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Chapter

MultiRes Attention Deep Learning
Approach for Abdominal Fat
Compartment Segmentation and
Quantification
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Ling Yun Yeow, Wen Xiang Chen, Audrey Jing Ping Yeo,
Wee Shiong Lim and Cher Heng Tan

Abstract

Global increase in obesity has led to alarming rise in co-morbidities leading to
deteriorated quality of life. Obesity phenotyping benefits profiling and management
of the condition but warrants accurate quantification of fat compartments. Manual
quantification MR scans are time consuming and laborious. Hence, many studies
rely on semi/automatic methods for quantification of abdominal fat compartments.
We propose a MultiRes-Attention U-Net with hybrid loss function for segmentation
of different abdominal fata compartments namely (i) Superficial subcutaneous adi-
pose tissue (SSAT), (ii) Deep subcutaneous adipose tissue (DSAT), and (iii) Vis-
ceral adipose tissue (VAT) using abdominal MR scans. MultiRes block, ResAtt-Path,
and attention gates can handle shape, scale, and heterogeneity in the data. Dataset
involved MR scans from 190 community-dwelling older adults (mainly Chinese,
69.5% females) with mean age—67.85 � 7.90 years), BMI 23.75 � 3.65 kg/m2.
Twenty-six datasets were manually segmented to generate the ground truth. Data
augmentations were performed using MR data acquisition variations. Training and
validation were performed on 105 datasets, while testing was conducted on 25
datasets. Median Dice scores were 0.97 for SSAT & DSAT and 0.96 for VAT, and
mean Hausdorff distance was <5 mm for all the three fat compartments. Further,
MultiRes-Attention U-Net was tested on a new 190 datasets (unseen during train-
ing; upper & lower abdomen scans with different resolution), which yielded accu-
rate results. MultiRes-Attention U-Net significantly improved the performance over
MultiResUNet, showed excellent generalization and holds promise for body-profil-
ing in large cohort studies.

Keywords: MultiRes attention, deep learning, fat compartments, abdomen,
subcutaneous fat compartments, visceral fat
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1. Introduction

Obesity is a globally growing epidemic which has affected more than 2 billion
adults, and many teens (18 years plus) are overweight, of which 650 million are obese
[1]. Anthropometric measurements, waist-to-hip ratio, body mass index (BMI), waist
circumference, does not explicitly distinguish fat mass, and quantity of fat present in
visceral, and subcutaneous compartments. Literature, highlights that accumulation of
fat leads to insulin resistance, oncologic and cardiovascular diseases [2–4] affecting
the quality of life. Hence, body composition analysis to determine the amount of
adipose and muscle tissue is of medical importance for obesity risk analysis. Magnetic
resonance imaging (MRI) and computed tomography (CT) can characterize fat and
non-fat tissues [5]. Among the imaging modalities, MR is more efficient in tissue
characterization compared to CT for quantification of body fat volume [6, 7]. By
quantifying different fat compartments from the imaging scans, we can perform body
composition analysis. Manual quantification of fat and muscle volumes from the
imaging scans is tedious and time-consuming, leading to loss clinical man-hours.

Anatomically, the subcutaneous adipose tissue compartments (superficial: SSAT
and deep: DSAT) are separated by thin fascia, whereas the visceral adipose tissue
(VAT) is found in-between internal and external abdominal boundaries. VAT is
around the internal organs and discontinuous whereas SAT (SSAT+DSAT) is contin-
uous. Fat depots are irregular in shape, lack texture, and vary across abdominal profile
as demonstrated in Figure 1making it a challenging medical image segmentation task.
Several semi-automated methodologies have been developed to reduce time and
reduce bias [8–12]. These methodologies are less reliable and offer low accuracy as
they depend on expert knowledge for fine-tuning image parameters.

Deep learning for image segmentation [13] has found many applications in medical
image analysis and one such application is abdominal fat compartment segmentation.
Several fat quantification studies use single contrast DIXON MR scan and 2D/3D U-
Net architecture [14, 15] for SAT and VAT segmentation. Enhancement versions of
Standard U-Net such as Competitive Dense Fully Convolutional Network (CDFNet),
nnUNet, and Dense Convolutional Network (DCNet), which can handle complex
image features, have been used for adipose tissue segmentation [16–18]. Attention
gate model [AG] in 2D and 3D U-Net [19] has gained popularity in adipose tissue
segmentation task as AG focuses on target structures of varying shapes and sizes by
suppressing irrelevant regions and highlighting useful salient features [20, 21].
Ibtehaz et al. proposed a MultiRes block to address multiscale issues and ResPath to

Figure 1
Illustration of fat depots of SSAT (red), DSAT (green), and VAT (blue) varying shape, size across the abdominal
profile.
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reduce adverse learning of features which might lead to a false prediction by skip
connection of U-Net [22].

1.1 Study proposition

In our previous work on adipose fat depot segmentation, we had proposed patch-
based 3D-ResUNet Attention [23] for fat depot segmentation, The patch-based
framework failed to handle (i) different body compositions like lean, and moderately
obese due to fixed patch sizes, and (ii) generalize to unseen abdominal region seg-
mentation due to cataphoric forgetting of network, anatomical differences, and class
imbalance. Figure 2 illustrates a few failed cases from our previous work. Hence to
overcome these drawbacks, we focused on the enhancement of MultiResUNet [23] by
proposing a MultiRes-Attention U-Net architecture, with

i. a hybrid loss function to handle class imbalance, and

ii. attention gates for focused learning and improved prediction accuracy.

In this study, we also compare the performance of the proposed architecture
against standard U-Net and MultiResUNet.

2. Materials and methods

2.1 MR data acquisition

Data sets of 190 elderly Asians (aged >50 years, residing within the community)
who participated in characterization of early sarcopenia to assess functional decline

Figure 2
Illustration of failed cases of our previous work on patch-based 3D-ResUNet attention vs. proposed architecture.
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study was used in our study [24]. The MR abdominal scans were acquired using a 3D
modified breath-hold T1-weighted Dixon sequence. Subjects were advised a 20 s
breath hold during the scans. The scans were performed on a 3T Siemens Magnetom
Trio MRI scanner with TR/TE/FA/Bandwidth: 6.62 ms, 1.225 ms, 100, and 849 Hz/
pixel, respectively. The study group consisted of mainly Chinese (91.6%) ethnicity
having mean age was 67.85 � 7.90 years, BMI 23.75 � 3.65 kg/m2, and predominantly
female (69.5%) subjects. As the study subjects were elderly, many had common
comorbidities such as hypertension, diabetics, and hyperlipidemia. National
Healthcare board reviewed the cohort study with written consent from all subjects.

Data set can be considered as heterogeneous as it included (i) subjects from
different ages (ii) scans covering different anatomical regions—thoracic, lumbar, and
sacral (iii) variations in fat accumulation in different compartments based on body
composition and (iv) acquisitional variations like—image dimensions, slice thickness,
breathing/motion artifacts, etc.

Manual (radiology experts) ground truths were generated in 26 data sets out of 190
scans covering L1-L5 regions. The data with ground truths were subjected to MR-
acquisition based data augmentation to scale the number from 26 to 130 to create
training data sets.

2.2 Fat segmentation

A 3-stage segmentation framework was envisaged to quantify abdominal fat
depots (i) Preprocessing stage which included (a) arm region removal, (b) data
augmentation to increase the number of data sets, and (c) conversion of 3D MR
images into 2D slices; (ii) Segmentation stage—“MultiRes-Attention U-Net” architec-
ture for segmentation of abdominal regions into SSAT/DSAT/VAT (three class)
regions and (iii) Postprocessing stage—image reconstruction 2D to 3D and fat depot
quantification.

2.3 Preprocessing

All the training/testing data were subjected to quality check to assess motion
artifacts originating from breathing, and fat-water swaps. Auto-check was developed
to ensure training dataset slices match with the marked ground-truth slices. Arm
region artifacts were removed automatically using the projection method [21]. Four
different data augmentations were performed once before training these included (i)
Random Noise (ii) Random Ghosting (iii) Random Bias Field (iv) Blur augmentation
[23] to increase the total number of datasets. Finally, 3D MR scans were converted to
2D slices for training/testing the proposed deep learning architecture.

2.4 MultiRes-attention U-Net

In standard deeper convolutional network, input data goes through multiple con-
volutions to obtain salient spatial features leading to vanishing gradient problem. The
architectures like ResNet [25] adopt summation of connect of all preceding feature
maps leading to high memory demanding network. DenseNet [26] introduces “dense
connections”, where each layer in the network is connected to every other layer,
instead of only connected to previous layers as in standard network architecture but
fail to handle multi-scale issue. To handle multi-scale issue of fat depots which vary in
shape, size, and improve semantic segmentation which is memory efficient.
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We proposed MultiRes-Attention U-Net which is a modified version of
MultiResUNet with attention which contains (i) MultiRes block, (ii) ResAtt-Path, and
(iii) Attention gate model.

2.5 MultiRes block

Two sequential convolutional layers at each level in U-Net [24] are substituted
with a proposed MultiRes block (similar to dense block in denseNet [26]) with the
residual path, (as in ResNet [25]) as shown in Figure 3. multiRes block contains
Inception-like modules with parallel convolution filters of 3�3, 5�5, and 7�7 to
capture spatial features from different scales. However, they are not memory effi-
cient. To reduce the memory, we factorized a large filter into a sequence of 3�3 filters
with a gradual increase in the number of filters at each layer as shown in Figure 3.

2.6 ResAtt-path

Skip connections of standard U-Net are modified as ResAtt-Path by including
non-linear convolution filters of 3�3 and a residual path with 1�1 filters. The
number of convolution filters (3�3) reduces in each level of the encoding section of
U-Net as shown in Figure 4. These ResAtt-Path overcomes the drawback of U-Net
short connections by merging of low and high levels features at the decoder.

Figure 3.
Proposed MultiRes-attention U-Net architecture with MultiRes Block, ResAtt-path and attention gate block at the
decoder to aggregate attention features.

Figure 4.
Description of (a) MultiRes block, (b) ResAtt-path and (c) attention gated block of MultiRes-attention U-Net
architecture.
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The ResAtt path connects the U-Net encoder at each level to the attention modules in
the decoding section of U-Net.

2.7 Self-attention

Soft attention gates (AGs) proposed by Oktay et al. [20] assist the model to focus
on regions of interest by suppressing irrelevant location-based feature activations.
AGs ensure that only salient spatial information is carried across skip connection
which improves the network performance in false positives reduction. Soft attention
gates (AGs), as shown in Figure 3(c), and illustrated in Eq. (1) contains two inputs (i)
Ip—lower-level block input and, (ii) IR—ResAtt-Path from the proposed skip connec-
tion layer. Ip input is fed into 1�1 convolution filter for upsampling to match the
dimensions of the inputs as illustrated in Eq. (2). The dimension matched inputs
xattention and xupsampled are combined and passing through a ReLU activation function

and sigmoid activation functions to yield a coefficients with values between 0 and 1.
Finally, these coefficients are upsampled through trilinear interpolation to gener-

ate the soft attention feature map. Which is then multiplied by the ResAtt-Path’s skip
connection to produce the final output as shown in Eq. (3)

xattention ¼ Soft Attention Ip, IR
� �

(1)

xupsampled ¼ Upsample Ip
� �

(2)

output ¼ ConvBlock concat xattention, xupsampled
� �� �

(3)

2.8 Loss function

Segmentation model performance not only depends on the architecture of the
network but also on the choice of the loss function [27] particularly in the scenario
where there is a high-class imbalance. As we observed imbalance in SSAT, DSAT, and
VAT distributions, we identified focal dice loss function as an appropriate loss func-
tion that handles class imbalance issues. The focal dice loss incorporates the focal loss
where γ ¼ 0:5 Eq. (4) and dice loss Eq. (5) together making it a robust loss function
for the imbalanced class problems. It makes use of weighted components for each
class based on their representation.

Focal loss ¼ � 1� ρtð Þγ log ρtð Þ (4)

Dice loss ¼ 1� dice coefficient ¼ 1–
2 ∗ A∩Bð Þ

Aþ B
(5)

2.9 Post processing

Fat sub-region volumetric analysis & sub-region volume percentage is computing
using Eqs. (6) and (7)

Vr ¼ TPssat þ TPdsat þ TPvatð Þ ∗ Ir ∗ 1000 (6)

where TPssat,TPdsat,TPvat correspond to predicted voxel count of SSAT, DSAT and
VAT classes & Ir corresponds to each subject’s voxel resolution. Sub-regions volumes
percentage is computed using Eq. (7), where TPi is the true positive volume of class i,
and

P

TPv is the total volume of the fat region.
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%Vc ¼
TPi

P

TPv
∗ 100 (7)

2.10 Training parameters

Single contrast fat-only 3D MR Dixon scans were converted to 2D slices for training
(approximately 8000, 2D slices). Training was conducted on ubuntu 18.04 LTS operat-
ing system with NVIDIA Titan X GPU card with code written using TensorFlow frame-
work [28] with hyperparameters of MultiRes-Attention U-Net is shown in Table 1.

2.11 Performance analysis

Multiclass Dice ratio (DR) & Hausdorff distance were two performance matrices
used to evaluate the fat subregions segmentation which comprising of SSAT, DSAT
and VAT regions.

The similarity between predicted and ground truth segmentation results is assessed
by measuring the overlap using multiclass Dice score as illustrated in Eq. (8).

DSIk ¼
P

Ipred Igt ¼¼ k½ � ¼¼ kð Þ ∗ 2:0
P

Ipred Ipred ¼¼ k½ � ¼¼ kð Þ þ
P

Igt Igt ¼¼ k½ � ¼¼ kð Þ
(8)

where DSIk is the subclass DSI value ranging between 0 and 1, where 1 means
complete overlop of subregion, Ipred is the predicted output, Igt is the ground truth,
and k is the number of classes.

Hausdorff Distance (HD) measures as the distance between two compact non-
empty subsets of a metric space [30]. In order to find similarity between predicted
(Pred) and ground truth (GT) HD measure between two closed and bounded subsets
A and B of a given metric space M is defined as.

HD Pred,GTð Þ ¼ max h Pred,GTð Þ, h GT,Predð Þð Þ (9)

h Pred,GTð Þ ¼ max dist αPred,GTð Þð Þ (10)

dist αPred,GTð Þ ¼ min μ αPred,GTð Þð Þ (11)

Training parameters Value

Number of filters at each levels of U-Net 16,32,64,128,256

Epochs 150

Optimizer ADAM [29]

Learning rate 0.00001

Loss function Focal dice loss

Weighted decay 2e-6

Dropout 0.05

Patience 15

Table 1
Illustrating the hyperparameters values in training MultiRes-attention U-Net.

7

MultiRes Attention Deep Learning Approach for Abdominal Fat Compartment Segmentation…
DOI: http://dx.doi.org/10.5772/intechopen.111555



where HD Pred,GTð Þ is the direct distance between Predicted region and ground
truth, dist αPred,GTð Þ is the distance from point to region GT and μ α,GTð Þ is a point
distance in the metric space. The smaller HD(Pred,GT) indicates better segmentation
accuracy i.e., less mismatch area.

3. Results

Accurate fat depot segmentation plays a significant role in evaluating fat distribu-
tion which can be used as biomarkers to assess metabolic syndrome and obesity.
Table 2 illustrates the training and testing Dice statistical index (DSI) (Mean � SD)
for MultiRes-Attention U-Net, MultiResUNet, and standard U-Net’s 3-class (Class 1:
Superficial Fat, Class 2: Deep-Superficial Fat, Class 3: Visceral fat) segmentation
accuracies with trained on focal dice loss functions.

Dice score (Table 1) indicated that all the models show improved segmentation
accuracy when trained under focal dice loss function.

4. Discussion

The removal of the arm region is an important step in pre-processing as it contains
SAT, which may interfere with automatic segmentation. MR-based data augmentation
techniques were used to increase the training samples and improve the generalization of
the model. In this study, we have proposed a MultiRes-attention U-Net for the segmen-
tation of the three abdominal fat compartments namely superficial subcutaneous fat,
deep subcutaneous fat and visceral fat.. Algorithm took about 5 s to accurately segment
and quantitate all the 3 different fat compartments thus reducing the time significantly.
This enables the usage of our algorithm for clinical routines and large clinical trials.

Based on Table 1, the proposed algorithm performs better and provides a more
accurate segmentation output than MultiResUNet due to the introduction of the AG
module. Introduction of the attention module improved the identification of significant

DSI score for training (focal dice loss) SSAT DSAT VAT

U-Net 0.9090�0.023 0.8727�0.035 0.8048�0:113

MultiResUNet 0.9751� 0:021 0.9732� 0:023 0.9679� 0:017

MultiRes-Attention U-Net 0.9877�0.022 0.9852�0:024 0.9758�0:022

DSI Score for Testing SSAT DSAT VAT

U-Net 0.9071�0.020 0.8660�0.043 0.7426�0:140

MultiResUNet 0.9706�0:030 0.9657 � 0:035 0.9586� 0:017

MultiRes-Attention U-Net 0.9781�0.029 0.9718�0:0349 0.9711�0:015

Hausdorff Dist SSAT HD (mm) DSAT HD (mm) VAT HD (mm)

U-NET 4.8385 � 0.023 4.5830 � 0.4202 5.5176 � 0.113

MultiResUNet 4.232 � 0.121 4.323 � 0.3242 4.332 � 0.765

MultiRes-Attention U-Net 4.132 � 0.868 4.199 � 0.656 4.223 � 0.133

Table 2.
Performance comparison of models.
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features such as fascia boundary and smaller VAT components around the spine and
preventing the network from learning false positive information. Focal dice loss func-
tion was found to be more appropriate in improving the overall segmentation results
compared to cross-entropy (CE) loss and dice. Experimental results showed that focal-
dice loss function could handle inherent class imbalance (amount of SSAT/DSAT/VAT
in different slices) where cross-entropy or dice loss functions failed. The mean focal
dice loss DSI for the test dataset was about 97.81% for SSAT, 97.18% for DSAT, and
97.11% for VAT, which is a significant improvement by 7%, 11%, and 23% respectively
when compared to standard U-Net results. AHD of the proposed architecture is slightly
better than MultiResUNet and when compared to standard U-Net, it is significantly
better for 3 classes (SSAT, DSAT, and VAT). In addition, the model was able to separate
SAT into SSAT and DSAT in lean subjects (broken or invisible fascia) and obese subjects
(multiple fasciae). As shown in Figure 5, the model was also able to differentiate
between VAT and bones, especially in the spine and pelvic regions. Further, MultiRes-
Attention U-Net was tested on a new 190 data sets (unseen during training; upper &
lower abdomen scans with different resolution) as illustrated in Figure 6 which yielded
accurate results for SSAT and DSAT but had few false positives in sacrum region VAT.

Figure 5.
Shows comparison of predicted results of U-Net, MultiResUNet, and MultiRes-attention U-Net (loss function:
Focal dice) on low-medium and high-fat subjects.

Figure 6.
Illustration of the predicted result of MultiRes-attention U-Net on a few selected samples of new 190 data sets
(unseen during training; upper & lower abdomen scans with different resolution).
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5. Conclusion

In this study, we propose MultiRes-Attention U-Net with hybrid loss function for
segmentation of superficial and deep subcutaneous adipose tissue (SSAT & DSAT),
and visceral adipose tissue (VAT) from abdominal MR scans. MultiRes block, ResAtt-
Path, and attention gates can handle shape, scale, and heterogeneity in the abdominal
data. Model performance is also dependent on the loss function, especially when there
is data imbalance. In this research work, focal dice loss function compared to cross-
entropy (CE) loss and dice were found to be more appropriate in improving the
overall segmentation results. The proposed pipeline contains pre-processing, data
augmentation, and automatic segmentation of fat compartments and fat quantifica-
tion. The proposed algorithm takes less than 5 s for segmentation and quantification of
3 fat compartments are provided more generalizable results where the model was able
to separate SAT into SSAT and DSAT in lean subjects (broken or invisible fascia) and
in obese subjects (multiple fasciae) and also differentiate small VAT tissue from bones
making it feasible for use in large clinical trials and clinical routine.
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