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Chapter

IoT Device Identification Using
Device Fingerprint and Deep
Learning
Prashant Baral, Ning Yang and Ning Weng

Abstract

The foundation of security in IoT devices lies in their identity. However,
traditional identification parameters, such as MAC address, IP address, and IMEI, are
vulnerable to sniffing and spoofing attacks. To address this issue, this paper proposes a
novel approach using device fingerprinting and deep learning for device identifica-
tion. Device fingerprinting is generated by analyzing inter-arrival time (IAT), round
trip time (RTT), or IAT/RTT outliers of packets used for communication in networks.
We trained deep learning models, namely convolutional neural network (CNN) and
CNN + LSTM (long short-term memory), using device fingerprints generated from
TCP, UDP, ICMP packet types, ICMP packet type, and their outliers. Our results show
that the CNN model performs better than the CNN + LSTM model. Specifically, the
CNN model achieves an accuracy of 0.97 using the IAT device fingerprint of ICMP
packet type, and 0.9648 using the IAT outlier device fingerprint of ICMP packet type
on a publicly available dataset from the crawdad repository.

Keywords: Internet of Things, deep learning, device identification, security, device
fingerprinting

1. Introduction

IoT is used in varied industries including automobile, manufacturing, agriculture,
and medicine, etc. With the increase in the usage of IoTs in varied fields, the data
transfer between edge devices over the network has also increased. While IoT bridges
the gap between the digital and physical world, compromised IoT devices can bring
dangerous consequences. Wireless networks are more at risk than wired networks.
Frames are encrypted in wireless communication, but the management and control
frames are not encrypted as per IEEE 802.1 standards. This causes the wireless device
identity prone to spoofing and denial of service attacks. Node forgery, once the
adversaries get hold of the security credentials, can cause a major security threat.

Adversaries may use a compromised node to send incorrect data. For example, if
an IoT device sending the temperature in the industry gets compromised, it will ruin
the product, and the owner must bear a great loss. Many cryptography techniques,
such asWEP andWPA, can be easily compromised. IP address, MAC address, or IMEI
number could be used for device identification, but there are scenarios where these
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addresses got spoofing [1]. The gravity of the impact the breach in IoT has on varied
fields is substantial, and we need to come up with an appropriate security mechanism
to reduce the risk of data being compromised by IoT device forgery.

Different metrics can be used for device identification such as IP address, MAC
address, IMEI address, and other network parameters such as transmission time,
transmission rate, inter-arrival time, and medium access time. Comparisons of differ-
ent metrics for device identification are in Table 1. The parameters, such as MAC
address and IP address, are easier to spoof, so the study has been made on finding out
the important parameters that can distinguish the devices. In [2], transmission time,
transmission rate, inter-arrival time, and medium access time have been compared.
IAT and transmission time outperform the other parameters in device identification.

In this paper, we worked on the deep learning approach for device identification.
Device fingerprint is created from the parameters extracted during the communica-
tion of a device with router. This device fingerprint is used to train the deep learning
model and device identification.

We fingerprint a device using IAT, RTT, and its outliers and feed them to deep
learning models for device identification. These parameters are easier to extract and
are not spoofed that easily after creating the device fingerprint with them.
Timestamps (from which IAT and transmission time are extracted) are generated at
the receiver side, which makes it harder to sniff and spoof. The adversaries need to
change their own behavior to get a hand on these parameters. IAT and RTT are
varied for different devices due to different CPU configuration and clock frequency.
IAT and RTT depend on cache configurations, data cache, instruction cache, clock
frequency, busses, and NIC card. These hardware configurations have an impact on
the packet transfer rates. The attackers might try to emulate the signature using
different techniques such as (1) introduce delays in packets, (2) change the data
rate, and (3) make a customized operating system. Even while considering such
techniques for an attack, an attacker is not successful in emulating the device.
The attacker must consider a spoofing a signature along with hiding its original
signature.

We use deep learning to extract knowledge from the data. It allows us to better
understand the system model and simulate. CNN learns the semantic in the images
and patterns in the image graph. Similarly, LSTM is recognized as a good algorithm for
the classification of time series data. We use these two deep learning algorithms for
the classification of devices. In earlier research, mathematical tools such as Mann-
Whitney U-Test were used, but these algorithms require much time invested in

Metrics/

Parameters

MAC address IP address Transmission time Inter-arrival time

Spoofing Easy easy difficult difficult

Property Hardware network hardware and

software

hardware and

software

Privacy concerns Low low high high

Header generation sender wireless

card

sender wireless

card

receiver wireless

card

receiver wireless

card

Table 1.
Comparison of parameters for fingerprinting.
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preprocessing of data. The machine learning approach also requires us to prepare
structured data before feeding it to ML algorithms.

Deep learning algorithms have an advantage over these consequences as it learns
through the unstructured data while going through each layer in deep learning algo-
rithms. The key factor for using deep learning is its time for making a prediction. Deep
learning has its parameters calculated while training, which is why, when we provide
our fingerprint of the device, the prediction is made quickly. This would take more
time if we had used ML or any other mathematical tools.

We use the dataset generated from our own setup, as well as a publicly available
dataset for training the model. We use TCP, UDP, ICMP packets, ICMP packets, and
outliers of those packets for creating the device fingerprint. A newmethod [3] of device
identification by collecting the information of the device to generate a fingerprint of the
hardware, which can be used for device identification has been introduced. They use
four different types of packets, namely probe request, ping, TCP, and UDP packets, to
generate IAT graphs and have lower accuracy using CNN for classification.

In our work, we fingerprint two devices: Samsung A20 and Samsung J5 Prime. We
plot IAT and RTT of the packets (probe request for IAT and ping for RTT) of each
device and used those as datasets and feed them to deep learning models for device
identification. We also use the publicly available dataset from the crawdad repository
[4] introduced by Radhakrishnan et al. [5] to verify our results. This dataset provides
the IAT information collected actively and passively from different wireless devices
using wire side observations in a local network. They captured traffic from 30 differ-
ent devices including iPads, iPhones, netbooks, Google phones, IP cameras, Kindles,
and IP printers, etc., from various applications and protocols such as TCP, UDP,
Skype, ICMP, SCP, and Iperf. Our main contribution consists of:

• use parameters extracted from wireless communication to create a unique
signature/fingerprint of hardware.

• different parameters (IAT and RTT) for creating unique signatures, which are
separately used for training deep learning models.

• compared how well deep learning algorithm was in classification using different
metrics.

• considered outliers in IAT graph to observe if it does better classification.

The remainder of the paper is organized as follows. Section 2 briefly discusses
related work. Section 3 describes the device fingerprinting, setup, methods for
extracting data, and creating image graphs, and preparation of datasets are also
discussed in this section. This dataset is fed to deep learning models described in
Section 4 for classification of device. Experimental results are presented in Section 5,
and the paper is concluded in Section 6.

2. Related work

The use of IP address, MAC address, and IMEI number for device identification
brings significant risks of critical information, and the device itself is compromised.
This alerts the researcher to produce a flexible and effective technique for
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device identification [1, 6, 7]. For example, a new stack [1] for the identity of
IoT is proposed as it differs from the traditional identity of network devices and
survey on attribute-based authentication for the identity of IoT devices.

Neumann et al. [2] surveys different features of the MAC layer such as transmis-
sion rate, transmission time, and inter-arrival time, and evaluated them on two
criteria for effectiveness, fingerprint similarity at different time, and fingerprint
dissimilarity of two different devices. In [2], authors use the IAT packets from wire-
less devices for creating digital fingerprints and created a histogram where each bin
specifies the frequency of IATs in a specified range. Here, histogram is the fingerprint
used for the classification of the the device and used to identify known and unknown
devices from the database. The author tested the scenario where a malicious user tries
to emulate the known device by introducing delay to the packets. The author con-
cluded that different software and hardware make it difficult to emulate the hard-
ware. In [2], authors use a passive approach for fingerprinting and, Radhakrishnan
et al. [5] extended the work [2] using active approach for device fingerprinting. In the
passive approach, we just observe the wireless communication to/from the device and
use the important features of packets. Instead, in the active approach, we inject the
signal to get a response from the device to get useful features. Sandhya et al. [8] used
CNN but considered all types of packets flowing from devices to AP for device
classification. This might be practical, but a lower accuracy of 86% may be
problematic from a security point of view.

In [5], the author used a ping application to communicate between a device on
campus. In [9], the author used IAT of probe request to fingerprint the device and
used Mann-Whitney U-test for the analysis if two samples are of the same distribu-
tion. Miettinen [10] used 23 features such as ICMP, TCP, HTTP, and size from
different layers (data link layer, transport layer, network layer, and application layer,
etc.). The work collects these features of 23 for 12 packets and used a random forest
algorithm for classification. The accuracy for 17 out of 27 was obtained 95% and 50%
for the rest devices (10).

Robyns et al. [11] introduce the idea of noncooperative MAC layer fingerprinting,
which does not require cooperation with the device as it uses some adversary nodes at
the monitoring station to capture and monitor the bits of MAC frames without the
user’s permission. This hampers the privacy of the user but provides security from
attacks from outside. The accuracy, when used for classification of 50 to 100 devices,
was between 67–80%, but the accuracy decreases rapidly from 33–15% when device
numbers were increased.

Kohno et al. [12] used the clock skew for fingerprinting devices. The work mea-
sured the timestamp by time difference of the time stamps using the traces from
Tcpdump. The work considered the scenario where IP addresses were changed during
data collection. Maurice [13] used a probe request and response for fingerprinting, but
the results were not that promising for similar devices. Cunche et al. [14] used probe
request from an AP and in response got the list of wireless networks. The work used
this vulnerability to identify people from the list of networks connected. Francois
et al. [15] made use of behavioral fingerprinting and automatically disconnects the
device, which has suspicious activity and asks it to reconnect based on the behavioral
fingerprint. Sun et al. [16] use the fingerprinting method for localization of devices
connected to Wi-Fi AP indoor or outdoor.

Xu [1] studied the challenges and opportunities in digital fingerprinting for both
wired and wireless devices. The author extracted the features from the physical and
MAC layers such as clock skew, IAT, transmission time, SSID, and frequency. The
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work concluded IAT and transmission time as good parameters for device
classification based on accuracy.

Kulin et al. [17] used different algorithms such as k-NN, decision tree, logistic
regression, and neural networks for device classification using publicly available
datasets. The performance of k-NN, decision tree, and logistic regression was good, but
neural networks performed poorer than other classification algorithms with an average
precision of 0.47 and recall value of 0.46. It is a common understanding that neural
networks should perform better than others, but this was not the case in this work.

3. Device fingerprinting

We set up the devices in the lab for extracting the information about the devices.
First, we set up Raspberry Pi as a router. Next, we use Samsung A20 and Samsung J5
Prime as an edge device (target IoT devices). Wireless communication between the
edge devices and router was recorded. In the sniffing applications, Wireshark captures
the packets incoming and outgoing on Raspberry Pi. These captured packets are used
to calculate IATs/RTTs of packets and plot IAT, RTT, and IAT outlier graphs. These
graphs are used as datasets to train and test the model. Python program is used to plot,
label, and split the dataset. A split training set trains the deep learning model, and the
testing dataset validates it. Our overall methodology is depicted in Figure 1 and
explained in detail in a subsection of this section and Section 4.

3.1 Our setup

Our setup has Raspberry Pi as a router and phones as the edge devices. Raspberry
Pi (acts as a router) broadcasts an access point. The packets sent from edge devices are
captured at the router side, which has a packet sniffing tool installed. Wireshark is
installed in Raspberry Pi which inspects, deciphers, and keeps track of all incoming
and outgoing packets to/from it. As there might be many packets coming to the
router, we use the filter to find the required packet. We collected the data in two ways:
1. Probe request and response and 2. Ping request and response.

Probe requests are the packets broadcast by wireless devices, which consist of
supported data rates and their capabilities. The access point receives these requests
and responses with packets consisting of SSID, supported data rates, and encryption
type, etc. We used a sniffing tool, Wireshark, to passively sniff the packets at the
router level and use those packets for making IAT graphs.

Ping sends the ICMP echo request packet to any device on the network and waits
for the response from the target device. In our setup, we ping the edge device, and the
edge device responds to the router. This packet communication of ICMP is passively
observed and recorded by Wireshark. This data is used for making RTT graphs.

3.2 Analysis of data and create image graph

The data collected by a sniffing tool and must be processed to obtain IAT and RTT.
We obtain data using a snipping tool in Raspberry Pi. These data are timestamps of
incoming and outgoing packets. We process timestamps to calculate the IAT and RTT
of the packet.

After we obtain the value of IAT and RTT of packets, we write a Python program
to plot the graph and download it. IAT and RTT graph is plotted as a line graph of 100
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IATs/RTTs. The plot of IAT and RTT is shown in Figures 2–4. We use IAT and RTT
separately for device identification.

3.3 Preparation of data

The image obtained by plotting the graph must be labeled before we use that data
for training and testing the model based on different metrics. We label the data using
Python. For two phones, 0 represents Samsung A20 and 1 represents Samsung Prime.
We split the total images into training data and testing data. For each IAT and RTT,
we use 75 images for training and 30 for testing for each device (total 150 for training
and 60 for testing). After creating an image and labeling it, we apply CNN and
CNN + LSTM algorithms for image classification.

Figure 1.
Methodology.
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We use the dataset of IAT from crawdad, which was developed by Ulugac et al.
[4]. The dataset is the collection of IATs of different devices. We use four devices: two
iPad and two Dell notebooks for the verification of models. First, we use ICMP
packets for generating the IAT graph. Since we are comparing the classification using
a single packet type, multiple packet types, and an outlier, we also use TCP, UDP, and
ICMP packets for generating the IAT graph and outliers. We plot a graph using 100

Figure 2.
IAT graph from our setup.

Figure 3.
IAT graph from verification dataset.
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IATs. As in our setup, we similarly label zero for Dell notebook1, one for Dell note-
book2, two for ipad1, and three for ipad2 and split it into a training and testing
dataset.

4. Deep learning model for classification

We use a convolutional neural network (CNN) and a combination of a
convolutional neural network and long short-term memory (CNN + LSTM) for device
classification. Since we are using the image of time series data, we consider CNN due
to its large breakthrough in image recognition. Moreover, CNN is very cost-effective
due to the reduced number of parameters without losing the quality. Furthermore,
due to the recognition of LSTM for time series data and our consideration of
converting time series data to images and using the image for classification, we
experiment if the combination of CNN + LSTM could give better results than CNN
alone.

4.1 Convolutional neural network for device classification

The created image is colored, but for this classification problem, we convert the
image into grayscale and reduce the image size to 256 * 256. Initially, it was 800 * 800.
Then we split the labeled data into training and testing datasets and use the training
set to train the CNN model. Our CNN model has the first convolution layer with 32
filters and a kernel size of 5 * 5. The input size of this layer was set to 256 * 256 * 1.
Next, we use max-pooling with stride length 2; this helps in reducing the parameters
by selecting the maximum from four (2 in x-direction and 2 in the y-direction). The
next convolution layer in our model has 64 filters and a kernel size of 3 * 3. The input

Figure 4.
RTT graph from our setup.
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to this layer is set by Keras. We again use max-pooling with stride length 2. The third
convolution layer has 128 layers and a kernel size of 2 * 2, and we max-pooled with a
stride length of 2 for this layer as well. For all these convolution layers, we use
Rectified linear Unit (ReLU) as an activation function. Next, we use a flattened layer
and two dense layers with 128 and 64 nodes followed by a dense layer with four nodes
with softmax as activation function. Figure 5 shows the model summary of CNN. The
model is compiled using categorical cross-entropy for calculation of loss and Adam as
the optimizer. We use both IAT and RTT data for training the CNN model and check
how good was its classification using different metrics. Furthermore, we use an outlier
of IAT data for classification. While training for different datasets, the number of
nodes and epochs is changed.

4.2 Combination of CNN and LSTM for device classification

We combine CNN and LSTM using the concept of TimeDistributed layer. We
provide n images at a time to the first TimeDistributed convolution layer; this applies

Figure 5.
CNN model summary.
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the same filter to the n images. We use the same three identical CNN layers but
TimeDistributed. This is illustrated in Figure 6. The input to the first layer is n * 256 *
256 *1. Another input size is managed by Keras. This model has an additional LSTM
layer with 32 nodes after CNN layers. The output of Maxpool2D is flattened to get one
single vector. This is a feed to LSTM and a dense layer. Figure 7 shows the model

Figure 6.
CNN + LSTM model.

Figure 7.
CNN + LSTM model summary.
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summary of CNN + LSTM. LSTM makes use of chronological data and previous frame
data to find what is useful in prediction. The model is compiled using categorical
cross-entropy for calculation of loss and Adam as the optimizer. We use a combina-
tion of CNN and LSTM and observe how good the prediction the model can make.
While training for different datasets, the number of nodes and epochs is changed.

4.3 Metrics for model evaluation

Evaluation of the model is an important task in data science. We need to make sure
our model is not overfitted. Overfitting is a modeling error in statistics, which occurs
due to the model aligning too closely to the limited data points. There are different
techniques to prevent overfitting. Some of the techniques that we use are: reduce
learning rate and dropout Layer. While training the model, we can monitor the
validation accuracy and if it does not increase for a certain epoch, we reduce the
learning rate by a certain factor. Below is the snippet of reducing learning rate where
we monitor the validation loss and reduce the learning rate by a factor of 0.1 when for
3 consecutive epochs validation loss is increased.

tf.Keras.callbacks.ReduceLROnPlateau(monitor = “val.
loss,” factor = 0.1,patience = 3,verbose = 0, andmin lr = 1e-6).
Similarly, the dropout rate can be specified to the layer as the probability of setting

each input to the layer to zero. Below is the code for adding the dropout layer. The rate
is set to 0.3, which drops 0.3 of input units.

model.add(Dense(128, activation = ‘relu’)).
model.add(Dropout(0.3)).
The most common metric used for the evaluation of the algorithm is classification

accuracy. Classification accuracy is equal to the number of correct predictions made
divided by the total number of predictions made.

In our case, we use categorical cross-entropy for the calculation of loss, which
makes the use of the probability of belonging to a class for the calculation of loss.

Classificationloss ¼ �
Xoutputsize

i¼1

yilogf sð Þi (1)

Where, yi is the class and f sð Þi is the probability of belonging to that class. We also
need to control the number of times we train the model. This is called epoch. Too
much training can result in network overfitting to the training data. While training a
model for certain epochs if validation error increases but the training loss decreases or
remains constant, we can conclude that our model is overfitting as shown in Figure 8.

5. Results

Our setup has the phone Samsung A20, and Samsung Prime communicating with
Raspberry Pi. As Section 3.2, we created the IAT graph using probe request and
response from these devices to Raspberry Pi and prepared the data for feeding to CNN
and evaluated the model. We trained the CNN model as in Section 4. A for 10 epochs
and obtained the accuracy of 1.00 and loss of 0.0021 on training data. Accuracy in the
validation dataset was 1.00 and loss of 0.0021. Using the IAT graph for classification
and CNN + LSTM model and running for 30 epochs, the accuracy and loss were 1 and
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0.0015 in the training dataset and 1 and 0.0011 in the validation dataset. Similarly, we
created the RTT graph using ping as in Section 3.2 and trained for 10 epochs while
feeding to CNN and 40 epochs while feeding to CNN + LSTM and achieved 100%
accuracy in classification in both.

We used the dataset of IAT from crawdad, which was developed by Ulugac et al.
[4] for verification. We used ICMP packets used by two Dell notebooks and two iPads
communicating in the local area network. Using CNN for classification and running
for 10 epochs, we achieved the accuracy of 1 and loss of 1.4 * 10–4 in the training
dataset. We achieved an accuracy of 0.97 and a loss of 0.1326 in the validation dataset.

Figure 8.
Model loss.

Figure 9.
Accuracy using IAT(ICMP) as parameter from verification dataset using CNN.
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Figures 9 and 10 show the learning curve of the CNN model. Using CNN + LSTM for
classification and running for 35 epochs, we achieved an accuracy of 0.9463 and a loss
of 0.1906 in the training dataset. We achieved an accuracy of 0.9060 and a loss of
0.3115 in the validation dataset. Figures 11 and 12 show the learning curve of the
CNN + LSTM model.

Figure 10.
Loss using IAT(ICMP) as parameter from verification dataset using CNN.

Figure 11.
Accuracy using IAT(ICMP) as parameter from verification dataset using CNN + LSTM.
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After analyzing the IAT graph, we found that there is a regular pattern of outliers
and considered if the outliers in the IAT graph can better classify a device using these
deep learning algorithms. We utilized the outliers in the IATs of the verification
dataset for four devices: two Dell notebooks and two iPads. There lies inter-burst
latency between the IAT packets, and we utilize these for classification. We plotted
the outlier graph for four devices considering their own threshold for each. We
plotted outlier graphs and used CNN and CNN + LSTM algorithms for classification.
We used the same CNN configurations ranging from convolution layers, input size,
activation function, and number of layers, etc., for the classification using the IAT
outlier graph. We ran the model for 10 epochs. We achieved the accuracy and loss of
0.9981 and 0.0079 and validation accuracy and loss of 0.9648 and 0.1397, respec-
tively. Figures 13 and 14 show the learning curve of the CNN model using an outlier
dataset for training. We also used the same CNN + LSTM configurations ranging from
convolution layers LSTM layer, activation function, and number of layers, etc., for the
classification using the IAT outlier graph. We ran the model for 15 epochs. We
achieved the accuracy and loss of 0.9870 and 0.0520 and validation accuracy and loss
of 0.9574 and 0.1422, respectively. Figures 15 and 16 show the learning curve of the
CNN + LSTM model using an outlier dataset for training.

To validate the improvement of classification using single type packets (ICMP/
probe request) in our work, we also classified the devices using TCP, UDP, and ICMP
packet types from the same dataset of IAT from crawdad for classification as in [8].
The IAT graphs generated for these packet types were together used for training and
testing the model. We trained the CNN model for 16 epochs and put the dropout layer
after flattened layer to prevent overfitting. We used 18,000 training images and 6000
testing images and obtained an accuracy of 0.9656 and a loss of 0.0894; the validation
accuracy and validation loss were 0.9290 and 0.3073, respectively. Figures 17 and 18

Figure 12.
Loss using IAT(ICMP) as parameter from verification dataset using CNN + LSTM.
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show the learning curve of CNN model using image graphs of IAT generated using
TCP, UDP, and ICMP packet types from the verification dataset.

Again, for this different type of packet, we considered the outliers and classified
them using the outliers of IAT. We trained the CNN model for 20 epochs and put the

Figure 13.
Accuracy using IAT(ICMP) outlier graph from verification dataset using CNN.

Figure 14.
Loss using IAT(ICMP) outlier graph from verification dataset using CNN.
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dropout layer after flatten layer to prevent overfitting. We used 5440 training images
and 1700 testing images and obtained an accuracy of 0.8888 and a loss of 0.2704; the
validation accuracy and validation loss were 0.8504 and 0.4344, respectively.

Figure 15.
Accuracy using IAT (ICMP) outlier graph from verification dataset using CNN + LSTM.

Figure 16.
Loss using IAT (ICMP) outlier graph from verification dataset using CNN + LSTM.
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Figures 19 and 20 show the learning curve of the CNN model using image outlier
graphs of IAT generated using TCP, UDP, and ICMP packet types from the
verification dataset.

Figure 17.
Accuracy using IAT (TCP, UDP, ICMP) as parameter from verification dataset using CNN.

Figure 18.
Loss using IAT (TCP, UDP, and ICMP) as parameter from verification dataset using CNN.
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5.1 Comparison of models and parameters for IAT outlier graphs and IAT graphs
from verification dataset

The summary of the model and parameters is shown in Table 2. When we used
IAT graphs, the validation accuracy is 0.97 for CNN, which is better than

Figure 19.
Accuracy using IAT(TCP, UDP, and ICMP) outlier graph from verification dataset using CNN.

Figure 20.
Loss using IAT(TCP, UDP, and ICMP) outlier graph from verification dataset using CNN.
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CNN + LSTM, in which case the validation accuracy is 0.9060. When we used the IAT
outlier graph, the validation accuracy is 0.9648 for CNN and 0.9574 for CNN + LSTM.
We observe that classification accuracy is similar in the case of CNN irrespective of
the IAT graph or IAT outlier graph used in classification, but in the case of
CNN + LSTM, the accuracy is lower, while using IAT graph for classification than IAT
outlier graph.

We noticed that the results of the combination of CNN and LSTM cannot
outperform the CNN alone model. The first reason is that the input of LSTM is a
flattened version of CNN’s output instead of a specific time series; therefore, the time
dependence captured by LSTM may not reflect the relationship among input images.
The second reason is that the used LSTM layer in the experiments has a small output
size. In this case, some valuable information may be lost.

6. Conclusion

In this work, we classified devices using two parameters, namely inter-arrival time
(IAT) and round-trip time (RTT), and two deep learning algorithms, namely CNN
and a combination of CNN and LSTM. We used the IAT and RTT image graph as
device fingerprint and model using two deep learning algorithms. We captured the
packets using the packet snipping tool at Raspberry Pi(router) for two different
setups. IAT and RTT were recorded for each device by snipping tool in real time. The
security threat posed by adversaries once they forge the IoT device makes device
identification a fundamental problem. The dynamic parameters that we used depend
on hardware and software (CPU cache, data cache, and clock frequency, etc.), which
makes it harder for intruders to create the fingerprint of a device. We used deep
learning to extract the knowledge from data. The widespread recognition of CNN as a
good algorithm for image classification encouraged us to use it. Moreover, as LSTM
has made its name for the classification of time series data, we used a combination of
CNN and LSTM because we were using an image graph of time series data for training
the model. Our approach can be used to detect the malicious user if we store the
fingerprint and match the fingerprint of the device trying to connect to the network
before allowing it to connect. Our approach brings the alternative of using IMEI, IP
and MAC address, cryptography security, and a digital certificate for device
identification, which are prone to spoofing.

We used two different parameters and obtained good accuracy in our real setup.
We also verified our model using the dataset available in public for a single ICMP
packet and were able to achieve validation accuracy of 0.97 for CNN and 0.9060 for
CNN + LSTM. We compared two deep learning algorithms for device identification.

Model/Parameters IAT graphs

(ICMP)

IAT Outlier

graphs (ICMP)

IAT graphs (TCP,

UDP, ICMP)

IAT outlier graphs

(TCP, UDP,

ICMP)

val. Acc val. Loss val. Acc val. Loss val. Acc val. Loss val. Acc val. Loss

CNN 0.97 0.1326 0.9648 0.1397 0.9290 0.3073 0.8888 0.2704

CNN + LSTM 0.9060 0.5541 0.9574 0.1422 — — 0.81 0.51

Table 2.
Performance of models in terms of validation accuracy and validation loss using verification dataset.
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Both models were good when we used a dataset that was generated from our setup,
but while using the dataset from crawdad, CNN was more accurate in classification
than CNN + LSTM. We further used IAT outlier graphs for classification and achieved
validation accuracy of 0.9648 for CNN and 0.9574 for CNN + LSTM. To validate the
improvement in classification accuracy using ICMP packet, we also classified the
devices using TCP, UDP, and ICMP packet types from the verification dataset. We
achieved good accuracy in using a single ICMP packet type for classification.

We collected RTT data in our setup and achieved good accuracy in classification.
In the future, we can collect RTT data in a real scenario with many devices and use it
for classification.
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