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Chapter

Application of Operations Research
to Healthcare
Jia Guo

Abstract

Operations research (OR) is significantly important to healthcare. OR tech-
niques can make efficient use of medical resources to enhance patients, providers
and agencies’ satisfaction. Given limited medical resources and high demand from
patients, the primary goal of OR is to use optimization models to quantify the
problem and apply mathematical algorithms to obtain a close-to-optimal solution.
For example, OR has been widely used to scheduling problems by minimizing
the number of nurses or maximizing demand coverage, while keeping service
regulations satisfied. In this chapter, we first give a brief introduction of optimi-
zation models, followed by the application of OR to healthcare problems such as
nurse scheduling, home healthcare delivery and transportation services for
patients.

Keywords: operations research, mixed integer linear programming, mathematical
models, healthcare optimization, nurse scheduling, home healthcare delivery,
transportation service

1. Introduction

Operations research (OR) plays a critical role in healthcare of both rich and poor
countries, especially when the medical resources are limited and the patient demand is
high. OR techniques could be applied to optimize the use of medical resources,
signicantly improve service quality and reduce operations cost. For example, tech-
niques such as mixed integer linear programming (MILP) algorithms, heuristics and
data analytics could be used to design nurse schedules, patient-provider assignment
and transportation routes. The past experience has shown that it is possible to obtain
high-quality solutions to the most difficult planning and scheduling problems by
applying mathematical modeling and advanced decomposition techniques in con-
junction with intelligent heuristics.

The general idea of OR application to healthcare is to make decisions by
mathematical optimization models. Examples of mathematical formulation
on a nurse scheduling problem and a routing problem will be presented in
Sections 2 and 3, respectively. Before making decisions, we must have several
components that pass on to the optimization model our requirements. Components
include:
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1.Objective function

The objective function is the goal we wish to achieve. It can be the minimization
of “cost” (such as the number of hired nurses, overtime hours, or patients’ travel
distance), or the maximization of “profit” (such as hospital revenue, patient
demand coverage, or satisfaction level). Some problems require a multi-
objective function. For example, hospitals aim to achieve maximum patient
demand coverage with a minimum number of nurses.

2.Constraints

Constraints are the rules and regulations we must obey. For example, nurses
cannot work 20 hours a day, even though the violation of this rule can cover
more patient demand with fewer nurses. Constraints that cannot be violated are
considered “hard.” In addition to hard constraints, there are “soft” constraints
that can be violated with a penalty cost added to the objective function. For
instance, nurses are not encouraged to work more than 40 hours per week, but
overtime is allowed if all the demands must be covered. If a nurse works
overtime for an hour, then the one-hour penalty cost is added to the objective
function. That means all demand is covered at the cost of overtime.

3.Decision variables

Decision variables indicate what we are supposed to decide. For example, in a
home healthcare delivery problem, we need to decide on nurse-patient
assignment, nurses’ travel routes, and service start time at each patient’s location.

4.Parameters

Parameters are given as constants. For instance, when designing nurses’ travel
routes, we know the distance between every two locations. In real-life problems,
however, some parameters are uncertain, such as patient demand and travel
time, which may vary during different periods of the day. In such cases, robust
optimization will be involved to address uncertainty.

In practical cases, a mathematical optimization model usually contains thousands,
even tens and thousands of decision variables, making it extremely time-consuming
for commercial solvers (such as CPLEX or Gurobi) to get a good solution within a
reasonable amount of time. In reality, a lot of health institutes are reluctant to pur-
chase the license of commercial solvers due to the high price. Therefore, mathematical
algorithms (optimization-based heuristics or metaheuristics) are developed to solve
large-scale problems. Optimization-based algorithms usually require solutions to
mathematical models, but instead of solving the large-scale problem directly, the
problem can be decomposed or transferred to smaller and easier problems. Common
optimization-based algorithms include but are not limited to Lagrangian Relaxation,
Column Generation, Benders Decomposition, Cutting Plane Algorithm and so forth.
Metaheuristics do not rely on the type of the problem, but it must keep all the hard
constraints satisfied while searching for a close-to-optimal solution. Metaheuristics
include but are not limited to Genetic Algorithm, Greedy Algorithm, Tabu Search, Ant
Colony Algorithm, Simulated Annealing, and Memetic Algorithm. Even though
optimization-based algorithms and metaheuristics can find good feasible solutions
within a limited amount of time, they are both at the cost of optimality. The quality of
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solutions obtained from the algorithm significantly depends on the algorithm param-
eters, such as time limit and the number of iterations for each step.

The remainder of this chapter displays several examples of OR application to
healthcare, such as nurse scheduling, home healthcare delivery, and transportation
services for patients.

2 Nurse scheduling

Nurse scheduling is a critical branch of OR application to healthcare. Nurses are of
vital essence in hospital and clinic operations, generally accounting for more than 50%
of the budget [1]. The efficient use of nursing resources can directly impact a healthcare
system’s financial well-being. This is true for both public and private facilities, and
especially true for those that serve economically disadvantaged areas [2].

2.1 Problem description

In a nurse scheduling problem, the goal is to assign nurses to different shifts over a
one-or-several-week planning horizon. A shift usually lasts 6–12 hours with a fixed
start and end time. For example, the start and end time of the morning, evening, and
night shifts are [7 am, 3 pm], [3 pm, 11 pm], [11 pm, 7 am], respectively. The union of
all shifts covers the entire planning horizon.

The stakeholders in a nurse scheduling problem include nurses and patients. On
the side of patients, the demand should be covered as much as possible. That means a
sufficient number of nurses should be assigned to each shift, so that patients can
receive necessary medical treatment. Also, nurses’ skill qualification is of vital signif-
icance. For example, a nurse for a blood test cannot be assigned to help a patient with
her physical therapy.

On the side of nurses, the laws and regulations are mostly on hours of service. For
example, for each nurse, there is an upper and lower limit on the number of working
hours and working days per week, the number of consecutive working days and days
off, the number of consecutive working hours, the number of overtime hours per
week, the number of shifts per day, and the number of weekend shifts. In addition,
each nurse must rest for at least 8 hours between any two shifts assigned to her.

Furthermore, some clinics and hospitals allow nurses to report on their preference
for days and shifts before the schedule is decided. For example, if a nurse reports her
preferred working day is Sep. 28, and she will not be available on Oct. 1, then a
“profit” will be added to the objective function if a shift is assigned on Sep. 28, and a
“cost”will be incurred if she is scheduled to work on Oct. 1. Other factors contributing
to nurses’ satisfaction level include shift transition, work-day transition, and equity.
The shift transition happens if a nurse is assigned different shifts on two
consecutive days (e.g., morning shift on day 1 and evening shift on day 2). Shift
transition makes it harder for nurses to keep a regular life schedule. Work-day transi-
tion involves two cases: (i) 1-0-1 schedule: work on day 1, rest on day 2, work on day
3; and (ii) 0-1-0 schedule: rest on day 1, work on day 2, rest on day 3. Neither 1-0-1
nor 0-1-0 schedule is beneficial as they add an interruption to nurses’ work or rest.
Equity means the number of overtime hours, 1-0-1 schedules, 0-1-0 schedules, or any
other preference violations should be evenly spread among nurses. For example, it is
not ideal to assign nurse A 20-hour overtime, while asking nurse B not to work
overtime at all.
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2.2 Mathematical optimization model

The requirements for nurses and patients can be either “soft” or “hard” con-
straints, depending on the hospital or legal regulations. In this subsection, a mathe-
matical formulation for the nurse scheduling problem (Model 1) is presented. For
simplicity, we assume the planning horizon is 1 week. The objective function is to
minimize the number of uncovered demand hours, 1-0-1 violations, 0-1-0 violations,
and violation differences among nurses. The hard constraints include the upper and
lower limits on the number of working hours for each nurse in a week. Each nurse can
work at most one shift per day.

Sets and indices

a index for 1-0-1 or 0-1-0 schedule violation a

d index for day d

h index for hour h

i index for nurse i

t index for shift t

D set of days in the planning horizon

H set of hours on each day

LDn last n days of the planning horizon being scheduled

N set of nurses

T set of shifts

Parameters

α weight for an uncovered demand, assuming weight for 1-0-1 and 0-1-0 violation is 1

Ddh demand (the number of nurses required) in hour h on day d

Fht 1 if shift t covers hour h, 0 otherwise

Hi,Hi
the upper and lower limits of the number of working hours for each nurse during the planning

horizon

ht the length of shift t, which is the difference between start and end time of shift t

ra penalty for a violations, a ¼ 1, 2, … ,Vmax

Vmax maximum number of preference violations allowed for each nurse

Decision variables

Pid (accounting) 1 if nurse i has a 0-1-0 pattern schedule starting on day d, 0 otherwise

Q id (accounting) 1 if nurse i has a 1-0-1 pattern schedule starting on day d, 0 otherwise

Udh uncovered demand on day d in hour h

V ia (binary) 1 if nurse i has a violations, 0 otherwise

Xidt (binary) 1 if nurse i is assigned to shift t on day d, 0 otherwise
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Model 1

Minimize α

X

d∈D

X

h∈H

Udh þ
X

i∈N

X

Vmax

a¼1

raVia (1a)

subject to

1.Demand constraints

Udh ≥Ddh �
X

i∈N

X

t∈T

FhtXidt ∀ h∈H, d∈D (1b)

2.Upper and lower limits on the number of working hours for each nurse in the
planning horizon

X

d∈D

X

t∈T

htXidt ≤Hi ∀ i∈N (1c)

X

d∈D

X

t∈T

htXidt ≥Hi ∀ i∈N (1d)

3.At most one shift per day for each nurse
X

t∈T

Xidt ≤ 1 ∀ i∈N, d∈D (1e)

4.Definition of 0-1-0 and 1-0-1 violations

X

t∈T

Xidt þ 1�
X

t∈T

Xi,dþ1,t

 !

þ
X

t∈T

Xi,dþ2,t þ Pid ≥ 1 ∀ d∈DnLD2, i∈N

(1f)

1�
X

t∈T

Xidt

 !

þ
X

t∈T

Xi,dþ1,t þ 1�
X

t∈T

Xi,dþ2,t

 !

þQ id ≥ 1 ∀ d∈DnLD2, i∈N

(1g)

5.Violation computation

X

d∈D

Pid þ Q idð Þ ¼
X

Vmax

a¼1

aV ia ∀ i∈N (1h)

6.Variables definition

Xidt, Pid, Q id, Via ∈ 0, 1f g ∀ i∈N, d∈D, t∈T, 0≤ a≤Vmax

(1i)

0≤Udh ≤Ddh ∀ d∈D, h∈H (1j)
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Objective function (1a) consists of two terms. The first term is the weighted
demand uncoverage, that is, sum of the number of nurses required but not supplied in
each hour every day. If the hospital requires 10 nurses on Monday between 8:00 am
and 9:00 am, but only 7 nurses are assigned to this hour, then we have uncovered a
demand of 3, that is, UMon,8 ¼ 3. Instead of adding 3 directly to the objective function,
we add 3α to quantify the significance of demand coverage. The weight for an uncov-
ered demand (α) is usually larger than 1 because we give demand coverage a higher
priority. The second term is the penalty for 1-0-1 and 0-1-0 violations. Binary variable
V ia ¼ 1 if nurse i has a 1-0-1 and 0-1-0 violations throughout the planning horizon.
Note that ra is usually a constant exponential of a. For example, if nurse i has 3 1-0-1
and 0-1-0 violations, then a penalty cost of e3 will be added to the objective function.
We use a constant exponential of a because we would like to improve equity among
nurses, that is, not to assign one particular nurse a large number of violations, while
giving other nurses few violations.

Constraints (1b) define the number of uncovered demands in each hour every day.
On the right-hand side of (1b), Ddh is the number of nurses required in hour h on day
d. The term

P

i∈N

P

t∈T FhtXidt indicates the number of nurses scheduled to work in

hour h on day d. We use “ ≥ ” instead of “¼” in this set of constraints due to the
following reasons:

1. If Ddh �
P

i∈N

P

t∈T FhtXidt ≥0, then there is no over-coverage in hour h on day
d. Even though constraints (1b) require the variable Udh to be greater than or
equal to Ddh �

P

i∈N

P

t∈T FhtXidt, the objective function automatically makes
Udh ¼ Ddh �

P

i∈N

P

t∈T FhtXidt due to its nature of minimization.

2. If Ddh �
P

i∈N

P

t∈T FhtXidt <0, then there is over-coverage in hour h on day d.
Since variable Udh is defined to be nonnegative, Udh ¼ 0.

Constraints (1c) and (1d) force each nurse to work between Hi and Hi hours in the
planning horizon. Constraints (1e) require a nurse should work at most one shift per
day. Constraints (1f) and (1g) indicate whether nurse i has a 0-1-0 or 1-0-1 violation
starting on day d. Take constraints (1f) for example, if nurse i rests on day d (i.e.,
P

t∈TXidt ¼ 0), works on day d + 1 (i.e.,
P

t∈TXi,dþ1,t ¼ 1) and rests on day d + 2 (i.e.,
P

t∈TXi,dþ2,t ¼ 0), then to make constraint (1f) satisfied, binary variable Pid must
equal 1, indicating nurse i has a 0-1-0 violation starting on day d. Constraints (1h)
calculate the total number of 0-1-0 and 1-0-1 violations. Constraints (1i) and (1j) give
variables definitions.

3 Home healthcare delivery

Home healthcare (HHC) delivery plays an important role in medical service,
especially for patients with chronic illnesses and ambulatory disabilities. Instead of
requiring patients to travel to hospital for medical treatment, hospitals schedule qual-
ified nurses to provide service for patients at their place of residence. The quality of
the weekly and daily schedules assigned to the nurses can impact the level of service
patients receive, as well as nurse productivity and job satisfaction. Efficient patient-
nurse scheduling and routing can significantly reduce the cost and improve the service
quality of HHC.
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3.1 Problem description

In a home healthcare scheduling and routing (HHCSR) problem, nurses are
scheduled to provide medical treatment for patients who reside in different locations
of a city. On each day of the planning horizon, a nurse starts from home (or a depot),
visits patients that are assigned to her, and returns home. Decision variables include
(i) nurse-patient assignment, that is, which nurse should be assigned to visit each
patient; (ii) the travel route of each nurse (i.e., visit sequence of patients for each
nurse); and (iii) nurses’ arrival time at patients’ home. The objective of an HHCSR
problem includes but is not limited to the minimization of nurses’ travel distance and
the maximization of patients’ satisfaction level. Details of each stakeholder will be
discussed in the remainder of this subsection.

3.1.1 Patients

Before the agency (clinic or hospital) designs nurses’ assignments and routes,
patients request visits with specific service dates, time windows, and skill require-
ments. Nurses’ schedules and routes are designed based on the information from
patients. In addition to meeting the requirements on time and skill qualification, the
agency should try to keep the continuity of care (CoC) for patients with multiple visits
in the planning horizon by assigning the same nurse to a patient. CoC has the benefit
of maintaining treatment consistency as the nurse becomes more familiar with the
patient’s physical condition and treatment details.

3.1.2 Nurses

To ensure the nurses can provide high-quality service for patients, the daily work-
load of each nurse is limited to a specified range. The workload can be associated with
the number of working hours, the number of patients serviced, and the type of
medical treatment offered by the nurse. In addition, nurses usually have agreements
with the agency on the start and end time of each day. However, in some cases, nurses
are allowed to work overtime to complete more requested visits. Moreover, the dif-
ferences in workload among nurses with the same skill level should be minimized to
achieve the objective of equity. Finally, to provide a healthy working environment, a
lunch break is taken into account.

The requirements from patients and nurses can be either “hard” or “soft” con-
straints in the optimization problem, depending on the agreement among patients,
nurses, and the agency. If a constraint is relaxed as a “soft” constraint and is violated
in a schedule, then we should add a penalty cost to the objective function.

The above paragraphs describe the basic version of a HHCSR problem. In prac-
tice, the problem can be extended and involve more stakeholders. For example, in
some cases, on each day of the planning horizon, nurses start from pharmacies,
visit patients to drop off medicine, provide medical treatment, and collect biological
samples (such as blood or tissue). After visiting all the scheduled patients, nurses
deliver all collected biological samples to laboratories for tests [3]. In such cases,
besides decisions in the basic version of a HHCSR problem, patient-pharmacy
assignment and pharmacy-laboratory assignment should be made. Furthermore,
vehicle capacity must be considered due to the transportation of medicine and
biological samples.
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3.2 Mathematical optimization model

In this subsection, we assume the nurse-patient assignment is completed by clus-
tering based on the geographical locations of patients. Model 2 decides the sequence of
requested visits assigned to nurse w on day d, as well as the service start time of each
visit. The objective is to minimize the travel time, the number of hours a visit is
completed outside of the patient’s time window, and the number of hours nurse w
works overtime. Model 2 makes use of following notation.

Sets and indices

i index for requested visit

Idw set of all requested visits to be completed by nurse w on day d

Parameters

α penalty weight of travel time in the objective function

hsdw, h
e
dw start and end time of nurse w’s shift on day d

hsi , h
e
i start and end time of the time window for requested visit i

ti service time for visit i; amount of time nurse w spends on visit i excluding travel time

τii0 travel time from the location of requested visit i to that of i0

Decision variables

Tdiw (continuous) time when nurse w begins treatment for visit i on day d

Xdii0w (binary) 1 if visit i0 is scheduled immediately after visit i for nurse w on day d, 0 otherwise

YVS
diw,Y

VE
diw

(continuous) length of time window violation for an early or late arrival of nurse w for visit i

on day d

YWS
diw,Y

WE
diw

(continuous) number of hours outside of the start or end time of a shift for nurse w on visit i

on day d

Model 2 (for fixed nurse w on day d)

Minimize α

X

i∈ Idw

X

i0 ∈ Idw

τii0Xdii0w þ
X

i∈ Idw

YVS
diw þ YVE

diw þ YWS
diw þ YWE

diw

� �

(2a)

subject to.
Each visit has a predecessor and successor on a route

X

i0 ∈ Idw

Xdii0w ¼ 1 ∀ i∈ Idw (2b)

X

i∈ Idw

Xdii0w ¼ 1 ∀ i0 ∈ Idw (2c)
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Violation of patient time windows

YVS
diw ≥ hsi � Tdiw ∀ i∈ Idw (2d)

YVE
diw ≥Tdiw þ ti � hei ∀ i∈ Idw (2e)

Violation of shift start and end times

YWS
diw ≥ hsdw � Tdiw ∀ i∈ Idw (2f)

YWE
diw ≥Tdiw þ ti � hedw ∀ i∈ Idw (2g)

Subtour elimination constraints

Tdiw þ τii0 þ tið Þ �M 1� Xdii0wð Þ≤Tdi0w ∀ i 6¼ i0 ∈ Idw (2h)

Variables definitions

Xdii0w ∈ 0, 1f g ∀ i 6¼ i0 ∈ Idw (2i)

YVS
diw, YVE

diw, YWS
diw, YWE

diw ≥0 ∀ i∈ Idw (2j)

Tdiw ≥0 ∀ i∈ Idw (2k)

Objective function (2a) contains two terms. The first term minimizes the travel
time. The second term minimizes four components. The first two components repre-
sent the length of time window violation for an early or late arrival of nurse w for visit
i on day d. The third and fourth components are the number of hours outside of the
start or end time of a shift for nurse w on day d.

Constraints (2b) and (2c) ensure that each requested visit has exactly one prede-
cessor and successor on a route, assuming there is a dummy origin and destination.
This makes the route a closed loop. Constraints (2d) and (2e) calculate the number of
hours a visit is completed outside of its time window. Constraints (2f) and (2g)
compute the number of hours nurse w works overtime. Constraints (2h) prevent the
model from creating subtours among the requested visit locations. Constraints (2i)–
(2k) define the variables range.

4 Transportation services for patients

Transportation services for nonemergency medical appointments are of vital
importance, especially to financially disadvantaged patients. In urban communities, a
lot of poor patients cannot afford a car, and thus they have to rely on public
transportation to keep medical appointments. However, public transportation is
insufficient and inconvenient for people with ambulatory issues. As a result, clinics
experience high cancelation/no-show rates. Moreover, many patients do not have the
means to pick up their medicine after appointments, which makes their situation even
worse. Good transportation services can significantly help patients to keep appoint-
ments and save operations costs of the clinic [4].

Unlike the problem described in Sections 2 and 3, offering transportation services
for patients can hardly be integrated into one single optimization model but involves
multiple problems such as the prediction of no-show rate, the decision on
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transportation mode, and the assignment of transportation services. The remainder of
this subsection introduces details of each problem.

4.1 Prediction of no-show probability

When designing transportation services for patients with nonemergency medical
appointments, we first need to investigate the impact of transportation barriers on no-
show, and predict the no-show probability assuming the transportation service is not
available. This can be achieved by collecting patients’ historical data, such as home
address, transportation difficulty level, transportation mode, ambulatory issue, and
travel time, whether they have chronic diseases, and whether they kept their appoint-
ments. Then, statistical analysis can be conducted to predict the no-show probability
based on those factors, and verify whether the transportation barrier significantly
impacts the no-show probability. Logistic regression models can be applied to predict
the probability. This step shows whether providing transportation services is necessary,
and recognizes the group of patients that need transportation services [5, 6].

4.2 Decision on transportation mode

Unlike regular urban transportation, transportation services for patients must be
uniquely designed due to patients’ weak physical conditions. Therefore, the transpor-
tation mode should meet the following requirements. First, the transportation mode
should allow patients to either sit or stand. For example, it is improper to offer free
bicycles to patients. Second, some patients have ambulatory issues, so the transporta-
tion mode must have enough capacity to hold wheelchairs. Third, some clinics or
hospitals do not have bus stations nearby, so the transportation service should give
patients a ride to their destination. Finally, the transportation mode should allow
patients to receive service without long waiting, especially in areas of severe weather.
Based on the above requirements, taxis and shuttle buses with short intervals are
common transportation services provided for patients.

4.3 Vehicle routing-based optimization problem

The vehicle routing-based optimization problem is a crucial branch of transporta-
tion services if shuttle buses are offered. In a regular vehicle routing problem, vehicles
depart from a depot, visit several locations and return to the depot. In a medical
situation for patients, each vehicle starts from the clinic, visits several stops to pick up
and drop off patients, and goes back to the clinic. In this optimization problem, we
need to decide the number of vehicles, the route of each vehicle, and the vehicle’s
arrival time at each stop. With a rough estimation of the number of patients at each
bus stop, we should also take vehicle capacity into consideration. Moreover, the
shuttle interval and travel time must be restricted to an upper bound for the sake of
patients’ health conditions. The objective can be minimization of vehicles’ fixed cost,
travel cost, patients’ waiting, or travel time. Examples of vehicle routing problem
models can be found in Luo et al. [7] and Guo et al. [4].

5 Summary

Operations research has been widely applied to healthcare by maximizing the
benefits of all stakeholders with a limited amount of medical resources. In addition to
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nurse scheduling, home healthcare delivery, and transportation services for patients,
other problems such as operating room and surgeon assignment, inventory manage-
ment of medical material, and healthcare project prioritization can also be addressed
by mathematical models and algorithms.

Besides knowledge and skills in healthcare management, mathematics, and com-
puter, expertise in other fields plays a crucial role in OR application. For example,
topology and network theories are of vital importance in transportation design, and
inventory techniques can significantly improve the order and storage decisions of
medical material. The OR application to healthcare is a combination of mathematics,
computer skills, medical knowledge, and a variety of interdisciplinary expertise.
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