M < N). If two real number matrices are used to represent the real and imaginary
parts of H00

t , then CR will be M=2N.
We also design a decoder with a memory that can extract time correlation from the

previously recovered channel matrices, Ĥ
00

1 ,… ,Ĥ
00

t�1 and combine them with the

received St for the current reconstruction channel, Ĥ
00

t = fde (St; Ĥ
00

1 , … , Ĥ
00

t�1),
where 1 ≤ t ≤ T. Then, inverse 2D-DFT is performed to obtain the original spatial
frequency channel matrix; the Channel state information network demonstrates
remarkable performance in CSI sensing and reconstruction. However, the resolution
degrades at low CR because it only focuses on angular-delay domain sparsity
(Observation 1) and ignores the time correlation (Observation 2) of time-varying
massive MIMO channels, the two observations are like the spatial and inter-frame
correlations of videos.

Motivated by RCNN, which excels in extracting spatial-temporal features for video
representation, we will extend CsiNet with GRU to improve CR and recovery quality

10

Deep Learning and Reinforcement Learning



trade-off. We will also introduce the multi-CR strategy to implement variable CRs on
different channel matrices; The proposed CsiNet-GRU is illustrated in Figure 7. with
CsiNet. Our model includes the following two steps: angular-delay domain feature
extraction, correlation representation, and final reconstruction. Each GRU has an
inherent memory unit that, for future prediction, can hold previously extracted
information for a long time. A 3 � 3 convolutional layers and an M-unit dense layer
for sensing, and a dense layer with 2N0

cNt units should be considered to facilitate
comparison with the results of the CsiNet structure given in [8] and two decoders
from RefineNet for reconstruction as shown in Figure 7, each RefineNet comprises
channel into four 3 � 3 convolutional layers with different channel sizes.

The CsiNet decoder’s output generates a sequence, and the length of every
sequence is T, which is then fed into a three-layer GRU. All low-CR CsiNet’s shown in
Figure 7. share the same network parameters, i.e., weights and bias, because
they perform the same work, which dramatically reduces parameter overhead.
Furthermore, the architecture can be easily rescaled to perform on channel groups
with different T if the value of T changes to adapt to the channel-changing speed and
feedback frequency; A low-CR CsiNet will be reused (T � 1) time instead of making
(T � 1) copies in practice. The gray blocks in Figure 7 load parameters from the
original CsiNet’s as pre-training before end-to-end training with the entire architec-
ture. This method can alleviate vanishing gradient problems due to long paths from
CsiNet’s to GRUs. We use GRUs to extend the CsiNet decoders for time correlation
extraction and final reconstruction. Gated recurrent units have inherent memory cells
and can keep the previously extracted information for a long period for later predic-
tion. In particular, the CsiNet decoders’ outputs form a sequence of length T before

Figure 7.
The structure of the proposed CsiNet-GRUs using dropout technique [14].

11

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



being fed into three-layer GRUs. Each GRU has a 2N0
cNt; The hidden unit is the same

as the size of the output. Then the final output is reshaped into two matrices as the

final recovered Ĥ
00

t ; This allows the CR-CsiNet encoder to send to the rest T � 1.
Because less information is required due to channel correlation, the channel matrix

performs operations, M2 � 1 codewords (M1 >M2), are generated. The (T � 1)
codewords are all concatenated with the first codeword M1 � 1 before being fed into
the low-CR CsiNet decoder to utilize feedback information fully. Each CsiNet outputs
two matrices with size (N0

c � NtÞ as extracted features from the angular delay domain

as the final recovered Ĥ
00

t . The spatial frequency domain CSI can then be obtained via
inverse 2D-DFT. At each time step, the GRUs implicitly learns time correlation from
the previous inputs and then merge them with the current inputs to increase low CR
recovery quality.

4.1 The dropout technique

Dropout: During training, randomly selected neurons are ignored and “dropped
out.” This means that their contribution to downstream neuron activation is removed
temporally on the forward pass, and no weight updates are applied to the neuron on
the backward pass. Dropout can be implemented on any hidden layer in the network;
the visible or input layer, as well as the term “dropout,” refers to dropping out units
(hidden and visible) in a neural network. Dropout is a regularization method used
when training the network, as illustrated in Figure 8. It is possible that the input and
loop connections to the gated recurrent unit (GRU) in Figure 7 are not excluded from
activation and weight updates. Depending on the framework, the dropout regulariza-
tion Training Phase: Ignore (zero out) a random fraction, p, of nodes for each hidden
layer, training sample, and iteration (and corresponding activations). A phase of
testing: Use all activations but reduce them by a factor of p. (to account for the
missing activations during training). Dropout is a regularization method used when
training the network, as shown in Figure 8. However, it does not always exclude the
input and loop connections to the gated recurrent unit (GRU) from activation and
weight updates, as shown in Figure 7. To reduce overfitting and improve the effi-
ciency of the CsiNet-GRU structure, a neural network approach is used. We stated

Figure 8.
Neural network with dropout architecture [15].

12

Deep Learning and Reinforcement Learning



that the effect on “downstream neurons” activation during the forward process would
be temporarily removed and that no weight update for “backward propagation to
neurons” would be applied [15].

Training Phase: Ignore (zero out) a random fraction, p, of nodes for each hidden
layer, training sample, and iteration (and corresponding activations). A phase of
testing: Use all activations but reduce them by a factor of p. (to account for the
missing activations during training). Dropout is a regularization method used when
training the network, as shown in Figure 8. However, it does not always exclude the
input and loop connections to the gated recurrent unit (GRU) from activation and
weight updates, as shown in Figure 7. Depending on the framework, the dropout
regularization approach used in neural networks is used to reduce overfitting and
improve the efficiency of the CsiNet-GRU structure. We stated that the effect on
“downstream neurons” activation during the forward process would be temporarily
removed and that no “backward propagation to neurons” weight update would be
applied [15]. Training Phase: Ignore (zero out) a random fraction, p, of nodes for each
hidden layer, training sample, and iteration (and corresponding activations). A phase
of testing: Use all activations but reduce them by a factor of p. (to account for the
missing activations during training).

Some observations: Dropout forces a neural network to learn more robust features
that can be used in conjunction with the random subsets of many other neurons.
Dropout roughly doubles the number of iterations needed to converge; however, each
epoch’s training time is less, and during the testing phase, the entire network is
considered, and each activation is reduced by a factor of p. When training the network
in the proposed structure, the input and recurrent connections to the GRU unit may
not be excluded from activation and weight updates.

There are two dropout parameters in RNN layers: dropout, applied to the
first operation on the inputs, and recurrent dropout applied to the other operation on the
recurrent inputs. It is worth mentioning that interested in designing the encoder
which can transform the channel matrix into an M-dimensional vector (codeword),
where M < N. Thus, define the data compression ratio γ as γ ¼ M=2NtNcð Þ.

The encoder first extracts CSI features via a convolutional layer with two 3 � 3
filters, followed by an activation layer. A fully connected (FC) layer with M neurons is
then used to compress the CSI features to lower dimensions. The compression ratio
(CR) of this encoder can be expressed as CR ¼ 1=γ. The final reconstruction of the
CSI is performed by three 2N0

cNt unit GRUs with dropout techniques.
Moreover, adopting depth-wise separable convolutions in feature recovery reduces

the model’s size and interacts with information between channels and introducing the
delay θ as a parameter used in the encoder and decoder, i.e., θ ¼ θen, θdef g:It is worth
mentioning that H00

t are standardized with all components scaled into the [0; 1], and
this standardization is required for CsiNet.

5. COST 2100 data sets and parameters

The COST 2100 channel model is a geometry-based stochastic channel model
(GSCM) capable of reproducing the stochastic properties of multi-link multiple-input
multiple-output channels across time, frequency, and space. As a result, there is no
doubt that more advanced channel estimation methods and good measurement
campaigns for parameterization and validation are required for the successful
development and long-term use of the COST 2100 channel model. Multiple-input

13

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



multiple-output (MIMO) is a technology that enables faster and more reliable trans-
missions over wireless channels.

The COST 2100 model simulates MIMO channels and generates training samples;
we set the MIMO-OFDM system to work on a 20 MHz bandwidth using a uniform
linear array (ULA). The parameters utilized in indoor and outdoor channel scenarios
are given in Table 1; Data sets are generated by randomly setting different start places
for indoor and outdoor scenarios and performing the simulations at CR values with
the first channel H00

1 they were compressed under 1/4. Table 1 shows the training,
validation, and testing sets; some parameters are preloaded from the CsiNet for
initialization (epochs from 500 to 1000, learning rate of 0.001, and batch size of 200),
as shown in Table 1.

We compare the proposed architecture’s performance with previous similar
modeling approaches of channel state information (CSI) with different deep learning
approaches, namely Conv-LSTM CsiNet, LASSO, TVAL3 [16], and CsiNet, utilizing
the default setup in the open-source codes of the previously mentioned techniques for
reproduction.

TVAL3 uses a minimum total variation method that provides remarkable recovery
quality and high computing efficiency, while LASSO uses simple sparse priors to
achieve good performance. In the feature extraction and recovery modules of
Convolutional-LSTM CsiNet, RNN, and depth-wise separable convolution were used.

The term “training” refers to the process of determining which parameters to use
in a given dataset. We run the modeling CsiNet-GRUs on Collaboratory (python)
according to zero configuration required, free access to GPUs, and easy sharing
training and testing of the CsiNet, Conv-LSTM CsiNet, and CsiNet-GRUs on python
colab editor.

MIMO OFDM 20 MHz bandwidth

H 32 � 32

Nt 32 Antennas

NC 1024 Subcarriers

Training samples 100,000

Validation samples 30,000

Testing samples 20,000

Epochs 500–1000

Learning rate 0.001

Batch size 200

∂t 0.04 s

T 10 s–100 s

CR 4, 16, 32, 64

Channel model Indoor scenario Outdoor scenario

Frequency, f

Speed, v

∆t

Pico, 5.3 GHz,

0.0036 km/h

30 s

Rural, 300 MHz

4.24 km/h

0.56 s

Table 1.
COST 2100 model DATA-SETS and system, parameters.

14

Deep Learning and Reinforcement Learning



Comparisons are made using the normalized mean square error, cosine similarity,
accuracy, and run-time in the indoor and outdoor channels, as well as the complexity
factored in. The Normalized Mean Square Error measures and reflects the mean
relative scatters.

The normalization of the MSE assures that the metric will not be biased when the
model overestimates or underestimates the predictions. So, the normalized mean
square error (NMSE) utilized for comparisons quantifies the difference between the

input Htf gTt¼1 and the output Ĥt

� �T

t¼1
in both proposed techniques CsiNet-GRUs are

given by:

NMSE ¼ 
1

T

XT

t¼1

H00
t � Ĥ

00

t

���
���
2

2
= H00

t

�� ��2
2

( )

(15)

The correlation coefficient is a statistical measure of the strength of the relation-
ship between the relative movements of two variables. The values range between�1.0
and 1.0. A correlation of �1.0 shows a perfect negative correlation, while a correlation
of 1.0 shows a perfect positive correlation.

To measure the degree of similarity between the actual channel hn, tand the esti-

mated channel value bhn, t of the nthsubcarrier at time t, using the cosine similarity
coefficient ρ, in CsiNet-GRUs which is given as:

ρ ¼ 
1

T

1

Nc

XT

t¼1

XNc

n¼1

bh
H

n, thn, t

			
			

bhn, t
���

���
2
hn, tk k2

8
><

>:

9
>=

>;
(16)

Where bhn, t denotes the reconstructed channel vector of the nth subcarrier at time
t. ρ can measure the quality of the beamforming vector when the vector is set as

vn,t = bhn, t/ bhn, t
���

���
2
since the UE will achieve the equivalent channel bh

H

n, thn, t/
bhn, t

���
���
2
.

Introducing a new parameter for comparison, which calling accuracy
defining it as the ratio of the number of correct predictions to the total number
of input samples, that means accuracy is the ratio of the recovered channel vector

to the original channel vector H00
t

� �T

t¼1
=H00

1 so the accuracy in CsiNet-GRUs is

defined as:

Accuracy ¼ 
1

T

1

Nc

XT

t¼1

XNc

n¼1

bh
H

n, t

			
			

hn, tk k2

8
><

>:

9
>=

>;
(17)

6. Comparison of results with different techniques

Figures 9 and 10 show the relationship between CR and NMSE for all structures in
indoor and outdoor scenarios. Figure 9 shows that the proposed CsiNet-GRUs have
the lowest NMSE, whereas Figure 10 shows that it has the lowest NMSE among others
except for Conv-LSTM CsiNet at CR > 20. Figures 11 and 12 show the relationship
between the CR and accuracy for all structures in indoor and outdoor scenarios.

15

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



Figure 9.
NMSE (dB) performance comparison between CS methods INDOOR scenario.

Figure 10.
NMSE (dB) performance comparison between CS methods OUTDOOR scenario.

16

Deep Learning and Reinforcement Learning



Figure 11.
Accuracy performance comparison between CS methods INDOOR scenario.

Figure 12.
Accuracy performance comparison between CS methods OUTDOOR scenario.

17

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



The CsiNet-GRUs outperform the other structures, with higher accuracy observed
at lower CR values. Figures 13 and 14 illustrate the relation between the cosine
similarity (ρ) and CR in indoor and outdoor scenarios for all structures. Again, the
proposed CsiNet-GRUs outperform the other structures, and besides, it exhibits a
near-linear performance with the lowest slope.

Figure 13.
ρ Performance comparison between CS methods INDOOR scenario.

Figure 14.
ρ Performance comparison between CS methods OUTDOOR scenario.

18

Deep Learning and Reinforcement Learning



The performance comparison between the proposed CsiNet-GRUs to other avail-
able techniques. Where corresponding values of normalized mean square error
(NMSE), ρ, accuracy, and run-time are calculated for different values of γ for indoor
and outdoor scenarios, all techniques have better performances in the indoor scenario
than the outdoor one.

It is worth noting that channel state information network (CsiNet) techniques
significantly outperform the other CS-based methods. LASSO, TVAL3, CsiNet, and
CsiNet-GRUs continue to provide the highest cosine similarity values at low CRs,
where other CS-based methods fail. However, the proposed CsiNet-GRUs outperform
the channel state information network (CsiNet) in terms of correlation and accuracy,
as shown in Table 2. The same comparison is simulated again in terms of

γ LASSO

[17]

TVAL3

[16]

CsiNet

[8]

Conv-LSTM

CsiNet [18]

CsiNet-GRUs Dropout

Epoch/1000 [14]

Indoor NMSE

Epoch = 1000

1/4 �7.59 �8.87 �17.36 �27.5 �51.73

1/16 �2.96 �3.2 �8.65 �23 �27.3

1/32 �1.18 �0.46 �6.24 �22.3 �23.81

1/64 �0.18 �0.6 �5.84 �21.2 �22.11

ρ

Epoch = 1000

1/4 0.91 0.87 0.98 0.95 0.99

1/16 0.72 0.73 0.90 0.93 0.94

1/32 0.53 0.45 0.83 0.85 0.89

1/64 0.30 0.24 0.83 0.84 0.87

Accuracy

Epoch = 1000

1/4 0.68 0.34 0.81 0.82 0.84

1/16 0.55 0.22 0.60 0.60 0.62

1/32 0.34 0.15 0.51 0.51 0.52

1/64 0.55 0.23 0.48 0.53 0.54

Run time

Epoch = 1000

1/4 0.345 0.314 0.0001 0.0001 0.0003

1/16 0.555 0.314 0.0001 0.0001 0.0003

1/32 0.604 0.286 0.0001 0.0001 0.0003

1/64 0.708 0.285 0.0001 0.0001 0.0003

Outdoor NMSE

Epoch = 1000

1/4 �5.08 �0.9 �8.75 �10.9 �15.13

1/16 �1.09 �0.53 �4.51 �9.86 �11.91

1/32 �0.27 0.42 �2.81 �9.18 �3.02

1/64 �0.06 0.74 �1.93 �8.83 �2.05

ρ

Epoch = 1000

1/4 0.82 0.58 0.87 0.90 0.92

1/16 0.49 0.46 0.79 0.81 0.81

1/32 0.32 0.28 0.67 0.68 0.70

1/64 0.19 0.19 0.60 0.62 0.68

Accuracy

Epoch = 1000

1/4 0.66 0.54 0.68 0.70 0.71

1/16 0.45 0.22 0.49 0.49 0.51

1/32 0.20 0.20 0.36 0.36 0.38

1/64 0.18 0.15 0.26 0.26 0.27

19

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



epoch = 1000 (1000 iterations) in terms of correlation and accuracy in the proposed
technique CsiNet-GRUs. In terms of the NMSE, the CsiNet-GRUs achieve the lowest
values of all compressed ratios (CRs), particularly when CR is low.

CsiNet-GRUs have very short run periods when compared to LASSO and TVAL3
techniques. However, when compared to the other CsiNet technique and the proposed
modeling technique, CsiNet-GRUs lose time efficiency slightly. It is worth noting that,
despite the addition of significant complexity as a result of the GRU layers, the run
time is still comparable to that of the CsiNet.

Figure 15 depicts in comparison to the other modeling techniques, the reconstruc-
tion results of the proposed technique, namely LASSO, TVAL3, CsiNet, and Conv-
LSTM CsiNet in an indoor Picocellular scenario, the figure represents the average
performance at different CRs, reflecting on the reconstructed images to use the other
techniques.

γ LASSO

[17]

TVAL3

[16]

CsiNet

[8]

Conv-LSTM

CsiNet [18]

CsiNet-GRUs Dropout

Epoch/1000 [14]

Run time

Epoch = 1000

1/4 0.2122 0.15 0.0001 0.0001 0.0003

1/16 0.2409 0.3145 0.0001 0.0001 0.0003

1/32 0.598 0.2985 0.0001 0.0001 0.0003

1/64 0.6758 0.285 0.0001 0.0001 0.0003

Table 2.
Comparison of results between the proposed framework and other available Ones (Epoch = 1000 iterations in the
proposed techniques and others previous techniques).

Figure 15.
Reconstruction images for CR in CS algorithms in an indoor scenario.

20

Deep Learning and Reinforcement Learning



Conv-LSTM, CsiNet, and CsiNet-GRUs continue to provide acceptable correlation
coefficients (ρ) at low CRs, where compressed sensing-based methods fail; it is note-
worthy that the proposed CsiNet-GRUs technique outperforms the other methods in
an indoor scenario. CsiNet-GRUs achieve the best performance among CR with indi-
cators parameters to improve accuracy, decrease NMSE, and increase correlation (ρ)
with dropout to reduce modeling system overfitting in massive multiple-input
multiple-output channels. As a result, CsiNet-GRUs outperform both CsiNet and
CS-based methods. With advanced deep learning technology, this chapter has the
potential to deploy real MIMO systems.

7. Conclusion

We developed and tested a prediction model to evaluate a real-time and end-to-
end channel state information (CSI) feedback framework in this chapter by extending
the DL-based CsiNet with GRU. By utilizing the time correlation and structure prop-
erties of time-varying massive MIMO channels, CsiNet-GRUs achieve an acceptable
trade between compressed ratio, recovery quality, accuracy, and complexity. This
chapter proposed a channel state information (CSI) feedback network by extending
the deep learning DL-based channel state information network (CsiNet) technique to
incorporate gated recurrent units (GRUs) and use the dropout method to incorporate
gated recurrent units (GRUs) and use the dropout method. The gated recurrent unit
(GRU) layers were used to extend the channel state information network CsiNet
decoders for time correlation extraction and the final reconstruction of channel state
information, whereas the dropout method was used to reduce overfitting in channel
modeling. In terms of complexity, the experiment results show that CsiNet-GRUs
achieve the best recovery quality and outperform state-of-the-art CS methods.

Appendices and nomenclature

1G The first generation
2G The second generation
3G The third generation
4G The fourth generation
5G The fifth generation
AI Artificial Intelligence
AMP Approximate Message-Passing
AoA Analysis of Alternatives
AE Autoencoder
BER Bit Error Rate
CE Channel Estimation
CNN Convolutional Neural Network
CS Compressive Sensing
CSI Channel State Information
CsiNet Channel State Information Network
CsiNet-GRU Channel State Information Network-Gated Recurrent Unit
DL Deep Learning
DNN Deep Neural Network
FDD Frequency Division Duplex

21

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



GRU Gated Recurrent Unit
LASSO Least Absolute Shrinkage and Selection Operator
LSTM Long Short-Term Memory
MIMO Multiple-Input Multiple-Output
mmWave Millimeter Wave
MSE Mean Squared Error
NMSE Normalized Mean Square Error
RELU Rectified Linear Unit
RNN Recurrent Neural Network
SNR Signal-to-Noise-Ratio

�ð ÞH Conjugate transpose

ρg The original is a sigmoid function

ϕh The original is a hyperbolic tangent
γ Compression Ratio
θ The delay
∂t Feedback internal
�k k2 The Euclidean norm

 Exponent
ℂ Complex numbersP

Summation
€ Element

~h
H

n
The channel frequency response vector at the nth subcarriers

ht Output vector
L θð Þ Loss Function
Nc Receiver antenna at the user equipment
Nt Transmit antenna at the base station
rt Reset gate vector
T Time sequence of the channel model
xn The transmitted information image
xt Input vector
yn The pre-coding vector at the nth subcarriers
zn The additive noise or obstruction
zt Update gate vector

22

Deep Learning and Reinforcement Learning



Author details

Hany Helmy1*, Sherif El Diasty2 and Hazem Shatila3

1 Cairo Airport Company (CAC), Cairo, Egypt

2 Department of Electronics, Arab Academy for Science, Technology and Maritime
Transport (AASTMT), Cairo, Egypt

3 Virginia Tech, Artificial Intelligence and Markovdata, Cairo, Egypt

*Address all correspondence to: hany.nabil@cairo-airport.com; hnabil110@gmail.com

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

23

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650



References

[1] Zhang T, Ge A, Beaulieu NC, Hu Z,
Loo J. A limited feedback scheme for
massive MIMO systems based on
principal component analysis. EURASIP
Journal on Advances in Signal
Processing. 2016;2016. DOI: 10.1186/
s13634-016-0364-9

[2]Busari A, Huq KMS, Mumtaz S, Dai L,
Rodriguez J. Millimeter-wave massive
MIMO communication for future
wireless systems: A survey. IEEE
Communications Surveys & Tutorials.
2018;20(2):836-869

[3] Tao J, Chen J, Xing J, Fu S, Xie J.
Autoencoder neural network based
intelligent hybrid beamforming design
for mmWave massive MIMO systems.
IEEE Transactions on Cognitive
Communications and Networking. 2020.
DOI: 10.1109/TCCN.2020.2991878

[4] Zhai J, Zhang S, Chen J, He Q.
Autoencoder and Its Various Variants. In:
2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC),
Miyazaki, Japan. 2018. pp. 415-419.
DOI: 10.1109/SMC.2018.00080

[5] Karanov B, Lavery D, Bayvel P,
Schmalen L. End-to-end optimized
transmission over dispersive intensity-
modulated channels using bidirectional
recurrent neural networks. Optics
Express. 2019;27:19650-19663

[6] Sohrabi F, Cheng HV, Yu W. Robust
Symbol-Level Precoding Via
Autoencoder-Based Deep Learning.
2020. pp. 8951-8955. DOI: 10.1109/
ICASSP40776.2020.9054488

[7] Liu Z, del Rosario M, Liang X, Zhang
L, Ding Z. Spherical Normalization for
Learned Compressive Feedback in
Massive MIMO CSI Acquisition. 2020.
pp. 1-6. DOI: 10.1109/ICCWorkshops
49005.2020.9145171

[8]Wen C, Shih W, Jin S. Deep learning
for massive MIMO CSI feedback. IEEE
Wireless Communications Letters. 2018;
7(5):748-751

[9] Liu L, Oestges C, Poutanen J, Haneda
K. The COST 2100 MIMO channel
model. IEEE Wireless Communications.
2012;19(6):92-99

[10]Hochreiter S. The vanishing gradient
problem during learning recurrent
neural nets and problem solutions.
International Journal of Uncertainty,
Fuzziness and Knowledge-Based
Systems. 1998;6(2):107-116

[11] Aleem S, Huda N, Amin R, Khalid S,
Alshamrani SS, Alshehri A. Machine
Learning Algorithms for Depression:
Diagnosis, Insights, and Research
Directions. Electronics. 2022;11(7):1111.
DOI: 10.3390/electronics11071111

[12] Cho K, van Merrienboer B, Gulcehre
C, Bahdanau D, Bougares F, Schwenk H,
et al. Learning Phrase Representations
using RNN Encoder-Decoder for
Statistical Machine Translation. 2014.
DOI: 10.3115/v1/D14-1179

[13]Dey R, Salem FM. Gate-variants of
Gated Recurrent Unit (GRU) neural
networks. 2017. pp. 1597-1600. DOI:
10.1109/MWSCAS.2017.8053243

[14]Helmy HMN, Daysti SE, Shatila H,
Aboul-Dahab M. Performance
enhancement of massive MIMO using
deep learning-based channel estimation.
IOP Conference Series: Materials Science
and Engineering. 2021;1051(1):012029

[15] Srivastava N, Hinton G, Krizhevsky
A, Sutskever I, Salakhutdinov R.
Dropout: A simple way to prevent neural
networks from overfitting. Journal of

24

Deep Learning and Reinforcement Learning



Machine Learning Research. 2014;15(1):
1929-1958

[16] Li C, Yin W, Zhang Y. User’s guide
for TVAL3: TV minimization by
augmented Lagrangian and alternating
direction algorithms. CAAM Report.
2009;20(4):46-47

[17]Daubechies I, Defrise M, Mol CD. An
iterative thresholding algorithm for
linear inverse problems with a sparsity
constraint. Communications on Pure and
Applied Mathematics. 2004;75:1412-
1457

[18] Li X, Huaming W. Spatio-temporal
representation with a deep neural
recurrent network in MIMO CSI
feedback. IEEE Wireless
Communications Letters. 2020;
9(5):653-657

25

Utilized System Model Using Channel State Information Network with Gated Recurrent Units (…
DOI: http://dx.doi.org/10.5772/intechopen.111650


