
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

174,000 190M

TOP 1%154

6,400



Chapter

Artificial Intelligence Approaches
for Studying the pp Interactions at
High Energy Using Adaptive
Neuro-Fuzzy Interface System
Doaa Mahmoud Habashy, Mahmoud Yaseen El-Bakry,

El-Sayed Ahmed El-Dahshan and Hanem Ibrahim Lebda

Abstract

Adaptive Neuro-Fuzzy Inference System (ANFIS), a popular machine learning
model, is introduced in this chapter. ANFIS has a long development history and
good agreement on scientific accomplishments. The value of ANFIS has grown dra-
matically along with the great interest in deep learning. We will examine how
machine learning and ANFIS are related. Different methods can be used to implement
machine learning models. ANFIS is a Fuzzy Inference System (FIS) that works within
the context of adaptive networks. It merges the ideas of Artificial Neural Networks
(ANNs) and Fuzzy Logic (FL) into a single framework. This framework can learn
to estimate nonlinear functions and operates as a universal estimator. This chapter
aimed to investigate the behavior of D mesons ratios production cross section

(Dþ=D0,D∗þ=D0, D
þ
s
=D0,and D

þ
s
=Dþ), differential production cross section

of prompt (D0, Dþ, D∗þ
and D

þ
s
mesons) as a function of PT in pp collisions at

(
ffiffi

s
p

= 5.02 and 7 TeV) and predict the behavior for others. The ANFIS model was
created through a series of trial-and-error experiments. The ANFIS-based model
simulation results perfectly fit the experimental data. When tested with non-training
data points, the ANFIS prediction capabilities performed well. The ANFIS offers
extensive procedures for high-energy physics modeling.

Keywords: adaptive neuro-fuzzy interface system, artificial neural network, deep
learning, machine learning, artificial intelligence

1. Introduction

Artificial Intelligence (AI) has been quickly assimilated into our daily lives during
the past 10 years. It drives a lot of our behaviors, including how we use social media
and definitely the future of the planet. So to be employable in the expanding sector, it
is essential to understand the primary distinctions between Artificial Intelligence (AI),
Machine Learning (ML,) and Deep Learning (DL) [1–5]. We will define AI, ML, and
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DL in the following sections, as well as emphasize the key distinctions between the
two latter subsets (see Figure 1).

The term “Artificial Intelligence” was popularized in 1956 at the Dartmouth con-
ference, which was organized by John McCarthy, the father of AI. It is the develop-
ment of intelligent devices and systems that are capable of performing tasks which
would normally require human intelligence. It is defined as a branch of computer
science concerned with the simulation of intelligent behaviors in computers. AI sys-
tems possess the ability to do a variety of activities similar to human intellect, includ-
ing planning, learning, manipulation, and problem-solving. Artificial narrow
intelligence and artificial general intelligence are the two most commonly types of
artificial intelligence. Narrow Artificial Intelligence is systems or computers with
artificial limited intelligence, commonly referred to as weak AI, that are capable of
carrying out solitary tasks. However, they are unable to perform tasks that are not part
of their intended function and capability. The kinds of AI machines or programs that
we use on a daily basis are instances of limited or weak AI. Examples that are often
used include facial recognition software, email spam filters, and Google Translate.
General Artificial Intelligence is a more sophisticated machine that has all of a human’s
talents, including emotional intelligence and creativity, which is referred to as strong
AI. However, it is a difficult challenge that has not yet succeeded in replicating human
intelligence, emotions, and the capacity to respond in unanticipated circumstances.
The only way we can see this type of AI in action is in science fiction films. Machine
Learning (ML) is a branch of AI [6]. It focuses on developing algorithms that can take
in the provided data, learn from it, and make judgments based on the patterns found
in it. When an unpleasant or wrong choice is made, these intelligent systems will need
human intervention. ML is used to teach machines how to manage data more effi-
ciently. We may be unable to perceive the obtained information from the data after
viewing it. In that case, we employ ML. With an abundance of datasets available, the
demand for machine learning is increasing. Many industries use ML to extract data.
The goal of ML is to learn from data. Deep Learning (DL) is a further division of ML.
Without requiring human input, it processes data using a number of layers of algo-
rithms and artificial neural network to arrive at an accurate conclusion. DL was first
introduced in the 1980s, but it has achieved popular success since 2006. Due to the
enormous quantity of data needed to train a DL network, significant computational
power and time are required. The time required to train the network could eventually
be cut in half, from weeks to hours, as cloud computing and Graphics Processing Units

Figure 1.
Overview of artificial intelligence (AI), machine learning (ML) and deep learning (DL).
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(GPUs) advance and grow. As shown in Table 1, there are some significant differ-
ences between DL and ML based on the descriptions of both concepts above [7–10].

A component of AI called ML, teaches programs how to spot patterns in datasets
and use those patterns to infer conclusions and predictions. The use of datasets,
features, and algorithms in ML software is essential. Datasets are used to train
machine learning programs to identify patterns and correlations, so they are neces-
sary. Images, numbers, words, and other types of data are included in such databases.
Features, often known as variables, draw attention to important data points that the
program should concentrate on. In order to teach the program how to make the best
judgments, the appropriate features and algorithms must be chosen. These features
and algorithms are the tools for data analysis. The speed and precision of getting the
results may vary, even when utilizing multiple methods for the same task may pro-
duce equal solutions. It’s also crucial to remember that the accuracy of the results is
determined by the caliber of the data. Therefore, gathering reliable data will help in
reaching the intended results [11, 12].

Forecasting and prediction of data, such as stock market prices, are frequent
applications of machine learning. Other straightforward applications that employ it
include email spam filters and social media connection suggestions. While DL is used
in more complex situations like autonomous vehicles. The network is able to identify
traffic lights, find barriers, and more. AI approaches have been recently used in a
number of modeling methodologies based on soft computing systems. In the fields of
nuclear physics, high-energy physics, materials science, and other sciences, these
evolution algorithms have a strong physical existence. The Interaction behavior is
complicated by the non-linear relationship between the interaction parameters and
the result. AI approaches are essential for the multi-part data processing required to
understand the interactions of fundamental particles. These techniques act as alterna-
tives to more traditional methods. In this regard, AI methods like genetic algorithms,
genetic programming, and Genetic Expression Programming (GEP) can be used as
substitute tools to imitate these interactions. The learning algorithm of AI approaches
serves as a driving force behind their use, as it discovers the links between variables in
datasets. Then builds models to account for those associations (mathematically
dependent). To evaluate experimental data and gain a better knowledge of many
physics processes, a new computer science approaches are needed. Experimental data
were acquired and described by a mathematical equation.

The success of modeling enables us to anticipate areas where experimental data are
lacking. Due to its generalization, noise tolerance, and fault tolerance, AI has become
increasingly popular in recent years as a potent tool for creating data correlations and

Machine learning (ML) Deep learning (DL)

Approach Requires structured data Does not require structured data

Human

Involvement

Requires human Involvement for mistakes Does not require human Involvement for

mistakes

Hardware Can function on CPU Requires GPU/ significant computing power

Time Takes seconds to hours Takes weeks

Uses Forecasting, predicting, and other simple

applications

More complex applications like autonomous

vehicles

Table 1.
Comparison between DL and ML.
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has been successfully applied in materials science. Alaa F. Abd El-Rehim et al., used
ANN to Simulate and forecast the Vickers Hardness [13–16]. H A M Ali and D M
Habashy used ANN model for calculating the electrical impedance, AC conductivity
and dielectric properties [17]. D. M. Habashy et al., simulate and forecast Entropy per
Rapidity using ANN model at LHC Energies [18]. D. M. Habashy et al., used ANN
model for training Particles multiplicity per rapidity for different charged particles
observed in Au + Au heavy-ion collisions with energies varying between 2 and
200 GeV [19]. D.M. Habashy et al., train and forecast micro-hardness of nano-
crystalline TiO2 using ANNs [20].

2. Applications in industry

Our GPS navigation systems’ traffic predictions are made using machine learning
algorithms [1–3]. Based on location- and velocity-related data acquired from our daily
data feedback, they indicate busy routes. In order to suggest people we might know,
ML software analyze our social media usage data, including the people we have
connected with, the profiles we have visited, and our hobbies. Email spam filters use
ML to deliver a more dependable and resilient solution. It guarantees that the filter is
continually updated to recognize the most recent spammers’ tricks. The AlphaGo
program from Google DeepMind is among the most well-known applications of deep
learning. Go is a board game that the system learned to play by competing against
expert players. By making plays without the aid of a human, it was finally able to play
at a level above that of the world champion Lee Sedol. One business adopting deep
learning for self-driving cars is Tesla. Their deep learning program is utilized for
semantic segmentation, road item detection and avoidance, monocular depth estima-
tion, and image analysis. Amazon developed Alexa Conversations to give people a
more organic engagement experience. Deep learning is used to ensure more natural
interactions rather than ones that are forced or inflexible. On the basis of the
presented photos, a deep learning (DL) system is asked to distinguish between dogs
and cats. These photos will first be sent via the neural network’s various levels. The
subsequent layers will individually identify the distinctive features of dogs and cats,
ultimately establishing the proper characteristics of each species. Finally, it will gen-
erate a result that accurately separates the photos into those of dogs and cats. Unlike
the preceding machine learning example, the deep learning system in this case does
not need structured data to categories the animals.

3. Artificial neural networks (ANNs) and their constituent parts

Data inputs, weights, biases, activation functions, and outputs make up ANNs
[4, 13, 21].

1.These are the data that you wish to process, or data inputs.

2.Weights: These specify how significant each input is to the final result.

3.Biases: These reflect the degree to which assumptions about the outcome are
made. More Inferences are made when the bias is larger, while less Inferences are
made when the prejudice is smaller.
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4.The weighted average of the inputs and the bias used make up the activation
functions. They make the decision on whether or not the data will move on to the
network’s next layer.

Artificial neurons are present in every layer of a NN and transmit data through
them. There is bias in these neurons. Weighted channels are used to convey inputted
data via the layers. The weighted value of the data is added to the bias and used within
the activation mechanism when it reaches the neurons. The neuron may or may not be
triggered according to the outcome of the function. If the neuron is active, the
information will be transmitted to the following layer. The data will not move on to
the next layer, though, if it’s not active. Until an output is created, this process will be
repeated across the layers. Decisions produced by the deep learning software are the
outputs. DL system does not require human involvement to learn from their mistakes
because of the various layers in the neural network. It represents a meager step toward
creating an artificial general intelligence system that is capable of autonomous
decision-making.

4. Adaptive neuro-fuzzy inference system (ANFIS)

As is well known, the fuzzy logic system has some limitations, such as the need to
determine the rule base, which is usually solved by referring to expert knowledge. It is
obvious that the membership functions required for the formation of fuzzy sets must
be determined. ANFIS allows you to use data sets to determine the rule base and
membership functions for this purpose [22–25]. The ANFIS system employs two
approaches: NNs and FL, if these two systems are merged, they may obtain a success-
ful outcome that involves either fuzzy intelligence or neural network analytical abili-
ties. The ANFIS structure, like that of other fuzzy systems, is divided into two parts:
introductory and concluding, which have been connected by a set of rules. ANFIS
training includes determining the parameters associated with these parts and using an
optimization algorithm. During training, ANFIS makes use of the existing input–
output data pairs. And after that, IF-THEN fuzzy rules are created to determine how
these parts are related to one another (Jang 1993).

4.1 ANFIS architecture

ANFIS structure is formed of nodes and the bonds that link them. Because some or
all of the nodes have influence over the end nodes, it is adaptive. An algorithm is
applied to discover the relationship between input and output nodes. We can see 5
different layers in the ANFIS network structure, denoting that it is a multi-layer
network. The structure has 2 inputs and one output, as well as four membership
functions and two rules. The layer structure of ANFIS is explained below in accor-
dance with the ANFIS structure shown in Figure 2.

The input values are obtained by the first layer, which defines the membership
functions that apply to them. The “fuzzification layer” is also called. This layer’s out-
puts are the inputs’ fuzzy membership grades, which are determined using the fol-
lowing equations:

O1,i ¼ μAi
xð Þ, i ¼ 1, 2 (1)
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O1,i ¼ μBi
yð Þ, i ¼ 3, 4 (2)

Where x and y are the node’s inputs, and Aiand Biare the verbal marks linked with
this node function. μAi

xð Þ and μBi
yð Þ can be assigned any fuzzy membership function.

Due to function, the 2nd layer is called the rule layer because it multiplies the input
signal values into each node and determines the rule firing strength. This layer
employs fuzzy operators to fuzzify the inputs, and also the AND operator. The output
of the 2nd Layer is as follows:

O2,i ¼ ωi ¼ μAi
xð Þ ∗ μBi

yð Þ, i ¼ 1, 2 (3)

The third layer’s role is to normalize the computed firing strengths by dividing
each value by the total firing strength, and it is referred to as the normalization layer,
the output of Layer 3 ωiis as follows:

O3,i ¼ ωi ¼
ωi

ω1 þ ω2
, i ¼ 1, 2 (4)

The fourth layer will receive the normalized input values combined with the result
parameter set and is called as defuzzification layer.

O4,i ¼ ωif i ¼ ωi pixþ qiyþ ri
� �

, i ¼ 1, 2 (5)

Where pi, qi, and riare the consequent parameters.
In the network’s final layer, a single fixed node labeled ANFIS calculates the total

output as the cumulative of all input variables. The model’s overall output is given by

O5,i ¼
X

i

ωif i ¼

P

i
ωif i
P

i
ωi

, i ¼ 1, 2 (6)

During the training process, the best values of MF such as (Triangular.—Trape-
zoidal.—Piecewise linear.—Gaussian.—Singleton) and subsequent parameters for

Figure 2.
ANFIS general structure in five layers.
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ANFIS model experiences are noted as a training data set and training algorithms, see
Figure 3. The ANFIS model was trained to utilize backpropagation and hybrid algo-
rithms. The backpropagation algorithm calculates output errors for each layer and
uses them to update layer parameters. The hybrid training algorithm is so named
because it employs two gradient descent and least-squares optimization techniques.

ANFIS was created using MATLAB software, and various membership functions
were used to train it. To achieve the optimal membership function parameters, the
ANFIS approach’s inputs are fuzzified with membership functions and trained using
training data measured under normal and abnormal conditions.

4.2 The proposed hybrid ANFIS modeling

The present work proposed a hybrid model combined of ANN and FL (called
ANFIS model). This model optimize D mesons ratios production cross-section

(Dþ=D0,D ∗þ=D0,Dþ
s =D

0and Dþ
s =D

þ) and differential production cross section of

prompt D0,Dþ, D ∗þ, Dþ
s mesons as a function of Transverse momentum distribution

(PT) in pp. collisions at different the total center of mass energy,
ffiffi

s
p

= 5.02 and 7 TeV
[26, 27]. Eight ANFIS models are designed to achieve this goal using MATLAB ANFIS
editor. ANFIS (1–4) models simulate and predict Ratios of D—meson

Dþ=D0,D ∗þ=D0,Dþ
s =D

0andDþ
s =D

þ respectively. The inputs of these models are
Transverse momentum distribution (PT) and

ffiffi

s
p

, while the output is Ratios of D—

meson. ANFIS (5–8) models simulate differential production cross section of prompt

D0,Dþ, D ∗þ, Dþ
s mesons respectively. The inputs of these models are Transverse

momentum distribution (PT) and
ffiffi

s
p

, while the output is differential production cross

section of prompt D0,Dþ, D ∗þ, Dþ
s mesons. The data collected from experiments are

divided into two sets, namely, training set and testing set. The training set is used to
train the ANFIS hybrid model. The testing data set is used to confirm the accuracy of
the proposed model. It ensures that the relationship between inputs and outputs,
based on the training and test sets are real. The data set is divided into two
groups, 70% for training and 30% for testing. As a neural network, ANFIS must
also be taught over a predetermined number of training cycles (epochs). Figure 4
displays a flowchart of the ANFIS. To determine the ideal architecture parameters,
the ANFIS model was run using experimental data. Different training epoch
counts were used in several simulations to test how closely the check error (the
difference between the output of the ANFIS and the validation data) and training
error (the difference between the output of the ANFIS and the training data) were

Figure 3.
Membership functions.
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related (so that ANFIS would have generalization capability). The root mean
squared error (RMSE) and coefficient of correlation (R2), both of which are
provided in Eqs. (7) and (8) respectively, are statistical measures that are used to
evaluate error.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Oprei �Oexpi
� �2

n

s

(7)

R2 ¼ 1�
P

i Oprei �Oexpi
� �2

P

i Oprei
� �2

 !

(8)

The predicted and experimental outputs are represented by Oprei and Oexpi,
respectively, and n is the number of paired input/output pairs.

5. Results and discussion

The goals of this chapter are to use the ANFIS model to model, simulate and
predict the behavior of D mesons ratios production cross-section

(Dþ=D0,D ∗þ=D0,Dþ
s =D

0and Dþ
s =D

þ) and differential production cross section of

prompt (D0, Dþ, D ∗þand Dþ
s mesons) as a function of PT in pp. collisions at (

ffiffi

s
p

=
5.02 and 7 TeV).

Figure 4.
Flowchart of ANFIS model.
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Specific steps are taken in order to achieve the chapter’s objectives. The ANFIS
model is loaded with experimental data. MATLAB is utilized to process the modeling
(R2017 a). Eight ANFIS networks have been generated to finish the modeling process

forD mesons ratios production cross-section (Dþ=D0,D ∗þ=D0,Dþ
s =D

0and Dþ
s =D

þ)

and differential production cross section of prompt (D0,Dþ, D ∗þand Dþ
s mesons) as a

function of PT in pp. collisions at (
ffiffi

s
p

= 5.02 and 7 TeV). For each ANFIS network, the
number and the type of membership functions (MF) for both inputs and outputs are
determined. The number of epochs is also adjustable to obtain the lowest training
error. After re-training multiple ANFIS networks with various specifications, the
optimal ANFIS network with the lowest possible training error is discovered. The
input patterns of the designed ANFIS hybrid have been trained to produce target

patterns that modeling D mesons ratios (Dþ=D0,D ∗þ=D0,Dþ
s =D

0andDþ
s =D

þ) and

differential production cross section of prompt (D0,Dþ, D ∗þ, Dþ
s mesons) as a func-

tion of PT in pp. collisions at (
ffiffi

s
p

= 5.02 and 7 TeV).
The best ANFIS network for this dataset was found within 50 epochs and two

hidden layers with 6 and 6 neurons as specified in Figure 5. Membership functions
(MFs) also play a fundamental role in Fuzzy Inference Systems modeling. It is worth
mentioning that these system modeling are chosen carefully. The performance of
ANFIS is very sensitive to the amount of MFs in the system. As a result, it is expected
that complex systems with a great quantity of MFs will perform poorly because of the
amount of the premise parameters that need to be estimated. MFs can have many
shapes. Accordingly, the results of the experiments show that ANFIS with Generalized
bell-shaped (gbellmf) has attained the best performance in all simulated and predicted
experimental data (see Figure 6). The generalized bell-shaped MF (gbellmf) has a

Figure 5.
The ANFIS architecture of the best network.
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bell-like symmetrical shape. According to: f ¼ x, a, b, cð Þ ¼ 1

1þ x�c
aj j2b . This function has

three parameters: a determines the width of the bell-shaped curve, with a larger value
resulting in a wider membership function, b is a positive integer that defines the shape
of the curve on either side of the central plateau, and c determines the center of the
curve in a universe of discourse. The function is used to generate an initial output FIS
matrix from training data, with default values for membership function numbers “6
6” and types “These defaults” provide membership functions on each of the two
inputs. The generated fuzzy inference system structure has 36 fuzzy rules of type
“linear” by default. The following are the final parameters that best fit the data.

ANFIS info.
Number of nodes: 101
Number of linear parameters: 108
Number of nonlinear parameters: 36
Total number of parameters: 144.
Number of fuzzy rules: 36
Simulation and prediction results based on ANFIS used to model theD—meson

ratios production cross section (Dþ=D0,D ∗þ=D0,Dþ
s =D

0andDþ
s =D

þ) and differential

production cross section of prompt (D0,Dþ, D ∗þ, Dþ
s mesons) for pp. collision at

different PT and
ffiffi

s
p

(5.02 and 7TeV) are given in Figures 7–10 (a-d). The experimen-
tal data is represented by solid circle symbols, while the simulated ANFIS results are
represented by solid line curves and the predicted ANFIS results are represented by
solid square symbols. After training, the ANFIS models have been used to predict D
meson ratios at different values of PT and

ffiffi

s
p

(5.02 and 7 TeV) that are not used in
training session as shown in Figures 7–10 (a–d). Figures 7 and 8 (a–d), they introduce
the ANFIS trained results for Transverse momentum distribution measured at

ffiffi

s
p

(5.02 and 7TeV) respectively for particles ratios and prediction for experimentally
unmeasured values. Studying Figures 7 and 8, it was discovered that the simulation
ANFIS curves and the experimental data symbols nearly matched, indicating excellent
simulation results and the prediction data symbols are clear and produce acceptable

Figure 6.
The generalized bell-shaped membership function (gbellmf).
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results. The ratios of the PT-differential cross sections of prompt mesons in pp. collisions
at

ffiffi

s
p

= 5.02 TeV, the transverse momentum interval 0<PT < 30 GeV/c are reported in
Figure 7 (a, b, d), and 0<PT < 20 in Figure 7(c) but in Figure 8 at

ffiffi

s
p

= 7 TeV, the
transverse momentum interval 1<PT < 20 GeV/c are reported in Figure 8 (a, b), and
3<PT < 12 GeV/c in Figure 8 (c, d). In Figure 9, the production cross sections were

Figure 7.

Transverse momentum distribution measured at
ffiffiffi

S
p

=5.02 TeV for particles ratios
(Dþ=D0 að Þ,D ∗þ=D0 bð Þ,Dþ

s =D
0 cð Þ andDþ

s =D
þ dð Þ are compared with ANFIS simulation and prediction.

Figure 8.

Same as in Figure 7 but at
ffiffiffi

S
p

= 7 TeV.
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measured at
ffiffi

s
p

= 5.02 TeV in the transverse momentum interval 0<PT < 30 GeV/c for

D
0, 1<PT < 30 GeV/c for Dþ and D

∗þ, and in 2<PT < 24 GeV/c forDþ
s
mesons and

were measured at
ffiffi

s
p

= 7 TeV, in the transverse momentum interval 0<PT < 30 GeV/c

for D0, 1<PT < 24 GeV/c for Dþ andD ∗þ, and in 2<PT < 12 GeV/c forDþ
s
mesons as

shown in Figure 10. Figures 9 and 10 (a–d), they introduce the ANFIS trained results
for PTdifferential production cross section of prompt mesons in pp. collisions at

ffiffi

s
p

(5.02 and 7TeV) respectively. The ANFIS simulation results show a high level of

Figure 9.
PTdifferential production cross section of prompt D0 að Þ,Dþ bð Þ, Dþ

s cð Þ, D ∗þ dð Þ mesons in pp collisions at
ffiffi

s
p

=
5.02 TeV using ANFIS.

Figure 10.

Same as in Figure 9 but at
ffiffiffi

S
p

= 7 TeV.
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agreement with the experimental data. We notice that the curves obtained by ANFIS
hybrid model show the best fitting to the experimental data for simulation and
prediction. This is agreed with Khajeh [28]; and Tortum, Yayla [29]; and

G. M. Behery [30]. The Minimum root mean squared error (0.151, 0.012, 2:07 � 10�7,

4:95� 10�7, 1.0819, 0.2626, 0.1426 and 1:86� 10�5) and higher coefficient of corre-
lation (0.9327, 0. 9795, 1, 1, 0.998, 0.999, 1 and 1) for ANFIS (1–8) respectively were
obtained as shown in Tables 2 and 3 respectively.

6. Conclusion

In the area of theoretical high-energy physics, the suggested ANFIS system has gained
a good reputation. Due to variations in the kind, quantity, and number of membership
functions as well as the number of epochs, the system is intended to identify the best
ANFIS that can do the best test and prediction. As a result, numerous efforts are
performed to identify the best ANFIS that makes use of a few epochs and membership
functions. On the pp. interaction, ANFIS was used and put to the test. The pp. -based

ANFIS model calculatesD mesons ratios (Dþ=D0,D ∗þ=D0,Dþ
s =D

0andDþ
s =D

þ) and

differential production cross section of promptD0,Dþ,D ∗þ, Dþ
s mesons as a function of

PT at
ffiffi

s
p

= 5.02 and 7 TeV. ANFIS system reached the optimal solution using 50 epochs
and ‘gbellmf’membership function. The training simulation results demonstrated flaw-
less fitting to the experimental data. With data points not used in training, the ANFIS’s
prediction ability is tested, and it performs well. The outcomes convincingly show the
viability and efficacy of such a method for obtaining collision information. The proposed
ANFIS is a powerful mechanism for forecasting the behavior of pp. interaction.
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ANFIS parameters type ANFIS 1

D
þ=D0

ANFIS 2

D
∗þ=D0

ANFIS 3

D
þ
S
=D0

ANFIS 4

D
þ
S
=Dþ

R2 0.9327 0.9795 1 1

RMSE 0:151 0:012 2:07 � 10�7 4:95� 10�7

Table 2
RMSE and R2 for D- meson ratios (Dþ=D0,D ∗þ=D0,Dþ

s =D
0andDþ

s =D
þ) in pp collision.

ANFIS parameters type ANFIS 5 D0 ANFIS 6 D
þ ANFIS 7 D ∗þ ANFIS 8 D

þ
S

R2 0.998 0.999 1 1

RMSE 1:0819 0:2626 0.1426 1:86� 10�5

Table 3
RMSE and R2 for differential production cross section of prompt D0,Dþ, D ∗þ, Dþ

s mesons in pp collision.
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