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Abstract

Biotechnology has a foremost role in the textile industry by enhancing ecofriendly, 
cost-effective, and energy-efficient manufacturing processes. The use of enzymatic 
biotechnology is one of the sustainable newly developed state-of-the-art processes for 
textile processing. To reduce the use of toxic and hazardous chemicals, enzymes have 
been proposed as one of the finest promising alternatives. Many enzymes have been 
used widely in textile processes such as lipase, laccase, pectinase, cellulase, catalase, 
amylase, and protease. The enzymatic use in the textile industry is very promising 
because they produce top-class goods, and give way to the reduction of water, time, 
and energy. The increasing demand for natural dyes especially with the incorpora-
tion of enzymes makes process more sustainable and eco-friendlier to suppress the 
toxicity of synthetic dyes. In the first part of the chapter, particular attention has been 
given to the source and extraction of natural dyes. In the second part of the chapter, 
different enzymes and their possible roles in the textile industry have been discussed. 
It is expected that this chapter will provide an innovative direction to the academic 
researchers, the community of textile and traders as well as artisans who are working 
in the area of biotechnological applications for the betterment of textile processing.

Keywords: bio-processing, bio-bleaching, bio-desizing, bio-mercerization, sustainable 
coloration

1. Introduction

The textile industry is one of the fundamental requirements of human beings 
which also contributes significantly to the growing economies of many developing 
nations. The consumption of textile materials is expanding as a result of a growing 
population and increased per capita textile demand [1, 2]. However, the traditional 
approach of textile wet processing needs several processes by using dangerous 
chemicals, high salt concentrations, and a lot of resource consumption before it 
produces a completed fabric. This approach is criticized for its negative environmen-
tal effects due to its toxicity [3]. Implementation of enzymes in textile wet processing 
is guided by friendly environmental awareness. Enzymes are used in the textile sector, 
which appears to establish a perfect balance between commercial requirements and 
the creation of environmentally beneficial products [4]. Enzymatic procedures are 
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extensively utilized in the chemical processing of textiles to reduce environmental 
risks and prevent the excessive use of toxic chemicals. Enzyme biotechnology is a 
sustainable and effective method that has been utilized in many manufacturing 
procedures as a favorable alternative to synthetic catalysis with benefits in terms 
of productivity and sustainability as well as creating top-quality textile fabrics [5]. 
Enzymatic catalysis is an effective instrument that can be used in the industrial 
setting and allows for the resolution of most environmental sustainability-related 
problems, particularly those involving the usage of dangerous chemicals. Enzyme 
utilization has the potential to significantly lessen the negative effects of industrial 
processes on the environment [6].

Enzymes are natural and biodegradable proteins that are frequently employed in 
industries to replace dangerous chemicals since they operate under compassionate 
circumstances and are durable, safe, and disposable. Enzymes have important roles in 
reducing contaminants, bio-finishing to improve esthetics, removing fabric fur from 
the surface, bio-bleaching of cotton to give it an excellent matte texture, and remov-
ing leftover hydrogen peroxide after bleaching [7]. Oxidoreductases and hydrolases 
are two major enzymes used in the textile industry. The hydrolase class comprising 
catalase, amylase, pectinase, lipase, and cellulose are utilized in desizing, biopolish-
ing, bioscouring, and bleaching processes in textile industries [8]. The oxidoreductase 
class of enzymes comprises trans-glutaminases, which are used to modify the proper-
ties of synthetic fibers whereas laccases are used to decolorize the fabrics. Since syn-
thetic dyes have demonstrated harmful qualities over natural dyes, researchers have 
drawn towards natural dyes due to their eco-friendliness [9]. The other beneficial 
aspects of natural dyes over artificial dyes are, the natural dyes are disposable, and the 
byproducts produced during the dyeing process are less harmful to the environment 
[10]. Moreover, natural dyes have a calming effect and provide beautiful colors and 
adorable shades, which make textiles appealing to consumers [11]. The majority of 
dye-producing plants also exhibit anti-oxidant properties, ultraviolet protection, and 
antimicrobial potential. Precisely, natural dyes give textiles some additional finishing 
qualities in addition to color [12].

2. Resources of natural dyes

Various natural sources have been used to create natural colorants, these have 
been categorized as plants, animals, minerals, and microorganisms [13]. Natural Dye 
Research and Development Project, in Turkish known as DOBAG, was launched in 
Turkey in 1981 in collaboration with Polytechnic University, Istanbul, and was very 
successful in reviving the forgotten craft of naturally colored textiles [14]. Several 
natural dyeing supplies have now been discovered because of research initiatives by 
individuals and organizations as well as information exchange at several conven-
tions, festivals, seminars, and articles [15]. There is now a huge amount of knowledge 
concerning various sources of natural dyes in the literature.

2.1 Plant origin

Several natural colorants have originated from plants in history like an alkane, 
annatto, madder, chamomile, sappers, coreopsis, etc. Natural dye supplies include a 
variety of plant components such as leaves, roots, stump branches, core wood, wood 
shavings, bark, fruits, flowers, hulls, and husks [16]. For example, leaves of Indigofera 
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tinctoria are used to make the well-known natural blue color indigo. Some plant-
based dyes are used for other purposes as well, such as food coloring and traditional 
medicine, and as a result, there is a commercial supply chain for these dyes [17]. The 
commercial availability of natural dyes has expanded due to a resurgence in interest in 
them.

2.1.1 Blue dye

The king of natural dyes, Indigo, is the only significant natural dye in blue color 
which could be extracted from the I. tinctoria plant leaves. Since, indigo has been utilized 
for producing a blue hue since ancient times and is currently the most popular denim 
material [17]. More precisely, a pale-yellow chemical known as Indican serves as the 
coloring component, and it is found in the leaves of indigo plants. Interestingly, indigo 
plants in approximately one-acre area can produce roughly 5000 kg of leaves, which 
can be converted into 50 kg of pure natural indigo powder. Several plants, besides the 
Indigofera species, may be utilized to make indigo dye such as woad, a plant that natu-
rally produces indigo in Europe. In addition, Wrightia tinctoria and Dyer’s knotweed 
(Polygonum tinctorium) are two other plants that have historically been used to make 
indigo [18]. Unfortunately, natural indigo got declined after the production of synthetic 
indigo in 1987 which attained more preference over natural one.

2.1.2 Red dye

Red natural dyes can be found in a variety of plant sources. Natural red dyes called 
madder are made from plants of Rubia plant (Hosseinnezhad et al., 2021).“queen of 
natural dyes”. Between 3 and 5 tonnes of roots and 150–200 kg of dye are produced per 
hectare by the 3-year-old plant [19]. In addition to the roots, the plant also has dye in the 
stems and other sections like dried root chips or stem pieces after soaking in cold water 
before being used to extract the dye. Being a mordant dye, it creates insoluble multi-
plexes with the metal ions existing on mordanted fabric to generate vivid colors. Pink 
and red hues are frequently produced with alum where’s the alum and iron together yield 
purple hues. A variety of red could also be generated by mixing other mordants with the 
main metallic salt, alum [20]. The sappan wood often referred to as “Patang,” is a tiny 
tree that produces a red dye often found in India, Malaysia, and Philippines. Caesalpinia 
echinate, the Brazil wood named after the word Braza which means flaming like fire due 
to the vivid red color of its wood, also contains the same dye.

Another red pigment-producing tree is Morinda citrifolia which is found in Sri 
Lanka and India. The 3–4 years old tree provides a good quantity of coloring matter 
from its bark and roots. A variety of colors, including chocolate and purple, can be 
produced by using different mordants [21]. Additionally, an annual herb known as 
safflower is believed to have come from Afghanistan and has been used to extract the 
dye. This herb developed an astonishing cheery red shade on silk and cotton. Dried 
safflower florets are repeatedly washed in acidic water to get rid of all the yellow color 
water-soluble material before the removal of the dye [22].

2.1.3 Yellow dyes

A well-known source of yellow dye is turmeric which is extracted from turmeric 
rhizomes, whether they are fresh or dried, and are used to make the color on wool, 
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silk, and cotton. The coloring material present in turmeric is curcumin, which 
belongs to the diaroylmethane class [23]. To increase the fastness qualities and 
range of adorable shades, different mordants can be used. Saffron is also a good 
source of vintage yellow dye from the Iridaceae family that is made up of the desic-
cated stigmas of the Crocus sativus plant. By boiling flower stigmas in water, the dye 
is released and produces a vivid yellow hue on cotton, silk, and wool [24]. Berberis 
aristata commonly known as the barberry plant is also a well-reputed source of 
yellow dye. The roots, bark, and stems of the barberry plant are used to extract the 
yellow dye and can be used directly to color silk and wool with average lightfastness 
and good washing fastness properties [25].

Another source, pomegranate (Punica granatum) fruit rinds, which are high 
in tannin, are used for mordanting. It is also used in conjunction with turmeric to 
increase the dyed fabrics’ light resistance. Myrobolan (Terminalia chebula) fruits 
also have high tannin content. The dried fruit also contains a natural colorant 
which develops a vivid yellow color for all textile fabrics. Moreover, myrobolan 
can also be employed as a natural mordant for natural dyes fixing on textile 
fabrics.

Marigold (Tagetus spp.) is also frequently employed to create garlands and floral 
accents due to its vivid yellow flowers. It comes in a variety of colors, such as yel-
low, golden yellow, orange, and others [26]. The primary yellow coloring agents are 
Quercetagetol, a flavonol together with two of its glycosides, and lutein which exerts 
good fastness characteristics of wool and silk. This dye can be used to quickly create 
colors on cotton when combined with mordants. Besides, the flame of the forest tree 
named Butea monosperma color all natural fibers. By using correct mordants, the dye 
extracted from the bright orange flowers of this tree develops vivid yellow, brown, 
and orange colors. Mallotus sphillipensis’s  dried fruit capsules, known as Kamala, 
produce a reddish-orange powder. A vibrant yellow-orange and yellow-golden hue 
developed onto silk and wool [27]. Similarly, the outside layer of onions, Allium cepa, 
which is typically discarded like trash, be able to be utilized to extract natural yellow 
colorant. The chemical makeup of the dye is a flavonoid, and it gives wool and silk 
vibrant colors. A suitable mordant can be used to dye cotton with average washing 
and light resistance properties.

2.1.4 Black and Brown dye

Oak galls are utilized for mordanting because they are high in tannin and also 
be employed to achieve a brown hue. Catechu or cutch, which is made from the 
heartwood of Acacia catechu employed to dye cotton, wool, and silk [28]. It has a lot 
of tannins as well and can be dyed black using iron mordant. By iron mordanting, 
many yellow and red dyes can also be turned black. Likewise, the heartwood of the 
Haematoxylon campechianum tree, which is located in the West Indies and Mexico, 
was used to extract the famous logwood black hue, which is quite sharp and has excel-
lent fastness capabilities [29].

Some other research reports the valorization of some natural wastes such as 
olive wastewater by its use as a possible dye bath for dyeing textile fibers. During 
olive oil extraction, dark brown to black effluent was produced which was charac-
terized by a high organic load including polyphenols and tannins. Darker brown 
shades were developed with generally good fastness which demonstrates that 
protein fibers, cotton, and other synthetic fibers possess a high affinity to this 
aqueous extract.
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3. Natural dyes production and extraction techniques

Natural colors are typically derived from diverse plant parts, distinct from 
synthetic dyes, which are created from chemical predecessors. These dye-bearing 
materials typically only have a 0.5–5% dye content and these plant ingredients cannot 
be used directly for the dyeing process [30]. Additionally, a lot of plant materi-
als, including flowers and fruits, are seasonal and contain a lot of water, making it 
impossible to store them in their natural state. Therefore, these are put through some 
processing procedures to make them appropriate for dyeing in textile industry needs 
and to make them accessible all around the year [31]. To lower their contents of water 
to about 10–15% or less, collected constituents of plants are desiccated at first, either 
in the shadow or at a low temperature of 40–50°C in a hot air dryer. To minimize 
particle size and improve dye extraction, the dried material is subsequently ground 
into a powder [11]. In most situations, these powdered and dried components can be 
kept for at least a year in sealed bags or containers and utilized for dying whenever 
necessary. To create pure dye powders, the dye must first be extracted from materi-
als containing dye. Due to the use of several types of machinery and higher energy 
consumption throughout various processing activities, these refined versions are 
expensive [32]. Additionally, because dye extraction happens simultaneously with 
dyeing, its effectiveness is lower when compared to using powdered crude dye-
bearing material [33].

Since the amount of coloring matter or dye present in natural dye-bearing 
materials is relatively low, along with other plant and animal compounds like water-
insoluble fibers, carbohydrates, protein, chlorophyll, and tannins, among others, 
extraction is a crucial step both in the production of purified natural dyes as well 
as in the processing of raw dye-bearing materials [34]. Before using an extraction 
procedure, the type and solubility characteristics of the coloring components must 
be studied [35]. Many conventional and non-conventional techniques for extracting 
colored ingredients are described in the following:

3.1 Conventional extraction methods

3.1.1 Aqueous extraction

Plants and other materials were previously utilized to extract colors using 
aqueous extraction. To increase the effectiveness of the extraction process, the 
material which is comprising dyes is at first fragmented into tiny bits or powdered 
before being sieved [36]. It is then immersed in water for a long period typically 
overnight in earthen, wooden, or metal vessels (ideally copper or stainless steel) 
to release the cell structure [37]. The dye solution is then extracted and filtered 
to eliminate any remaining non-dye plant material. To get rid of the non-dye 
parts, the boiling and filtering operation is repeated, and centrifuges are typi-
cally used to separate leftover material. The elimination of tiny plant materials 
and improved solubility of the purified natural dye can both be achieved by using 
trickling filters [29].

The extract generated by this procedure may be employed to the constituents 
of the textile with ease because many dyeing processes are conducted in aqueous 
solutions. This extraction method has several drawbacks, including a lengthy 
extraction period, a significant amount of water needed, the usage of elevated 
temperatures, and a negligible yield of dye because merely the water-soluble 
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color constituents are removed, even though numerous dyes comprise little water 
solubility [38]. As well as the dye, other water-soluble materials are also extracted, 
these materials may need to be eliminated if the extract is to be condensed and 
turned into a fine powder. Boiling temperature reduces the yield of heat-sensitive 
dye compounds therefore a low temperature should be optimized for the extraction 
in these circumstances [39].

3.1.2 Acid and alkali extraction process

Many colors exist as glycosides, they can be removed using diluted acidic or alka-
line solutions. Greater extraction and elevated yield of coloring constituents occur 
from the hydrolysis of glycosides being facilitated by the addition of acid or alkali 
[40]. Tesu (B. monosperma) flower petals are utilized to extract the dye by an acid 
hydrolysis procedure. To avoid oxidative degradation, some flavone dyes are extracted 
using acidified water [41].

Alkali and alkaline extraction are appropriate for dyes with phenolic groups as it 
increases the yield of the color. This method is also used to extract rose-red colorant from 
petals safflower. One drawback of this procedure is that few dyeing components might be 
degraded in alkaline environments because some natural dyes are pH-sensitive [42]. The 
colorants which exist naturally are typically a combination of many biochemical compo-
nents, altering the pH of the extraction medium by complementing alkali or acid able to 
cause the extraction of various colorant components, which can result in a range of color 
outcomes and colorfastness characteristics [43]. To determine the ideal optimization for 
dye extraction, numerous scholars have investigated natural dye extraction under numer-
ous conditions of pH and equated the fastness and shade attributes of tinted fabrics [44].

3.1.3 Solvent extraction

Depending on their nature, natural coloring substances can also be extracted by 
utilizing natural solvents like chloroform, methanol, petroleum ether, acetone, ethanol, 
or mixtures of solvents like ethanol and methanol, water, alcohol, etc. [45]. Both water-
soluble and water-insoluble materials can be extracted from plant resources using the 
water/alcohol extraction method. As a result of the ability to extract a greater variety of 
chemicals and coloring ingredients than the aqueous approach [46]. Alcoholic solvents 
may also be used with an acid or alkali to aid in the hydrolysis of glycosides and the release 
of coloring components. The ability to readily remove and reuse solvents makes it simpler 
to purify extracted colors. Because extraction is done at a lower temperature, there is less 
danger of deterioration [47]. The method’s drawbacks include the greenhouse effect of 
the poisonous leftover solvents and requiring an aqueous solution for the dyeing process 
because the extracted substance is not easily soluble in water. Problems can also result 
from the co-extraction of compounds like waxy polymers and chlorophylls [41].

3.2 Non-conventional extraction methods

3.2.1 Ultrasonic and microwave extraction

These are ultrasound and microwave-assisted extraction techniques, in which 
the use of ultrasound or microwaves improves extraction efficiency and reduces the 
amount of solvent needed as well as the extraction time [48]. Ultrasound induces the 
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formation of tiny bubbles or cavitation in the liquid when the plant components are 
preserved with water or some additional solvent. This results in the cavity collapsing 
or the bubbles bursting, which raises the temperature and pressure [49]. The extrac-
tion efficiency is quickly increased when extremely high temperatures and pressures 
are created. Many studies have lately reported using this extraction approach as the 
quest for novel dye sources and efforts to improve dye extraction continue [50].

In microwave extraction, the natural sources are processed in the existence of 
microwave energy sources with the least amount of solvent possible. The procedures 
are accelerated by the microwave, allowing for faster and more effective extraction 
[51]. The decrease in temperature of extraction, utilization of solvent, and dura-
tion show consequences in less energy utilization. Both extractions ultrasound and 
microwave may be regarded as green methods [52].

3.2.2 Fermentation

Fermentation accelerates the process of extraction by using the enzymes which are 
generated by microbes found in the environment or natural resources. The most typical 
instance of this kind of extraction is indigo extraction in which newly collected indigo 
twigs and leaves are immersed in warm water (about 32°C) [38]. As fermentation pro-
gresses, the indimulsin enzyme, which is also present in the leaves, converts the colorful 
indigo-containing glucoside indican into glucose and indoxyl. In about 10–15 hours, 
fermentation is finished, and the indoxyl-containing yellow fluid is formally trans-
ferred to whipping tanks where indoxyl is became oxidized through the air and turned 
into the blue color, insoluble indigotin that sinks to the bottom [53]. It is collected, 
cleaned, and then pressed to remove the extra water. Other colorants, such as annatto, 
can also be extracted using this method. Except for not requiring high temperatures, the 
fermentation process is comparable to aqueous extraction [28]. The bacteria naturally 
break down the chemicals that bind coloring materials. The drawbacks of this method 
include a lengthy extraction process, the requirement to extract pigments right away 
after harvesting, a bad odor brought on by microbial activity, and others [54].

3.2.3 Supercritical fluid extraction

Supercritical fluid extraction is a developing field in the purification and extraction of 
natural products. Above its critical temperature and pressure, a gas behaves as a super-
critical fluid. A fluid like this has physical characteristics that fall midway between a liquid 
and a gas [55]. They have substantially lower surface tension than liquids, which allows 
them to spread out along a surface more quickly [56]. As a result of their low viscosity 
and excellent diffusivity, they interact with the substrate more effectively. The ability to 
dissolve the matter in every solvent is increased at elevated pressures and temperatures, 
and these circumstances are required to sustain a gas in supercritical conditions.

Carbon dioxide (CO2) supercritical fluid extraction is a viable substitute for 
solvent extraction since it is inexpensive, simple to use, non-toxic, and residue-free. 
CO2 supercritical extractions normally take place between 32 and 49°C between 1070 
and 3500 psi of pressure [57]. The procedure has acquired popularity in the extrac-
tion of purely natural ingredients for culinary and medicinal uses because the extract 
is off-loaded from leftover traces of solvent, and heavy-weight metals, and is bright 
colored because of the lack of polar polymerizing chemicals. The method’s drawbacks 
include expensive equipment costs and polar chemical extraction [58].
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3.2.4 Enzymatic extraction

Commercially accessible enzymes like pectinase, cellulase, and amylase have been 
utilized by certain scholars to loosen the nearby component, allowing the extraction 
of dye molecules under more benign situations [59]. This is because plant tissues 
comprise cellulose, starches, and pectins as fixing components. This method might be 
useful for getting dye out of tough plant components like bark, roots, and the like [60].

4. Microbial-origin enzymes in textile industry

The use of enzymes in the textile industry is an example of white/industrial 
biotechnology, which allows the development of environmentally friendly technolo-
gies in fiber processing and strategies to improve the final product quality [61]. The 
enzymes in the textile industry is an example of white/industrial biotechnology, 
which allows the development of environmentally friendly technologies in fiber 
processing and strategies to improve the final product quality. The enzymes utiliza-
tion is an illustration of white/modern biotechnology that improve the final product 
quality and permits the expansion of technologies that are approachable to the 
environment [62].

Various microbial enzymes are utilized in the clothing industry at various 
stages on behalf of finishing and waste degradation purposes. Because of its less 
harmful technology and extremely low waste production, the enzyme in textiles 
is responsible for a big profit worldwide [63]. Amylases are frequently utilized for 
the desizing process in the preliminary finishing area, and cellulases are frequently 
used for softening, bio-stoning, and lowering the pilling tendency for cotton items 
in the finishing area [64]. Microorganisms are employed for enzyme manufacturing 
because they have a rapid capacity to adapt to any condition and can create a wide 
variety of enzymes. Bacillus amyloliquefaciens-derived α-amylase worked at pH 6.5 
and 60°C for one hour with 100% desizing efficiency [65]. Amylase extracted from 
Aspergillus niger and Aspergillus flavus has increased desizing efficiency (A. niger 
96%, A. flavus 90%), and its absorbency and controllable impurities have signifi-
cantly improved [66]. Chitosan reduces the amount of enzyme needed by two-
thirds while improving the desizing effect when combined with mesophilic amylase 
is thermally stable at high-temperature desizing [67]. A thermostable cellulase 
extracted from Talaromyces emersonii is used to treat jute-based fabrics and show 
greater brightness, handling, and enduring softness. Due to flavonoid oxidation, 
laccase from Trametes hirsute with mediator improves cotton’s whiteness [10]. To 
provide whiteness, the complex enzymes Laccase and Peroxidase effectively break 
down and eliminate lignin from flax fabrics [68]. Another key benefit of adopting 
microbial enzymes is that the microorganisms are easily biotechnologically altered 
to produce more enzymes.

The two primary classes of enzymes utilized in the pre-treatment of cotton are 
oxidoreductase and hydrolase. Pectinase, a crucial enzyme extracted from the wide-
spread bacterium Bacillus subtilis, is utilized to increase the scouring impact of cotton 
fibers whereas for the processing of cotton, catalase from Aspergillus flavus is utilized. 
Bacillus appears to be a relatively widespread microbe that produces a variety of 
enzymes that are extremely useful in the finishing process for textiles. Applications for 
enzymes include the fading of both denim and non-denim, bio-scouring, bio-polish-
ing, finishing wool, removing peroxide, decolorizing dyestuff, etc. [64] (Table 1).
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5. Enzymes in textile

Due to its nontoxic and eco-friendly qualities, enzyme utilization in the textile sec-
tor is increasingly getting attention around the world. They also have the advantage 
of being able to work on specified substrates [75]. Some of the main enzymes used in 
processing textiles are discussed in the following.

5.1 Amylases

The most widely utilized enzyme in the clothing industry is amylase which works 
by breaking the starch molecules to make various compounds, for instance, dextrins 
and ever-smaller polymers made of glucose units [76]. The two types of starch-
hydrolyzing enzymes, α-amylases, and β-amylases are categorized based on the kind 
of sugars they create. Various fungi, yeasts, and bacteria produce amylases, however 
the enzymes most frequently employed in the industry are from filamentous fungi 
and bacteria. Most fungi and bacteria’s α-amylases are constant throughout a varied 
pH scale, from 4 to 11 [77]. Typically, it serves as a desizing agent by eliminating the 
sizing components (which are starch and its derivatives) without harming the fabric. 
The α-amylases enzyme hydrolyzes the α-1 → 4 glycosidic linkages more quickly than 
the β-amylases, that’s why it is also known as alpha-enzyme [78]. Amylases are occa-
sionally added including other enzymes (pectinases and cellulases) during processes 
like bio-scouring to lower the operating costs.

Enzyme Source Use in textile References

Cellulase Bacillus sp., Streptomyces albaduncus, Aspergillus 

oryzae, Trichoderma reesei, Chaetomium 

globosum, Hypocrea jecorina, Trichoderma viride 
G, Aspergillus nidulans AJ SU04

Bio-stoning, bio-polishing, and 
softening of denim

[69]

Catalase Micrococcus luteus, Bacillus sp., Bacillus 

cereus, Flavobacterium sp., Bacillus pumilus.

Used after bleaching for cotton 
processing, Biostone washing, 
Bio polishing of cotton fabrics

[70]

Amylase Bacillus sp., S. albaduncus, S. albaduncus, 

Bacillus sp. SI-136, Bacillus sp. SI-136, B. 

cereus, Aspergillus niger, Aspergillus flavus, 

Aspergillus niger SH-2, Penenzim HSE, 

Bacillus subtilis MTCC 121, Aspergillus 

tamari, Aspergillus tamari.

Remove starchy layer, De-sizing 
of cotton fabrics

[71]

Protease Bacillus licheniformis, Arthrobacter, 

Streptomyces, Flavobacterium sp., Bacillus sp.

Prevent decolonization of denim, 
antifelting finishing treatment on 
wool and silk fabrics

[72]

Pectinase B. subtilis, Paecilomyces variotii, B. pumilus 
AJK, Streptomyces griseus, Candida.

Hydrolysis of pection in cotton 
fiber preparation, scouring of 
cotton

[73]

Lipase Aspergillus niger, Candida cylindracea, 

Candida rugose, Streptomyces acrimycini NGP 
1, S. albogriseolus NGP 2, S. variabilis NGP, 

B. licheniformis, Pseudomonas fluorescens, 

Bacillus sonorensis, Thermomyces lanoginosus.

Modification of Polyester 
fabrics, Bio-scouring of cotton 
fabrics, Surface modification of 
Polyethylenetere-phthalate fibers

[74]

Table 1. 
Microorganism-based enzymes and their role in textile.
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Traditionally, size materials have been put into the warp yarns to ensure seamless 
weaving. The majority of the ingredients used to scale the warp yarns are starch-based. 
Before bleaching and coloring, the sizing protecting layers from the yarns must be 
eliminated [79]. De-sizing refers to the procedure of eradicating the size components 
from the warp yarns. Traditionally, desizing is accomplished by applying chemicals 
(acid, alkali, oxidizing agents) to the woven cloth at higher temperatures. Furthermore, 
the starch cannot be adequately removed using these traditional methods, which results 
in inconsistent coloring. The chemicals used in the traditional procedure degrade cotton 
fabric as well, which results in cotton cloth losing its natural feel. After the procedure, 
the leftover chemicals are released into the environment, which seriously pollutes the 
ecosystem [80]. Enzymatic desizing is regarded as the industry’s first commercialized 
use of biotechnology in the textile industry. The enzyme amylase is applied to the woven 
cloth to break down the starch, which then cleans the warp thread. The α-amylase is 
one of these three amylases that are best suited for the hydrolysis of starch [81]. These 
enzymes create dextrin, which is easily removed by water, by breaking the connec-
tion between both the glucose molecules in the starch polymer. The use of chemicals 
will be reduced due to the lower treatment temperature and the gentler pH condition. 
Although a wide range of yeasts, fungi, and bacteria are employed to manufacture 
α-amylases [79]. According to a study, using ultrasonic waves increases the efficiency 
of amylase enzymes during the de-sizing process. Amylase can be used with hydrogen 
peroxide or cellulase to increase the pretreated fabric absorbency, dye uptake, and 
rigidity. Novozyme invented a commercial alkali stable enzyme that can be employed 
in a wide pH (6–10) and temperature (30–90°C) range [82]. It has also been found that 
immobilized amylase, is less susceptible to pH, chemicals, and temperature [83]. The 
immobilized amylase has potential industrial applications using the magnetic cross-
linked enzyme aggregation technique. For prolonged usage, this immobilized enzyme is 
simply detached under a magnetic field [84].

5.2 Pectinases

The middle lamella of plant cell walls contains complex polysaccharides like pectin 
and other compounds. The complex group of enzymes known as pectinases is respon-
sible for the breakdown of these compounds. In nature, saprophytes and plant patho-
gens (bacteria and fungi) largely create them for the breakdown of plant cell walls. 
Pectin degrading enzymes fall into three categories: polygalacturonases (PGs), pectin 
esterases (PEs), and polygalacturonate lyases (PGLs) [85]. In addition to bacteria and 
fungi, pectin esterases are primarily produced by plants like tomatoes, citrus fruits, 
and bananas. Most microbial and plant PEs have a molecular weight of 3050 kDa 
where the ideal pH for their activity ranges from 4.0 to 7.0. Polygalacturonases are a 
class of enzymes that hydrolyze α-1,4 glycosidic bonds in pectin by utilizing mutu-
ally endo- and exo-splitting methods [77]. These enzymes are frequently found with 
molecular weights of 3080 kDa and work at an ideal temperature between 30 and 
50°C, and their ideal pH range from 2.5 to 6. Although PGL from Bacillus licheniformis 
remained ideal in the pH range between 8.0 and 7.0. Although PGL from thermo-
philes has an optimal range between 50 to 75°C, the optimal range for PGL activity is 
often between 30 and 40°C [76].

The cuticle and primary wall of a raw cotton fiber include natural contaminants or 
noncellulosic substances (oil, proteins, waxes, pectin, lipids). To create absorbency 
cotton fibers, non-cellulosic elements are eliminated by the process of scouring which 
is boiling the gray cotton fabric in a 3% alkaline solution [86]. This conventional 
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method has several drawbacks, including using large amounts of chemical com-
pounds, necessitating rapid rise after scouring to make the fabric neutral, reducing 
the fabric weight by 6%, weakening cotton fabrics due to the formation of oxycel-
lulose in the presence of oxygen, and usually requires more energy due to boiling 
temperatures [87]. The wastewater that results also has a high salt content, a great 
chemical oxygen demand (COD), and a high biological oxygen demand (BOD). 
Enzymatic scouring has been looked into in this situation as a potential replacement 
for conventional alkaline-based scouring [88]. In comparison to the conventional 
method, bioscouring has many benefits, including less water usage and energy-saving 
treatment temperatures. Since enzymes do not destroy cotton, unlike conventional 
scouring methods, there is no loss of weight or strength. Pectinases are frequently 
employed for scrubbing cotton as it works by breaking down the pectin in cotton’s 
main cell wall [89]. The noncellulosic material is kept linked to the cellulose by 
pectin, as a result, the other contaminants can be easily separated if the pectin is 
eliminated. Polygalacturonases, pectin esterases, and polygalacturonate lyases are the 
three groups of pectinases [90]. The optimum temperature and pH range of 30–50°C 
and 05–08 has been reported for pectin esterases to catalyze the hydrolysis of pectin 
methyl esters and convert them into pectin acid. Glycosidic links in pectin are hydro-
lyzed by polygalacturonases which optimally work in a temperature range of 40–60°C 
and acidic pH 03–07 [91]. Pectinases and cellulases are usually used in combination 
for bio-scouring, pectinases break down pectin in this conjunction whereas cellulases 
demolish the cuticle by rupturing the main wall. The outcomes demonstrated that the 
immobilized enzymes were as effective as the combination of pectinase and cellulase 
and this approach is more efficient than aqueous bio-scouring [92]. High tempera-
tures and alkaline environments are required to increase the activity and stability of 
pectinase. Bacillus pumilus BK2 has been reported as a novel source of pectate lyase, 
with optimal activity at pH 8.5 and a temperature of 70°C to evaluate the bio-scouring 
of cotton fabric [87]. To well comprehend the procedure of bioscouring and its 
impacts on textile materials, it is crucial to characterize the biochemical and physi-
cal surface modifications of clothes following bio-scouring and to identify effective 
methodologies for surface characterization [4].

5.3 Laccases

Multicopper enzymes called laccases catalyze the oxidation of a variety of pheno-
lic and non-phenolic substances by reducing molecular oxygen by four electrons to 
produce water. Laccases are most common in fungi, though they have been discovered 
in plants, insects, and bacteria. More than 60 fungi species have been shown to pro-
duce laccase having a molecular weight of 6070 kDa, with an ideal pH range of acidic, 
and an ideal temperature range of 50 to 70°C [73]. Laccase from Ganoderma lucidum 
is one of the enzymes with optimal temperatures below 35°C, it works at an optimum 
temperature of 25°C. Laccases have several different roles in the treatment of textiles, 
including finishing fabric, bleaching, scouring, and dying wool, as well as playing a 
part in water treatment and dye synthesis. The laccases are extensively researched for 
denim bleaching to substitute stone washing because they can destroy indigo [93]. 
Research on laccases for the decolorization of textile effluents is extensively used as 
an eco-friendly method for treating dye wastewater because they have the potential to 
degrade a wide range of chemical compounds including synthetic dyes [94].

Conventionally, cotton is bleached by discoloring natural pigments, which gives 
white appearance to cotton fabric. Cotton has natural pigments, primarily flavonoids, 



Dyes and Pigments - Insights and Applications

12

which give its inherent grayness. The procedure of bleaching is used to take out the 
textile’s natural colorants [95]. Hydrogen peroxide is a conventional market bleaching 
agent that works at pH 11–13 and temperatures up to 130°C to bleach materials. The 
traditional bleaching technique has significant drawbacks due to high temperatures 
and alkaline pH which seriously harm the fabric [96]. The bleaching compounds can 
also reduce cotton’s degree of polymerization, which create overall damage to the 
fabric. Additionally, more water is needed after bleaching to neutralize the fabric and 
eliminate extra hydrogen peroxide. The use of enzymes can solve the issues with the 
conventional procedure [97]. Cotton is bleached by laccases which oxidized the flavo-
noids present in the fabric. These enzymes are utilized at temperatures between 60 and 
80°C with an acidic pH, where the use of ultrasonic energy could enhance laccases’ 
bleaching effect [98]. Besides that, glucose oxidases can generate hydrogen peroxide 
and gluconic acid in an aqueous solution by oxidizing glucose at acidic pH to neutral 
and lower temperature. It is feasible to reuse the desizing bath as a source of glucose, 
this biochemical method offers combined desizing and bleaching [99]. The excess 
hydrogen peroxide is traditionally eliminated after bleaching cotton cloth by using a 
reductant or by rinsing it with water. Besides this traditional method can be replaced 
by catalase which converts hydrogen peroxide into water and oxygen [100]. Previous 
studies reported a laccase-assisted wool dyeing technique that uses low temperatures 
and no dying auxiliaries and prevents the excessive use of water and energy [101]. In a 
more recent study, laccases were used to catalyze an enzyme process that used natural 
flavonoids to color cotton [102].

5.4 Cellulases

Cellulases are hydrolytic enzymes that speed up the process of cellulose breaking 
down into smaller oligosaccharides and then glucose. Cellulase activity signifies the 
combined action of at least three different types of cellulases in a multicomponent 
enzyme system [103]. Combinations of all three varieties of enzymes have better 
activity than the total activities of every enzyme alone because cellobiohydrolases 
work synergistically with endoglucanases and each other. Exo-cellulases generate 
cellobiose and soluble oligosaccharides, which are then transformed into glucose by 
β-4-glucosidase [104]. Numerous fungus cellulases are modular proteins made up of 
a connecting linker, a carbohydrate-binding domain (CBD), and a catalytic domain 
(CD). CBD serves as a mediator for the enzyme’s attachment to the substrate of 
insoluble cellulose [105]. Temperatures between 30 to 60°C are the active range for 
cellulases, but they are categorized as acid-stable (pH 4.55), neutral (pH 6.67), or 
alkali stable depending on how sensitive to pH (pH 9.10). Cellulases were first time 
utilized in the textile processing industry for the finishing of denim in the late 1980s. 
Cellulases are currently utilized to treat cotton and other cellulose-based fabrics in 
addition to bio stoning [86].

Many clothes are given a washing action to provide them a somewhat worn 
appearance, such as stone-washing of denim jeans, which causes the blue denim to 
fade due to the pumice stones. This ancient method has some drawbacks, including 
difficulties in removing pumice residue from denim clothing, harm to the machinery 
and clothing, dust in the washing equipment, and ecological damage [106]. The use 
of pumice stone has decreased or has been entirely removed in the industry of textile 
due to the introduction of cellulase enzymes. In the business of textile, indigo dyes 
are typically used to color fabric, whereas cellulase enables the surface of the fabric 
to hydrolyze, which eliminates some of the indigo dyes from the surface of the fabric 
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and gives it an aging and faded appearance [107]. Part of the indigo is removed from 
the fiber’s surface through partial hydrolysis, resulting in bright patches. The current 
research focuses on the prevention or improvement of back staining, which is the 
redeposition of liberated indigo onto the clothing. According to reports, back staining 
issues can be reduced by utilizing neutral and endo cellulases at neutral pH. Purified 
and characterized 20 and 50 kDa endoglucanase, as well as a 50 kDa cellobiohydro-
lase, were previously reported for their use in textile processing at neutral pH [75]. 
The 20 kDa endoglucanase performed well during biostoning, and it was feasible to 
reduce the amount of back staining by joining the 50 kDa cellobiohydrolase or 50 kDa 
endoglucanase with the 20 kDa endoglucanase [108]. This problem is also solved by 
using enzyme-based anti-black staining agents which are composed of lipases and 
proteases. An important area of research has been the optimization of biofinishing 
procedures to collect the enzyme and reuse it. The preventive measures that have to be 
adopted for the usage of cellulases are that it should operate with deliberate kinetics 
so that no impairment appears to the internal composition of fiber and the procedure 
should be confined to the hydrolysis of only unfastened surface fibrils [103]. This 
issue can be solved by selecting the right immobilized enzyme, adjusting the concen-
tration and incubation duration, using liquids with varying viscosities, making foam 
ingredients, and using hydrophobic agents to impregnate clothing.

5.5 Serine proteases: Subtilisins

Alkaline serine proteases belonging to the subtilisin family are typically extracted 
from numerous Bacillus species. They create an intermediate acyl-enzyme that 
accelerates the hydrolysis of peptide and ester linkages. Subtilisins are made as pre-
proproteins precursors, where’s the active site of the enzyme made of a catalytic triad 
of aspartate, serine, and histidine [2]. Majorly subtilisins have a molecular weight 
between 15 and 30 kDa, however, there is a small number of anticipations like B. sub-
tilis subtilisin having a molecular weight of 90 kDa. Alkaline proteases have an opti-
mum temperature range of 50 to 70°C, where they function at their best, but they are 
relatively stable at higher temperatures [109]. Thermos ability of enzyme is increased 
when one or more calcium binding sites are present. Subtilisins can be effectively 
inhibited by diisopropyl-fluorophosphate (DFP) and phenyl methyl sulphonyl 
fluoride (PMSF). Therefore, most subtilisin protein engineering has concentrated on 
improving thermostability, substrate selectivity, and oxidation resistance [33].

Raw wool is hydrophobic because of the epicuticle surface membranes comprising 
fatty acids and hydrophobic contaminants such as grease and wax. Alkaline scour-
ing with sodium carbonate and preparation with potassium permanganate, sodium 
sulfite, or hydrogen peroxide is common methods to remove these contaminants 
[72]. When wet processed, wool cloth has a propensity to feel and shrink, and several 
chemical techniques can be used to control the way wool shrinks. The chlorine-
Hercosett technique, which has been used for more than 30 years, is the very effective 
industrial shrink-resistant method now existing [110]. There are some significant 
drawbacks to this method, despite its advantages (noble anti-felt influence, little 
destruction, and little loss of weight), including its restricted endurance, inadequate 
treating features, yellowing of the fibers, challenges with coloring, and influence of 
the environment from the liberation of absorbable organic halogens [111]. Previous 
studies have recommended treating wool using safe chemical techniques, like low-
temperature plasma. Plasma treatment, which is a dry method, uses electric gas 
discharges to treat wool fabric, since no chemicals are used in the process and only 
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the surface characteristics of the wool are altered, it is considered as being environ-
mentally [112]. However, the commercialization of a plasma treatment technique is 
limited by costs, compatibility, capacity, and the shrink-resist qualities acquired do 
not impart a machine-washable finish, which is one of the primary goals. A natural 
polymer, like chitosan, may then be used to enhance the wool’s anti-felting or shrink-
resistance qualities [113].

Proteases of the subtilisin form have lately been investigated as a substitute for 
chemically pre-treating wool, primarily for environmental concerns. According to 
much research, pretreating wool fabric with proteases enhanced its anti-shrinkage 
qualities, eliminate contaminants, and raised dyeing affinity. The enzyme can, how-
ever, enter the fabric cortex because of its small size, which leads to the degradation of 
the internal structure of the wool fabric [114]. According to several studies, increas-
ing the size of the enzyme through chemical cross-linking with glutaraldehyde or by 
attaching synthetic polymers like polyethylene glycol might minimize the enzyme 
penetration, which in turn lowers potency and weight loss [115]. By increasing the 
cuticle’s sensitivity to proteolytic decomposition, hydrogen peroxide pretreatment 
of wool fabric at an alkaline pH in the existence of elevated salt concentrations also 
focuses the activity of enzymes on the wool’s outer surface [100]. As an alternative to 
the current proteases, the search for novel protease-producing microorganisms with 
great cuticle specificity is being researched.

5.6 Nitrilases and nitrile hydratases

About 40 years ago, the nitrile-hydrolyzing enzyme nitrilase was originally identi-
fied. After studying the composition and amino acid sequence of nitrilase, 13 divi-
sions make up the nitrilase superfamily. In contrast to the eight or more branches that 
appear to have evident amidase or amide concentration activities, associates of only 
a single division are identified to exhibit the actual activity of nitrilase [116]. A small 
number of fungal species and 3 out of the 21 plant families have this enzyme func-
tion, however, it is more frequently found in bacteria. It is known that certain taxa, 
including Pseudomonas, Klebsiella, Nocardia, and Rhodococcus, use nitriles as their only 
carbon and nitrogen sources [117]. Different bacteria and fungi that can hydrolyze 
nitriles have been discovered, mostly because of the biotechnological potential of 
nitrilases. The majority of the isolated nitrilases were composed of one polypeptide 
with a molecular weight of 3045 kDa, which under certain conditions would assemble 
to create the active holoenzyme [118]. The enzyme appears to exist most frequently 
as a big aggregate with 626 subunits, although increased levels of solvents which are 
organic in nature, temperature, pH, salt, or even the enzyme itself can cause subunit 
interaction and subsequently stimulation, whereas the majority of enzymes exhibit 
substrate-dependent activation [119]. The primary enzyme in the enzymatic process 
for converting nitriles to amides, which are then transformed by amidases to the 
appropriate acid, is nitrile hydratase (NHase). Several microorganisms with NHase 
activity have been isolated, and the enzymes have been refined.

Excellent characteristics of polyacrylonitrile fiber (PAN), including their great 
biochemical conflict, superior flexibility, and ordinary-looking esthetic qualities, 
have led to a rise in their use; at the moment, they account for 10% of the synthetic 
fiber market worldwide [3]. However, PAN textiles’ hydrophobic characteristic 
imposes unwanted qualities, making the dyeing and finishing procedure challeng-
ing. The surface chemical hydrolysis of PAN fabrics typically causes an irreversible 
yellowing of the fabric [120]. Selective enzymatic hydrolysis of PAN could therefore 
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be a fascinating alternative, just like with other synthetic fabrics. Different sources 
(Rhodococcus, Rhodochrous, and Agrobacterium tumefaciens) of nitrile hydratase 
and amidase affected the surface of PAN [121]. The fabric’s hydrophilicity and dye 
absorption improved after enzymatic treatment. In previous studies, PAN was treated 
with nitrile hydratases extracted from Brevibacterium imperiale, Corynebacterium 
nitrilophilus, and Arthrobacter sp. showed an increased number of amide groups on 
the PAN outward, increasing its hydrophilicity and dye ability [122]. In different 
investigations, it was discovered that the Micrococcus luteus strain BST20 produces 
membrane-bounded nitrile hydrolysing enzymes, which were shown to hydrolyze 
nitrile groups on the PAN surface by determining the NH3 release from PAN powder 
and the depth of shade of enzyme-treated fabric following dyeing with a basic dye 
[123]. Matamá et al. [57] demonstrated the biomodification of acrylic fabric by 
utilizing a nitrilase rather than nitrile hydratases/amidases. The catalytic efficiency 
was increased by adding 4% N-N-dimethylacetamide and 1 M sorbitol to the treat-
ment solution. Previous findings show that the enzymatic action of PAN will improve 
the characteristics of treated fabric while also saving energy and reducing pollutants, 
even though there is not an industrial application for it yet.

5.7 Lipase/esterases

Acyl-hydrolase enzymes sometimes referred to as lipases found in a vast variety of 
animals, plants, and microorganisms, accelerate the breakdown of triacyl glycerol into 
fatty acids and glycerol. These enzymes exhibit excellent regio- andstereo specificity a 
broad substrate tolerance, and other properties that make them desirable biocatalysts 
for the synthesis of fine chemicals and the creation of optically pure molecules [124]. 
They are often quite stable, do not require cofactors, and even function in organic sol-
vents [96]. For lipases and esterases, the mechanism for ester hydrolysis or production 
consists of four steps in which the substrate is attached to the active serine, resulting in 
a tetrahedral intermediate that is stabilized by the catalytic His and Asp residues [125]. 
A tetrahedral intermediate is formed by the attack of a nucleophile, which following 
resolution produces the desired product (an acid or an ester) and free enzyme. The 
interfacial activation phenomenon allows lipases to be separated from esterases (which 
is only observed for lipases) [126]. A hydrophobic domain (lid) shielding the active site 
of lipase is responsible for this interfacial activation, according to structure elucida-
tion. This lid will only open in the existence of the least concentration of substrate, 
such as a hydrophobic solvent that is organic in nature or a triglyceride phase, allowing 
access to the active site [127]. Esterases and lipases were among the main enzymes to 
be investigated for stability and activity in organic solvents; however, lipases exhibit 
this property more clearly. In the clothing industry, lipases are mostly utilized for 
bio-scouring, desizing fabrics, and surface functionalization of synthetic fibers. They 
may also be used in conjunction with other enzymes including protease, and xylanases 
[128]. Polyester fabrics’ ability to absorb color is improved by the lipase enzyme, which 
also causes less surface abrasion and weight loss.

The fabrics made of PET (polyethylene terephthalate), PAN (polyacrylonitrile), 
and PA (polyamide) exhibit exceptional qualities such as good potency, great chemical 
endurance, minimal abrasion, and minimal shrinkage [129]. Extraordinary hydro-
phobicity and crystallinity, which impair wearing comfort (making these fabrics less 
suitable to be in contact with human skin), as well as the processing of fabrics (prevent-
ing the usage of finishing chemicals and dyeing representatives), are major drawbacks 
of synthetic fabrics [130]. Major finishing procedures/agents depend on water, hence 
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increasing the hydrophilicity of the fabric surface is necessary. Currently, sodium 
hydroxide-based chemical treatments are utilized to increase the hydrophilicity and 
increase flexibility of fabrics [131]. Chemical treatment, which can cause undesirable 
weight and strength losses as well as irretrievable yellowing in the example of PA and 
PAN fabrics, is challenging to control [132]. The method also harms the environment 
because it uses a lot of energy and chemicals. Utilizing enzymes to adapt the surface of 
synthetic fabrics is a recently discovered substitute [133]. Substantial depilling, effec-
tive desizing, elevated hydrophilicity and reactivity with cationic dyes, and enhanced 
oily stain release were all outcomes of the enzymatic treatment [108].

5.8 Catalase

The enzymes that accelerate the breakdown of hydrogen peroxide into water and 
oxygen are referred to as catalases, also known as hydroperoxidases. After desizing 
and scouring but before dyeing, H2O2 is used in bleaching in the textile industry [134]. 
Historically, hydrogen peroxide was destroyed with a reducing agent and was rinsed 
with water. Conventionally, sodium bisulfate, which requires high temperatures 
and thorough rinsing, is used to eliminate hydrogen peroxide after bleaching [120]. 
Catalases can be used to break down extra hydrogen peroxide at low temperatures, 
this makes the procedure more affordable and environmentally friendly. They are 
made by a range of microorganisms, comprising bacteria and fungus, and many of 
them perform best at temperatures around 20°C and a pH of 07 [72]. The synthesis 
of microbial CATs will only be economically viable when using recombinant strains 
and low-cost technologies, or for CATs with particular qualities like thermostability 
or action at alkaline or acidic pH [135]. CATs from animal resources (bovine liver) are 
often inexpensive. The use of immobilized enzymes could lower the rate of enzyme 
for the breakdown of hydrogen peroxide in bleaching wastes, permitting not only the 
retrieval of the enzyme but also the reutilization of preserved decolorizing over-flows 
for coloring [136].

6. Future prospects

In practically every stage of manufacturing textile fibers, enzymes can be 
employed to create ecologically acceptable alternatives to chemical processes. 
Amylases for desizing, cellulases, laccases for denim finishing, and proteases included 
in commercial products are just a few examples of existing successful commercial 
uses. Commercial enzyme-based techniques for the bio-modification of artificial and 
natural fibers must first undergo additional study before they can be put into use. 
The quest for novel enzyme-producing microorganisms and enzymes derived from 
microorganisms is an important area of research. Future textile processing still has a 
lot of room for novel and enhanced enzyme uses.

7. Conclusion

Enzymes are the greatest substitute for the best textile processing they not only 
help the environment but also save a great deal of money by consuming less energy 
and water, which lowers the production cost. It appears that all processes will be 
able to be carried out utilizing enzymes in the future as the employment of diverse 
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enzymes is still in its infancy, but their inventive uses are growing and expanding 
quickly into every aspect of textile production. Companies that produce enzymes are 
always working to make their products better for a wider variety of usage scenarios. 
The biggest barrier to employing enzymes is their high price. The textile industry 
was identified as a market area with great potential for implementing biotech but 
limited biotech awareness at the moment. Through the adoption and implementation 
of the enzymatic process, high value-added textile products with top quality may be 
produced while consuming less power, water, and other resources as well as enforcing 
to assure economic and environmental improvements along with sustainable develop-
ment and social responsibility. In the area of treating textiles, enzymes are becoming 
much more prevalent and they can be used much more extensively in the textile 
industry if their expense can be controlled.
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