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Chapter

On-Line Monitoring and Intelligent
Diagnosis Technology of Rail
Transit Ventilation System

Yongxing Song

Abstract

With the rapid development of economy and urbanization, subway has gradually
become the main pillar of urban development. The ventilation system is the key
guarantee of air quality in rail transit, and its condition monitoring and intelligent
diagnosis are very important. The core problems of the complete set of a ventilation
system required by the subway station have not been completely solved. The ventila-
tion system includes the ventilator and additional equipment. The level of
informatization and intelligence of the ventilation system and ventilator is not very
high, and they have not yet been fully formed into an integrated diagnostic system. In
view of the above two core issues, several scientific issues need to be tackled. This
chapter studies the online monitoring and intelligent diagnosis mechanism of key
equipment in the subway ventilation system. This mainly includes (1) modulation
model of acoustic vibration signal; (2) noise reduction technology and feature extrac-
tion method; and (3) cases of multi-type typical fault identification fan equipment
based on modulation model. Typical fault features were extracted respectively, which
verified the effectiveness of the signal demodulation method for the diagnosis of rail
transit ventilation systems.

Keywords: ventilation system, modulation model, feature extraction, fault
identification

1. Introduction

With the rapid development of economy and urbanization, rail transit has gradu-
ally become the main pillar of urban development. However, the underground tunnel
is a relatively closed space. On the one hand, the ventilation system is needed to
ensure the ventilation of the underground space to ensure the supply of fresh air for
personnel and normal operation of equipment. On the other hand, in case of fire and
other major fire-fighting failures, the normal operation of the fan is required to ensure
the timely discharge of harmful gases and the inhalation of fresh air.

At present, the core problems of rail transit ventilation system have not been
completely solved. The ventilator and ventilation system have not been fully formed
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as an integrated diagnostic system yet. The degree of informatization and intelligence
of the ventilation system is not high. In view of the above core issues, several issues
need to be tacked.

Multi-sensor data fusion technology is the first issue. There are hundreds of mon-
itoring points in the ventilation system, which contain various types of sensor data.
Multi-sensor data fusion is a multi-channel signal acquisition system that realizes the
data fusion, data storage, and real-time display of multiple signals.

Then, fault diagnosis, prediction, and processing technology is the second issue.
Based on the data integrated by the multi-sensor data fusion technology, the features
will be extracted by signal post-processing methods. In a general case, the extracted
features could represent fault feature, which are used for fault diagnosis and fault
prediction.

Finally, the platform for data analysis and management is the third issue, which
combines the multi-sensor data fusion technology with the fault diagnosis, prediction,
and processing technology. The platform mainly involves sensor network technology,
intelligent acquisition and monitoring technology, and network intelligent diagnosis
technology. The fault diagnosis technology of rotating machinery, which has an
impact on the precision of fault detection, is essential to the realization of the intelli-
gent diagnosis technology of the rail transit ventilation system. Therefore, the fault
feature extraction method of rotating machinery signals has been widely studied [1].

For the monitoring signals of rotating machinery, the traditional Fourier transform
spectrum analysis method obtains frequency domain information, but time domain
information is lost. The frequency domain analysis method can accurately obtain the
characteristic information for the steady-state signal of rotating machinery, but in the
non-stationary state condition, time-frequency analysis (TFA) is an effective method
for signal feature extraction. Many researchers have conducted extensive research on
TFA, mainly including short-time Fourier transform (STFT), wavelet transform
(WT) [2], Wigner-Ville analysis [3] methods, and so on.

STFT is a TFA method developed based on Fourier transform, which can obtain
the time-domain and frequency-domain information of the signal, and can realize
better characterization of the non-stationary characteristics of the signal [4]. WT is an
improvement of STFT, which overcomes the limitation of time and frequency resolu-
tion of STFT [5]. In addition, WT is also an effective signal noise reduction method.
Liu et al. used WT to estimate the variance of vibration and noise signals, so as to
realize the noise reduction of monitoring signals [6].

In order to improve the readability of TFA results, many signal decomposition and
analysis methods have been proposed. Common signal decomposition methods
include singular value decomposition [7, 8] (SVD), empirical mode decomposition
[9, 10] (EMD), local mode decomposition [11] (LMD), and ensemble empirical mode
decomposition [12] (EEMD). For the feature components of multi-component fault
signals obtained by signal decomposition, principal component analysis (PCA) can be
used as an effective data dimensionality reduction and feature extraction method [13-
15]. Rahmani et al. [16] have proposed an efficient PCA algorithm. Li et al. [17] used
the PCA method to extract multi-sensor features of nuclear power devices to realize
fault detection, fault recognition, and feature reconstruction. Prawin and Rama
Mohan Rao [18] used the PCA method to reconstruct the online time series input force
signal and realized the extraction of principal component features. However, the
feature extraction method based on signal TFA cannot characterize the modulation
information of rotating machinery and thus cannot directly obtain the low-frequency
modulation information.
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During the operation of rotating machinery, mechanical resonance will be caused
by the excitation force. The broadband mechanical vibration caused by excitation
force is the carrier of the modulated signal. Then, the feature frequency of low-
frequency modulation can be extracted by demodulating the resonant frequency
band. Therefore, the demodulation algorithm based on resonance frequency band has
been widely studied. Envelope demodulation (ED), Kurtogram, Fast Kurtogram (FK),
and Protrugram algorithms have been proposed successively, which are widely used
in the extraction of fault features of rotating machinery or components [19]. Under
the situations where the signal-to-noise ratio (SNR) is good, the spectral kurtosis (SK)
analysis algorithm based on resonance narrowband signal demodulation can obtain
better demodulation results. However, under the interference of strong non-Gaussian
background noise, the SK analysis demodulation algorithm is easy to fail. When the
SNR of the monitoring signal decreases, the demodulation and analysis performance
based on the resonant frequency band decreases rapidly.

The demodulation method based on high-order statistics is an effective method to
extract fault features of rotating machinery with high accuracy. It has better demod-
ulation accuracy than the narrowband demodulation algorithm based on resonance
band demodulation. Cyclostationary demodulation algorithm is a typical algorithm
based on high-order statistics demodulation. Antoni and Randall [20] analyzed the
relationship between correlation spectrum and envelope spectrum, and the research
results show that correlation spectrum has better fault feature extraction accuracy.
The analysis method based on second-order cyclostationarity is the most effective
method to extract the fault information of rotating machinery from high-order statis-
tics. Antoni [21] have carried out a detailed application research on the analysis
method of cyclostationary signals, which have a good feature extraction effect on
traditional rotating machinery.

In the research of rotating machinery demodulation algorithm, it is generally
assumed that the noise interference signal is Gaussian white noise. Nevertheless, it is
not consistent with many practical application scenarios. Borghesani et al. [22] carried
out demodulation analysis and research on cyclostationary signals under non-white
noise interference and proposed square envelope spectrum. However, the spectral
correlation (SC) analysis algorithm has high computational complexity. Therefore, the
SC analysis method cannot be effectively used to realize the online monitoring and
fault diagnosis of rotating machinery. Antoni et al. [23] proposed a Fast-SC analysis
method based on STFT, which was verified and analyzed by bearing fault experi-
ments. Horstmann et al. [24] proposed the detection and identification of approxi-
mate cyclostationary signals and the estimation method of a cycle period. In the
algorithm, signal resampling is the key technology. Sophie et al. [25] proposed to use
the cyclostationary analysis method in the angle/time domain to identify the fault
characteristics of the bearing housing under unsteady working conditions. The key is
to use the encoder to collect the phase information and resample the time-domain
fault vibration signal monitored by the rotating machinery. Borghesani and Antoni
[26] analyzed the failure performance of square envelope spectrum and cyclic
demodulation spectrum under peak background noise and further analyzed the effec-
tiveness and anti-noise of logarithmic envelope spectrum by simulation analysis and
experimental verification.

According to the research status of demodulation algorithm based on high-order
statistics, although the demodulation algorithm based on high-order statistics can
obtain better demodulation accuracy, its computational efficiency is low, and its noise
resistance needs to be further improved, so it is difficult to realize the online analysis
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of monitoring signals. For these defaults, the DPCA method, which is a demodulation
method based on TFA and PCA, was proposed by Song et al. [27, 28]. Based on this
method, the dimension of time-frequency distribution matrix can be reduced to
realize the fast demodulation of signals. The computational efficiency of this algo-
rithm is sufficient to realize the online analysis of monitoring signals.

2. Modulation models of acoustic vibration signal

Considering the working characteristics of rotating machinery, during the opera-
tion process, due to rotor imbalance, misalignment, flow field instability, and other
factors, periodic impact will occur, resulting in significant modulation signal compo-
nents in the radiated noise of fan equipment. Therefore, according to different work-
ing conditions of rotating machinery, its modulation model can be divided into
amplitude modulation (AM) signal model under steady-state conditions and ampli-
tude modulation-frequency modulation (AM-FM) signal model under unsteady state
conditions. The two working conditions are respectively for constant speed operation
and variable speed operation. In this section, typical modulation models of above
modulation signals will be illustrated and analyzed, respectively.

2.1 Modulation model of AM signal

Under the condition of constant speed operation, the radiated noise signal pro-
duced by rotating machinery contains obvious amplitude modulation signal, which is
mainly due to its periodic excitation force. Under steady-state conditions, because the
running speed of the rotating machinery remains unchanged, the action cycle of
impact force remains unchanged, and finally the characteristic modulation frequency
of amplitude modulation signal remains stable.

N

xma(t) = Ay cos(2af t) Z cos (27;7””{) (1)

1

where x4 is the AM signal of rotating machinery; A,, is the amplitude of the AM
signal; f,, is the characteristic frequency of the AM signal; f, ; is the frequency of the
carrier signal; N is the total number of carrier signals.

When the spectrum of the carrier signal is line spectrum, its envelope signal has
significant periodicity, and its carrier modulated AM signal has obvious spectral
characteristics, and the sideband has obvious symmetry, as shown in Figure 1. Such
features can accurately reflect the characteristic frequency information of the modu-
lated signal. Therefore, for a simple single component AM modulation signal, enve-
lope demodulation, resonance demodulation, spectral kurtosis analysis, and other
algorithms can be used to extract the characteristic frequency information of the
modulation signal in the monitoring signal.

When the carrier signal spectrum is broadband signal, the envelope signal and
spectrum of broadband carrier AM simulation signal are shown in Figure 2. The time-
domain and frequency domain spectrum characteristics of the amplitude modulation
signal are different from those of the single component line spectrum carrier modula-
tion signal.
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Mono-component AM signal and its spectrum [29].
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Figure 2.
Wideband carrier AM signal and its spectrum [29].

In time-domain, the envelope signal of wideband carrier modulation signal has
deviation, but the overall trend corresponds to the modulation signal, so it can reflect
the characteristic modulation information of amplitude modulation signal. In the
frequency domain, the spectrum characteristics of wideband carrier modulation sim-
ulation signal appear as wideband frequency domain signal. At this time, there is no
significant distribution feature in the spectrum of the amplitude modulated signal, so
the signal can be demodulated by using the envelope spectrum analysis method, but
the characteristic frequency information of the modulated signal cannot be observed
directly from its spectrum.

2.2 Modulation model of the AM-FM signal

Under the condition of variable speed operation, the amplitude and frequency of
the radiated noise signal generated by rotating machinery are modulated at the same
time. At this time, the modulation signal is mainly amplitude modulation frequency
modulation signal. The main reason for this signal is the periodic change of the impact
force of the rotating machinery with time in the process of variable speed operation.
The AM-FM signal of the radiated noise signal of the rotating machinery established in
this paper is as follows:

n

xpmaf(t) = Apyr oS (O (1)) Z cos(2xf ;t) (2)

1

where xpz47 (t) is the AM-FM signal; A, is the amplitude of the AM-FM signal; 6,,,c
(t) is the change of the modulated signal angle; f,, (t) is the instantaneous frequency
of the AM-FM signal, as expressed in Eq. (3).

Foplt) = 2ot 3)
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For a typical AM-FM signal, the envelope signal of its timing signal is different
from that of a typical AM signal, and its envelope signal does not have typical period-
icity. When the carrier signal is a line spectrum carrier signal, the timing waveform of
the single component AM-FM signal and its corresponding spectrum distribution are
shown in Figure 3.

According to the waveform of single component AM-FM signal, at this time, the
envelope signal can still reflect the waveform characteristics of the modulation signal,
but because the frequency of the modulation signal changes, its waveform does not
have periodicity. Different from the spectrum of single component am line spectrum
carrier modulation signal, the spectrum of single component AM-FM signal does not
have obvious sideband effect and presents a certain bandwidth as a whole, so the
corresponding modulation information cannot be obtained according to its spectral
characteristics.

When the carrier signal is broadband noise, the time-domain waveform and spec-
trum distribution of the AM-FM simulation signal of the broadband carrier signal are
shown in Figure 4. The waveform characteristics of its envelope signal are similar to
the envelope signal of single component AM-FM line spectrum carrier modulation
signal, which can reflect the waveform of the modulation signal, but there is a certain
error. The spectrum of the wideband carrier modulated signal as a whole is a wide-
band frequency domain signal, which corresponds to the wideband spectrum of the
carrier signal as a whole, but it does not reflect the change of the characteristic
frequency of the modulated signal. Therefore, it is difficult to extract the characteris-
tics of AM-FM signals using conventional envelope demodulation algorithm.

For the feature extraction of AM-FM signal, the signal resampling technology and
demodulation technology are often used. The resampling operation of the monitoring
signal of rotating machinery requires the monitoring of phase information. The
resampling signal of rotating machinery can be obtained by using the phase informa-
tion of rotating machinery for data difference and combining the timing signal of the
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Figure 3.
Mono-component AM-FM signal and its spectrum [29].
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Figure 4.
Wideband carrier AM-FM signal and its spectrum [29].
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Monitoring signal vesampling [29]. (a) Timing signal; (b) speed phase signal; and (c) resampled signal.

monitoring signal, as shown in Figure 5. According to the resampled signal obtained
by resampling the phase data of rotating machinery and the radiated noise signal,
combined with the method of spectrum analysis, the order modulation information of
the acoustic signal of rotating machinery can be obtained.

3. Noise reduction technology and feature extraction method of online fan
monitoring signal

3.1 Radiated noise signal components

The acoustic signal of rotating equipment mainly includes three components:
deterministic signal, modulated signal, and noise signal [29]. Therefore, the sound
radiation model of rotating machinery can be expressed as Figure 6. The vibration
transmission system of rotating machinery can be regarded as a liner time invariant
system. The monitoring signal is the convolution of above three signal components
and transmission path function, as illustrated in Eq. (4)

1 I
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Figure 6.

Acoustic signal model of rotating machinery [29].
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x(t) = [xa(t) +xm () +2xc(t)] 51 (4)

where x(t) is monitoring signal; x,;(t) is deterministic signal component; x,,(t) is
modulation signal component; x,(t) is noise signal component; * represents convolu-
tion operation; / is the transfer function from the vibration source to the monitoring
point. It is worth noting that the impact of transfer function can be ignored since the
transfer function only has a small influence on the frequency characteristics of signal.

The deterministic signal components in the monitoring signal are caused by
mechanical faults in the process of mechanical operation, such as rotor imbalance, bolt
looseness, and so on. The deterministic signal components can be accurately charac-
terized by functional models, which have first-order statistical characteristics under
steady-state conditions as shown in Eq. (5).

x4(t) = Efxa(t + Ty)] (5)

where, E [] represents the statistical average function of the signal; T4 represents
the period of the signal.

Under steady-state condition, the deterministic signal component is the basis of
signal preprocessing analysis since the characteristic frequency and amplitude of the
component do not change considerably.

Modulation signal component is the characteristic component in the monitoring
signal. The modulation signal component is caused by the periodic impulse of rotating
parts in the process of rotation. Under constant speed operation, the modulation signal
is AM signal, whose second-order statistical characteristics have significant periodicity
as shown in Eq. (6).

Xer(t,7) = Elx (t) 56 (t + 7)]] (6)

where x,,(t, 7) is the autocorrelation function of the rotating machinery monitor-
ing signal; 7 is the delay time.

Under variable speed operation, the modulation signal is AM-FM signal; the rela-
tionship between the order of monitoring signal and the frequency modulation can
also be obtained by resampling. In rotating equipment, the fault features are hidden in
the modulation signal. Faults of various positions, components, and degrees exhibit
distinct characteristics in modulated signals. There is a correlation between fault
features and modulation features. Thus, the fault early warning and fault location
could be realized. Therefore, the modulation signal components in radiation noise
generated by rotating machinery have periodicity of high-order statistics. It is an
effective means for the application of rotating machinery condition monitoring, fault
early warning, and fault location.

Rotating machinery noise signal components are mainly Gaussian white noise,
which does not have the periodicity of first-order, second-order, and higher-order
statistics. Therefore, in order to accurately extract the low-frequency acoustic texture
feature information of rotating machinery, it is necessary to eliminate noise signal
component by utilizing its statistical characteristics.

3.2 Signal preprocessing method

Under the condition of low SNR, the interference of environmental noise and
equipment noise leads to serious clutter interference in the radiated noise signal,
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which is not conducive to the identification and extraction of deterministic charac-
teristic frequencies. The radiation noise is composed of equipment noise and environ-
mental noise. The equipment noise is the noise generated by equipment operation,
which refers to the noise with a certain modulated signal component. The environ-
mental noise is the background noise, which refers to noise unrelated to the operation
of equipment. The equipment noise contains deterministic signal component and the
modulation signal component, while the environmental noise contains noise signal.
Signal preprocessing method is an effective noise reduction method for monitoring
signals. The preprocessing methods for rotating machinery monitoring signals mainly
include time-domain synchronous averaging (TSA) method and auto-regression (AR)
model.

3.2.1 Time-domain synchronous averaging

Because the modulated signal components and noise signal components do not
have first-order steady-state statistical characteristics, while the deterministic signal
components have stable first-order statistical characteristics, synchronous averaging is
a commonly used deterministic component extraction and noise reduction method for
rotating machinery equipment running at a constant speed, as shown in Eq. (7). TSA
is the most commonly used synchronous averaging technology.

1 M

x1sa(t) = J&T:oﬁ Z x(t+mT71sa) (7)
m=—M

where x(t) is the monitoring signal; 2 M + 1 is the number of averaging; T'rsa is the
duration of averaging period; xrsa (t) is the TSA signal.

However, under the variable speed operation, the TSA cannot be directly used.
The monitoring signal needs to be resampled by the phase signal monitored by the
rotating machinery. According to the resampled signal, combined with the angle-
domain average processing, the angle-domain averaging signal can be obtained-as
shown in Eq. (8).

M

Z x(0+m9TSA) (8)

m=—M

xrsa(0) = Jim M1

where x(0) is the resampling monitoring signal; Ors, is the angle averaging period;
x1sa(6) is the angle-domain averaging signal.

However, there are a series of problems in the practical application of TSA. In
practice, the feature extraction of deterministic signal components needs to have
certain requirements for the resolution of time-domain signals. Moreover, in order to
meet the requirements of signal analysis frequency resolution, TSA has higher
requirements for the temporal length of monitoring signals and the operating condi-
tions of rotating machinery, which play a certain role in limiting the application of the
TSA technology.

3.2.2 Linear prediction based on auto-vegression model

Linear prediction is an effective algorithm for extracting the deterministic compo-
nents in signals. This algorithm can use historical data to achieve accurate prediction
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of data and then realize the prediction and separation of deterministic components in
rotating machinery monitoring signals. The AR model used to extract the determinis-
tic components can be expressed by Eq. (9).

p
XAR = — Zq(i)x(n — i) (9)

where x 4R is the deterministic signal component obtained by linear prediction of
monitoring signal; p is the order of AR model; ¢ (i) is weight coefficient. g(i) can be
solved by Yule-Walker equations. The process is as follows:

7xx(0) Trx (—1) o re(-p+1)7 q(1) Txx (1)

re() 7e(0) o (P =2 |42 _ |72 (10)

rax(p—1) r(p—2) .. 7xx(0) q(p) Txx(p)

The residual signal refers to an interference signal, which is composed of modula-
tion signal and noise signal. The residual signal was obtained by the residual between
monitor signal and linear prediction signal, as shown in Eq. (9) and Eq. (11). In
addition, by using the residual between the original monitoring signal and the linear
prediction signal, the residual signal composed of the modulated signal and the noise
signal can be effectively obtained, as shown in Eq. (11).

p
Xm(t) +x(t) = x(t) + > _alk)x(t —k) (11)
k=1
where x(t) is monitor signal; x,,(t) is the modulated signal; x.(t) is the noise signal;
a (k) is the weight coefficient of linear prediction. a (k) can be obtained by linear
transformation of AR function of monitoring signal. The process is as follows:

N-1

Fax (1) :%Zx(n)x(n—l),OsiSp—l (12)
n=0

Therefore, through the linear prediction, the SNR of the modulated signal can be
effectively improved, and then, the interference component in the modulated signal
can be reduced.

In order to better compare the preprocessing performance of the two algorithms,
Gaussian white noise with an SNR of —15 dB is added to the signal model for analysis
and verification, as shown in Figure 7. The raw signal, TSA signal, AR signal, and their
spectrum are shown in Figure 7, respectively.

When SNR = —15 dB, the raw signal contains a lot of noise, and the SNR is very
low. The spectrum of the raw signal has completely lost the ability to characterize the
deterministic signal components. When TSA is used as the preprocessing analysis
method, the spectrum of the preprocessed signal contains a certain characteristic
frequency within the frequency range of 0-100 Hz, but the spectrum still contains a
lot of interference frequencies. At this time, using TSA as the preprocessing method
has lost its effect.
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Comparison of noise reduction. (SNR = —15 dB) [29].

When the linear prediction preprocessing method is adopted, the noise can be
effectively reduced according to the waveform of its time-series signal, and the anal-
ysis results can be obtained based on the linear prediction as the preprocessing
method. There is a low degree of interference in the spectrum, and the characteristic
frequency of deterministic signal components can be more accurately located. There-
fore, under the condition of low SNR, the preprocessing algorithm based on linear
prediction is better than the time-domain average algorithm. In the later sections of
this chapter, the preprocessing method based on the AR model was adopted by
default.

4. Cases of multi-type typical fault identification fan equipment based on
modulation model

4.1 Common failures of multi-type fan equipment

Cyclostationary signal, a kind of widely existing non-periodic and non-stationary
signal, is a modulated signal component of rotating machinery. However, the second-
order statistical characteristics of cyclostationary signals have certain periodicity,
which provides a research basis for cyclic feature extraction of modulated signals.
Cyclic feature extraction method is a signal post-processing method based on signal
demodulation, which reveals the potential periodicity of the monitoring signal and
then obtains more accurate signal modulation information than the traditional signal
processing methods. For cyclostationary signals, the enhanced envelope spectrum
obtained by Fast-SC [23] could realize cyclic feature extraction. In this section, in
order to verify the effectiveness of fault identification and feature extraction methods
for different types of fans, experiments of jet fans and axial fans have been carried
out. The test rigs of multi-type fan equipment are shown in Figure 8. Based on the
vibration acceleration signals collected in their experiments, the enhanced envelope
spectrum (EES) is calculated, and the characteristic frequency of the fault is extracted.

11



Tunnel Engineering - Modelling, Construction and Monitoring Techniques

) Test jet fan Auxiliary fal

__EX |

v
1
Acceleration sensors ﬂi

7]

— -
Data acquisition system = —1
< 2 W Daa acquisition system |5
! Laptop
P 7 . !

(a) Jet fan (b) Axial flow fan

Figure 8.
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Enhanced envelop spectrum in normal working conditions [1]. (a) Jet fan and (b) axial flow fan.

For fault diagnosis, fault characteristics can be used as a criterion for detailed fault
diagnosis. Different types of fans have different criteria for fault diagnosis:

For a jet fan, the EES of normal working conditions is shown in Figure 9a. It shows
that the labeled cyclic frequencies a = f, 2f, 4f can represent the characteristic fre-
quencies of the jet fan in normal working conditions, in which f'is the shaft frequency
of a jet fan. For an axial flow fan, the EES of normal working conditions is shown in
Figure 9b. It shows that the labeled cyclic frequencies a = 2f are the characteristic
frequencies of the axial flow fan in normal working conditions, in which f'is the shaft
frequency of axial flow fan.

In the fault experiments of a jet fan and an axial fan, bolt looseness faults were set
up in the two experimental devices, respectively. The EES of the jet fan in bolt
looseness fault is shown in Figure 10a. It is indicated that in the labeled cycle fre-
quencies, « = f, 2f, 4f, 5f,and 6f are the characteristic frequencies of bolt looseness fault
of the jet fan. The EES of the axial flow fan in bolt looseness fault is shown in
Figure 10b. It is shown that the labeled cycle frequencies a = 2f, 4f, 6f are the
characteristic frequencies of bolt looseness fault of the axial flow fan. The comparison
shows that the cyclic feature extraction method can effectively diagnose the bolt
looseness fault of an axial flow fan and a jet fan. In addition, the cycle frequency of
bolt loosening fault of the jet fan and axial fan is different, so the cyclic feature
extraction can be extended to the fault diagnosis of the subway ventilation system.
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Figure 10.
Enhanced envelop spectrum in bolt looseness fault [1]. (a) Jet fan and (b) axial flow fan.

4.2 Typical faults of the axial flow fan equipment

For different types of typical faults, besides the bolt loosening fault of the axial
flow fan device, the EES of blade slight damage fault is also calculated, and the
characteristic frequencies of acoustic signals and vibration acceleration signals before
and after blades abrasion are extracted, respectively.

For acoustic signals, the EES of normal working conditions is shown in Figure 11a.
It shows that the labeled cyclic frequencies a = 2f, 6f, 8f can represent the character-
istic frequencies of acoustic signals in normal working conditions. The EES of dam-
aged blades condition is shown in Figure 11b. It is indicated that in the labeled cycle
frequencies, a = 4f, 6f, and 8f are the characteristic frequencies of blades abrasion fault
of the axial fan.

For vibration acceleration signal, the calculated EES before and after blades abra-
sion are shown in Figure 12. It shows that the labeled cyclic frequencies a =f, 2f, 4f, f,
8f can represent the characteristic frequencies of vibration acceleration signals in
normal working and blades abrasion conditions. This is because the blades abrasion
failure set in the experiment was not destructive damage, so no new characteristic
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Figure 11.

Enhanced envelop spectrum of acoustic signals. (a) Prototype and (b) blades abrasion.
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Figure 12.
Enhanced envelop spectrum of vibration acceleration signals. (a) Prototype and (b) blades abrasion.

frequency is generated in the enhanced envelope spectrum under blades abrasion
failure. However, compared with normal working conditions, the amplitude of the
cyclic frequency caused by blades abrasion fault changes. These amplitude changes
can also be used as one of the characteristics of blades abrasion fault, so as to realize
the prediction of destructive blades abrasion fault.

5. Conclusion

In this chapter, the key technologies of online monitoring and intelligent diagnosis
are discussed. The feature extraction method based on signal demodulation offers a
powerful solution to fault identification. In addition, common signal noise reduction
methods are researched. Finally, the cases of typical rotating machinery failure were
simulated by experiment. The main conclusions are as follows:

1. According to different operational conditions of rotating machinery, its
modulation model can be divided into AM signal model and AM-FM signal
model. The frequency modulation could be extracted by these models. The
establishment of modulation signal model provides the research foundation for a
signal demodulation method.

2.Signal preprocessing methods could reduce or eliminate the signal noise, which
effectively improves the SNR for further analysis.

3.The fault diagnosis method based on signal demodulation is verified in
experiments of bolt looseness and blades abrasion fault. The experimental results
show that the amplitudes of cyclic frequency components can reveal the spectral
characteristics of the ventilator.
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