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Chapter

Autonomous Mobile Mapping
Robots: Key Software Components
Janusz Będkowski and Jacek Szklarski

Abstract

This chapter discusses key software components of autonomous mobile mapping
robots equipped with an inertial measurement unit (IMU) and light detection and
ranging (LiDAR). In recent years, new LiDARs with nonrepetitive scanning pattern
have appeared in the market. They are also equipped with an IMU; thus, the front end
of simultaneous localization and mapping (SLAM)—a robust LiDAR-inertial
odometry framework—significantly improves unmanned ground vehicles (UGVs)
and unmanned aerial vehicles (UAV) in 3D mapping scenarios. Our study incorpo-
rates FAST-LIO as the front end of SLAM. The main focus is a lightweight back-end
implementation of pose graph simultaneous localization and mapping (SLAM). It is an
alternative solution to state-of-the-art g2o or GTSAM implementations. We also elab-
orate on iterative closest point, normal distributions transform, and their extension
for multiview 3D data registration/refinement. It is based on C++ using Eigen library.
This chapter also discusses path planning in already mapped environment. All soft-
ware components are available as open-source projects.

Keywords: multiview normal distributions transform, SLAM, path planning,
coverage

1. Introduction

This chapter presents key software components for autonomous mobile mapping
robots shown in Figure 1 (software components are available in [1, 2]). This set of
consecutive functionalities is composed of robust light detection and ranging
(LiDAR)-inertial odometry FAST-LIO [3], pairwise matching algorithm (iterative
closest point [ICP] or normal distributions transform [NDT]) [1] for minimizing an
error for loop closures, pose graph simultaneous localization and mapping (SLAM)
[2], final refinement (multiview NDT) [1], and path planning. These functionalities
are the core components for autonomous mobile mapping robots equipped with an
inertial measurement unit (IMU) and LiDAR.

Autonomous mobile mapping robots have already been widely investigated within
the context of commercial applications, for example, power line inspection [4], smart
factory production [5], offshore oil plant [6], and nuclear power plant (NPP) inspec-
tion [7]. Robots improve rescue missions in hazardous environments [8]. The research
related to COVID-19 and public support for autonomous technologies shows great
interest in artificial intelligence (AI) direction [9]. There are plenty of areas for
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autonomous mobile mapping robots such as floor scrubbing, delivery, warehouse, and
service robots. The rapid improvements in autonomous mobile mapping are evident
for LiDAR with a nonrepetitive scanning pattern [10]. This LiDAR is capable of
acquiring massive 3D data in short time with a limited field of view. The advantage is
the long range, even up to 500 meters and high density of points covering entire
measurement cone in short time. Narrow field of view can be extended by multiple
LiDAR systems [11]. Owing to synchronized IMU data and robust feature classifica-
tion, a robust LiDAR-inertial odometry framework significantly improves unmanned
ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) in 3D mapping
scenarios [3, 12]. Moreover, the overall cost of such LiDAR is rather small compared
with its competition. It is advised to study [13] for further precision and accuracy
comparative evaluation.

SLAM is a core component of the autonomous mobile mapping robot that builds a
map based on the estimated trajectory and estimates this set of consecutive poses
based on this map [14]. SLAM is composed of front-end capable reconstructing
smooth and continuous trajectory from onboard sensors. This trajectory is affected by
constantly growing error. To reduce this error, the additional measurements should be
incorporated into the back end as the so-called loop closure. The back end is typically
solved using the pose graph SLAM method implemented in g2o [15] and GTSAM [16]
frameworks. An alternative implementation is available in [2] that extends the possi-
bility of rotation matrix parameterizations. Pose graph SLAM optimizes a graph com-
posed of vertices (poses) and edges (consecutive odometry readings, loop closures,
and other constraints); thus, it is supposed to preserve the shape of an initial trajectory
(motion model) and minimize an error between observed (current relative pose) and
measured (desired relative pose) loop closure edges. For the calculation of desired
relative pose between two scans, an iterative closest point [17] or normal distributions
transform [18] can be incorporated. The final step of the 3D mapping can be the final
refinement of all 3D measurements performed with, for example, multiview normal
distributions transform [19]. A similar approach is evident in general mobile mapping
applications [20, 21].

The last functionality elaborated in this chapter is path planning being a funda-
mental software component of the autonomous mobile mapping system dedicated for
missions where full coverage is desirable [22]. Examples are nuclear power plan
inspection [23] and cleaning robotics [24]. In order to perform a mapping task, a
mobile robot has to act according to some kind of a motion planning algorithm. This is
also true for other related tasks such as inspecting, searching, cleaning, image
mosaicking, etc. There are many factors that determine which algorithm should be
used for the path plan generation:

• Is the map of the environment known in advance?

• What are the available sensors (LiDARs, RGB(D) cameras, proximity sensors,
etc)?

Figure 1.
Scheme of key software components elaborated in this chapter.
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• Howmany robots participate in the task? If more than one, what are the means of
communication between units?

• How the environment map is represented? Is the map 2D or 3D? Does robot move
on a planar space or is it a UAV (six degrees of freedom)?

• What are the available computational resources for path calculations and what is
the required working regime: real-time online or offline planning?

• What is the ratio of covering radius to the size of the robot?

All the aspects mentioned above profoundly impact the algorithms necessary to
guide the mobile robot position. For example, if the map of the environment is not
known in advance, one should focus on a version of SLAM with exploration algo-
rithm. If, on the other hand, the map is known and offline planning is allowed, one
may use a solver that generates plan giving some near-optimal path plan. The optimal
criteria can also vary depending on a specific application: minimization of coverage
time, minimization of energy, prioritization of certain regions, etc. If there is a group
of robots involved, the question of equal workload distribution must also be
addressed.

A path planning algorithm should also take into account kinematic properties of
robots involved in the process. A different algorithm will be applied for path genera-
tion for aircraft taking aerial images for mosaicking and a different one for a mobile
robot cleaning floor in a warehouse.

For the autonomous mapping of unknown environments, in order to obtain a map
of the environment, a robot should be able to simultaneously localize and map and, at
the same time, explore the environment. Path planning, in this context, is related to
the exploration process. The robot should gradually explore the environment, and a
map is incrementally built for new poses, while the robot localizes itself in this map.
New, temporary goal poses are often chosen by means of frontier extraction [25].
Frontier areas represent boundary regions between known (mapped) and unknown
regions of the environment. Robot motion between its current position and such
temporary goal is realized by a typical path planning, which navigates between
waypoints while avoiding obstacles. Details regarding the frontier exploration vary
depending on application and may also include exploration in 3D, for example, [26].

One of the fundamental applications of mobile robots is to perform a coverage
task. Such tasks that the robot will visit points in the environment, eventually visiting
(or observing) the entire region of interest. This is necessary for tasks like cleaning,
mowing, harvesting, planting, spraying, mapping, searching, painting, mosaicking,
etc. Normally, the first step for such application is to obtain the map, for example, by
means of exploration with SLAM. If the map is known, and the robot is able to localize
itself using the map, a coverage path planning (CPP) algorithm should be employed in
order to find consecutive waypoints. The area of interest will be covered entirely after
the robot will visit all the points. The problem of CPP is well known and well studied
in the field of robotics [27, 28]. Nevertheless, it remains challenging and even the
simplest variants, like the lawnmower problem, are NP-hard [29]. There exist a large
number of exact, approximate, and heuristic algorithms to solve many variations of
both types of CPP [30–32].

The rest of this chapter is organized as follows. Section 2 discusses key software
components for SLAM. Section 3 addresses path planning in known environments.
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Section 4 shows an example of mobile mapping applications. Finally, Section 5
concludes this chapter.

2. Key software components for SLAM

In this section, the key software components are elaborated. The fundamental
element of SLAM is an observation equation. The set of optimization equations builds
an optimization system. Finding an optimal solution results in the final map and
trajectory. The proposed lightweight implementation uses symbolic computing in
Python (SymPy) [33] to generate C++ code for each observation equations. An open-
source project is available in [2].

2.1 Observation equations

Observation Eq. (1) is composed of a target value yi, a model function Ψ β½ � xið Þ, and

its residual ri defined as the difference between the target value and the value of the
model function for xi and state vector β

ri
|{z}

residual

¼ yi
|{z}

target value

� Ψ β½ � xið Þ
|fflfflfflffl{zfflfflfflffl}

model function

(1)

where β is the vector of n optimized parameters. The weighted nonlinear least
squares optimization method finds the optimal n parameter values (β) by minimizing
the objective function being a sum of C squared residuals

Sum ¼
XC

i¼1

r2i ¼
XC

i¼1

yi �Ψ β½ � xið Þ
� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

objective function

: (2)

Therefore, the optimization problem is defined as

β ∗ ¼ min
β

XC

i¼1

yi � Ψ β½ � xið Þ
� �2

(3)

where there are C observation equations. It is efficiently solved using the iterative
Levenberg-Marquardt algorithm [34]. A single kth iteration provides an update for β
given as

βkþ1 ¼ βk þ J⊺
Ψ

W J
Ψ

þλI

� ��1

J
Ψ

⊺Wr βk
� �

(4)

where I is the identity matrix, J
Ψ

is the Jacobian of the model function, andW is the
weight matrix modeling the impact of the observation equation into the optimization
process. λ starts from an initial small value. During the optimization process, λ

increases once Sum ¼
PC

i¼1r
2
i decreases; otherwise, λ decreases and the optimization
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process starts from the previous step. The observation equation for pose graph SLAM
is given as

tδx

tδy

tδz

ωδ

φδ

κδ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

|fflffl{zfflffl}

residuals

¼

tx

ty

tz

ω

φ

κ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

|ffl{zffl}

target values

�m2v tx,ty,tz,ω,φ,κ½ � R, t½ �12
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

model function

(5)

where tδx tδy tδz ωδ φδ κδ
h i⊺

are residuals, tx ty tz ω φ κ
	 
⊺

are target values,

and m2v β½ � R, t½ �12
� �

is the model function. Target values describe the desired edge

(relative pose expressed as translation (tx, ty, tz) and orientation (ω, φ, κ) between two
optimized vertices (poses) of the graph. Relative pose R, t½ �12 from pose R, t½ �1 to pose
R, t½ �2 is given as

R t

01�3 1

� �

12

¼
R t

01�3 1

� �

1

� ��1
R t

01�3 1

� �

2

: (6)

Function m2v β½ � R, t½ �12
� �

retrieves β ¼ tx, ty, tz,ω,φ, κ
� �⊺

for the Tait-Bryan

parametrization of the rotation matrix. This parameterization is essential to preserve
the orthonormality of the rotation matrix during the optimization process. It is
important to notice that other parameterizations exist, such as quaternion, Rodrigues,
etc., but this is not the main topic of this chapter.

The iterative closest point algorithm finds the relative pose between two point
clouds by incorporating the following source-point-to-target-point observation
equation:

xδ

yδ

zδ

2

4

3

5

|fflffl{zfflffl}

residuals

¼
xtg

ytg

ztg

2

4

3

5

|fflffl{zfflffl}

target values

�Y R,t½ � R, t, x
l, yl, zl

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

model function

(7)

where, xδ yδ zδ
	 
⊺

are residuals, xtg ytg ztg½ �⊺ are target values, and

Ψ R,t½ � R, t, x
l, yl, zl

� �
is the model function that transforms 3D points xl, yl, zl

� �
expressed

in the local coordinate system into the global one.
The normal distributions transform algorithm is an alternative solution for

pairwise matching with ICP, and it can be easily extended for multiview point cloud
data registration (final refinement of the 3D map). It decomposes the 3D scene into a
regular grid where for each cell, the centroid μ and the covariance Σ are calculated

with formulas (8) and (9). These formulas incorporate all points P
g
k in a single cell

expressed in the global coordinate system

μ ¼
1

m

Xm

k¼1

P
g
k (8)
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Σ ¼
1

m� 1

Xm

k¼1

P
g
k � μ

� �
P
g
k � μ

� �⊺
: (9)

The NDT observation equation is given as

xδ

yδ

zδ

2

4

3

5

|fflffl{zfflffl}

residuals

¼
μx

μy

μz

2

4

3

5

|fflffl{zfflffl}

target  values

�Y R,t½ � R, t, x
l, yl, zl

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

model function

(10)

where the target value is μ and Σ
�1 ¼ W for each NDT observation equation

incorporated in the Levenberg–Marquardt algorithm from eq. (4).

3. Path planning in known environments

In this section, we will focus on a practical example of a cleaning robot whose task
is to clean a large area. Therefore, one needs to apply a path planning algorithm for a
single device that moves in a known environment, and the map of static obstacles is
known in advance (c.f. [35]).

3.1 Map decomposition

A cleaning robot has the coverage area equal to the area of its cleaning/sweeping
device. For industrial cleaners, it is a dedicated brush equipped with a water and soap
reservoir. Consequently, the size of the coverage area, being a circle with radius rcov, is
comparable with the size of the robot. The area to be cleaned is a large warehouse with
the total area A, so it should be assumed that rcov ≪A. From this assumption, it
follows that any grid-based approach for planning should be avoided. This is because
in most grid-based methods, the time for finding a solution grows significantly with
the grid size (for many methods even exponentially [28]). For the discussed problem,
the number of grid cells would be too large to come up with a feasible solution.

It should be noted that this is not always the case for coverage problems. For
example, photo mosaicking has much larger rcov than the size of the robots, for
example, UAVs equipped with cameras. Area being photographed is much larger than
the area of the device. Such problems may use a different planning approach than the
one for cleaning robots.

Consequently, a solution based on the geometric decomposition of the grid map
into a set of polygons should be considered. Afterward, a path on this set of polygon is
found in a way that minimizes a given optimization criterion, in this case the total
coverage time. The pipeline for the system is depicted in Figure 2.

After mapping the environment with SLAM and the proper optimization, a grid
map of static obstacles is obtained. There are a number of ways to convert such a grid
map into a set of polygons. This process is known as map decomposition. The most
well-known method of decomposition is the trapezoidal decomposition where the grid
map is “scanned” line by line along one direction and trapezoids are found, which
cover the free space completely. Afterward, trapezoids are covered by simple back-
and-forth motion patterns.
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The main drawback of this simple decomposition is the fact that it generates only
convex polygons, and therefore, it results in a large number of polygons and
suboptimal sweeping patterns (c.f. Figure 3). Another possibility is to apply the so-
called boustrophedon cellular decomposition (BCD), which also generates nonconvex
cells [36]. However, these polygons can also be covered only by zig-zag motions,
usually in a more efficient way than for the trapezoidal decomposition. It should be
noted that some more sophisticated decompositions have been proposed in the litera-
ture, for example, [37]. In such an approach, optimization is focused in the decompo-
sition process itself. Here, however, we optimize the path by finding proper sweeping
patterns at a later stage.

After the decomposition, a set of polygons is obtained. A geometrical relation
between these polygons may be represented by the so-called Reeb graph. The Reeb
graph is a special type of a graph for environment representation, in which each link
corresponds to a polygon and each node represents an adjacency between the poly-
gons. Consequently, the problem may be treated with the help of existing solutions
known from graph theory. This can be done by formulating the optimization problem
into a variant of the traveling salesman problem and employing some known efficient
solvers.

Figure 2.
A processing pipeline for the generation of a coverage path plan for a single robot operating in an environment that
is first mapped with the SLAM method.

Figure 3.
An example of trapezoidal and boustrophedon decompositions into cells together with theirs Reeb graphs (bottom).
The latter decomposition allows for better sweeping pattern fit (the dashed line).

7

Autonomous Mobile Mapping Robots: Key Software Components
DOI: http://dx.doi.org/10.5772/intechopen.110549



3.2 Finding near-optimal sweeping patterns

Let us consider the covering process for a single polygon. Usually, in order to
minimize the coverage time, one needs to minimize the number of turns since, for
each turn, a robot must slow down, stop, turn, and accelerate again to its maximum
velocity. For a single polygon, various points of entrance for the zig-zag pattern
should be considered (see Figure 4).

After the decomposition process, the entire environment is represented as a Reeb
graph. The order of visiting all the links, that is, polygons, determines entry points to
each of them and, therefore, the time cost associated with covering it. It can be shown
that finding the minimum of the total time required for covering all the polygons is
equivalent to solving the equality generalized traveling salesman problem (EG-TSP)
[38]. This is an NP-hard problem for which approximate heuristic solvers may be
applied. The results presented in this section are obtained with the use of a memetic
solver, as proposed in [38].

4. Example applications

4.1 Robust LiDAR-inertial odometry and multiview NDT

Figure 5 demonstrates the result of FAST-LIO [3] as the 3D point cloud of under-
ground garage recorded using Livox AVIA LiDAR. This robust LiDAR-inertial
odometry provides an input for multiview NDT shown in Figure 6.

4.2 Pose graph SLAM

This section demonstrates the pose graph SLAM functionality available with data
in [2]. Figure 7 demonstrates the 2D case and Figure 8 is related to the 3D case. Pose
graph SLAM implementation efficiently solves the optimization problem represented
as a consecutive set of poses (trajectory) connected via odometry readings (edges)
and loop closure edges. This is a core component of the autonomous mobile mapping
robot.

4.3 Final refinement with NDT

Multiview normal distributions transform 3D data registration is capable to
increase the accuracy of the 3D map, as shown in Figure 6. The implementation is
rather offline since it requires plenty of calculations. These calculations are related

Figure 4.
For each cell, the coverage time is determined by sweeping direction and entry point into the cell (i.e., start and end
vertices). The figure depicts some possible entry/exit points and directions for a sample trapezoid.
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mostly to 3D data decomposition, where for each 3D bucket, the mean value and
covariance are calculated. This method is efficient mostly for urban environments
with many planar shapes.

4.4 Path planning

As an example of a real-world application of a coverage task, let us consider the
cleaning process of an underground garage. First, the garage is scanned with 3D laser
scanners; it is optimized and flattened to a 2D obstacle map (see Figure 9, top).
Afterward, the map is used for robot motion planning and navigation.

The result of boustrophedon decomposition for this map is shown in Figure 9
(middle). In this particular case, it consists mostly of rectangles. The next stage is to
find the covering path that connects all these polygons. In order to formally state the
optimization goal, one needs to define kinematic characteristics of the robot. Here, we
assume realistic parameters: amax ¼ 0:3 ms�2 and vmax ¼ 1 ms�1. This corresponds to
real devices that are being used for the cleaning tasks [35]. After using the memetic
solver for the associated EG-TSP, a trajectory for the robot is obtained. It is shown at
the bottom of the figure. For the depicted scale and the assumed kinematic model, the
total time for coverage is 2302 s in this case.

In order to validate the approach for path planning and to estimate its usefulness,
one should use a large number of maps, perform planning, and measure efficiency.
One possibility is to use a synthetic albeit realistic set of layouts provided by Li et al.
[39]. Based on real experiments with LiDARs, the authors have developed a method to
generate about 60,000 various maps, which can be used by researchers to test various
algorithms. Some example layouts together with the planned coverage paths are
depicted in Figure 10.

Figure 5.
Result of robust LiDAR-inertial odometry FAST-LIO [3] as the 3D point cloud of underground garage.
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Figure 6.
Top: input data produced by robust LiDAR-inertial odometry FAST-LIO [3] from Figure 5. Bottom: result of
final refinement with multiview NDT.
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Figure 7.
Top: input data for pose graph SLAM (purple dots: graph vertices, blue lines: graph edges). Bottom: result of pose
graph SLAM, 2D case.
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5. Conclusion

This chapter elaborates key software components of autonomous mobile mapping
robots equipped with Livox AVIA LiDAR. It is new LiDAR with a nonrepetitive
scanning pattern equipped also with the IMU. LiDAR and IMU are synchronized;
thus, this advantage is addressed by the robust LiDAR-inertial odometry framework
FAST-LIO. It improves unmanned ground vehicles (UGVs) and unmanned aerial

Figure 8.
Top: input data for pose graph SLAM (purple dots: Graph vertices, blue lines: Graph edges). Bottom: result of pose
graph SLAM, 3D case.
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vehicles (UAVs) in 3D mapping scenarios. Our study incorporates this robust LiDAR-
inertial odometry framework FAST-LIO as the front end of SLAM. The main focus is a
lightweight back-end implementation of pose graph simultaneous localization and
mapping (SLAM). This lightweight implementation is an alternative solution to state-
of-the-art g2o or GTSAM implementations. We also elaborate iterative closest point,
normal distributions transform, and their extension for multiview 3D data registra-
tion/refinement. It is based on C++ using Eigen library. This chapter also discusses

Figure 9.
Top: a grid representing obstacles in an underground garage. Pixel size is 3 cm � 3 cm. Middle: the result of a
boustrophedon decomposition. Bottom: A trajectory for a single robot.
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path planning in already mapped environment. All software components are available
as an open-source project. This chapter provides insights for useful software
components for building autonomous mobile mapping robots.

Figure 10.
Covering path plans for a small subset of the realistic, synthetic dataset of building layouts [39]. The covering area
is a circle with diameter equal to 0:5 m. Notice various scales for the xandy axes and—Consequently—Various
times required for the complete coverage (indicated above the plots).

14

Autonomous Mobile Mapping Robots



Acknowledgements

The authors acknowledge the financial support of National Centre for Research
and Development, project POIR.01.01.01-00-0206/17”Designing an autonomous
platform which operates in an industrial production environment.”

Author details

Janusz Będkowski* and Jacek Szklarski
Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

*Address all correspondence to: januszbedkowski@gmail.com

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

15

Autonomous Mobile Mapping Robots: Key Software Components
DOI: http://dx.doi.org/10.5772/intechopen.110549



References

[1] Janusz Bedkowski. Hdmapping. 2022.
Available from: https://github.com/Ma
psHD/HDMapping

[2] Janusz Bedkowski. Observation
equations. 2022. Available from: github.c
om/JanuszBedkowski

[3]Wei Xu and Fu Zhang. Fast-Lio: A
Fast, Robust Lidar-Inertial Odometry
Package by Tightly-Coupled Iterated
Kalman Filter, 2020

[4] Yang L, Fan J, Liu Y, Li E, Peng J,
Liang Z. A review on state-of-the-art
power line inspection techniques. IEEE
Transactions on Instrumentation and
Measurement. 2020;69(12):9350-9365

[5]Hercik R, Byrtus R, Jaros R, Koziorek
J. Implementation of autonomous mobile
robot in smartfactory. Applied Sciences.
2022;12(17):8912

[6]Nagatani K, Endo D, Watanabe A,
Koyanagi E. Design and development of
explosion-proof tracked vehicle for
inspection of offshore oil plant. In:
Hutter M, Siegwart R, editors. Field and
Service Robotics, Results of the 11th
International Conference, FSR 2017,
Zurich, Switzerland, 12–15 September
2017. Vol. volume 5 of Springer
Proceedings in Advanced Robotics.
Springer; 2017. pp. 531-544

[7] Zhang Zhonglin F, Bin LL, Encheng
Y. Design and function realization of
nuclear power inspection robot system.
Robotica. 2021;39(1):165-180

[8]Nagatani K, Kiribayashi S, Okada Y,
Otake K, Yoshida K, Tadokoro S, et al.
Emergency response to the nuclear
accident at the Fukushima daiichi
nuclear power plants using mobile
rescue robots. Journal of Field Robotics.
2013;30(1):44-63

[9]Horowitz MC, Kahn L, Macdonald J,
Schneider J. Covid-19 and public support
for autonomous technologies—Did the
pandemic catalyze a world of robots?
PLoS One. 2022;17(9):1-18

[10] Lin J, Zhang F. R3 live: A robust,
real-time, rgb-colored, lidar-inertial-
visual tightly-coupled state estimation
and mapping package. In: 2022
International Conference on Robotics
and Automation, ICRA 2022,
Philadelphia, PA, USA, May 23–27, 2022.
IEEE; 2022. pp. 10672-10678

[11]Wang Y, Lou Y, Zhang Y, Song W,
Huang F, Zhiyong T. A robust
framework for simultaneous localization
and mapping with multiple non-
repetitive scanning lidars. Remote
Sensing. 2021;13(10):2015

[12] Li K, Li M, Hanebeck UD. Towards
high-performance solid-state-lidar-
inertial odometry and mapping. IEEE
Robotics and Automation Letters. 2021;
6(3):5167-5174

[13] Kelly C, Wilkinson B, Abd-Elrahman
A, Cordero O, Andrew Lassiter H.
Accuracy assessment of low-cost lidar
scanners: An analysis of the velodyne
hdl32e and livox mid40 temporal stability.
Remote Sensing. 2022;14(17):4220

[14] Thrun S. Simultaneous Localization
and Mapping. Berlin Heidelberg, Berlin,
Heidelberg: Springer; 2008. pp. 13-41

[15] Kümmerle R, Grisetti G, Strasdat H,
Konolige K, Burgard W. G2o: A general
framework for graph optimization. In:
ICRA. IEEE; 2011. pp. 3607-3613

[16]Michael Kaess. Gtsam library, 2015

[17] Besl PJ, McKay ND. A method for
registration of 3-d shapes. IEEE

16

Autonomous Mobile Mapping Robots



Transactions on Pattern Analysis and
Machine Intelligence. 1992;14(2):
239-256

[18] Biber P, Strasser W. The normal
distributions transform: A new approach
to laser scan matching. In: Proceedings
2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS
2003) (Cat. No.03CH37453). Vol. 3.
2003. pp. 2743-2748

[19] Jihua Zhu, Di Wang, Jiaxi Mu,
Huimin Lu, Zhiqiang Tian, and Zhongyu
Li. 3dmndt:3d Multi-View Registration
Method Based on the Normal
Distributions Transform, 2021

[20] Bosse M, Zlot R. Continuous 3d
scan-matching with a spinning
2d laser. In: ICRA. IEEE; 2009.
pp. 4312-4319

[21]Kaul L, Zlot R, Bosse M. Continuous-
time three-dimensional mapping for
micro aerial vehicles with a passively
actuated rotating laser scanner.
Journal of Field Robotics. 2016;33(1):
103-132

[22] Lin H-Y, Huang Y-C. Collaborative
complete coverage and path planning for
multi-robot exploration. Sensors. 2021;
21(11):3709

[23] Iqbal J, Tahir AM, Islam R u, Nabi R
u. Robotics for nuclear power plants —
Challenges and future perspectives. In:
2012 2nd International Conference on
Applied Robotics for the Power Industry
(CARPI). 2012. pp. 151-156

[24]Woohyeon Moon, Bumgeun Park,
Sarvar Hussain Nengroo, Taeyoung Kim,
and Dongsoo Har. Path planning of
cleaning robot with reinforcement
learning, 2022 IEEE International
Symposium on Robotic and Sensors
Environments (ROSE), Abu Dhabi,
United Arab Emirates, IEEE, 2022

[25] Yamauchi B. A frontier-based
approach for autonomous exploration.
In: Proceedings 1997 IEEE International
Symposium on Computational
Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational
Principles for Robotics and Automation’.
IEEE; 1997. pp. 146-151

[26] Belavadi SS, Beri R, Malik V.
Frontier exploration technique for 3d
autonomous slam using k-means based
divisive clustering. In: 2017 Asia
Modelling Symposium (AMS). IEEE;
2017. pp. 95-100

[27] Almadhoun R, Taha T, Seneviratne
L, Zweiri Y. A survey on multi-robot
coverage path planning for model
reconstruction and mapping. SN Applied
Sciences. 2019;1(8):1-24

[28] Yan Z, Jouandeau N, Cherif AA. A
survey and analysis of multi-robot
coordination. International Journal of
Advanced Robotic Systems. 2013;10

[29] Arkin EM, Fekete SP, Mitchell JSB.
Approximation algorithms for lawn
mowing and milling. Computational
Geometry. 2000;17(1–2):25-50

[30] Choset H. Coverage for robotics–a
survey of recent results. Annals of
Mathematics and Artificial Intelligence.
2001;31(1):113-126

[31] Galceran E, Carreras M. A survey on
coverage path planning for robotics.
Robotics and Autonomous Systems.
2013;61(12):1258-1276

[32] Saeedi S, Trentini M, Seto M, Li H.
Multiple-robot simultaneous localization
and mapping: A review. Journal of Field
Robotics. 2016;33(1):3-46

[33]Meurer A, Smith CP, Paprocki M,
Čertík O, Kirpichev SB, Rocklin M, et al.

17

Autonomous Mobile Mapping Robots: Key Software Components
DOI: http://dx.doi.org/10.5772/intechopen.110549



Sympy: Symbolic computing in python.
PeerJ Computer Science. 2017;3:e103

[34]Marquardt DW. An algorithm for
least-squares estimation of nonlinear
parameters. SIAM Journal on Applied
Mathematics. 1963;11(2):431-441

[35] Szklarski J. Multi-robot coverage
with reeb graph clustering and
optimized sweeping patterns. Computer
Assisted Methods In Engineering And
Science. 2022;29(4):379-395

[36] Choset H. Coverage of known
spaces: The boustrophedon cellular
decomposition. Autonomous Robots.
2000;9(3):247-253

[37]Nielsen LD, Sung I, Nielsen P.
Convex decomposition for a coverage
path planning for autonomous vehicles:
Interior extension of edges. Sensors.
2019;19(19):4165

[38] Bähnemann R, Lawrance N, Chung
JJ, Pantic M, Siegwart R, Nieto J.
Revisiting boustrophedon coverage path
planning as a generalized traveling
salesman problem. In: Field and Service
Robotics. Springer; 2021. pp. 277-290

[39] Li T, Ho D, Li C, Zhu D, Wang C,
Meng MQ-H. Houseexpo: A large-scale
2d indoor layout dataset for learning-
based algorithms on mobile robots. In: In
2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems
(IROS). IEEE; 2020. pp. 5839-5846

18

Autonomous Mobile Mapping Robots


