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Abstract

RNA vaccines for cancer and cancer-causing infectious agents are recognized as 
new therapeutics and are perceived as potential alternatives to conventional vaccines. 
Cancer is a leading cause of death worldwide, and infections (certain viruses,  
bacteria, and parasites) are linked to about 15–20% of cancers. Since the last decade, 
developments in genomics methodologies have provided a valuable tool to analyze the 
specific mutations, fusions, and translocations of the driver genes in specific cancer 
tissues. The landscape of the mutations identified by genome sequencing and data 
analysis can be a vital route to personalized medicine. This chapter will discuss the 
present state of mRNA vaccine development and ongoing clinical trials in oncology.
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1. Introduction

Conventional vaccine approaches were adopted for infectious diseases, but the RNA 
(mRNA) vaccine developed for COVID-19 changed the vaccine development landscape, 
providing global recognition and a new alternative. Moreover, RNA vaccines consist of 
rapid development, scalability, and cell-free manufacturing [1]. RNA vaccines are the 
clinical reality and are being studied to treat cancer, diseases like HIV, influenza, and 
genetic disorders [2]. mRNA cancer vaccines have received lots of attention, and efforts 
have resulted in some rapid developments, especially in the last 5 years [3, 4].

Cancer is not an infectious disease; vaccines for cancer aim to clear active disease 
instead of preventing disease, the only exception being the recently approved vaccine 
that prevents cancers caused by the human papillomavirus (HPV) [5]. Cancer is a par-
ticularly unpredictable disease that occurs due to random genetic events, and muta-
tions are the driving force [6, 7]. Even though most potentially detrimental mutations 
are eliminated or neutral in nature, one mutation may cause a single somatic cell to 
develop an advantage over the rest, generating a pattern of amplified proliferation and 
progression that, over time, gives rise to a cancerous tumor [8]. Genome profiling pro-
vides insight into the diversity and heterogeneity within each type of cancer, which is 
a significant challenge in finding the right therapy for each patient [9, 10].
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1.1 What is mRNA?

Messenger RNA is a versatile, single-stranded molecule that mediates protein 
translation, posttranscriptionally regulates genes, and has other regulatory properties 
inside the cell [11, 12]. A mature mRNA will have a protein-encoding region, or open 
reading frame (ORF), between a start and a stop codon enclosed in a single strand 
with a 7-methyl-guanosine and untranslated region at the 5′ end and a poly-A tail 
with its respective untranslated region at the 3′ end. Both the 5′ cap and the poly-A 
tail are essential for mRNA maturation and stability, therefore heavily regulating the 
efficiency of protein translation and mRNA degradation [13, 14]. Generally, once 
the mRNA enters the cell, it has a short time to produce the protein it is encoding for 
before it starts to degrade [15]. This is a challenge when studying mRNA as a thera-
peutic delivery, especially in hereditary diseases [16, 17].

1.2 RNA therapeutics

mRNA presents a viable option for patient therapeutics comparable to existing cancer 
therapies [13, 18]. Since the inception of RNA-based cancer vaccination, many preclini-
cal and clinical studies have explored the idea of mRNA-based anticancer vaccines 
using autologous RNA-transfected dendritic cells or direct injection into the organism. 
For instance, mRNA acts outside the cell nucleus, eliminating the need to bypass this 
membrane while still being a messenger for genetic information. In the cytoplasm, the 
exogenously delivered mRNA starts protein translation, whereas DNA must reach the 
nucleus first and then be transcribed into mRNA to produce an effect in the cell  
[15  19, 20]. Additionally, mRNA does not incorporate into the genome; instead, it 
produces proteins for a short period, significantly minimizing the risk of mutations in 
the patient and long-term side effects [21]. Moreover, mRNA drugs can be manufactured 
relatively inexpensively to express any protein for virtually any disease. Multiple research 
studies conducted during the past few decades have demonstrated the curative properties 
of this technology and its ability to target various health conditions [22–25]. This is par-
ticularlytrue in the case of synthetic mRNA-based vaccines that were developed rapidly 

Figure 1. 
Key discoveries and advances in mRNA-based therapeutics. Created with BioRender.com.
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during the COVID-19 pandemic, and many years of research in RNA biology paved the 
way for this unparalleled achievement. The first mRNA vaccine approved for emergency 
use for infectious disease (COVID-19) by the FDA was created by BioNTech and Pfizer 
[26]. The candidates for the vaccine (BNT162b1 and BNT162B2) were initially identified 
in Germany and were further studied in the United States [27]. These targets were chosen 
as they encoded the spike protein of the SARS-CoV-2 virus. The delivery method for this 
vaccine consisted of lipid nanoparticles [28]. The Moderna vaccine also targeted a similar 
gene product and was delivered intramuscularly to the patient. Figure 1 shows the his-
tory of RNA and the recent development of mRNA-based COVID-19 vaccines.

2. Challenges and advantages of mRNA vaccines

The delivery of mRNA into a cell is particularly challenging due to the size of 300 
to 5000 bp, in contrast to microRNA and silencing RNA, which only go up to 5–15 bp 
in size. Additionally, instability due to charges in the molecule is another factor 
that impairs its functionality as a therapy, as it cannot penetrate the cell membrane. 
However, some cells can uptake naked mRNA, a relatively inefficient process, because 
most cells have a low rate of mRNA uptake [29, 30]. In contrast, the immature den-
dritic cell is an exception, which can take up mRNA through the macro pinocytosis 
pathway and accumulate mRNA efficiently [15].

One advantage of mRNA vaccines is a simplified development process, which only 
requires a few laboratory techniques and resources. In contrast, the production of biolog-
ics such as plasmid DNA vaccines can be time-consuming and expensive compared to 
mRNA vaccines, thereby augmenting the interest in mRNA therapeutics. However, in 
the initial stages of the study surrounding mRNA vaccines, researchers struggled to 
stabilize the product and increase its safety profile [31, 32]. Some solutions to these issues 
included chemical modification of mRNA sequences (e.g., via nucleoside manipulations) 
and packaging into nanocarriers [33, 34]. RNA-active vaccines (protamine-formulated 
mRNA vaccines) encoding six prostate cancer-specific antigens (CV9104) and five 
non-small cell lung cancer (NSCLC) tumor-associated antigens (CV9201) have been 
investigated clinically for safety, overall survival, and progression-free survival [35].

The challenges that must be overcome in the production of mRNA vaccines 
include the negative charge of the RNA (which must cross the hydrophobic cell 
membrane) and the strong immune reaction of exogenous RNA, which can cause cell 
toxicity [29, 36]. Recent research has overcome these obstacles by personalization of 
vaccines for their ability to target specific diseases [16, 37]. Moreover, once synthetic 
mRNA is translated into protein in the cytoplasm, it is subsequently degraded within 
a few minutes or hours, thereby preventing any harmful effects.

Various forms of mRNA therapy include replacement therapy (to synthesize a defec-
tive protein), vaccination, and cell therapy (which entails ex vivo transfection) [16]. 
Another challenge is that antigen presentation is often short-lived, as mRNA can be 
degraded by exogenous RNases [21]. However, this can be addressed using self-amplify-
ing RNA sequences utilized by alphaviruses, which prolong antigen expression [38].

3. Immunology of vaccination

The human immune system is comprised of innate and adaptive immune cells that 
play unique roles in eliminating a pathogen. The innate immune system serves as a 
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first-line response to a pathogen and acts via lysis or phagocytosis [39, 40]. Since it is 
possible for pathogens to evade this first-line defense, the adaptive immune system 
can prompt the activation of humoral and cell-mediated immunity (see Table 1) 
[33, 41]. Humoral immunity consists of B-cells that produce antibodies, which can 
eliminate a pathogen via various mechanisms. Antibodies may envelop the pathogen 
with their Fc (constant fragment) portions which are subsequently recognized by 
phagocytic cells [42]. Other mechanisms include the creation of immune complexes 
which trigger the complement cascade, expressing receptors on phagocytic cells and 
directly attaching antibodies to viruses via receptor binding sites [33]. Cell-mediated 

Figure 2. 
Administration of vaccine leading to immunity production steps. Macrophages and dendritic cells are phagocytic 
antigen-presenting cells (APCs). Upon vaccine administration, these APCs take up the contents of the vaccine. 
After activation of APCs by specific antigens, the migration occurs toward lymph nodes (LNs) as shown. Within 
the LNs, the antigen is presented to lymphocytes for further activation. Antigen-specific B- and T-cells then 
multiply clonally to create their progenitors by recognizing the same antigen. Long-term protection is also achieved 
by the production of memory B- and T-cells against pathogen infection. Created with BioRender.com.

Immune response Immune product Infectious agents

Humoral Immunoglobulin G Bacteria and viruses

Immunoglobulin A Microorganisms

Immunoglobulin M Bacteria

Immunoglobulin E Parasites

Cell-mediated Cytotoxic T-lymphocyte Viruses, mycobacteria, parasites

T-helper cells 1 Mycobacteria, fungi

Table 1. 
Immune response, products, and associated infectious diseases [33].
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immunity clears infected cells via cytotoxic T-cells and T-helper cells. The B- and 
T-cells of the adaptive immune system are more specific to the pathogen, and vac-
cines seek to build up this response to evade the severe consequences of infection. 
Upon infection, the innate immune system prompts B-cells and T-cells (specific to the 
virus) increase in number, thereby strengthening their degree of protection [33, 43]. 
The vaccine entry requires uptake via antigen-presenting cells, which deliver the vac-
cine to secondary lymphoid organs where T- and B-cells are produced (see Figure 2).

Once the infection has cleared, some of the B- and T-cells will undergo apoptosis, 
but some may persist and will be able to respond if re-infection of the same pathogen 

Figure 3. 
Adaptive immune responses after two different scenarios: (A) infection: This part of the figure represents the 
response after primary and secondary infection. The primary infection causes disease manifestation, as there is a 
lag in developing T- and B-cells. The secondary infection causes the memory T-cells to respond quickly and helps 
develop antibodies to fight the infection or pathogen. (B) Administration of vaccination follows a similar pattern 
without the manifestation of the disease. Created with BioRender.com.



RNA Therapeutics - History, Design, Manufacturing, and Applications

6

occurs (see Figure 3). Thus, the aim of achieving a faster immunological response to a 
pathogen is achieved through this mechanism [44].

For effective antibody production, the coordinated actions of CD4-positive 
follicular helper T-cells and B-cells depend on the successful presentation of a pro-
tein antigen, which is recognized by its specific B-cell clone in secondary lymphoid 
organs such as the lymph node and provides the first signal for B-cell activation [45]. 
This specific B-cell clone processes an extracellular protein antigen by uptake into 
endosomes and lysosomes for proteolytic digestion into peptides of varying length 
for incorporation into highly diverse HLA Class II molecules, which are imported 
from the endoplasmic reticulum [46] and can bind antigenic peptides of 10 to 30 
residues in length. The mature HLA Class II molecule bearing its antigenic peptide is 
then expressed on the surface of the B-cell for presentation to CD4-positive follicular 
helper T-cells at the periphery of the follicles of secondary lymphoid organs. The 
interaction between the antigen-presenting B-cell and the follicular T-cell depends 
on specific recognition of the mature HLA Class II molecule containing its peptide 
antigen by its T-cell receptor. It provides a second signal for the activation of the B 
lymphocyte resulting in its proliferation and differentiation into antibody-secreting 
plasma cells and memory B-cells [47], with the latter capable of rapid response to a 
second exposure to its specific antigen resulting in antibodies of higher affinity.

Cell-mediated immunity targets cells functioning as reservoirs of infection or 
displaying foreign peptides. The mechanism of antigen presentation is analogous to 
the Class II pathway described above but differs in several ways. First, the protein 
antigen is present in the cytoplasm, which is processed by ubiquitin-mediated 
proteasomal digestion resulting in small peptide fragments about nine residues in 
length that are then imported into the endoplasmic reticulum. Here, they may bind 
to HLA Class I molecules if the fragments contain sufficient antigenicity. The mature 
HLA Class I molecules with their bound antigenic peptides are then displayed on the 
antigen-presenting cell surface for recognition by an activated CD8-positive cytotoxic 
T cell specific for this complex [48, 49]. Delivery of the cytotoxic payload of this 
effector T-cell results in the activation of the apoptotic pathway of the target cell and 
its elimination.

A second exposure to an antigen, such as a booster, is often required for a more 
robust and effective immune response. Thus, a successful vaccine design strategy 
requires this immunologic knowledge and characteristics of its protein target, where 
computational methods to determine peptide antigenicity among the highly polymor-
phic HLA molecules are helpful [50, 51].

4.  Clinical development of mRNA vaccines for the prevention of  
cancer-causing infectious diseases and as cancer therapeutics

4.1 mRNA vaccines for the prevention of cancer-causing infectious diseases

Microbial infection accounts for around 15% of all human cancers, totaling 
approximately two million yearly cases [52]. Bacterium Helicobacter pylori, human 
papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and 
Epstein–Barr virus (EBV) are primarily responsible for 97% of these cancers [53]. 
Besides cancer-causing infectious diseases, mRNA vaccines are also being studied as a 
preventive treatment against influenza A, zika, cytomegalovirus, respiratory syncy-
tial, and rabies [16].
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Currently, mRNA vaccines have been designed for two of seven viruses that can cause 
cancer (oncoviruses). One of the examples is the liposome-encapsulated mRNA vaccine 
for human papillomavirus type 16 (HPV-16). It encodes for the oncoproteins E6 and 
E7, which have the potential for immunomodulation and antineoplastic activities [54]. 
Upon intravenous administration, the liposomes protect the RNA degradation within the 
bloodstream leading to uptake by APCs [55]. Translocation to the cytoplasm leads to the 
translation of E6 and E7 oncoproteins. After the processing of the proteins, the peptide 
complexes are presented to the immune system and hence induce antigen-specific T-cell 
responses (CD8+ and CD4+) against HPV16 E6 and E7 [56]. The associated clinical 
trial is mentioned in Table 2. Another example is mRNA-1189 Epstein–Barr virus 
(EBV) vaccine. This encodes EBV’s envelope glycoproteins (gH, gL, gp42, and gp220), 
which mediate viral entry into B-cells and epithelial surface cells, the primary targets 
of EBV infection [57, 58]. The viral proteins in mRNA-1189 are expressed in their native 
membrane-bound form for recognition by the human immune system.

Brand Title Conditions Phase

BNT111 Trial with BNT111 and Cemiplimab as a single 
agent and/or in combination

Melanoma stage 
III/ and/or IV

Phase II

BNT112 Prostate Cancer Messenger RNA 
Immunotherapy

Prostate cancer Phase I 
and II

BNT113 Safety, tolerability, and therapeutic effects of 
bnt113 in combination with Pembrolizumab/
Alone for participants with head/neck cancer 
positive for HPV16 and PD-L1 expression

Head and neck 
cancer

Phase II

BNT116 Clinical trial evaluating the safety, tolerability, 
and preliminary efficacy of BNT116 alone and/
or in combination

Non-small cell lung 
cancer

Phase I

BNT122 Comparing the efficacy of RO7198457 Vs. 
Watchful waiting in patients with high-risk 
stage II and Stage III colorectal cancer

Colorectal cancer 
Stage II/III

Phase II

RO7198457 A study of RO7198457 as a single agent and/or in 
combination with atezolizumab in participants 
with advanced or metastatic tumors

Melanoma
Bladder cancer

Phase I

RO7198457 A study of the efficacy and safety of 
RO7198457 in combination with atezolizumab 
Vs. Atezolizumab alone

Non-small cell lung 
cancer

Phase II

RO7198457 A study to evaluate the efficacy and 
safety of RO7198457 in combination with 
pembrolizumab Vs. pembrolizumab alone 
in participants with previously untreated 
advanced melanoma

Advanced 
melanoma

Phase II

mRNA-4157 Safety, tolerability, and immunogenicity 
of mRNA-4157 alone in participants with 
resected solid tumors and/or in combination 
with pembrolizumab in participants with 
unresectable solid tumors

Solid tumors Phase I

An efficacy study of adjuvant treatment with 
the personalized cancer vaccine mRNA-4157 
and pembrolizumab in participants with high-
risk Melanoma

Melanoma Phase II
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Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of three human 
malignancies: Kaposi’s sarcoma, primary effusion lymphoma, and the plasma cell 
variant of multicentric Castleman disease. Currently, there are no well-developed 
KSHV vaccine candidates. One of the clinical trials completed in 2019 looked at the 
impact of Valganciclovir on severe immune reconstitution syndrome (S-IRIS)-Kaposi 
Sarcoma (KS) mortality: an open-label, parallel, randomized controlled trial, in 
which 40 patients were randomized and 37 completed the study. It was concluded that 
Valganciclovir significantly reduced the episodes of S-IRIS-KS. Although attributable 
KS mortality was lower in the experimental group, the difference was insignificant. 
Mortality was significantly lower in EG patients with pulmonary KS [59].

4.2 Development of mRNA vaccines as cancer therapeutics

Several widely used conventional cancer therapies, such as chemotherapy and hor-
mone therapy, have proven effective in treating cancer [60]. Chemotherapy involves a 
series of drugs that impair DNA synthesis, thus fatally interrupting the physiological 
processes of cancerous and healthy cells [61, 62]. However, the success rates for this 
treatment are most effective only in highly proliferative and low heterogeneity can-
cers. Alternatively, hormonal or endocrine therapy targets growth signaling pathways 
by interfering with hormone receptors in cancer cells [63]. Thus, it is suitable for 
low-proliferating cancers such as breast and prostate [64].

Among immunotherapeutic treatments, mRNA vaccines stand out due to their 
superior specificity and potential for adaptability according to the genetic profile of 
each patient’s cancer. To produce an efficient, individualized cancer vaccine, specific 
genetic mutations in the cancerous cells are identified to produce neoantigens that 

Brand Title Conditions Phase

mRNA5671/
V941

A study of mRNA-5671/V941 as monotherapy 
and in combination with pembrolizumab

Non-small cell lung 
cancer
Pancreatic 
and colorectal 
Neoplasms

Phase I

mRNA-2752 Dose escalation study of mRNA-2752 for 
intra-tumoral injection to participants with 
advanced malignancies

Relapsed/
refractory 
solid Tumor 
malignancies or 
lymphoma

Phase I

SW1115C3 A study of neoantigen mRNA personalized 
cancer in patients with advanced solid tumors

Solid tumor Phase I

mRNA-4539 Study of mRNA-4359 administered alone and 
in combination with Immune Checkpoint 
Blockade in participants with Advanced Solids 
Tumors

Advanced solid 
tumors

Phase I 
and II

BNT 141 Safety, pharmacokinetics, pharmacodynamics, 
and preliminary efficacy trial of BNT141 in 
patients with unresectable CLDN18.2-positive 
gastric, pancreatic, ovarian, and Biliary tract 
tumors

Solid tumor
Gastric, pancreatic, 
biliary tract, and 
metastatic cancer

Phase I and 
IIa

Table 2. 
Clinical trials of mRNA encoding TAAs and TSAs (clinical trials.gov).
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could bind to T-cells and elicit an immune response in the patient more specifically 
than traditional systemic and local methods [37]. However, this treatment has faced 
challenges, such as a need to enhance the identification of potential genetic markers 
that could provide the specificity needed for cancer vaccines [23, 65].

RNA vaccines targeting various cancers are in the development and undergoing 
clinical trials. Examples of RNA cancer vaccines include CV9202 (CureVac), which 
targets multiple antigens found in non-small cell lung cancer [13]. Moderna is also 
developing an mRNA vaccine that targets the K-RAS proto-oncogene that plays a role 
in the pathogenesis of non-small cell lung cancer, colorectal cancer, and pancreatic 
adenocarcinoma [66]. The mRNA-4157 against melanoma, created by Moderna, and 
the BNT122 vaccine against prostate cancer, created by BioNTech, targets various 
solid tumors and are individualized vaccines [35, 67]. These specific vaccines are 
designed to elicit the immune response toward tumor-associated antigens (TAAs) or 
tumor-specific antigens (TSAs) in malignant tumor cells. These vaccines used next-
generation sequencing technology to identify and isolate antigen epitopes unique to 
each patient, creating a more refined vaccine. Various clinical trials exist for differ-
ent cancer vaccines (see Table 2) [2]. TAAs are present in both normal tissues and 
tumors, as these are non-mutated self-antigens. For a few tumors, TAAs are desirable 
vaccine targets. However, immune tolerance responses, such as central and periph-
eral, may be triggered by vaccines that can express TAAs and can reduce clinical 
vaccination efficacy [68]. Therefore, these kinds of vaccines are still in a phase where 
they are used in combination with immune checkpoint inhibitors [69]. With many 
ongoing clinical trials in different phases and preexisting clinical information or data, 
personalized vaccines can potentially be effective in cancer treatment. BioNTech 
vaccine BNT122 RO7198457) and Moderna vaccine mRNA-4157 are two personalized 
mRNA-based cancer vaccines in phase II clinical trials.

There is a significant increase in ongoing or completed studies/clinical trials in 
mRNA vaccines. In addition, various other clinical trials evaluate the tolerability, safety, 
immunogenicity, and/or efficacy of mRNA-personalized vaccines in participants with 
tumors. In this way, we are stepping into a new era of therapeutic mRNA-based cancer 
vaccines or prevention and treatment of currently incurable malignant diseases.

5. Summary

This chapter describes the technology, the basics of the immune response, and 
examples of developing mRNA vaccines for cancer and cancer-causing infectious 
agents. They can be used for preventive and therapeutic purposes. This information 
is of value to interdisciplinary researchers, engineers, and healthcare professionals 
as it may impact the prospects of medical care. Built on the highly fueled interest 
and potential, we have complete confidence to predict an accelerated pace in mRNA 
therapy studies and development in the next decade, possibly providing many solu-
tions for the prevention and treatment of currently incurable diseases.
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