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Chapter

The Paradigm of Complex
Probability and the Theory of
Metarelativity: The General
Model and Some Consequences
of MCPP
Abdo Abou Jaoudé

Abstract

Calculating probabilities is a crucial task of classical probability theory. Adding
supplementary dimensions to nondeterministic experiments will yield a deterministic
expression of the theory of probability. This is the novel and original idea at the
foundation of my complex probability paradigm. As a matter of fact, probability
theory is a stochastic system of axioms in its essence; that means that the phenomena
outputs are due to randomness and chance. By adding novel imaginary dimensions to
the nondeterministic phenomenon happening in the set R will lead to a deterministic
phenomenon and thus a stochastic experiment will have a certain output in the
complex probability set and total universe G = C. If the chaotic experiment becomes
completely predictable, then we will be fully capable to predict the output of random
events that arise in the real world in all stochastic processes. Accordingly, the task that
has been achieved here was to extend the random real probabilities set R to the
deterministic complex probabilities set and total universeG = C ¼ RþM and this by
incorporating the contributions of the set M, which is the complementary imaginary
set of probabilities to the set R. Consequently, since this extension reveals to be
successful, then an innovative paradigm of stochastic sciences and prognostic was put
forward in which all nondeterministic phenomena in R was expressed deterministi-
cally in C. This paradigm was initiated and elaborated in my previous 21 publications.
Furthermore, this model will be linked to my theory of Metarelativity, which takes
into consideration faster-than-light matter and energy. This is what I named “The
Metarelativistic Complex Probability Paradigm (MCPP),” which will be developed in
the present two chapters 1 and 2.

Keywords: degree of our knowledge, complex random vector, chaotic factor,
probability norm, complex probability set C, imaginary number, imaginary
dimensions, metarelativistic transformations, superluminal velocities, metaparticles,
metamatter, dark matter, dark energy, metaenergy, metaentropy, universe G1,
metauniverse G2, luminal universe G3, the total universe G
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1. The metarelativistic complex probability paradigm (MCPP): a more
general second model

In this section, we will develop the second more general model ofMCPPwith all its
parameters [1–42].

1.1 The real and imaginary probabilities

Here, and in this secondMCPPmodel, v1 is always the velocity of a body in R1 with
0≤ v1 < c and is a random variable that follows the normal distribution:
N v1 ¼ c=2, σv1 ¼ c=6ð Þ where v1 is the mean or the expectation of this symmetric
normal probability distribution of v1 or PDF1 v1ð Þ and σv1 is its corresponding standard
deviation. And v2 is also the velocity of a body in R2 with c< v2 ≤ nc and is a random
variable that follows the normal distribution: N v2 ¼ nþ 1ð Þc=2, σv2 ¼ n� 1ð Þc=6ð Þ for
a determined and fixed value of n such that ∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ and where

v2 is the mean or the expectation of this symmetric normal probability distribution of
v2 or PDF2 v2ð Þ and σv2 is its corresponding standard deviation.

First, we will define and calculate the real and imaginary probabilities in the
universes R1, R2, M1, and M2 in the second model of MCPP as follows:

PR1 ¼ Prob 0≤V ≤ v1ð Þ ¼ CDF1 0≤V ≤ v1ð Þ ¼
Ð

v1

0

PDF1 vð Þdv ¼
Ð

v1

0

N v ¼ c=2, σv ¼ c=6ð Þdv.

So, if v1 <0 ) PR1 ¼ Prob V <0ð Þ ¼ CDF1 V <0ð Þ ¼ 0.

If v1 ¼ 0 ) PR1 ¼ Prob V ≤0ð Þ ¼ CDF1 V ≤0ð Þ ¼
Ð

0

0

PDF1 vð Þdv ¼

Ð

0

0

N v ¼ c=2, σv ¼ c=6ð Þdv ¼ 0.

If v1 ¼ v1 ¼ c=2 ) PR1 ¼ Prob 0≤V ≤ c=2ð Þ ¼ CDF1 0≤V ≤ c=2ð Þ ¼
Ð

c=2

0

PDF1 vð Þdv ¼ 0:5.

If v1 ! c� ) PR1 ! Prob 0≤V < cð Þ ¼ CDF1 0≤V < cð Þ ¼
Ð

c

0

PDF1 vð Þdv ¼

Ð

c

0

N v ¼ c=2, σv ¼ c=6ð Þdv ¼ 1.

If v1 > c ) PR1 ¼ Prob V > cð Þ ¼ CDF1 V > cð Þ ¼
Ð

v1

0

PDF1 vð Þdv ¼

Ð

c

0

PDF1 vð Þdvþ
Ð

v1

c

PDF1 vð Þdv

� �

¼ 1þ 0ð Þ ¼ 1.

And we have for the second real probability:

PR2 ¼ Prob c<V ≤ v2ð Þ ¼ CDF2 c<V ≤ v2ð Þ

¼

ð

v2

c

PDF2 vð Þdv ¼

ð

v2

c

N v ¼ nþ 1ð Þc=2, σv ¼ n� 1ð Þc=6ð Þdv

So, if v2 < c ) PR2 ¼ Prob V < cð Þ ¼ CDF2 V < cð Þ ¼ 0.

If v2 ! cþ ) PR2 !
Ð

c

c

PDF2 vð Þdv ¼
Ð

c

c

N v ¼ nþ 1ð Þc=2, σv ¼ n� 1ð Þc=6ð Þdv ¼ 0.
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If v2 ¼ v2 ¼ nþ 1ð Þc=2 ) PR2 ¼ Prob c<V ≤ nþ 1ð Þc=2ð Þ ¼

CDF2 c<V ≤ nþ 1ð Þc=2ð Þ ¼
Ð

nþ1ð Þc=2

c

PDF2 vð Þdv ¼ 0:5.

If v2 ¼ nc

) PR2 ¼ Prob c<V ≤ ncð Þ ¼ CDF2 c<V ≤ ncð Þ

¼

ð

nc

c

PDF2 vð Þdv ¼

ð

nc

c

N v ¼ nþ 1ð Þc=2, σv ¼ n� 1ð Þc=6ð Þdv ¼ 1

If v2 > nc

) PR2 ¼ Prob V > ncð Þ ¼ CDF2 V > ncð Þ

¼

ð

v2

c

PDF2 vð Þdv ¼

ð

nc

c

PDF2 vð Þdvþ

ð

v2

nc

PDF2 vð Þdv

8

<

:

9

=

;

¼ 1þ 0ð Þ ¼ 1

Moreover, the first imaginary probability is:

PM1 ¼ i 1� PR1ð Þ ¼ i 1� Prob 0≤V ≤ v1ð Þ½ � ¼ i 1� CDF1 0≤V ≤ v1ð Þ½ � ¼ iCDF1 v1 <V < cð Þ

¼ i 1�

ð

v1

0

PDF1 vð Þdv

2

4

3

5 ¼ i

ð

c

v1

PDF1 vð Þdv ¼ i

ð

c

v1

N v ¼ c=2, σv ¼ c=6ð Þdv

So, if v1 <0 )

PM1 ¼ i
Ð

c

v1

PDF1 vð Þdv ¼ i
Ð

0

v1

PDF1 vð Þdvþ
Ð

c

0

PDF1 vð Þdv

� �

¼ i 0þ 1ð Þ ¼ i ) PM1=i ¼ 1.

If v1 ¼ 0
) PM1 ¼ i 1� Prob V ≤0ð Þ½ � ¼ i 1� CDF1 V ≤0ð Þ½ � ¼ i 1� 0ð Þ ¼ i ) PM1=i ¼ 1.
If v1 ¼ v1 ¼ c=2

) PM1 ¼ i 1� Prob 0≤V ≤ c=2ð Þ½ � ¼ i 1� CDF1 0≤V ≤ c=2ð Þ½ �

¼ i 1�

ð

c=2

0

PDF1 vð Þdv

2

6

4

3

7

5
¼ i

ð

c

c=2

PDF1 vð Þdv ¼ i 1� 0:5ð Þ ¼ 0:5i ) PM1=i ¼ 0:5

If v1 ! c� ) PM1 ! i 1� Prob 0≤V < cð Þ½ � ¼ i 1� CDF1 0≤V < cð Þ½ � ¼

i 1�
Ð

c

0

PDF1 vð Þdv

� �

¼ i 1� 1ð Þ ¼ 0 ) PM1=i ! 0

If v1 > c ) PM1 ¼ 0 ) PM1=i ¼ 0.
And we have for the second imaginary probability:

PM2 ¼ i 1� PR2ð Þ ¼ i 1� Prob c<V ≤ v2ð Þ½ � ¼ i 1� CDF2 c<V ≤ v2ð Þ½ � ¼ iCDF2 v2 <V ≤ ncð Þ

¼ i 1�

ð

v2

c

PDF2 vð Þdv

2

4

3

5 ¼ i

ð

nc

v2

PDF2 vð Þdv ¼ i

ð

nc

v2

N v ¼ nþ 1ð Þc=2, σv ¼ n� 1ð Þc=6ð Þdv

3
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So, if v2 < c ) PM2 ¼ i
Ð

nc

v2

PDF2 vð Þdv ¼ i
Ð

c

v2

PDF2 vð Þdvþ
Ð

nc

c

PDF2 vð Þdv

� �

¼

i 0þ 1ð Þ ¼ i ) PM2=i ¼ 1.
If v2 ! cþ

) PM2 ! i 1� Prob V ≤ v2ð Þ½ � ¼ iProb c<V ≤ ncð Þ ¼ iCDF2 c<V ≤ ncð Þ ¼ i� 1 ¼ i

¼ i 1� CDF2 V < cð Þ½ � ¼ i 1� 0ð Þ ¼ i

) PM2=i ! 1

If v2 ¼ v2 ¼ nþ 1ð Þc=2

) PM2 ¼ i 1� Prob c<V ≤ nþ 1ð Þc=2ð Þ½ � ¼ i 1� CDF2 c<V ≤ nþ 1ð Þc=2ð Þ½ �

¼ i 1�

ð

nþ1ð Þc=2

c

PDF2 vð Þdv

2

6

4

3

7

5
¼ i�

ð

nc

nþ1ð Þc=2

PDF2 vð Þdv ¼ i 1� 0:5ð Þ ¼ 0:5i ) PM2=i ¼ 0:5

If v2 ¼ nc ) PM2 ¼ i 1� Prob c<V ≤ ncð Þ½ � ¼ i 1� CDF2 c<V ≤ ncð Þ½ � ¼

i 1�
Ð

nc

c

PDF2 vð Þdv

� �

¼ i 1� 1ð Þ ¼ 0

) PM2=i ¼ 0

If v2 > nc ) PM2 ¼ 0 ) PM2=i ¼ 0.
Additionally, we have R ¼ R1 0≤ v< cð Þ þ R2 c< v≤ ncð Þ,∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ.

Now, let PR ¼ PR1þPR2

2 and it is equal to half of the sum of the cumulative probability
that 0≤V ≤ v1 in R1 and the cumulative probability that c<V ≤ v2 in R2.

) PR ¼
CDF1 0≤V ≤ v1ð Þ þ CDF2 c<V ≤ v2ð Þ

2

¼
1

2

ð

v1

0

PDF1 vð Þdvþ

ð

v2

c

PDF2 vð Þdv

8

<

:

9

=

;

¼
1

2

ð

v1

0

N v ¼ c=2, σv ¼ c=6ð Þdvþ

ð

v2

c

N v ¼ nþ 1ð Þc=2ð , σv ¼ n� 1ð Þc=6Þdv

8

<

:

9

=

;

Hence, we have in G ¼ C ¼ RþM ¼ G1 + G2: 0≤ v≤ nc with v 6¼ c.
So, if 0≤ v< c ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob V ≤ vð Þ ¼ Prob V < cð Þ ¼ CDF2 V < cð Þ ¼ 0

) PR ¼
CDF1 0≤V ≤ vð Þ þ 0

2
¼

CDF1 0≤V ≤ vð Þ

2
¼

PR1

2

Therefore, we say here that we are working in the real probability universeR ¼ R1

alone.
And if c< v≤ nc ) PR1 ¼ Prob V > cð Þ ¼ CDF1 V > cð Þ ¼ 1.

4
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And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ

) PR ¼
1þ CDF2 c<V ≤ vð Þ

2
¼

1þ PR2

2

Therefore, we say here that we are working in the real probability universeR ¼ R2

alone.
And if 0≤ v≤ nc with v 6¼ c ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ

) PR ¼
CDF1 0≤V ≤ vð Þ þ CDF2 c<V ≤ vð Þ

2
¼

PR1 þ PR2

2

Therefore, we say here that we are working in the real probability universe
R ¼ R1 þ R2.

And consequently, we can deduce from the above the real probability in the
probability universe R ¼ R1 þ R2 for special velocity cases as follows:

if v<0 ) PR ¼ CDF1 V <0ð Þ
2 ¼ 0

2 ¼ 0.

if v ¼ c=2 ) PR ¼ CDF1 0≤V ≤ c=2ð ÞþCDF2 V < cð Þ
2 ¼ 0:5þ0

2 ¼ 0:25.

if v ! c� ) PR ! CDF1 0≤V < cð ÞþCDF2 V < cð Þ
2 ¼ 1þ0

2 ¼ 0:5.

if v ¼ nþ 1ð Þc=2 ) PR ¼ CDF1 0≤V < cð ÞþCDF2 c<V ≤ nþ1ð Þc=2ð Þ
2 ¼ 1þ0:5

2 ¼ 0:75.

if v ¼ nc ) PR ¼ CDF1 0≤V < cð ÞþCDF2 c<V ≤ncð Þ
2 ¼ 1þ1

2 ¼ 1.
Furthermore, we have M ¼ M1 0≤ v< cð Þ þM2 c< v≤ ncð Þ, ∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ:

Now, let PM ¼ PM1þPM2

2 and it is equal to half of the sum of the complement of the
cumulative probability that 0≤V ≤ v1 in M1 and the complement of the cumulative
probability that c<V ≤ v2 in M2.

) PM ¼
i 1� PR1ð Þ þ i 1� PR2ð Þ

2
¼

2i� i PR1 þ PR2ð Þ

2
¼ i�

i PR1 þ PR2ð Þ

2
¼ i 1�

PR1 þ PR2ð Þ

2

� �

¼ i 1� PRð Þ

) PM ¼
i 1� CDF1 0≤V ≤ v1ð Þ½ � þ i 1� CDF2 c<V ≤ v2ð Þ½ �

2

¼
i

2

ð

v1

0

1� PDF1 vð Þ½ �dvþ

ð

v2

c

1� PDF2 vð Þ½ �dv

8

<

:

9

=

;

¼
i

2

ð

v1

0

1�N v ¼ c=2, σv ¼ c=6ð Þ½ �dvþ

ð

v2

c

1�N v ¼ nþ 1ð Þc=2ð , σv ¼ n� 1ð Þc=6Þ½ �dv

8

<

:

9

=

;

¼
i

2

ð

c

v1

N v ¼ c=2, σv ¼ c=6ð Þdvþ

ð

nc

v2

N v ¼ nþ 1ð Þc=2ð , σv ¼ n� 1ð Þc=6Þdv

8

<

:

9

=

;

Hence, we have in G ¼ C ¼ RþM ¼ G1 + G2: 0≤ v≤ nc with v 6¼ c.
So, if 0≤ v< c ) PM1 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF1 0≤V ≤ vð Þ½ �.
And PM2 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF2 V < cð Þ½ � ¼ i 1� 0ð Þ ¼ i

) PM ¼
i 1� CDF1 0≤V ≤ vð Þ½ � þ i

2
¼

iþ PM1

2
¼ i 1�

PR1

2

� �
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Therefore, we say here that we are working in the imaginary probability universe
M ¼ M1 alone.

And if c< v≤ nc ) PM1 ¼ i 1� Prob V > cð Þ½ � ¼ i 1� CDF1 V > cð Þ½ � ¼ i 1� 1ð Þ ¼ 0.
And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ �

) PM ¼
0þ i 1� CDF2 c<V ≤ vð Þ½ �

2
¼

PM2

2
¼ i

1� PR2

2

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M2 alone.

And if
0≤ v≤ nc with v 6¼ c ) PM1 ¼ i 1� Prob 0≤V < vð Þ½ � ¼ i 1� CDF1 0≤V < vð Þ½ �.

And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ � )

PM ¼ i 1�CDF1 0≤V ≤ vð Þ½ �þi 1�CDF2 c<V ≤ vð Þ½ �
2 ¼ PM1þPM2

2 ¼ i 1� PR1þPR2

2

� �

¼ i 1� PR½ �.
Therefore, we say here that we are working in the imaginary probability universe

M ¼ M1 þM2.
And consequently, we can deduce from the above the imaginary probability in the

probability universe M ¼ M1 þM2 for special velocity cases as follows:

if v<0 ) PM ¼ i 1� CDF1 V <0ð Þ
2

h i

¼ i 1� 0
2

� �

¼ i ) PM=i ¼ 1.

if v ¼ c=2 ) PM ¼ i 1� CDF1 0≤V ≤ c=2ð ÞþCDF2 V < cð Þ
2

h i

¼ i 1� 0:5þ0
2

� �

¼ 0:75i

) PM=i ¼ 0:75

if v ! c� ) PM ! i 1� CDF1 0≤V < cð ÞþCDF2 V < cð Þ
2

h i

¼ i 1� 1þ0
2

� �

¼ 0:5i ) PM=i ! 0:5.

if v ¼ nþ 1ð Þc=2

) PM ¼ i 1�
CDF1 0≤V < cð Þ þ CDF2 c<V ≤ nþ 1ð Þc=2ð Þ

2

� �

¼ i 1�
1þ 0:5

2

� �

¼ 0:25i

) PM=i ¼ 0:25

if v ¼ nc ) PM ¼ i 1� CDF1 0≤V < cð ÞþCDF2 c<V ≤ncð Þ
2

h i

¼ i 1� 1þ1
2

� �

¼ i 1� 1ð Þ ¼ 0

) PM=i ¼ 0

Therefore, for any value of 0≤ v≤ nc with v 6¼ c, we can write without any confu-
sion that:

PM1 ¼ i 1� PR1ð Þ and PR1 ¼ 1� PM1=i; hence, M1 is the imaginary complementary
probability universe to the real probability universe R1.

And PM2 ¼ i 1� PR2ð Þ and PR2 ¼ 1� PM2=i; hence, M2 is the imaginary comple-
mentary probability universe to the real probability universe R2.

Moreover, in all cases and for any value of v : 0≤ v≤ nc with v 6¼ c, we have:

PR ¼ PR1þPR2

2 where R ¼ R1 þ R2.

And PM ¼ PM1þPM2

2 where M ¼ M1 þM2.
We can check that:

PM ¼
i 1� PR1ð Þ þ i 1� PR2ð Þ

2
¼

2i� i PR1 þ PR2ð Þ

2
¼ i�

i PR1 þ PR2ð Þ

2
¼ i 1�

PR1 þ PR2ð Þ

2

� �

¼ i 1� PRð Þ

6
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Hence, M is the imaginary complementary probability universe to the real prob-
ability universe R:

Moreover, we have in G ¼ C ¼ RþM, where 0≤ v≤ nc with v 6¼ c,

∀n, n∈
þ

: n> 1⇔ n∈ 1,þ∞ð Þ:

Then, C ¼ R1 þ R2ð Þ þ M1 þM2ð Þ ¼ R1 þM1ð Þ þ R2 þM2ð Þ ¼ C1 þC2.
In fact, in C1 we have: Pc1 ¼ PR1 þ PM1=i ¼ PR1 þ 1� PR1ð Þ ¼ 1.
And, in C2 we have: Pc2 ¼ PR2 þ PM2=i ¼ PR2 þ 1� PR2ð Þ ¼ 1.
And, in C we have:

Pc ¼ PR þ PM=i ¼
PR1 þ PR2

2
þ

PM1 þ PM2

2

� �

=i ¼
PR1 þ PR2

2
þ

i 1� PR1ð Þ þ i 1� PR2ð Þ

2

� �

=i

¼
PR1 þ PR2

2
þ

1� PR1ð Þ þ 1� PR2ð Þ

2
¼

PR1 þ PR2

2
þ 1�

PR1 þ PR2

2
¼ 1

We can calculate Pc in another way as follows:

Pc ¼ PR þ PM=i ¼
PR1 þ PR2

2
þ

PM1 þ PM2

2

� �

=i ¼
PR1 þ PM1=i

2
þ
PR2 þ PM2=i

2
¼

Pc1
2

þ
Pc2
2

¼
Pc1 þ Pc2

2
¼

1þ 1

2
¼ 1

Consequently: Pc ¼ Pc1 ¼ Pc2 ¼ 1, in accordance with CPP axioms.
Furthermore, we can state now and affirm finally that in this second model:
G = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ that means that the total universe G is the sum of

the real subluminal universe G1 and the imaginary superluminal universe or
metauniverse G2.

1.The real subluminal universe G1 corresponds to the complex probability universe
C1, which is also subluminal; hence, G1 = C1 = R1 þM1 with 0≤ v< cð Þ.

2.And the imaginary superluminal universe G2 or metauniverse corresponds
to the complex probability universe C2, which is also superluminal; hence,
G2 = C2 = R2 þM2 with c< v≤ ncð Þ.

Therefore,

PG1 ¼ Pc1 ¼ PR1 þ PM1=i ¼ PR1 þ 1� PR1ð Þ ¼ 1 and

PG2 ¼ Pc2 ¼ PR2 þ PM2=i ¼ PR2 þ 1� PR2ð Þ ¼ 1:

Consequently, the complex total universe G = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ, which
is the sum of the universe and the metauniverse, corresponds to the complex proba-
bility universe C having:

G ¼ C ¼ RþM ¼ R1 þ R2ð Þ þ M1 þM2ð Þ ¼ R1 þM1ð Þ þ R2 þM2ð Þ
¼ C1 0≤ v< cð Þ þ C2 c< v≤ ncð Þ = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ with

0≤ v≤ nc and v 6¼ c,
hence:

PG ¼ Pc ¼
PG1 þ PG2

2
¼

Pc1 þ Pc2
2

¼
1þ 1

2
¼ 1

7
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Consequently: Pc ¼ 1, in accordance with CPP axioms.
Thus, we can conclude that, by adding the complementary imaginary probabilities

universes M1,M2 and M to the real probabilities universes R1,R2 and R then all
random phenomena in the complex probabilities’ universes C1, C2, and C, and hence
in the subluminal universe G1, in the superluminal universe G2, and in the total and
complex universe G, become absolutely and perfectly deterministic with probabilities
expressed totally as follows:

Pc ¼ Pc1 ¼ Pc2 ¼ 1 and PG ¼ PG1 ¼ PG2 ¼ 1.

1.2 The MCPP parameters of the second model

The MCPP parameters in this second model are similar to those of the first model
and this is done by including the probabilities PR and PM corresponding to the second
model.

1.3 The deterministic cases and the MCPP parameters of the second model

The deterministic cases in this second model are similar to those of the first model
and this is done by taking into consideration the probabilities PR and PM pertaining
and corresponding to the second model.

1.4 The second model simulations

We note that in the following simulations, PR3 is the real probability in the luminal
universe G3 for v ¼ cð Þ in yellow in the simulations, where we have ∀PR3 : 0≤PR3 ≤ 1
and that it will be included in the final most general model ofMCPP. Thus, the current
model is a simplified second model. The simulations from Figures 1–3 illustrate the
second and more general model.

2. The metarelativistic complex probability paradigm (MCPP): a more
general third model

In this section, we will develop the third more general model of MCPP with all its
parameters [1–42].

2.1 The real and imaginary probabilities

Here, and in this third MCPP model, v1 is always the velocity of a body in R1 with
0≤ v1 < c and is a random variable that follows any possible probability distribution:
PDF1 v1, σv1ð Þ where v1 is the mean or the expectation of this general probability
distribution of v1 or PDF1 v1ð Þ and σv1 is its corresponding standard deviation. And v2 is
also the velocity of a body in R2 with c< v2 ≤ nc and is a random variable that follows
any possible probability distribution: PDF2 v2, σv2ð Þ for a determined and fixed value of
n such that ∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ and where v2 is the mean or the expectation

of this general probability distribution of v2 or PDF2 v2ð Þ and σv2 is its corresponding
standard deviation. Note that, PDF1 and PDF2 do not have here to be similar proba-
bility distributions.

8
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Figure 2.
The MCPP second model probabilities and the normal/normal distributions for n ¼ 6 in G.

Figure 1.
The MCPP second model parameters and the normal distribution for n ¼ 6 in G2.
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First, we will define and calculate the real and imaginary probabilities in the
universes R1, R2, M1, and M2 in the third model of MCPP as follows:

PR1 ¼ Prob 0≤V ≤ v1ð Þ ¼ CDF1 0≤V ≤ v1ð Þ ¼
Ð

v1

0

PDF1 vð Þdv.

So, if v1 <0 ) PR1 ¼ Prob V <0ð Þ ¼ CDF1 V <0ð Þ ¼ 0.

If v1 ¼ 0 ) PR1 ¼ Prob V ≤0ð Þ ¼ CDF1 V ≤0ð Þ ¼
Ð

0

0

PDF1 vð Þdv ¼ 0.

If v1 ¼ Md v1ð Þ ) PR1 ¼ Prob 0≤V ≤Md v1ð Þð Þ ¼ CDF1 0≤V ≤Md v1ð Þð Þ ¼

Ð

Md v1ð Þ

0

PDF1 vð Þdv ¼ 0:5.

where Md v1ð Þ is the median of the velocity v1 probability distribution.

If v1 ! c� ) PR1 ! Prob 0≤V < cð Þ ¼ CDF1 0≤V < cð Þ ¼
Ð

c

0

PDF1 vð Þdv ¼ 1.

If v1 > c ) PR1 ¼ Prob V > cð Þ ¼ CDF1 V > cð Þ ¼
Ð

v1

0

PDF1 vð Þdv ¼

Ð

c

0

PDF1 vð Þdvþ
Ð

v1

c

PDF1 vð Þdv

� �

¼ 1þ 0ð Þ ¼ 1.

And we have for the second real probability:

PR2 ¼ Prob c<V ≤ v2ð Þ ¼ CDF2 c<V ≤ v2ð Þ ¼

ð

v2

c

PDF2 vð Þdv

So, if v2 < c ) PR2 ¼ Prob V < cð Þ ¼ CDF2 V < cð Þ ¼ 0.

Figure 3.
The MCPP second model parameters and the normal/normal distributions for n ¼ 6 in G.
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If v2 ! cþ ) PR2 !
Ð

c

c

PDF2 vð Þdv ¼ 0.

If v2 ¼ Md v2ð Þ ) PR2 ¼ Prob c<V ≤Md v2ð Þð Þ ¼ CDF2 c<V ≤Md v2ð Þð Þ ¼

Ð

Md v2ð Þ

c

PDF2 vð Þdv ¼ 0:5.

where Md v2ð Þ is the median of the velocity v2 probability distribution.

If v2 ¼ nc ) PR2 ¼ Prob c<V ≤ ncð Þ ¼ CDF2 c<V ≤ ncð Þ ¼
Ð

nc

c

PDF2 vð Þdv ¼ 1.

If v2 > nc

) PR2 ¼ Prob V > ncð Þ ¼ CDF2 V > ncð Þ

¼

ð

v2

c

PDF2 vð Þdv ¼

ð

nc

c

PDF2 vð Þdvþ

ð

v2

nc

PDF2 vð Þdv

8

<

:

9

=

;

¼ 1þ 0ð Þ ¼ 1

Moreover, the first imaginary probability is:

PM1 ¼ i 1� PR1ð Þ ¼ i 1� Prob 0≤V ≤ v1ð Þ½ � ¼ i 1� CDF1 0≤V ≤ v1ð Þ½ � ¼ iCDF1 v1 <V < cð Þ

¼ i 1�

ð

v1

0

PDF1 vð Þdv

2

4

3

5 ¼ i

ð

c

v1

PDF1 vð Þdv

So, if v1 <0 )

PM1 ¼ i
Ð

c

v1

PDF1 vð Þdv ¼ i
Ð

0

v1

PDF1 vð Þdvþ
Ð

c

0

PDF1 vð Þdv

� �

¼ i 0þ 1ð Þ ¼ i ) PM1=i ¼ 1.

If v1 ¼ 0
) PM1 ¼ i 1� Prob V ≤0ð Þ½ � ¼ i 1� CDF1 V ≤0ð Þ½ � ¼ i 1� 0ð Þ ¼ i ) PM1=i ¼ 1.
If v1 ¼ Md v1ð Þ

) PM1 ¼ i 1� Prob 0≤V ≤Md v1ð Þð Þ½ � ¼ i 1� CDF1 0≤V ≤Md v1ð Þð Þ½ �

¼ i 1�

ð

Md v1ð Þ

0

PDF1 vð Þdv

2

6

4

3

7

5
¼ i

ð

c

Md v1ð Þ

PDF1 vð Þdv ¼ i 1� 0:5ð Þ ¼ 0:5i ) PM1=i ¼ 0:5

If v1 ! c� ) PM1 ! i 1� Prob 0≤V < cð Þ½ � ¼ i 1� CDF1 0≤V < cð Þ½ � ¼

i 1�
Ð

c

0

PDF1 vð Þdv

� �

¼ i 1� 1ð Þ ¼ 0

) PM1=i ! 0

If v1 > c ) PM1 ¼ 0 ) PM1=i ¼ 0.
And we have for the second imaginary probability:

PM2 ¼ i 1� PR2ð Þ ¼ i 1� Prob c<V ≤ v2ð Þ½ � ¼ i 1� CDF2 c<V ≤ v2ð Þ½ � ¼ iCDF2 v2 <V ≤ ncð Þ

¼ i 1�

ð

v2

c

PDF2 vð Þdv

2

4

3

5 ¼ i

ð

nc

v2

PDF2 vð Þdv
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So, if v2 < c )

PM2 ¼ i
Ð

nc

v2

PDF2 vð Þdv ¼ i
Ð

c

v2

PDF2 vð Þdvþ
Ð

nc

c

PDF2 vð Þdv

� �

¼ i 0þ 1ð Þ ¼ i ) PM2=i ¼ 1.

If v2 ! cþ

) PM2 ! i 1� Prob V ≤ v2ð Þ½ � ¼ iProb c<V ≤ ncð Þ ¼ iCDF2 c<V ≤ ncð Þ ¼ i� 1 ¼ i

¼ i 1� CDF2 V < cð Þ½ � ¼ i 1� 0ð Þ ¼ i

) PM2=i ! 1

If v2 ¼ Md v2ð Þ

) PM2 ¼ i 1� Prob c<V ≤Md v2ð Þð Þ½ � ¼ i 1� CDF2 c<V ≤Md v2ð Þð Þ½ �

¼ i 1�

ð

Md v2ð Þ

c

PDF2 vð Þdv

2

6

4

3

7

5
¼ i�

ð

nc

Md v2ð Þ

PDF2 vð Þdv ¼ i 1� 0:5ð Þ ¼ 0:5i ) PM2=i ¼ 0:5

If v2 ¼ nc ) PM2 ¼ i 1� Prob c<V ≤ ncð Þ½ � ¼ i 1� CDF2 c<V ≤ ncð Þ½ � ¼

i 1�
Ð

nc

c

PDF2 vð Þdv

� �

¼ i 1� 1ð Þ ¼ 0

) PM2=i ¼ 0

If v2 > nc ) PM2 ¼ 0 ) PM2=i ¼ 0.
Furthermore, we have R ¼ R1 0≤ v< cð Þ þ R2 c< v≤ ncð Þ, ∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ.

Now, let PR ¼ PR1þPR2

2 and it is equal to half of the sum of the cumulative probability
that 0≤V ≤ v1 in R1 and the cumulative probability that c<V ≤ v2 in R2.

) PR ¼
CDF1 0≤V ≤ v1ð Þ þ CDF2 c<V ≤ v2ð Þ

2
¼

1

2

ð

v1

0

PDF1 vð Þdvþ

ð

v2

c

PDF2 vð Þdv

8

<

:

9

=

;

Hence, we have in G ¼ C ¼ RþM ¼ G1 + G2: 0≤ v≤ nc with v 6¼ c.
So, if 0≤ v< c ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob V ≤ vð Þ ¼ Prob V < cð Þ ¼ CDF2 V < cð Þ ¼ 0

) PR ¼
CDF1 0≤V ≤ vð Þ þ 0

2
¼

CDF1 0≤V ≤ vð Þ

2
¼

PR1

2

Therefore, we say here that we are working in the real probability universeR ¼ R1

alone.
And if c< v≤ nc ) PR1 ¼ Prob V > cð Þ ¼ CDF1 V > cð Þ ¼ 1.
And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ

) PR ¼
1þ CDF2 c<V ≤ vð Þ

2
¼

1þ PR2

2

Therefore, we say here that we are working in the real probability universeR ¼ R2

alone.
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And if 0≤ v≤ nc with v 6¼ c ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ

) PR ¼
CDF1 0≤V ≤ vð Þ þ CDF2 c<V ≤ vð Þ

2
¼

PR1 þ PR2

2

Therefore, we say here that we are working in the real probability universe
R ¼ R1 þ R2.

And consequently, we can deduce from the above the real probability in the
probability universe R ¼ R1 þ R2 for special velocity cases as follows:

if v<0 ) PR ¼ CDF1 V <0ð Þ
2 ¼ 0

2 ¼ 0.

if v ¼ Md v1ð Þ ) PR ¼ CDF1 0≤V ≤Md v1ð Þð ÞþCDF2 V < cð Þ
2 ¼ 0:5þ0

2 ¼ 0:25.

if v ! c� ) PR ! CDF1 0≤V < cð ÞþCDF2 V < cð Þ
2 ¼ 1þ0

2 ¼ 0:5.

if v ¼ Md v2ð Þ ) PR ¼ CDF1 0≤V < cð ÞþCDF2 c<V ≤Md v2ð Þð Þ
2 ¼ 1þ0:5

2 ¼ 0:75.

if v ¼ nc ) PR ¼ CDF1 0≤V < cð ÞþCDF2 c<V ≤ncð Þ
2 ¼ 1þ1

2 ¼ 1.
where Md v1ð Þ and Md v2ð Þ are the medians of the velocities probabilities

distributions.
Additionally, we have M ¼ M1 0≤ v< cð Þ þM2 c< v≤ ncð Þ, ∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ.

Now, let PM ¼ PM1þPM2

2 and it is equal to half of the sum of the complement of the
cumulative probability that 0≤V ≤ v1 in M1 and the complement of the cumulative
probability that c<V ≤ v2 in M2.

) PM ¼
i 1� PR1ð Þ þ i 1� PR2ð Þ

2
¼

2i� i PR1 þ PR2ð Þ

2
¼ i�

i PR1 þ PR2ð Þ

2
¼ i 1�

PR1 þ PR2ð Þ

2

� �

¼ i 1� PRð Þ

) PM ¼
i 1� CDF1 0≤V ≤ v1ð Þ½ � þ i 1� CDF2 c<V ≤ v2ð Þ½ �

2

¼
i

2

ð

v1

0

1� PDF1 vð Þ½ �dvþ

ð

v2

c

1� PDF2 vð Þ½ �dv

8

<

:

9

=

;

¼
i

2

ð

c

v1

PDF1 vð Þdvþ

ð

nc

v2

PDF2 vð Þdv

8

<

:

9

=

;

Thus, we have in G ¼ C ¼ RþM ¼ G1 + G2: 0≤ v≤ nc with v 6¼ c.
So, if 0≤ v< c ) PM1 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF1 0≤V ≤ vð Þ½ �.
And PM2 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF2 V < cð Þ½ � ¼ i 1� 0ð Þ ¼ i

) PM ¼
i 1� CDF1 0≤V ≤ vð Þ½ � þ i

2
¼

iþ PM1

2
¼ i 1�

PR1

2

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M1 alone.

And if c< v≤ nc ) PM1 ¼ i 1� Prob V > cð Þ½ � ¼ i 1� CDF1 V > cð Þ½ � ¼ i 1� 1ð Þ ¼ 0.
And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ �

) PM ¼
0þ i 1� CDF2 c<V ≤ vð Þ½ �

2
¼

PM2

2
¼ i

1� PR2

2

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M2 alone.
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And if
0≤ v≤ nc with v 6¼ c ) PM1 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF1 0≤V ≤ vð Þ½ �.

And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ � )

PM ¼ i 1�CDF1 0≤V < cð Þ½ �þi 1�CDF2 c<V ≤ vð Þ½ �
2 ¼ PM1þPM2

2 ¼ i 1� PR1þPR2

2

� �

¼ i 1� PR½ �.
Therefore, we say here that we are working in the imaginary probability universe

M ¼ M1 þM2.
And consequently, we can deduce from the above the imaginary probability in the

probability universe M ¼ M1 þM2 for special velocity cases as follows:

if v<0 ) PM ¼ i 1� CDF1 V <0ð Þ
2

h i

¼ i 1� 0
2

� �

¼ i ) PM=i ¼ 1.

if v ¼ Md v1ð Þ ) PM ¼ i 1� CDF1 0≤V ≤Md v1ð Þð ÞþCDF2 V < cð Þ
2

h i

¼ i 1� 0:5þ0
2

� �

¼ 0:75i

) PM=i ¼ 0:75

if v ! c� ) PM ! i 1� CDF1 0≤V < cð ÞþCDF2 V < cð Þ
2

h i

¼ i 1� 1þ0
2

� �

¼ 0:5i ) PM=i ! 0:5.

if v ¼ Md v2ð Þ ) PM ¼ i 1� CDF1 0≤V < cð ÞþCDF2 c<V ≤Md v2ð Þð Þ
2

h i

¼ i 1� 1þ0:5
2

� �

¼ 0:25i

) PM=i ¼ 0:25

if v ¼ nc ) PM ¼ i 1� CDF1 0≤V < cð ÞþCDF2 c<V ≤ncð Þ
2

h i

¼ i 1� 1þ1
2

� �

¼ i 1� 1ð Þ ¼ 0

) PM=i ¼ 0

where Md v1ð Þ and Md v2ð Þ are the medians of the velocities probabilities distribu-
tions.

Therefore, for any value of 0≤ v≤ nc with v 6¼ c, we can write without any confu-
sion that:

PM1 ¼ i 1� PR1ð Þ and PR1 ¼ 1� PM1=i; hence, M1 is the imaginary complementary
probability universe to the real probability universe R1.

And PM2 ¼ i 1� PR2ð Þ and PR2 ¼ 1� PM2=i; hence, M2 is the imaginary comple-
mentary probability universe to the real probability universe R2.

Moreover, in all cases and for any value of v : 0≤ v≤ nc with v 6¼ c, we have:

PR ¼ PR1þPR2

2 where R ¼ R1 þ R2.

And PM ¼ PM1þPM2

2 where M ¼ M1 þM2.
We can check that:

PM ¼
i 1� PR1ð Þ þ i 1� PR2ð Þ

2
¼

2i� i PR1 þ PR2ð Þ

2
¼ i�

i PR1 þ PR2ð Þ

2
¼ i 1�

PR1 þ PR2ð Þ

2

� �

¼ i 1� PRð Þ

Hence, M is the imaginary complementary probability universe to the real prob-
ability universe R:

Moreover, we have in G ¼ C ¼ RþM where 0≤ v≤ nc with v 6¼ c,

∀n, n∈
þ

: n> 1⇔ n∈ 1,þ∞ð Þ:

Then, C ¼ R1 þ R2ð Þ þ M1 þM2ð Þ ¼ R1 þM1ð Þ þ R2 þM2ð Þ ¼ C1 þC2.
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In fact, in C1 we have: Pc1 ¼ PR1 þ PM1=i ¼ PR1 þ 1� PR1ð Þ ¼ 1.
And, in C2 we have: Pc2 ¼ PR2 þ PM2=i ¼ PR2 þ 1� PR2ð Þ ¼ 1.
And, in C we have:

Pc ¼ PR þ PM=i ¼
PR1 þ PR2

2
þ

PM1 þ PM2

2

� �

=i ¼
PR1 þ PR2

2
þ

i 1� PR1ð Þ þ i 1� PR2ð Þ

2

� �

=i

¼
PR1 þ PR2

2
þ

1� PR1ð Þ þ 1� PR2ð Þ

2
¼

PR1 þ PR2

2
þ 1�

PR1 þ PR2

2
¼ 1

We can calculate Pc using this method also:

Pc ¼ PR þ PM=i

¼
PR1 þ PR2

2
þ

PM1 þ PM2

2

� �

=i ¼
PR1 þ PM1=i

2
þ
PR2 þ PM2=i

2
¼

Pc1
2

þ
Pc2
2

¼
Pc1 þ Pc2

2
¼

1þ 1

2

¼ 1

Consequently: Pc ¼ Pc1 ¼ Pc2 ¼ 1, in accordance with CPP axioms.
Furthermore, we can state now and affirm finally that in this third model:
G = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ that means that the total universe G is the sum of

the real subluminal universe G1 and the imaginary superluminal universe or
metauniverse G2.

1.The real subluminal universe G1 corresponds to the complex probability universe
C1, which is also subluminal; hence, G1 = C1 =R1 þM1 with 0≤ v< cð Þ.

2.And the imaginary superluminal universe G2 or metauniverse corresponds
to the complex probability universe C2, which is also superluminal; hence,
G2 = C2 = R2 þM2 with c< v≤ ncð Þ.

Therefore,
PG1 ¼ Pc1 ¼ PR1 þ PM1=i ¼ PR1 þ 1� PR1ð Þ ¼ 1 and

PG2 ¼ Pc2 ¼ PR2 þ PM2=i ¼ PR2 þ 1� PR2ð Þ ¼ 1:

Consequently, the complex total universe G = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ,
which is the sum of the universe and the metauniverse corresponds to the complex
probability universe C having:

G ¼ C ¼ RþM ¼ R1 þ R2ð Þ þ M1 þM2ð Þ ¼ R1 þM1ð Þ þ R2 þM2ð Þ
¼ C1 0≤ v< cð Þ þ C2 c< v≤ ncð Þ = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ with

0≤ v≤ nc and v 6¼ c,
Hence,

PG ¼ Pc ¼
PG1 þ PG2

2
¼

Pc1 þ Pc2
2

¼
1þ 1

2
¼ 1

Consequently: Pc ¼ 1, in accordance with CPP axioms.
Thus, we can conclude that, by adding the complementary imaginary probabilities

universes M1,M2 and M to the real probabilities universes R1,R2 and R then all
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random phenomena in the complex probabilities’ universes C1, C2, and C, and hence
in the subluminal universe G1, in the superluminal universe G2, and in the total and
complex universe G, become absolutely and perfectly deterministic with probabilities
expressed totally as follows:

Pc ¼ Pc1 ¼ Pc2 ¼ 1 and PG ¼ PG1 ¼ PG2 ¼ 1.

2.2 The MCPP parameters of the third model

The MCPP parameters in this third model are similar to those of the first and
second models and this is done by including the probabilities PR and PM

corresponding to the third model.

2.3 The deterministic cases and the MCPP parameters of the third model

The deterministic cases in this third model are similar to those of the first and
second models and this is done by taking into consideration the probabilities PR and
PM pertaining and corresponding to the third model.

2.4 The third model simulations

We note that in the following simulations, PR3 is the real probability in the luminal
universe G3 for v ¼ cð Þ in yellow in the simulations, where we have ∀PR3 : 0≤PR3 ≤ 1,
and that it will be included in the final most general model ofMCPP. Thus, the current
model is a simplified third model. The simulations from Figures 4–6 illustrate the
more general third model of MCPP.

Figure 4.
The MCPP third model parameters and the Beta distribution for n ¼ 2 in G2.
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Figure 5.
The MCPP third model probabilities and the Normal / Beta distributions for n=2 in G.

Figure 6.
The MCPP third model parameters and the normal / Beta distributions for n ¼ 2 in G.
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3. The final and most general model: including the case of electromagnetic
waves

In this section, we will develop the final most general model of MCPP with all its
parameters [1–42].

3.1 The real and imaginary probabilities

Here, and in this final MCPP model, f is the frequency of the electromagnetic
waves in G3 since the velocity of all electromagnetic waves is always c with

Lb ¼ 0 Hzð Þ≤ f ≤ Ub ¼ 1024Hz
� 	

and is a random variable that follows any possible

probability distribution: PDF3 f , σf

 �

. Knowing that Lb is the lower bound of the

frequency in the probability distribution and Ub is the upper bound of the frequency

in the probability distribution. Additionally, f is the mean or the expectation of this
general probability distribution of f or PDF3 fð Þ and σf is its corresponding standard

deviation. Moreover, the annihilation of two real particles in G1 or of two imaginary
particles in G2 can lead to the creation of electromagnetic waves in G = G1 + G3 + G2,
just as proved in the theory of Metarelativity.

First, we will define and calculate the real and imaginary probabilities in the
universes R3 and M3 in the final model of MCPP as follows:

PR3 ¼ Prob v ¼ c and Lb ≤F≤ f E
� 	

¼ CDF3 v ¼ c and Lb ≤ F≤ f E
� 	

¼

ð

f E

Lb

PDF3 v ¼ c, fð Þdf

where f E is a certain value of the frequency fof the electromagnetic wave.
So, we have the real probability in R3: if v 6¼ c ) PR3 ¼ CDF3 v 6¼ cð Þ ¼ 0.
And if v ¼ c then:
If f E ≤Lb ) PR3 ¼ Prob F≤Lbð Þ ¼ CDF3 F≤Lbð Þ ¼ 0.
If f E ¼ Md fð Þ ) PR3 ¼ Prob Lb ≤ F≤Md fð Þð Þ ¼ CDF3 Lb ≤F≤Md fð Þð Þ ¼

Ð

Md fð Þ

Lb

PDF3 fð Þdf ¼ 0:5.

where Md fð Þ is the median of the frequencies probability distribution.

If f E ¼ Ub ) PR3 ¼ Prob Lb ≤F≤Ubð Þ ¼ CDF3 Lb ≤F≤Ubð Þ ¼
Ð

Ub

Lb

PDF3 fð Þdf ¼ 1.

If f E >Ub

) PR3 ¼ Prob F>Ubð Þ ¼ CDF3 F>Ubð Þ

¼

ð

f E

Lb

PDF3 fð Þdf ¼

ð

Ub

Lb

PDF3 fð Þdf þ

ð

f E

Ub

PDF3 fð Þdf

8

>

<

>

:

9

>

=

>

;

¼ 1þ 0ð Þ ¼ 1

Moreover, we have for the imaginary probability in M3:
PM3 ¼ i 1� PR3ð Þ ¼ i 1� Prob Lb ≤ F≤ f E

� 	� �

¼ i 1� CDF3 Lb ≤F≤ f E
� 	� �

¼

iCDF3 f E <F≤Ub

� 	

¼ i 1�

ð

f E

Lb

PDF3 fð Þdf

2

6

4

3

7

5
¼ i

ð

Ub

f E

PDF3 fð Þdf .
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So, if v 6¼ c ) PM3 ¼ i 1� CDF3 v 6¼ cð Þ½ � ¼ i 1� 0ð Þ ¼ i ) PM3=i ¼ 1.
And if v ¼ c then:

If f E ≤Lb ) PM3 ¼ i
Ð

Ub

f E

PDF3 fð Þdf ¼ i
Ð

Lb

f E

PDF3 fð Þdf þ
Ð

Ub

Lb

PDF3 fð Þdf

( )

¼

i 0þ 1ð Þ ¼ i ) PM3=i ¼ 1

If f E ¼ Md fð Þ ) PM3 ¼ i�
Ð

Ub

Md fð Þ

PDF3 fð Þdf ¼ 0:5i ) PM3=i ¼ 0:5.

If f E ¼ Ub ) PM3 ¼ i
Ð

Ub

Ub

PDF3 fð Þdf ¼ i� 0 ¼ 0 ) PM3=i ¼ 0.

If f E >Ub ) PM3 ¼ 0 ) PM3=i ¼ 0.
Therefore, for any value of f : Lb ≤ f ≤Ub, we can write without any confusion that:

PM3 ¼ i 1� PR3ð Þ and PR3 ¼ 1� PM3=i,

hence, M3 is the imaginary complementary probability universe of frequencies to
the real probability universe R3 of frequencies.

Furthermore, we have
R ¼ R1 0≤ v< cð Þ þ R2 c< v≤ ncð Þ þ R3 v ¼ c and Lb ≤ f ≤Ubð Þ,

∀n, n∈
þ

: n> 1⇔ n∈ 1,þ∞ð Þ:

Now, let PR ¼ PR1þPR2þPR3

3 and it is equal to the sum of the cumulative probability

that 0≤V ≤ v1 in R1 and the cumulative probability that c<V ≤ v2 in R2 and the
cumulative probability that v3 ¼ c and Lb ≤ f ≤Ub in R3, and all divided by 3.

) PR ¼
CDF1 0≤V ≤ v1ð Þ þ CDF2 c<V ≤ v2ð Þ þ CDF3 V ¼ v3 ¼ c and Lb ≤F≤ f E

� 	

3

¼
1

3

ð

v1

0

PDF1 vð Þdvþ

ð

v2

c

PDF2 vð Þdvþ

ð

f E

Lb

PDF3 v3 ¼ cð , f Þdf

8

>

<

>

:

9

>

=

>

;

Hence, we have in G ¼ C ¼ RþM ¼ G1 + G2 + G3: 0≤ v≤ nc and Lb ≤ f ≤Ub.
So, if 0≤ v< c ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob V ≤ vð Þ ¼ Prob V < cð Þ ¼ CDF2 V < cð Þ ¼ 0.
And PR3 ¼ Prob V 6¼ cð Þ ¼ CDF3 V 6¼ cð Þ ¼ 0

) PR ¼
CDF1 0≤V ≤ vð Þ þ 0þ 0

3
¼

CDF1 0≤V ≤ vð Þ

3
¼

PR1

3

Therefore, we say here that we are working in the real probability universeR ¼ R1

alone.
if 0≤ v≤ c and Lb ≤ f ≤Ub ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob V ≤ vð Þ ¼ Prob V < cþð Þ ¼ CDF2 V < cþð Þ ¼ 0.
And PR3 ¼ Prob V ¼ c and Lb ≤F≤ f E

� 	

¼ CDF3 V ¼ c and Lb ≤ F≤ f E
� 	

) PR ¼
CDF1 0≤V ≤ vð Þ þ 0þ CDF3 V ¼ c and Lb ≤ F≤ f E

� 	

3
¼

PR1 þ PR3

3

Therefore, we say here that we are working in the real probability universe
R ¼ R1 þ R3.
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And if c< v≤ nc ) PR1 ¼ Prob V > cð Þ ¼ CDF1 V > cð Þ ¼ 1.
And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ.
And PR3 ¼ Prob V 6¼ cð Þ ¼ CDF3 V 6¼ cð Þ ¼ 0

) PR ¼
1þ CDF2 c<V ≤ vð Þ þ 0

3
¼

1þ PR2

3

Therefore, we say here that we are working in the real probability universeR ¼ R2

alone.
And if c≤ v≤ nc and Lb ≤ f ≤Ub ) PR1 ¼ Prob V > cð Þ ¼ CDF1 V > cð Þ ¼ 1.
And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ.
And PR3 ¼ Prob V ¼ c and Lb ≤F≤ f E

� 	

¼ CDF3 V ¼ c and Lb ≤ F≤ f E
� 	

) PR ¼
1þ CDF2 c<V ≤ vð Þ þ CDF3 v ¼ c and Lb ≤F≤ f E

� 	

3
¼

1þ PR2 þ PR3

3

Therefore, we say here that we are working in the real probability universe
R ¼ R2 þ R3.

And if 0≤ v≤ nc and Lb ≤ f ≤Ub ) PR1 ¼ Prob 0≤V ≤ vð Þ ¼ CDF1 0≤V ≤ vð Þ.
And PR2 ¼ Prob c<V ≤ vð Þ ¼ CDF2 c<V ≤ vð Þ.
And PR3 ¼ Prob V ¼ c and Lb ≤F≤ f E

� 	

¼ CDF3 V ¼ c and Lb ≤ F≤ f E
� 	

) PR ¼
CDF1 0≤V ≤ vð Þ þ CDF2 c<V ≤ vð Þ þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3
¼

PR1 þ PR2 þ PR3

3

Therefore, we say here that we are working in the real probability universe
R ¼ R1 þ R2 þ R3.

And consequently, we can deduce from the above the real probability in the
probability universe R ¼ R1 þ R2 þ R3 for special velocity and frequency cases as
follows:

if v<0 ) PR ¼ CDF1 V <0ð Þ
3 ¼ 0

3 ¼ 0.

if v ¼ Md v1ð Þ ) PR ¼ CDF1 0≤V ≤Md v1ð Þð ÞþCDF2 V < cð ÞþCDF3 V 6¼cð Þ
3 ¼ 0:5þ0þ0

3 ¼ 0:1667.

if v ! c� ) PR ! CDF1 0≤V < cð ÞþCDF2 V < cð ÞþCDF3 V 6¼cð Þ
3 ¼ 1þ0þ0

3 ¼ 0:3333.

if v ¼ c ) PR ¼
CDF1 0≤V < cð ÞþCDF2 V < cþð ÞþCDF3 V¼c and Lb ≤F≤ f Eð Þ

3

¼
1þ 0þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3
¼

1þ CDF3 V ¼ c and Lb ≤F≤ f E
� 	

3

So, if f E ¼ Lb ) PR ¼ 1þ0þ0
3 ¼ 1

3 ¼ 0:3333.

if f E ¼ Md fð Þ ) PR ¼ 1þ0þ0:5
3 ¼ 1:5

3 ¼ 0:5.

if f E ¼ Ub ) PR ¼ 1þ0þ1
3 ¼ 2

3 ¼ 0:6667.

if v ¼ Md v2ð Þ

) PR ¼
CDF1 0≤V < cð Þ þ CDF2 c<V ≤Md v2ð Þð Þ þ CDF3 V ¼ c and Lb ≤ F≤ f E

� 	

3

¼
1þ 0:5þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3
¼

1:5þ CDF3 V ¼ c and Lb ≤F≤ f E
� 	

3
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So, if f E ¼ Lb ) PR ¼ 1þ0:5þ0
3 ¼ 1:5þ0

3 ¼ 0:5.

if f E ¼ Md fð Þ ) PR ¼ 1þ0:5þ0:5
3 ¼ 2

3 ¼ 0:6667.

if f E ¼ Ub ) PR ¼ 1þ0:5þ1
3 ¼ 2:5

3 ¼ 0:8333.

if v ¼ nc

) PR ¼
CDF1 0≤V < cð Þ þ CDF2 c<V ≤ ncð Þ þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

¼
1þ 1þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3
¼

2þ CDF3 V ¼ c and Lb ≤F≤ f E
� 	

3

So, if f E ¼ Lb ) PR ¼ 1þ1þ0
3 ¼ 2

3 ¼ 0:6667.

if f E ¼ Md fð Þ ) PR ¼ 1þ1þ0:5
3 ¼ 2:5

3 ¼ 0:8333.

if f E ¼ Ub ) PR ¼ 1þ1þ1
3 ¼ 3

3 ¼ 1.

where Md v1ð Þ and Md v2ð Þ are the medians of the velocities probabilities distribu-
tions and Md fð Þ is the median of the frequencies probability distribution.

Furthermore, we have
M ¼ M1 0≤ v< cð Þ þM2 c< v≤ ncð Þ þM3 v ¼ c and Lb ≤ f ≤Ubð Þ,

∀n, n∈
þ

: n> 1⇔ n∈ 1,þ∞ð Þ:

Now, let PM ¼ PM1þPM2þPM3

3 and it is equal to the sum of the complement of the

cumulative probability that 0≤V ≤ v1 in M1 and the complement of the cumulative
probability that c<V ≤ v2 in M2 and the complement of the cumulative probability
that v3 ¼ c and Lb ≤ f ≤Ub in M3, and all divided by 3.

) PM ¼
i 1� CDF1 0≤V ≤ v1ð Þ½ � þ i 1� CDF2 c<V ≤ v2ð Þ½ � þ i 1� CDF3 V ¼ v3 ¼ c and Lb ≤ F≤ f E

� 	� �

3

¼
i

3

ð

v1

0

1� PDF1 vð Þ½ �dvþ

ð

v2

c

1� PDF2 vð Þ½ �dvþ

ð

f E

Lb

1� PDF3 v3 ¼ c, fð Þ½ �df

8

>

<

>

:

9

>

=

>

;

¼
i

3

ð

c

v1

PDF1 vð Þdvþ

ð

nc

v2

PDF2 vð Þdvþ

ð

Ub

f E

PDF3 v3 ¼ cð , f Þdf

8

>

<

>

:

9

>

=

>

;

) PM ¼
i 1� PR1ð Þ þ i 1� PR2ð Þ þ i 1� PR3ð Þ

3

¼
3i� i PR1 þ PR2 þ PR3ð Þ

3
¼ i�

i PR1 þ PR2 þ PR3ð Þ

3
¼ i 1�

PR1 þ PR2 þ PR3ð Þ

3

� �

¼ i 1� PRð Þ

We have in G ¼ C ¼ RþM ¼ G1 + G2 + G3: 0≤ v≤ nc and Lb ≤ f ≤Ub.
So, if 0≤ v< c ) PM1 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF1 0≤V ≤ vð Þ½ �.
And PM2 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF2 V < cð Þ½ � ¼ i 1� 0ð Þ ¼ i.
And PM3 ¼ i 1� Prob V 6¼ cð Þ½ � ¼ i 1� CDF3 V 6¼ cð Þ½ � ¼ i 1� 0ð Þ ¼ i

) PM ¼
i 1� CDF1 0≤V ≤ vð Þ½ � þ iþ i

3
¼

2iþ PM1

3
¼ i 1�

PR1

3

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M1 alone.
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if 0≤ v≤ c and Lb ≤ f ≤Ub ) PM1 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF1 0≤V ≤ vð Þ½ �.
And PM2 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF2 V < cþð Þ½ � ¼ i 1� 0ð Þ ¼ i.
And PM3 ¼ i 1� Prob V ¼ c and Lb ≤F≤ f E

� 	� �

¼

i 1� CDF3 V ¼ c and Lb ≤F≤ f E
� 	� �

) PM ¼
i 1� CDF1 0≤V ≤ vð Þ½ � þ iþ i 1� CDF3 V ¼ c and Lb ≤ F≤ f E

� 	� �

3

¼
iþ PM1 þ PM3ð Þ

3
¼ i 1�

PR1 þ PR3

3

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M1 þM3.

And if c< v≤ nc ) PM1 ¼ i 1� Prob V > cð Þ½ � ¼ i 1� CDF1 V > cð Þ½ � ¼ i 1� 1ð Þ ¼ 0
And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ �.
And PM3 ¼ i 1� Prob V 6¼ cð Þ½ � ¼ i 1� CDF3 V 6¼ cð Þ½ � ¼ i 1� 0ð Þ ¼ i

) PM ¼
0þ i 1� CDF2 c<V ≤ vð Þ½ � þ i

3
¼

iþ PM2

3
¼ i

2� PR2

3

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M2 alone.

And if c≤ v≤ nc and Lb ≤ f ≤Ub

) PM1 ¼ i 1� Prob V > cð Þ½ � ¼ i 1� CDF1 V > cð Þ½ � ¼ i 1� 1ð Þ ¼ 0

And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ �.
And PM3 ¼ i 1� Prob V ¼ c and Lb ≤ F≤ f E

� 	� �

¼ i 1� CDF3 V ¼ c and Lb ≤ F≤ f E
� 	� �

) PM ¼
0þ i 1� CDF2 c<V ≤ vð Þ½ � þ i 1� CDF3 V ¼ c and Lb ≤F≤ f E

� 	� �

3
¼

PM2 þ PM3

3

¼ i
2� PR2 þ PR3ð Þ

3

� �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M2 þM3.

And if 0≤ v≤ nc and Lb ≤ f ≤Ub

) PM1 ¼ i 1� Prob 0≤V ≤ vð Þ½ � ¼ i 1� CDF1 0≤V ≤ vð Þ½ �.
And PM2 ¼ i 1� Prob c<V ≤ vð Þ½ � ¼ i 1� CDF2 c<V ≤ vð Þ½ �.
And PM3 ¼ i 1� Prob V ¼ c and Lb ≤F≤ f E

� 	� �

¼

i 1� CDF3 V ¼ c and Lb ≤F≤ f E
� 	� �

) PM ¼
i 1� CDF1 0≤V < cð Þ½ � þ i 1� CDF2 c<V ≤ vð Þ½ � þ i 1� CDF3 V ¼ c and Lb ≤F≤ f E

� 	� �

3

¼
PM1 þ PM2 þ PM3

3
¼ i 1�

PR1 þ PR2 þ PR3

3

� �

¼ i 1� PR½ �

Therefore, we say here that we are working in the imaginary probability universe
M ¼ M1 þM2 þM3.
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And consequently, we can deduce from the above the imaginary probability in the
probability universe M ¼ M1 þM2 þM3 for special velocity and frequency cases as
follows:

if v<0 ) PM ¼ i 1� CDF1 V <0ð Þ
3

h i

¼ i 1� 0
3

� �

¼ i ) PM=i ¼ 1.

if v ¼ Md v1ð Þ ) PM ¼ i 1� CDF1 0≤V ≤Md v1ð Þð ÞþCDF2 V < cð ÞþCDF3 V 6¼cð Þ
3

h i

¼

i 1� 0:5þ0þ0
3

� �

¼ 0:8333i ) PM=i ¼ 0:8333.

if v ! c� ) PM ! i 1� CDF1 0≤V < cð ÞþCDF2 V < cð ÞþCDF3 V 6¼cð Þ
3

h i

¼

i 1� 1þ0þ0
3

� �

¼ 2i
3 ¼ 0:6667i ) PM=i ! 0:6667.

if v ¼ c

) PM ¼ i 1�
CDF1 0≤V < cð Þ þ CDF2 V < cþð Þ þ CDF3 V ¼ c and Lb ≤F ≤ f E

� 	

3

� �

¼ i 1�
1þ 0þ CDF3 V ¼ c and Lb ≤F ≤ f E

� 	

3

� �

¼ i
2� CDF3 V ¼ c and Lb ≤F ≤ f E

� 	

3

� �

So, if f E ¼ Lb ) PM ¼ i 2�0
3

� �

¼ 0:6667i ) PM=i ¼ 0:6667.

if f E ¼ Md fð Þ ) PM ¼ i 2�0:5
3

� �

¼ 0:5i ) PM=i ¼ 0:5.

if f E ¼ Ub ) PM ¼ i 2�1
3

� �

¼ 0:3333i ) PM=i ¼ 0:3333.

If v ¼ Md v2ð Þ ) PM ¼ i 1�
CDF1 0≤V < cð Þ þ CDF2 c<V ≤Md v2ð Þð Þ þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

� �

¼ i 1�
1þ 0:5þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

� �

¼ i 0:5�
CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

� �

:

So, if f E ¼ Lb ) PM ¼ i 0:5� 0
3

� �

¼ 0:5i ) PM=i ¼ 0:5.

if f E ¼ Md fð Þ ) PM ¼ i 0:5� 0:5
3

� �

¼ 0:3333i ) PM=i ¼ 0:3333.

if f E ¼ Ub ) PM ¼ i 0:5� 1
3

� �

¼ 0:1667i ) PM=i ¼ 0:1667.

if v ¼ nc

) PM ¼ i 1�
CDF1 0≤V < cð Þ þ CDF2 c<V ≤ ncð Þ þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

� �

¼ i 1�
1þ 1þ CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

� �

¼ i
1� CDF3 V ¼ c and Lb ≤F≤ f E

� 	

3

� �

So, if f E ¼ Lb ) PM ¼ i 1�0
3

� �

¼ i
3 ¼ 0:3333i ) PM=i ¼ 0:3333.

if f E ¼ Md fð Þ ) PM ¼ i 1�0:5
3

� �

¼ 0:1667i ) PM=i ¼ 0:1667.

if f E ¼ Ub ) PM ¼ i 1�1
3

� �

¼ 0 ) PM=i ¼ 0.

where Md v1ð Þ and Md v2ð Þ are the medians of the velocities probabilities distribu-
tions and Md fð Þ is the median of the frequencies probability distribution.

Therefore, for any value of 0≤ v≤ nc, we can write without any confusion that:
PM1 ¼ i 1� PR1ð Þ and PR1 ¼ 1� PM1=i; hence, M1 is the imaginary complementary

probability universe to the real probability universe R1.
And PM2 ¼ i 1� PR2ð Þ and PR2 ¼ 1� PM2=i; hence, M2 is the imaginary

complementary probability universe to the real probability universe R2.
And PM3 ¼ i 1� PR3ð Þ and PR3 ¼ 1� PM3=i; hence, M3 is the imaginary

complementary probability universe to the real probability universe R3.
Moreover, in all cases and for any value of v : 0≤ v≤ nc, we have:

PR ¼ PR1þPR2þPR3

3 where R ¼ R1 þ R2 þ R3.

And PM ¼ PM1þPM2þPM3

3 where M ¼ M1 þM2 þM3.
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Thus, we can check that:

PM ¼
i 1� PR1ð Þ þ i 1� PR2ð Þ þ i 1� PR3ð Þ

3

¼
3i� i PR1 þ PR2 þ PR3ð Þ

3
¼ i�

i PR1 þ PR2 þ PR3ð Þ

3
¼ i 1�

PR1 þ PR2 þ PR3ð Þ

3

� �

¼ i 1� PRð Þ

Hence, M is the imaginary complementary probability universe to the real prob-
ability universe R:

Furthermore, we can state now and affirm finally that in this final MCPP model:
G = G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ + G3 v ¼ cð Þ that means that the total universe G

is the sum of the real subluminal universeG1 and the imaginary superluminal universe
or metauniverse G2 in addition to the electromagnetic waves’ universe G3, which
stands between G1 and G2.

1.The real subluminal universe G1 corresponds to the complex probability universe
C1, which is also subluminal; hence, G1 = C1 = R1 þM1 with 0≤ v< cð Þ.

2.The imaginary superluminal universe G2 or metauniverse corresponds
to the complex probability universe C2, which is also superluminal; hence,
G2 = C2 = R2 þM2 with c< v≤ ncð Þ, ∀n, n∈

þ
: n> 1⇔ n∈ 1,þ∞ð Þ:

3.In addition, the luminal universe G3 of electromagnetic waves corresponds to the
complex probability universe C3 of frequencies, which is also luminal; hence,
G3 ¼ C3¼ R3 þM3 with v ¼ c and Lb ≤ f ≤Ubð Þ.

Therefore,

PG1 ¼ Pc1 ¼ PR1 þ PM1=i ¼ PR1 þ 1� PR1ð Þ ¼ 1 and

PG2 ¼ Pc2 ¼ PR2 þ PM2=i ¼ PR2 þ 1� PR2ð Þ ¼ 1 and

PG3 ¼ Pc3 ¼ PR3 þ PM3=i ¼ PR3 þ 1� PR3ð Þ ¼ 1:

Consequently, the complex total universe

G ¼ G1 0≤ v< cð Þ þG2 0< v≤ ncð Þ þG3 v ¼ cð Þ,

which is the sum of the universe and the metauniverse and the luminal electro-
magnetic waves universe and which corresponds to the complex probability universe
C having:

G ¼ C ¼RþM ¼ R1 þ R2 þ R3ð Þ þ M1 þM2 þM3ð Þ ¼ R1 þM1ð Þ þ R2 þM2ð Þ þ
R3 þM3ð Þ

¼ C1 0≤ v< cð Þ þ C2 c< v≤ ncð Þ þ C3 v ¼ c and Lb ≤ f ≤Ubð Þ
= G1 0≤ v< cð Þ + G2 c< v≤ ncð Þ + G3 v ¼ c and Lb ≤ f ≤Ubð Þ.
Hence,

PG ¼ Pc ¼
PG1 þ PG2 þ PG3

3
¼

Pc1 þ Pc2 þ Pc3
3

¼
1þ 1þ 1

3
¼ 1

Additionally,

PG ¼ PR þ PM=i ¼ PR þ 1� PRð Þ ¼ 1
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Consequently, Pc ¼ Pc1 ¼ Pc2 ¼ Pc3 ¼ 1 in accordance with CPP axioms.
Thus, we can conclude that, by adding the complementary imaginary probabilities

universesM1,M2,M3, andM to the real probabilities’ universes R1, R2, R3 andR then
all random phenomena in the complex probabilities’ universes C1, C2, C3, and C, and
hence in the subluminal universe G1, in the superluminal universe G2, in the luminal
universe G3 of electromagnetic waves, and in the total and complex universe G,
become absolutely and perfectly deterministic with probabilities expressed totally as
follows:

Pc ¼ Pc1 ¼ Pc2 ¼ Pc3 ¼ 1 and PG ¼ PG1 ¼ PG2 ¼ PG3 ¼ 1.

3.2 The MCPP parameters in G3 ¼ C3¼ R3 þM3

In this section, we will determine and calculate all the MCPP parameters in G3 as
follows:

The real probabilities in R =R3: PR3 ¼ Prob v ¼ c and Lb ≤F≤ f E
� 	

¼

CDF3 v ¼ c and Lb ≤F≤ f E
� 	

¼
Ð

f E

Lb

PDF3 v ¼ c, fð Þdf for any value of f : Lb ≤ f ≤Ub.

The imaginary complementary probabilities in M = M3:

PM3 ¼ i 1� PR3ð Þ

The real complementary probabilities in R =R3:

PM3=i ¼ 1� PR3

The complex random vector:

Z3 ¼ PR3 þ PM3

The degree of our knowledge:

DOK3 ¼ Z3j j2 ¼ PR3 þ PM3j j2 ¼ P2
R3 þ PM3=i½ �2 ¼ P2

R3 þ 1� PR3½ �2

The chaotic factor:

Chf 3 ¼ 2iPR3PM3 ¼ 2iPR3i 1� PR3ð Þ ¼ 2i2PR3 1� PR3ð Þ ¼ �2PR3 1� PR3ð Þ

The magnitude of the chaotic factor:

MChf 3 ¼ Chf 3
�

�

�

� ¼ �2iPR3PM3 ¼ �2iPR3i 1� PR3ð Þ ¼ �2i2PR3 1� PR3ð Þ ¼ 2PR3 1� PR3ð Þ

The deterministic probability in G3 ¼ C3¼ R3 þM3:

Pc23 ¼ PR3 þ PM3=i½ �2 ¼ PR3 þ 1� PR3ð Þ½ �2 ¼ 12 ¼ 1

¼ DOK3 � Chf 3 ¼ 1

¼ DOK3 þMChf 3 ¼ 1

¼ Pc3
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3.3 The finalMCPP parameters in G = G1 + G2 + G3 ¼ C ¼ C1 þC2 þC3 ¼RþM of
the final and most general model

The MCPP parameters in this final and most general model are similar to those of
the first and second and third models and this is done by including the probabilities PR

and PM corresponding to the final model. These paradigm parameters are determined
and computed as follows:

The real probabilities in R =R1 þ R2 þ R3: PR ¼ PR1þPR2þPR3

3 .

The imaginary complementary probabilities in M =M1 þM2 þM3:

PM ¼
PM1 þ PM2 þ PM3

3
¼ i 1� PRð Þ ¼ i 1�

PR1 þ PR2 þ PR3ð Þ

3

� �

The real complementary probabilities in R =R1 þ R2 þ R3:

PM=i ¼
PM1 þ PM2 þ PM3

3

� �

=i ¼
PM1=iþ PM2=iþ PM3=i

3
¼ i 1� PRð Þ=i ¼ 1�

PR1 þ PR2 þ PR3ð Þ

3

The complex random vectors:

Z ¼
Z1 þ Z2 þ Z3

3
¼

PR1 þ PM1ð Þ þ PR2 þ PM2ð Þ þ PR3 þ PM3ð Þ

3
¼

PR1 þ PR2 þ PR3

3
þ
PM1 þ PM2 þ PM3

3
¼ PR þ PM

The degree of our knowledge:

DOK ¼ Zj j2 ¼ PR þ PMj j2 ¼ P2
R þ PM=i½ �2 ¼ P2

R þ 1� PR½ �2

The chaotic factor:

Chf ¼ 2iPRPM ¼ 2iPRi 1� PRð Þ ¼ 2i2PR 1� PRð Þ ¼ �2PR 1� PRð Þ

The magnitude of the chaotic factor:

MChf ¼ Chfj j ¼ �2iPRPM ¼ �2iPRi 1� PRð Þ ¼ �2i2PR 1� PRð Þ ¼ 2PR 1� PRð Þ

The deterministic probability in G ¼ C

Pc2 ¼ PR þ PM=i½ �2 ¼ PR þ 1� PRð Þ½ �2 ¼ 12 ¼ 1

¼ DOK � Chf ¼ 1

¼ DOK þMChf ¼ 1

¼ Pc

3.4 The deterministic cases and the MCPP parameters of the final model

The deterministic cases in this final model are similar to those of the first and
second and third models and this is done by taking into consideration the probabilities
PR and PM pertaining to and corresponding to the final model.
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3.5 The simulations in the universe G3 ¼ C3¼ R3 þM3

All the simulations from Figures 7–10 illustrate MCPP in the luminal universe G3

of electromagnetic waves.

Figure 8.
The MCPP final model parameters and the Beta distribution in G3.

Figure 7.
The MCPP final model parameters and the normal distribution in G3.
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Figure 9.
The MCPP final model parameters and the Rayleigh distribution in G3.

Figure 10.
The MCPP final model parameters and the uniform distribution in G3.
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4. Some very important consequences and advantages of the MCPP

paradigm

In this section, we will examine, determine, and deduce some very important
consequences and advantages of MCPP that have been developed in the previous
sections of the two chapters.

4.1 Dark matter and dark energy

According to Astronomical Observations [40–42]:
The total mass-energy of the universe contains 5% ordinary matter and energy,

27% dark matter, and 68% of a form of energy known as dark energy. Thus, dark
matter constitutes 85% of total mass, while dark energy plus dark matter constitutes
95% of total mass-energy content.

) Dark Matter = Metamatter in G2.
) Dark Energy = Metaenergy in G2.
G ¼ G1 þ EW þ G2

¼ 3/3 ¼ 1 ¼ 100%
ffi 2/3 �i EG2j jf ¼ 1/3 þi EG2j j½ � þ 1/3 �i EG2j j½ �g ¼ 66.66% dark energy in G2

þ ffi 1/3 (1/30 þ 9/30 ¼ 10/30) ¼ 33.33%.
Iceberg similarity:
ffi 10% of 1/3 = 1/30 = 3.33% ordinary matter and energy in G1.
ffi 90% of 1/3 = 9/30 = 30% dark matter in G2.
Then ffi 2/3 þ 9/30 = 87/90 = 96.6667% of the total mass-energy content in G

= (dark energy + dark matter) in G2 (refer to Figure 11).

4.2 Solution of the cause-effect paradox

As it is known, we have always in the subluminal universe G1 (our ordinary “real”
universe) the effect of any action following the cause of this action. In fact, physicists
noted that if tachyons travel in the past then we will have the action cause following

Figure 11.
The total universe G ¼ G1 þ EW þ G2 similar to an iceberg.
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the action effect, which is certainly absurd. In fact, the solution of this riddle and
paradox follows directly from Metarelativity, where we have t≤0 is one possible
solution in G2, then metaparticles or tachyons travel in the past in the “imaginary”
superluminal metauniverse G2 where t≤0 relative to the “real” subluminal universe
G1, where t≥0 (Figure 12). This means the following:

1.No action effect before action cause in the universe G1 since faster-than-light
particles travel in the metauniverse G2 and not in the universe G1

2.Instantaneous effect on the present in the universe G1 since metaparticles travel
in the metauniverse G2 and in the relative past of the universe G1; hence, the
instantaneous effect of the past in G2 on the present in G1 as it is shown in the
figure above since the past has already occurred and its consequences and results
are direct and immediate on the present and current instant.

4.3 Solution of Einstein-Podolsky-Rosen (EPR) paradox or of quantum
entanglement

As a consequence of the previous Section 4.2 is the solution of the very famous EPR
paradox that states if quantum entanglement were true than there should be faster-
than-light particles, which are forbidden by classical Einstein’s relativity.
Metarelativity solves also this paradox. In fact, as it was mentioned, tachyons that
travel in the past of G2 relatively to G1 have therefore instantaneous effect on G1. This
consequence of MCPP explains and supports totally Alain Aspect’s experiment and
results on the instantaneous quantum entanglement of particles in G1 through the
interchange of metaparticles or tachyons in G2, whose effect on the present is instan-
taneous in G1 since they travel relatively to G1 in the past in G2 (since t≤0 is one
possible solution in G2) (Figure 13).

4.4 Gravitational effect of G2 on G1 in G

As it was proved in metarelativity [1], light is the limit and the constant velocity in
both G1 and G2 (refer to Section 4.7 in Chapter 1). Consequently, gravitation behaves
relatively to matter in G1 just like to metamatter in G2 since it has the speed of light.
Therefore, metamatter exerts gravitational effects on the matter just like ordinary
matter as a result of this fact. It is the effect of metamatter on matter that we observe
inside and outside galaxies. Consequently, the dark matter, which is metamatter can
attract ordinary matter. This is what we are actually observing in astronomy.

Figure 12.
The flow of time in both G1 and G2.
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Therefore,

1.) Gravitational waves travel with the velocity of light.

2.) Light is constant and is the limit velocity in both G1 and G2.

) The gravitational effect of metamatter in G2 on ordinary matter in G1.

4.5 Beneath the geometric point and beyond the infinity of time

In the Metarelativistic transformations, velocity becomes larger than the velocity
of light and new Metarelativisitc equations are used to express the behavior of matter
(or metamatter) inside it. In fact, starting from zero, when velocity increases, time

starts to dilate as it is shown in the equation T0 ¼ T=
ffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q

and space to contract as it

is shown in the equation L0 ¼ L
ffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q

and according to the well-known Einstein-

Lorentz mathematical equations. If v ! c then L0 ! 0 that means when reaching the
velocity of light, length at the end of contraction reaches its limits and becomes equal
to zero. When velocity surpasses the barrier of light, space can start expanding as it is

shown in the equation: L0 ¼ i� L
ffiffiffiffiffiffiffiffiffiffiffi

v2

c2 � 1
q

, or it can start contracting again as it is

shown in the equation: L0 ¼ �i� L
ffiffiffiffiffiffiffiffiffiffiffi

v2

c2 � 1
q

, and this after it has reached the dimen-

sions zero which are the dimensions of a geometric point. As a matter of fact, Euclid
defined in his ELEMENTS [43] the geometric point as a geometrical entity of dimen-
sions zero. What is smaller than zero in algebra are negative numbers. What is smaller
than the geometric zero is new to us. In fact, particles in the atomic world have
dimensions and the smallest particles to our knowledge are the quarks, which are the
constituents of protons and neutrons. Even strings, the smallest postulated entities in
String Theory, have dimensions greater than zero. Surely the dimensions of the quarks
are smaller than the dimensions of protons and neutrons but they still have

Figure 13.
Quantum entanglement of particles in the real universe G1.
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dimensions how small as they can be, but never the dimensions of a geometric point
because zero is nothing in physics and it could not contain neither matter nor energy,
except photons: photons move at the velocity of light and could never have dimen-
sions because nature forbids that a moving body having the velocity of light has any
length. The last fact was shown by Einstein in the theory of special relativity. There-
fore, we can say that when space reaches zero dimensions (when v = c) it has reached
the end of the shrinking process and what is smaller than zero in the four real
dimensions of the universe G1 is the zero in the four imaginary dimensions of the
metauniverse G2. Hence, after reaching zero in G1, space starts here in the
metauniverse from zero to expand opening the field to new four imaginary dimen-
sions as it is shown in the equation derived from the theory of Metarelativity, which is:

L0 ¼ i� L
ffiffiffiffiffiffiffiffiffiffiffi

v2

c2 � 1
q

, or it can start to contract again as it is shown in the equation:

L0 ¼ �i� L
ffiffiffiffiffiffiffiffiffiffiffi

v2

c2 � 1
q

.

Moreover, starting from zero, if speed continues to increase, time will continue to

dilate in special relativity as it is shown in the equation T0 ¼ T=
ffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q

. If v ! c then

T0 ! þ∞ that means that if velocity reaches the velocity of light, therefore time
reaches infinity. In fact, infinity in mathematics is the greatest “number” that we can
ever reach while counting but we can never reach. To be more accurate, it is a symbol
more than a number, since no computer could reach infinity. Infinity is not finite by
nature. Infinity is extensively used in mathematics like in series and in sequences in
calculus. This is why light is said to be the limit velocity and the barrier between the two
geometries: the universe G1 and the metauniverse G2. In fact, if v ! c then T0 ! þ∞
and if the velocity surpasses the velocity of light: v> c, then time has to surpass infinity
in the “real” subluminal universe G1: T

0
> þ∞ and hence we start counting time anew

but now in the new “imaginary” superluminal metauniverse G2. The counting is done
now using clocks set up in the metauniverse or in the four imaginary dimensions that we
have already discovered in the previous metarelativistic transformations. We precise
again that the new dimensions are imaginary in the sense that they contain
the imaginary number i. The time measurement can start now counterclockwise

because it is negative and time is said to be dilating again since T0 ¼ �i� T=
ffiffiffiffiffiffiffiffiffiffiffi

v2

c2 � 1
q

or

it can start clockwise because it is positive and time is said to be contracting since

T0 ¼ i� T=
ffiffiffiffiffiffiffiffiffiffiffi

v2

c2 � 1
q

and this depends on the sign before the imaginary number i.

Accordingly, as we have noticed, the metauniverse is truly at a different level of
experience, it is in fact beneath the atomic world when speaking about space (dimen-
sions smaller than zero) and beyond infinity when speaking about time. In fact, we
may ask where is this metauniverse if it is beyond infinity and beneath zero? The
answer is evident and it is shown in the equations: in other dimensions, which form
the meta-space-time of the metauniverse G2, in the world of the imaginary number i.
If a new matter is indirectly detected (like dark matter) then Metarelativity is able to
explain it and it takes into consideration its existence because no directly detectable
and visible matter was found. Only its gravitational effect can be detected in G1. So, it
should be another kind of matter, faster than light and unseen by our telescopes and
accelerators. Thus, it should lay somewhere in space-time and this somewhere is the
metauniverse G2. This will truly prove the existence of the metauniverse, which exists
by mathematical and physical proofs and by the power of facts and experience. In
fact, what is essentially more important in physics than the equations themselves is
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the understanding and the explanations given to these equations. What is more
important than mathematics is its meaning and its philosophy.

4.6 The energy of the void

In fact, the metauniverse or the four imaginary dimensions of meta-space-time
may be regarded as a field full of potential and latent energy as we have mentioned
but “invisible” in nature since it is superluminal and imaginary as it is shown in the

equation E ¼ �im0�c2
ffiffiffiffiffiffiffi

v2

c2
�1

p ¼ EG2. We said a field because the hidden matter that lies inside

it forms a field of action and potentialities that can be discovered, like in the atom. The
metauniverse is a field of latent energy relative to G1. What does the metauniverse
mean relatively to itself? The answer to this question was answered before in
Metarelativity [1]. The result derives from the Metarelativistic equations. The out-
come is that the metauniverse relatively to itself is just like the universe relatively to
itself which means as real as the universe (refer to Section 4.7 in Chapter 1). I made
the separation between both (between the two space-times) but in fact they are
related and bonded both mathematically through precise equations. So, we have
discovered the energy of the void, which is the invisible and dark and
superluminal metauniverse G2 relative to the visible universe G1: its hidden imaginary
dimensions, which lay in G2, its hidden energy (dark energy), and its hidden mass
(dark matter).

4.7 Big Bang theory and the origin of the universe G1: Smaller than and before
Planck’s length and time (1.6 � 10�35 m and 10�43 seconds)

In fact, in our calculations, we expanded the Einstein-Lorentz equations to reach
the metauniverse, as if we have done the backward walk by going from the universe
G1 to the metauniverse G2. The direct walk is done from the metauniverse G2 to the
universe G1 and is by saying that from this latent energy, that exists in the universe
G2, the universe G1 emerged. In fact, if we do the direct walk, we will see our whole
“real” universe G1 coming out from nothing, from void, from G2, to existence like in
the Big Bang model. This “nothing” or this “void” that we noted is the superluminal
imaginary metauniverse that we established its existence in Section 4.6. The dot or the
geometric point (Section 4.5) that we were talking about is the singularity that general
relativity talks about. In fact, according to the Big Bang model, from a singularity, all
real space-time was generated and all matter within it. In the early fractions of a
second, the particles and matter, the space-time itself were condensed in a small
portion. This is said, we could assume that our visible universe came from another
universe, which is the invisible metauniverse itself. This potent and latent energy or
the energy of the void that represents the metauniverse comes from the invisible
matter or the dark matter that is hidden in G2 in the total universe G, which is
denoted by:

G ¼ universe G1 þ EWþ universe G2:

which is similar to the complex set of numbers denoted in classical mathematics by :
So, another proof of the existence of G2 is the Big Bang theory and that will be
discussed more clearly and plainly in future publications.
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4.8 Vacuum or the quantum field fluctuations and the uncertainty principle

Now, another proof of the existence of the metauniverse that will be demonstrated
in forthcoming publications is at the level of the atom, where we have according to
this uncertainty principle:

ΔE� Δt≥
h

4π

which is called the time-energy uncertainty relation also. The explanation of the
principle of vacuum fluctuation is that energy is created from void during an interval
Δt and then returns to void after creating virtual particles. In fact, the nothing or the
vacuum as we have seen is the void that we have spoken about (Section 4.6) or the
metauniverse G2 that we deduced from Metarelativity itself. Some physicists say that
the whole universe is a quantum fluctuation phenomenon like in the principle of
vacuum fluctuation. This is true if we looked at the equation from a different angle. If
we reshape our minds, we may say that from the metauniverse a quantum phenome-
non occurred that means a parcel of energy burst out from the metauniverse, that is
full of potency, to “real existence,” where the universe G1 was created and that will
eventually disappear, say the physicists, in a period of time Δt, which is the age of the
“real” universe G1.

Additionally, according to Metarelativity, the two complementary particles of
metamatter þi mG2j j and �i mG2j j in the metauniverse G2 can annihilate into the real
matter in the universe G1 or into photons in the universe G3. Therefore, vacuum
fluctuation is nothing but the annihilations of metaparticles into the “real” universeG1

or into the luminal universe G3 (refer to Section 4.2 in Chapter 1) (Figure 14).
Accordingly, “Ex Nihilo Nihil Fit,” or “Nothing Comes from Nothing” as argued

by the Greek Parmenides.

4.9 Black holes as doors to the metauniverse G2

Furthermore, and as a consequence of what has been said in the previous sections,
we can understand that black holes that contain ultimately at their end the space-time
singularities are nothing but doors to the metauniverse G2 (Figure 15).

4.10 Unification of the four interactions in G1

Therefore, since the whole “real” universe G1 was created from the metauniverse
G2 then all the four interactions in G1 were also created from G2. This is to say that

Figure 14.
Vacuum fluctuation and the uncertainty principle.
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nature four interactions that exist in G1 emerged from the metauniverse G2 just like
the whole “real” universe G1 (Figure 16).

4.11 Ordinary matter/energy and positive/negative dark matter/energy

Sir Isaac Newton’s law of gravitation of attraction is:

F ¼ km�m0

d2
¼ FG1 = the force in the universeG1, where k = 6.674� 10�11m3�kg�1�s�2

approximately is the gravitational constant in the international system of units (SI).

⇔FG ¼ kmG2�mG1

d2
¼ k �im�m0

d2
¼ �i km�m0

d2


 �

in the universe G.

Figure 15.
Black holes as doors to the imaginary metauniverse G2.

Figure 16.
Unification of the four interactions in the real universe G1.
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So, as a consequence of the first possible solution is the Metarelativistic law of
gravitation of attraction:

FG ¼ þi k
m�m0

d2

� �

) Positive dark matter and energy of G2 can attract ordinary matter in G1.

) Verification of astronomical observations and the explanation of the dark mat-
ter attraction of ordinary matter in galaxies, stars, etc.

And, as a consequence of the second possible solution is the Metarelativistic law of
gravitation of repulsion:

FG ¼ �i k
m�m0

d2

� �

) Negative dark matter and energy of G2 can repulse ordinary matter in G1.

) Explanation of the expansion of the universe G1.

) Verification of astronomical observations and the explanation of Einstein’s
general relativity cosmological constant Λ (his “biggest blunder”).

4.12 Conservation of mass and energy and vacuum fluctuation

The Lavoisier principle in chemistry and science affirms that mass and energy are
conserved. The Law of Conservation of Mass (or Matter) and Energy in a chemical
reaction can be stated thus: In a chemical reaction, the matter is neither created nor
destroyed.

“Nothing is lost, nothing is created, everything is transformed”.
It was discovered by Antoine Laurent Lavoisier (1743–94) about 1785.
Knowing that vacuum fluctuations are the materialization or the annihilation or

the transformation of metaparticles into real particles or photons, consequently, the
total mass and the total energy in the total universe G = G1 þ EW þ G2 are absolutely
conserved, such that:

EG ¼ EG1½ � þ EG3½ � þ EG2½ �⇔EG ¼ EG1½ � þ Energy of Electromagnetic waves
� �

þ �i EG2j j½ �

And

mG ¼ mG1½ � þ mG3½ � þ mG2½ �⇔mG ¼ mG1½ � þ Mass of Electromagnetic waves½ � þ �i mG2j j½ �

4.13 Determinism and nondeterminism

The mathematical probability concept was set forth by Andrey Nikolaevich Kolmo-
gorov in 1933 by laying down a five-axioms system. This scheme has been improved in
MCPP to embody the set of imaginary numbers after adding three new axioms.
Accordingly, any stochastic phenomenon is performed in the probability set and total
universe G = C of complex probabilities, which is the summation of the set R of real
probabilities and the set M of imaginary probabilities. Our objective in this work was
to encompass complementary imaginary dimensions to the stochastic phenomenon
taking place in the “real” probability laboratory inR and as a consequence to gauge in
the setsR,M, and C all the corresponding probabilities. Hence, the probability in the
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entire set and total universe G = C =R +M is incessantly equal to one independently
of all the probabilities of the input stochastic variable distribution in R, and subse-
quently, the output of the random phenomenon in R can be evaluated totally and
absolutely in G = C. This is due to the fact that the probability in C is calculated
after the elimination and subtraction of the chaotic factor from the degree of our
knowledge of the nondeterministic phenomenon as it is shown in the equation:
Pc2 = DOK – Chf = DOK + MChf = 1 = Pc. Consequently, we have applied this novel
CPP paradigm to an important and fundamental problem in physics, which is
Metarelativity theory. Hence, and what is truly crucial, is that we have demonstrated
that probabilistic phenomena can be expressed totally deterministically in the
complex probability set and total universe G = C ¼ RþM. Therefore, and after all,
“God does not play dice!!!” as Albert Einstein put it.

4.14 Entropy and metaentropy

To understand the meaning of negative time in G2 relatively to G1, then entropy is
the best tool. We know that entropy is defined as d SG1½ �≥0 according to the second
principle of thermodynamics. We say that when time grows, then entropy and chaos
and disorder increase in G1. Due to the fact that time is negative as one possible
solution in G2, this implies that we can have: d SG2½ �≤0. Consequently, and for this
case, we say that when time flows, then entropy (or metaentropy) decreases. This
means directly the following: The direction of evolution in a part of G2 is the opposite
to that in G1.

Additionally, d SG½ � ¼ 0 since Ln PGð Þ ¼ Ln Pcð Þ ¼ Ln 1ð Þ ¼ 0 in the expression of
entropy in the theory of statistical mechanics:

SG ¼ �kB
X

j

pjLn pj


 �

¼ �kB
X

j

1� Ln 1ð Þ ¼ 0:

That means and most importantly, that for any distribution and in the complex
probability set and the total universe G = C ¼ RþM, we have complete order, no
chaos, no ignorance, no uncertainty, no disorder, no randomness, no
nondeterminism, and no unpredictability since all measurements are completely and
perfectly and absolutely deterministic.

4.15 Conservation of information in G = C

In the complex set and total universe G = C we have the entropy in the theory of
information always equal to 0 since:

⇔HG ¼ �
X

j

pj log b pj


 �

¼ �
X

j

1� log b 1ð Þ ¼ 0

⇔ d HGð Þ ¼ 0

So, no loss and no gain but complete conservation of information in G. Hence, the
Lavoisier Law of Conservation of Mass and Energy applies also to information theory as
it was shown here and in my previous published work [13, 15] so to as wellMCPP. InR,
we have disorder, uncertainty, and unpredictability. In C we have order, certainty,
and predictability since Pc = 1 permanently and entropy = 0 constantly. Additionally, in
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R we have chaos and imperfect and incomplete knowledge or partial ignorance. In C

we have chaos always equal to 0 (Chf = 0 and MChf = 0) and DOK = 1 continuously,
thus complete and perfect and total knowledge of the now deterministic messages and
the information of the now deterministic experiments occurring in G ¼ C.

4.16 The duality and complementarity principle in R, M, and G

One of the fundamental principles almost omnipresent in whole nature and at all
levels of experience in the physical world, including in some properties and in some
characteristics of the atomic level, is duality and complementarity. This principle is
present also in G2 where we have metaparticles with their corresponding
metaEnergies and metaAntiparticles with their corresponding metaAntiEnergies.
Also, the probability Pm in M is the associated imaginary complement of the real
probability Pr in R, their sum in C is Pc = 1. Additionally, and in G, the superluminal
metauniverse G2 is the “imaginary” complement of the “real” subluminal universe G1.
Hence, we can directly see that this principle dominates nearly all existence whether
in R, M, or G ¼ C.

5. Conclusion and perspectives

In the current research work, the original extended model of eight axioms (EKA)
of A. N. Kolmogorov was connected and applied to Metarelativity theory. Thus, a tight
link between Metarelativity and the novel paradigm (CPP) was achieved. Conse-
quently, the model of “Complex Probability”was more developed beyond the scope of
my 21 previous research works on this topic.

Furthermore, the theory of Metarelativity is a system of equations written to take
into consideration additional effects in the universe and about the matter inside it.
Metarelativity begins with Albert Einstein’s theory of special relativity and it develops
a system of equations that lead us to further explanations and to a new physics
paradigm. Like special relativity which was created in 1905 and then expanded later to
general relativity to explain, among other things, the aberration in the motion of the
planet Mercury and the gravitational lenses, Metarelativity explains many phenom-
ena, for example, the nature of dark matter laying inside and outside galaxies and, in
the universe, and the existence of superluminal particles or tachyons and their
corresponding dark energy. Metarelativity is a work of pure science that encompasses
mathematics and fundamental physics. All the explanations are deduced from a new
system of equations called the Metarelativistic transformations that were proven
mathematically and explained physically. Hence, Metarelativity was bonded here to
CPP and to develop a new paradigm in science.

In addition, referring to all these obtained graphs and executed simulations
throughout the whole research work, we are able to quantify and visualize both the
system chaos and stochastic effects and influences (expressed and materialized by Chf
andMChf) and the certain knowledge (expressed and materialized by DOK and Pc) of
the new paradigm. This is without any doubt very fruitful, wonderful, and fascinating
and proves and reveals once again the advantages of extending A. N. Kolmogorov’s
five axioms of probability and hence the novelty and benefits of my inventive and
original model in the fields of prognostics, applied mathematics, and physics that can
be called verily: “The Metarelativistic Complex Probability Paradigm (MCPP).”
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As a future and prospective research and challenges, we aim to more develop the
novel prognostic paradigm conceived and to implement it to a large set of random and
nondeterministic phenomena in physics and in science.
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