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Chapter

Ontologies as a Tool for
Formalizing Data Validation Rules
Nicholas Nicholson and Iztok Štotl

Abstract

Comparison of health data across national or even regional boundaries is a chal-
lenging task. Data sources, data collection methods, and data quality can vary widely
and the quality of the indicators themselves is dependent upon the veracity of the
underlying data. For any trans-regional or trans-national comparison of indicators, it
is imperative to ensure data are appropriately validated. Ontologies provide a number
of functionalities to help in this process. Data rules can be formalized using the
ontology axioms, which are useful for removing the ambiguities of rules expressed in
natural language. In addition, the axioms serve to identify the metadata and their
corresponding semantic relationships, which can in turn be linked to standard data
dictionaries or other ontologies. Moreover, ontologies provide the means for encap-
sulating the underlying data model of the domain allowing the rules and the data
model to be maintained in a single application. Finally the expression of the axioms in
description logic, as supported for example by the web ontology language, allows
machine reasoning to validate data sets automatically against the formalized rules.

Keywords: web ontology language, data harmonization, data validation, data rules,
description logic, linked metadata

1. Introduction

Data validation is a key part of the overall data harmonization process that allows
meaningful comparison or integration of different data sets. This is particularly impor-
tant for the derivation of indicators, whichmay be used for comparison or benchmarking
purposes across countries or regions. Prime examples are population-based disease sur-
veillance programs and environmental monitoring and control programs.

Disease monitoring and surveillance is a particular focus of the European Union
and a number of pan-European registry networks exist for this purpose. The European
Network of Cancer Registries (ENCR) is the most established surveillance network
incorporating over 150 separate regional or national registries [1]. A similar initiative
in the United States is the Surveillance, Epidemiology, and End Results (SEER)
program [2].

In order to help harmonize the data, which may be collected via different processes
from different sources, registry networks generally agree a core or common data set
that comprises the most accessible, important and well-defined variables. As an
example the ENCR common data set consists of about 50 variables [3]. Even though
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the common data set variables are generally well defined, they may not necessarily be
described in a manner that easily allows semantic linkage or cross-reference. Further-
more, they may depend on domain-specific knowledge not readily available to data
users outside the domain.

Indictors for comparison purposes tend to be derived from common data sets since
they constitute the variables that are the most harmonized within a disease domain. It
is particularly important that the underlying data of the indicators are consistent and
complete to avoid erroneous conclusions or bias in the results [4]. Ensuring an ade-
quate level of consistency however is quite difficult to achieve in practice given the
heterogeneity of data sources and data-collection processes.

Assuming a pre-defined level of quality, data consistency can nevertheless be
verified using rule-based systems to check that the individual data fields are
present and within the expected ranges. More complex, inter-variable rules check
data consistencies between variables and their values. Other consistency checks can
compare the frequency of occurrences of specific values of data. All these checks
provide greater confidence in the fidelity of data sets for comparison purposes [5].

2. Specification of the rule base

Specifying the data-validation rules in an optimal way is itself a challenge. Rules
are often described using natural language which, whilst having the advantage of
making them more readable, leads to ambiguities for anything other than the most
simple rules. Complex rules with dependencies on multiple variables can be illustrated
more easily via a series of tables that constrain the values of the variables not forming
the major focus within a particular table. Ensuring the consistency and verifying the
accuracy of the rules across multiple tables is not straightforward and leads to consid-
erable maintenance overheads.

The ENCR common data set comprises variables describing a tumor, such as:
morphology (type of tumor); behavior (how the tumor acts in the body); topography
(organ affected); basis of diagnosis (how the tumor was diagnosed); grade (how the
tumor cells compare with normal cells under the microscope); and stage (extent of the
tumor). Morphology, behavior, topography, and grade are specified by codes adher-
ing to the international classification of diseases for oncology, edition 3 (ICD-O-3) [6].
Stage for solid tumors is generally specified according to the globally recognized TNM
staging system describing the extent of cancer disease, where the “T” component is
related to the size of the tumor or its invasion into local structures; the “N” component
is related to the number and nature of lymph node groups adjacent to the tumor with
evidence of tumor spread; and the “M” component is related to the presence of local
or distant metastatic sites. The rule interdependencies of all these tumor-description
variables in the ENCR rules are illustrated in Table 1. To manage more easily the
complexity of the interdependencies, the rules are divided into nine separate sets of
tables, namely:

1.age/morphology/topography;

2.sex/topography;

3.sex/morphology;
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4.basis of diagnosis/morphology/topography/age;

5.grade/morphology/behavior;

6.morphology/topography;

7.topography/stage-grouping/TNM;

8.topography/topography-grouping (for multiple primary tumor conditions);

9.morphology/morphology-grouping (for multiple primary tumor conditions).

Given the size of the tables, only a few excerpts are shown for illustrative purposes
in Tables 2–6. Whereas they are specific to the ENCR common data set, they are
nevertheless indicative of the sorts of difficulties faced by other rule sets defined in a
similar fashion.

Apart from the difficulty of ensuring consistency across the rule tables, a further
drawback to defining rules in this way relates to the intricacy they impose on compil-
ing a test data set. A comprehensive test data set is important for verifying the ability

Morph Topog Age Sex BoD Grade Beh Stage

Morph X X X X X X X

Topog X X X X X

Age X X X X

Sex X X X

BoD X X X X X

Grade X X X

Beh X X X

Stage X X X X X X

Table 1.
Rule interdependencies (marked with an “X”) of some of the main variables within the ENCR common data set.
Morph = morphology; Topog = topography; BoD = basis of diagnosis; Beh = behavior. The shaded cells indicate no
interdependencies.

Age group

(years)

Morphology Topography

0–2 Hodgkin lymphoma 9650–9667 —

>7 Malignant extra-cranial and extra gonadal germ cell:

9060–9065, 9070–9072, 9080 9085, 9100–9105

C00-C55, C57-C61, C63-C69,

C73-C750, C754-C768, C80

0–14 Mesothelial neoplasms: 9050–9053 Any

< 40 Adenocarcinoma: 8140 C61

Table 2.
Unlikely and rare combinations of age and tumor type (excerpt from table 3 in [3]).
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of data-checking software to trap the different types of errors against the rules. In
constructing a test data set, it is necessary to keep record of the variables set
incorrectly for each individual test case.

Creating a test record using the tabular rules requires one first to establish a valid
morphology/topography combination (one table look-up), then a correct morphol-
ogy/behavior combination (second table look-up), and thereafter multiple table look-
ups for all the other variable interdependencies. Given that not all possible morphol-
ogy/topography combinations lead to defined combinations of the other variables, it
becomes an arduous task to follow this process to completion. In practice, what is
done is to start from a real cancer registry data set and systematically set the variables
to incorrect values. However, such an approach does not guarantee all possible record
combination conditions are thereby tested, potentially leading to undetected bugs in
the validation software.

For many practical reasons therefore, a more formal representation of the data
rules is necessary. Ontologies are interesting since they provide the basis for doing this
in a way that is also integrated with the underlying data model.

Basis of

Diagnosis

Morphology (and topography, age, and sex where indicated)

2 8000, 8720, 8800, 8960 (age 0–8), 9140, 9380 (C717), 9384/1, 9500 (age 0–9), 9510 (age

0–5), 9530–9539 (C70), 9590, 9800

4 8000, 8150–8154, 8170, 8270–8281(C751), 9100 (female age 15–49), 9500 (age 0–9),

9732 (and age 40+), 9761 (and age 50+)

6 6¼ 8000; 9590–9731; 6¼ 9732; 6¼ 9733–9760; 6¼ 9761; 6¼ 9762–9992

Table 3.
Valid combinations for basis of diagnosis and morphology (excerpt from figure 2 in [3]).

Sex Topography

Female C60, C61, C62, C63

Male C51, C52, C53, C54, C55, C56. C57, C58

Table 4.
Invalid combinations for sex and topography (excerpt from table 4 in [3]).

Morphology Allowed

topography

Disallowed topography

8010–8589 C38, C40-C42, C47,

C480, C49, C70-C72,

C77

8090–8095, 8097, 8100–8103, 8110 C300, C44,

C51, C60,

C632

8800–8811, 8814–8831, 8840–8921, 8963, 8990, 8991, 9040–

9043, 9120–9150, 9170, 9540, 9550, 9561, 9580, 9581

C420, C421, C77

Table 5.
Morphology codes and allowed/refused topography codes (excerpt from table 8 in [3]).
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3. The relationship between ontologies and description logics

Computational ontologies describe and categorize classes of objects and specify the
relationships associated with those classes and categories. This information is captured
using axiomatic constructs that provide an appropriate mechanism for describing the
majority of the ENCR data rules.

There is in fact a very close relationship between the axiom constructs and
description logics (DLs) [7], which are themselves closely related to first-order and
modal logics. Since first-order logic draws from a well-established mathematical
foundation, DLs provide a solid formal framework for representing axioms that can be
developed using the more readily understandable ontology constructs.

DLs form a family of knowledge representation languages that are distinguished by
their level of expressivity [8]. Expressivity refers to the expressive power of the
language governed by the types of operations it can support. The base language is
attributive language (AL) supporting concept intersection (⊓), some level of negation
(⌐), universal restrictions (∀), and existential restrictions (∃) with limited quantifica-
tion. The restriction operators ∀ and ∃ are used for qualifying the entities on which a
given role acts, with ∃ specifying the notion of an “at-least-one relationship” and ∀ the
notion of an “only relationship”; they are similar to the existential and universal
quantifiers of first-order logic.

The addition of complex concept negation (C), which includes concept disjunction
(⊔), increases the expressivity to attributive language with complements (ALC) that
already provides quite a powerful expressivity able to handle many types of data rules.
A language of higher expressivity is SHOIN, where S refers to ALC with transitive
roles, H to role hierarchy, O to nominals, I to inverse properties, and N to cardinal
restrictions. Higher expressivities are also possible but there is a trade-off between
expressivity and computational cost for automatic reasoning.

Stage T N M

Thyroid gland – papillary or follicular, < 45 years

I Any T Any N M0

II Any T Any N M1

Thyroid gland – papillary or follicular, ≥ 45 years

I T1a, T1b N0 M0

II T2 N0 M0

III T3 N0 M0

T1, T2, T3 N1a M0

IVA T1, T2, T3 N1b M0

T4a N0, N1 M0

IVB T4b Any N M0

IVC Any T Any N M1

Table 6.
TNM edition 7 stage grouping and T, N, M values for thyroid gland (C73) papillary or follicular (excerpt from
appendix III in [3]).
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In DL terminology, a knowledge base has two distinct components – a termino-
logical part or TBox, and an assertional part or ABox. An additional term RBox is
sometimes used to denote an extended set of role axioms that are described by the
letter R in higher expressivities such as SROIQ [8].

The distinction between the TBox and ABox is sometimes also made in the division
between ontologies and knowledge graphs [9]. An ontology is considered as a schema
that captures the semantic data model using classes, relationships, and attributes (i.e.
the TBox, where concepts stand for classes and roles for relationships). A knowledge
graph in contrast contains specific instances following the semantic data model
represented by the ontology (i.e. the ABox).

3.1 Web ontology language

The World Wide Web Consortium (W3C) describes the web ontology language
(OWL) as “a semantic web language designed to represent rich and complex knowl-
edge about things, groups of things, and relations between things”. It refers to OWL
documents as ontologies [10]. OWL is structured closely along the lines of DLs and
provides support for automatic reasoning. It uses the terminology of classes and
properties (instead of concepts and roles) for the TBox and represents the ABox as a
set of individuals instanced (or asserted) from the TBox axioms.

A number of free, open-source graphical user interface OWL editors are available
(e.g. Protégé [11]) that greatly ease the task of ontology development. It is generally
more straightforward to define classes and relationships from an ontological point of
view than construct them from scratch using DL. The DL expressions can afterwards
be determined from the resulting OWL axioms.

4. OWL: A formal framework for the specification of the data rules

OWL’s roots in DL allow a formal context to be established for data rules that can
overcome the inherent ambiguities associated with their formulation in natural lan-
guage. Given the relatively rich set of logic operators available however, care is
required in deciding how best to formulate the axioms. Unfortunately, there is no
simple set of guidelines to help with this task since it is very much dependent on how
the ontology will be used. Moreover, DL expressivity comes at the cost of computa-
tional speed [12] and where this is important, it is preferable to restrict the DL
expressivity to the extent necessary.

4.1 Representation of the data rules

Byway of illustration, the following simple examples are only intended to show how
some of the rules depicted inTables 2–6 can be encoded inDL.With reference toTable 5
(morphology/topography), capturing the fact that the topography codeC300 (nasal
cavity) with amorphology code of 8090 (basal cell carcinoma) is a permissible combina-
tion, one can create an OWL axiom stating thatC300 is a subclasss of the object property
hasMorphologywith a filler classM_8090 (where the prescriptM_ has been added for
convenience to represent morphology). This statement is represented in DL by:

C300⊑∃ hasMorphology:M_8090 (1)
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In a similar manner, one can capture the rule in the last row of Table 2 that an
ICD-O-3 topography code C61 (prostate gland) together with a morphology of 8140
(adenocarcinoma) is unlikely in men aged less than forty years at diagnosis. This rule,
which requires use of an OWL data property, can be framed in such a way to say that
for a combination of topography and morphology, the expected age of patients is
above thirty-nine years:

C61⊓M_8140⊑∃ expectedAge: > 39f g (2)

The introduction of another axiom stating that the conjunction of an expected age
of more than thirty-nine years and a patient age at diagnosis of less than forty years is
an improbable scenario, Eq. (3), would flag a potential coding error (via subsumption
under the class ImprobableAge) for any prostate tumor cases with morphology code
8140 for patients younger than forty years of age.

∃ expectedAge: > 39f g⊓ patientAgeAtDiagnosis: <40f g⊑ ImprobableAge (3)

Clearly such a rule would have to be replicated for all the relevant upper age
restrictions provided in the rule table. To avoid logic conflicts, a modified set of axioms
would need to be created for the rules with lower age restrictions, c.f. row 2 in Table 2.

By building up axioms in this manner, all the rules relevant to a given class or
hierarchy of classes can be defined. The advantage is that each rule governing a class
of objects is visible on the ontology editor’s view of the class, unlike the representation
of the rules in Tables 2–6 where one has to search between various tables to ascertain
all the rules pertinent to a particular entity. As observed earlier, this greatly simplifies
the task of building up test cases of data both to validate the behavior of the rules as
well as to construct comprehensive test data sets.

4.2 Automatic reasoning

Owing to its DL foundations, OWL provides the possibility for automatic reason-
ing. Automatic reasoning is a valuable tool for detecting rule violations in a set of data
records. Eq. (3) provided an example where a reasoner could flag a potential coding
error in a cancer case.

In designing error-trapping axioms, it is important to be aware of the issues
relating to the open world assumption of DL. The open world assumption holds the
view that anything not explicitly stated can only be assumed to be unknown. This is in
contrast to the closed world assumption in which anything not explicitly stated is
considered incorrect (typical for rules expressed for instance in Datalog). The open
world assumption has implications in the subsumption of classes in a hierarchy and
can dictate the structure of the ontology dependent on the reasoning requirements.

Data rules, which by definition are prescriptive in the dependencies between data
variables, are more suited to the closed world assumption. Axioms may therefore have
to be written in such a way that serves to force class subsumption in an otherwise open
world view. One means for achieving this is to “invert” the class tree – which may be
more easily clarified by the following simple practical example. Say we wished to
subsume a class with certain attributes (e.g. a class having a topography code of C40
and a morphology with code 919) under a general classification class of Osteosarcoma.
Following the traditional approach of constructing classes using an ontology editor
such as Protégé, we might declare an axiom such as:
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Osteosarcoma⊑C40⊓M_919 (4)

If we were to declare a class TumorCase also subclassed from an intersection of C40
andM_919 and then run the reasoner, we would find that our TumorCase class had not
been classified under (i.e. subsumed by) the class Osteosarcoma. This is due to the open
world assumption since it cannot be assumed that the class Osteosarcoma is not
subclassed from other classes that have not been explicitly stated. It cannot therefore
be assumed that the TumorCase class is contained by the Osteosarcoma class – there is
not enough information to say.

The problem can be circumvented either by creating an equivalence (using defined
classes) or by inverting the subclass definition. Creating many equivalences with
complex classes can however lead to unintended consequences. For example, if the
containment operator (⊑ ) in Eq. (3) were to be replaced by an equivalence (�), and
if this approach were to be replicated for the whole set of axioms modeling each of the
age-restricted rules (c.f. Table 3), then all the expressions on the left-hand-side of the
equivalence would also become equivalent (since they are all equivalent to the class
ImprobableAge) and this would be erroneous. Alternatively, the subclass definition of
Eq. (4) can be inverted as indicated in Eq. (5):

C40⊓M_919⊑Osteosarcoma (5)

Running the reasoner now would result in the subsumption of the class TumorCase.
under the class Osteosarcoma.

This method of axiom formulation has been coined “being complex on the left-
hand side” [13]. Ontology editors such a Protégé lead developers to put the complexity
on the right-hand side of the class containment relation (i.e. subclassing from complex
classes). Although moving the complexity to the left-hand side can overcome the
subsumption issues of the open world view, it tends to obfuscate the ontology struc-
ture. Eq. (3) is a further example of defining axioms following this approach.

Regarding the different formulations for expressing the rule illustrated in Eqs. (4)
and (5), it is instructive to note that the equivalence expression:

C40⊓M_919 � Osteosarcoma (6)

is in fact a short-hand way of writing the implied DL expression:

C40⊓M_919⊑Osteosarcoma,Osteosarcoma⊑C40⊓M_919 (7)

Figure 1 is a view from the Protégé application showing the result of reasoning based
on the classes and properties given in an imaginary cancer test case. The non-highlighted
lines indicate the information passed into the reasoner and the lines highlighted with
yellow background show the extra information returned by the reasoner. Noting that the
topography class C619 is a subclass of C61 and the morphology classM_8140_3 is a
subclass ofM_8140, and in accordance with the rules provided in Table 2 (row 4) and
Table 3 (row 3), and Table 4 (row 1), the reasoner has ascertained that: the age at
diagnosis is improbable for the morphology/topography combination; the basis of diag-
nosis is correct; and the combination of sex and topography is incorrect. The question
mark in the gray circle on the highlighted lines provides themeans of polling the reasoner
to understand why it has subsumed the class under the identified class.

Protégé also provides a graphical view on the inferred classification tree for the
named classes (unnamed classes are not visible). Figure 2 provides an amplification of
the classification tree summarized in Figure 1.
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The reasoner can be polled to understand the reasoning applied for class sub-
sumption. Figure 3 shows a cancer test case for the thyroid gland (C739) restricted to
TNM information to check whether the test case is subsumed under stage III (c.f.
Table 6, row 7b). Figure 4 is the classification tree resulting from the automatic
reasoning process on the TNM test case of Figure 3. It can be seen that the reasoner
has correctly subsumed the test case under the stage III class.” Figure 5 shows the
results from polling the reasoner to understand why it subsumed the test class under

Figure 2.
Graphical view of the classification structure (containing both asserted and inferred classes) of the cancer test case shown
in Figure 1.

Figure 1.
Information added from the reasoning process (highlighted lines) based on the prior information of classes asserted
in a test case (non-highlighted lines).

Figure 3.
Thyroid cancer TNM test case to verify the class subsumption results from the reasoner.
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the TNMStageIII class. The specific rule is stated in line 11 of the figure and the other
lines provide the reasons for subsuming the classes asserted in the test case under the
various classes in the rule itself.

Automatic reasoning can be performed using both TBox axioms and ABox axioms.
Since data rules are more often associated with classes of objects, TBox reasoning is in
most cases sufficient and can reduce computational costs. Most of the ENCR data rules
can be modeled by TBox axioms apart from those, for example, that pertain to
multiple tumors (where a person has more than one type of cancer). The rules specify
the topography and morphology combinations of any two tumors to be considered
different and since two entities with the same class attributes have to be compared,
the use of ABox axioms is necessary. Modeling of the multiple primary rules on the
basis of DLs supported by OWL has been addressed at length in [14].

The ability to include closed world reasoning in OWL would be ideal and has been
made possible to a certain degree via the incorporation of the semantic web rule
language (SWRL) into the semantic web stack. SWRL is based on first-order Horn-
logic in which rules in Datalog are also expressed [15], but requires an ABox. Another

Figure 4.
Classification tree of the thyroid cancer test case of Figure 3, showing that the reasoner has correctly identified the
stage III class (the top-most class in the figure) as required from the rule table shown in Table 6. The classes shaded
in the darker color represent defined classes (classes with some equivalence conditions).

Figure 5.
Reasoner justification for the subsumption of the thyroid cancer test case under the TNMStageIII class.
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expressive logic formalism allowing some integration of open- and closed-world rea-
soning is minimal knowledge and negation as failure (MKNF) [16]. This formalism is
being developed in a unifying framework in the KAON2 infrastructure [17].

4.3 Encapsulation of the data model

The axiomatic constructs of an ontology are useful for capturing many of the
different aspects of a data model that for relational database models have traditionally
been divided across three independent levels of abstraction. Namely, the conceptual
schema (describing the semantics of the domain and the scope of the model); the
logical schema (describing the structure of the information, as for example a relational
database schema); and the physical schema (describing the physical means of storing
the data) [18].

One of the strengths of OWL is its relationship with the resource description
framework (RDF), which serves as the data interchange layer of the semantic web
stack [19]. RDF data is in essence a network of connected triplets of resources, in
which the resources at the edges of the triplets (subject and object) are related by the
resource in the middle of the triplet (predicate). Each resource is identified by a
uniform resource identifier (URI). All OWL constructs are described in terms of RDF
data, allowing ontologies to bridge the traditional divide between conceptual and
logical levels of abstraction and providing a richer, more integrated data model
description framework.

The flexibility and descriptive power of an ontology present their own sets of
challenges however. While the usefulness of ontologies is widely acknowledged, the
task of building a good ontology is a particularly hard one and falls within the devel-
oping domain of ontology engineering [20]. Designing an appropriate ontology does
not only depend on a thorough understanding of the domain to be modeled, but must
be performed circumspectly in view of the ontology’s purpose and future extensibility.
There are pitfalls in making an ontology too granular or not granular enough – the
result is either a multiplication of application-specific ontologies that cannot easily be
integrated, or an ontology overly generic to be useful to any particular application.
OWL provides the functionality for importing ontologies that allows larger ontologies
to be built up in a modular fashion and this can aid the design process if performed
carefully [21].

There are also certain design aspects to take into account that can affect the overall
structure of the ontology. One important consideration relates to the extent to
which the ontology is to be used in a pre-coordinated or post-coordinated way [22].
Pre-coordination refers to the situation in which all the terms and relationships are
stated explicitly in the axioms and leads to a static use of the ontology, whereas post-
coordination refers to the more dynamic situation in which new relationships are
determined by the automatic reasoning process on the basis of the pre defined axioms.
The pitfalls are exacerbated in applications that need to tweak the normal approach to
structuring class hierarchies to overcome restrictions in post-coordination that the
open world assumption places on class subsumption.

If the axioms describing the data rules are developed circumspectly however, the
advantage is that the data model falls out almost by default – the data rules necessarily
identify all the concepts within the domain as well as their inter-relations. This may
require an iterative process combining both the bottom-up approach of developing
axioms in DL and the top-down approach of structuring the ontology, while testing
each stage of the development with the reasoner.
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The task of developing a data model in an ontology used in a predominantly pre-
coordinated way is perhaps more straightforward and does not require too much jug-
gling in defining the axioms. Moreover, the axioms can be constructed in the more usual
manner of subclassing from complex classes. The intelligence of validating data sets
would however need to be moved from the ontology to a computer program (for
instance via the OWL-API) thereby compounding maintenance issues. The advantage
of encapsulating the intelligence in the ontology is that all the knowledge is contained in
one application and maintenance aspects are thereby confined to that one application.

4.4 Metadata by default

Elements in an ontology are described in terms of their semantic relations to other
elements in the ontology thereby providing a description and context, or in other
words the metadata, of the element. Moreover, since each element in an OWL ontol-
ogy is uniquely defined by a uniform resource identifier (URI), it is readily linkable
with other web resources. This allows any element to be associated with other relevant
resources via linked open data (LOD) principles. Using knowledge organization
schemes, such as simple knowledge organization system (SKOS), it becomes a
straightforward matter to link OWL resources semantically with other web-based
resources such as data-dictionary or thesauri elements.

The interlinking of any OWL resource to other web resources, especially to other
RDF resources, provides a powerful and extensible means of capturing all the neces-
sary metadata components for comprehensively describing a data model element. This
aspect has been exploited to create extensive frameworks of distributed metadata
registries that allow the reuse of existing metadata resources [23].

It is important to emphasize that a number of complementary tools exist that can
be used together to provide a more comprehensive toolkit for validating different
types of data rules. Included in the semantic web standards are the shape languages:
shape expression (ShEx) and shapes constraint language (SHACL) for providing
structural schema for RDF data. There are also additional tools for polling knowledge
bases such as the SPARQL protocol and RDF query language (SPARQL) as well as
those for extending the expressivity of OWL DLs, such as SWRL. Depending on the
type of rule, some of these tools may be more suitable than others; however, since
they are agreed or proposed semantic web standards and based on the standard model
for data interchange (RDF), they can all reference the elements of a data model
described in RDF. This provides a highly flexible and versatile environment in which
to develop an integrated toolkit. Table 7 gives a summary breakdown of these appli-
cations with the sorts of operations they support and the components of a knowledge
base to which they are applicable.

Whereas other tools and languages (e.g. Datalog) are also available for validating
data, and may arguably be more appropriate for defining rules predominantly based
on closed-work scenarios, they fall down in this aspect of unifying the rules with the
data model and the metadata, especially in the LOD sense. For federated data-
validation processes, the unification of all these elements brings many advantages in
terms of data linkage, maintenance, and collaborative development. Having said that,
OWL is not able to handle all types of validation checks – such as those for example
requiring comparison of dates, checking of frequencies of occurrence, or expressing
certain relations between individuals. ShEx, SWRL, and SPARQL can all go some way
to handling such checks. SWRL and SPARQL however require an ABox and SWRL has
implications on decidability [24]. Moreover, introducing an ABox can create
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performance issues for DL reasoning when many hundreds of thousands of individ-
uals are involved and requires careful consideration in the ontology design phase. An
alternative is to create an ABox and use SPARQL querying instead of DL reasoning but
this would move the rule logic out of the ontology and into the SPARQL query scripts.

An example for handling the axioms of Eqs. (2) and (3) using a simple SPARQLscript
to list all the associated erroneous cancer-case records is shown in Figure 6. A ShEx script
for checking the same condition is shown in Figure 7. The same rule using SWRL could
be expressed as shown in Figure 8.

The effort required to maintain the rule base developed with such tools however
would be considerable and it would make more sense to use them in a pre-processing
stage on the data to be validated (translated beforehand into RDF) for those types of
checks that cannot be handled within the ontology itself. ShEx in particular provides a
valuable pre-processing tool to check the ranges and formats of variables.

Application Scope Inference

mechanism

Types of operations supported TBox,

ABox

focus

OWL Knowledge

bases, DL

Yes Complex inter-variable checks supported

by DL expressivity

TBox,

Abox

SWRL Extension of

logic to OWL

Yes Complex inter-variable checks ABox

OWL-API Programming

interface to

OWL ontologies

Yes Complex inter-variable checks supported

by DL expressivity and additional

computer logic

TBox,

Abox

ShEx Grammar check

of RDF graphs

No, although can

be used in post-

coordination

Ensuring RDF data conforms to an

expected template. Can perform some

inter-variable dependency checks and

verify if values of variables are in range.

TBox,

Abox

SHACL Constraint

requirements of

RDF graphs

Some Ensuring RDF data conforms to a given set

of constraints: Can compare date fields.

More suitable for validating RDF graphs

than conformance with a specific template

(for which ShEx is better)

TBox,

Abox

SPARQL Query language

for RDF data

No, although can

be used in post-

coordination

Querying of data by user-defined query-

language constructs

Abox

Table 7.
Summary breakdown of some of the semantic web standard applications with the sorts of operations they support.

Figure 6.
An example of a SPARQL script to list all the erroneous patient-age related cancer-case records associated with a
particular combination of topography and morphology codes.
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5. Role of ontologies in data harmonization

The focus until this point has been on how ontologies can provide many advan-
tages in the task of data validation against a set of specific data-validation rules.
Checking the conformity of data against such rules is just one element in the whole
process of data harmonization.

Data harmonization is a term that eludes a clear and concise definition, perhaps
partly due to its dependence on the context to which it is applied [25, 26] as well as the
fact that it is a multistep activity involving both technical and social processes [5, 26].
An idealized breakdown of these steps has been provided in [5] based on the accu-
mulated experience gained by the Comprehensive Center for the Advancement of
Scientific Strategies (COMPASS) resulting from multiple data-harmonization projects
across widely different types of data, collaborators, and scientific questions. Whereas
not all projects were found to follow all steps and the order of the steps might vary, the
six most common steps identified were:

1. Identification of the questions that the harmonized data set is required to answer

2.Identification of the high-level data concepts required to answer those questions

3.Assessment of the data availability for the data concepts

4.Development of CDEs for each data concept

5.Mapping and transformation of individual data points to CDEs

6.Quality-control procedures

In this breakdown, the process of data validation falls manly under steps 5) and 6)
although it should be stressed that validation forms only part of the quality-control
procedures of step 6). Other fundamental quality metrics consist of the following
dimensions: completeness, consistency, accuracy, timeliness, uniqueness, and audit-
ability [27]. Moreover, different entities in the data process may be responsible for

Figure 7.
An example of a ShEx script to trap any erroneous patient-age related cancer-case records associated with a
particular combination of topography and morphology codes.

Figure 8.
An example of an SWRL rule to catch the same validation errors as for Figures 6 and 7.
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ensuring the quality of the data associated with these separate dimensions. They are
nevertheless all important for ensuing an appropriate level of harmonization that
allows meaningful comparison or integration of data and it would not be correct to
state that data solely validated against a set of validation rules have the prerequisite
level of quality for purposes of data comparison.

The degree to which data are harmonized depends ultimately on the specific end
use, but the step can never entirely be ignored. In the field of health for example, data
harmonization is a critical step in pooling data sets for increasing the power of
individual epidemiological studies [5]. It is also a necessary part of health management
decision-making, particularly with regard to: clinical decision-making for individual
patient clinical management or clinical support and quality improvement tools; oper-
ational and strategic decision-making for health system managers and policy-makers;
and population-level decision-making for disease surveillance and outbreak
management [26].

The point is that ontologies can play an important part in all stages of data harmo-
nization. Starting from the highest levels of abstraction in the six-step harmonization
process presented above, ontologies provide the means to capture and organize the
high-level data concepts needed to address the questions the harmonized data are
required to answer. Ontologies would moreover be able to formalize the questions in
direct reference to the high-level data concepts and help identify any missing concepts
as well as to verify the underlying logic of those relationships. The next steps are to
identify the availability of the data and to develop common data elements (CDEs).
The data may be in an unstructured format. The development of CDEs is a process of
structuring the data and the semantic relations described in a domain ontology can
help identify the relevant information. The role of ontologies in ETL (extract, trans-
form, load) processes has been extensively reviewed in [28]. In particular, the authors
point to the efficacy of ontologies: (a) to formalize the needs and requirements of
users and resolve semantic ambiguity; (b) to discover concepts and their relation-
ships; (c) to enrich source data, provide mappings (also generating them automati-
cally) and increase ETL performance and efficiency; and (d) to support configuration
and instantiation of ETL patterns. Moreover, the validation rule base for the data can
itself be derived automatically from the data themselves using ontological methods
[29] and allows a verification of any pre-defined set of validation rules.

6. Conclusions

Data validation is an essential step in the task of ascertaining the veracity and
homogeneity of data for data comparison purposes. In the case of structured data,
validation is often performed using a set of data validation rules. Using the ontology
layer (OWL) of the semantic web stack to perform this task brings a number of major
advantages. First, it provides the means of formalizing the rules in DL, thereby
removing the ambiguities and redundancies inherent in natural language. Second, it
helps encapsulate the data model and integrate the conceptual and logical schemas
that have traditionally been separated. The encapsulation of the data model and the
definition of the rules in DL is a mutually supportive step that allows the integration of
a bottom-up approach (rule definitions) with a top-down approach (classification and
semantic context), from which the data model is the result. Third, the data model
expressed in OWL automatically incorporates the metadata. All named entities (clas-
ses, properties, and individuals) have their own URIs that can be accessed and linked
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individually. Accessing an OWL link provides the whole semantic context of the
entity, which may in turn be annotated with links to other semantic resources to
enrich further the contextual information. Other advantages include the possibility of
reasoning on the ontology, allowing inferences to be made automatically and provid-
ing other semantic relations not explicitly stated a priori in the ontology. Ontologies
can also play an important role in more general data harmonization steps. In particu-
lar, they can help in defining and formalizing user needs, discovering semantic con-
texts in unstructured data, and generating semantic mappings.

Whereas ontologies do suffer some drawbacks (such as issues relating to the open
world assumption), the fact they can to a large extent unify the underlying data model
with the data rules, as well as capture the metadata that can be linked semantically to
other metadata dictionaries and classification schemes, makes them an interesting
solution. These considerations are of particular importance for applications that need
to harmonize data across multiple data providers and heterogeneous data-collection
procedures, as well as for improved contextualization of the data that is useful for
downstream processes.

Acknowledgements

This work was partly conducted using the Protégé resource, which is supported by
grant GM10331601 from the National Institute of General Medical Sciences of the
United States National Institutes of Health.

Conflict of interest

The authors declare no conflict of interest.

Nomenclature

CDE common data element
COMPASS Comprehensive Center for the Advancement of Scien-

tific Strategies
DL description logic
AL, ALC, SHOIN, SROIQ DL expressivities, where:
AL attributive language
ALC AL with complements
S ALC with transitive roles
H role hierarchy
O nominals
I inverse properties
N cardinal restrictions
R extended set of role axioms
Q qualified cardinality restrictions
ENCR European Network of Cancer Registries
ETL Extract, Transform, Load
ICD-O-3 International Classification of Diseases for Oncology,

third edition
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KB knowledge base
ABox assertional part of a KB
TBox terminological part of a KB
RBox extended set of role axioms in a KB
LOD linked open data
MKNF minimal knowledge and negation as failure
RDF resource description framework
SKOS simple knowledge organization system
SWRL semantic web rule language
SHACL shapes constraint language
ShEx shape expressions
SPARQL SPARQL protocol and RDF query language
TNM TNM classification of malignant tumors
T size of tumor
N involvement of regional lymph nodes
M presence of distant metastasis
URI uniform resource identifier
OWL web ontology language
OWL-API web ontology language application program interface
W3C World Wide Web Consortium
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