We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,400 1/4,000 190M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Introductory Chapter: PID-Based
Industrial Process Control

Mohammad Shamsuzzoha and G. Lloyds Raja

1. Introduction

A PID controller is an instrument used in industrial control applications at the
regulatory level to regulate process variables e.g., temperature, pressure, flow, etc. To
meet the continuously evolving challenges in industrial process control, it is essential
to formulate control strategies which can yield improved performance. Proportional-
integral-derivative (PID) controllers are still very much preferred in industries due to
their simplicity and ability to yield reasonable closed-loop performance. A recent
study has concluded that the preference for the PID, advanced and model predictive
control in industries fall in the ratio 100:10:1 [1]. Another study states that about 90%
industrial controllers are of PID type [2] to meet the requirement.

1.1 Literature review of PID control strategies

Majority of the control schemes use PID controllers in a unity feedback
configuration [3]. However, unity feedback schemes are not suitable for plants
having large time delays (LTD) and disturbances [4]. Hence, attempts have been
made to design double-degree-of-freedom (DDOF) control schemes by adding
additional controllers [4-12].

If an intermediate process output is available, cascaded control (CC) is more
capable of giving better closed-loop performance compared to the DDOF control
structures mentioned above. Based on the mode of operation, there are two varieties
of CC strategies: serial and parallel [13, 14]. In practice, time delays occur in
transport and composition examination loops [4]. The control schemes reported in
[15-17] fails to provide good servo response for processes with LTD. To compensate
LTD, Smith predictor (SP) based schemes are reported in the literature [6]. How-
ever, SP based control strategies fails to yield satisfactory regulatory performance
for processes having LTD in the presence of disturbances [18]. Hence, SP can be
combined with cascade control to achieve both satisfactory servo and regulatory
performance [18-20].

Plant like boilers and reactors are often modeled as unstable processes having time
delay [4]. In contrast, paper drum drier cans and boiler steam drums are of integrating
type [4]. Having poles in the right half of the s-plane and origin makes unstable and
integrating (UI) plants difficult to control. To control UI processes, modifications are
required in single-loop, DDOF, CC and SP bases strategies [8, 13]. Hence, a lot of
research is still being carried out in the aforementioned domains.
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1.2 Requirements for industrial process control

It is essential that a control strategy must be capable of eliminating the load
disturbances and tracking the reference input. Moreover, it must be robust towards
uncertainties in process dynamics and noise that enters the system. Response of a
control system to setpoint changes and disturbances are termed servo and regulatory
responses, respectively. In process industries, changes in setpoint happen only when
the production rate is altered. Mostly the production rate remains unaltered for years
together. On the other hand, closed-loop performance is more frequently hindered by
disturbances entering the system. Therefore, disturbance elimination is comparatively
more vital than reference following [21]. The essential requirements for a PID control
strategy are discussed below.

1.2.1 Disturbance rejection

The system output deviates from the desired value due to load disturbances
which are of low frequency. Hence, rejecting such load disturbances is a primary
task of a properly designed controlled system. The instantaneous error e(z) is the
deviation of setpoint (r1) from controlled output (y,) at time ¢’. Using e(z), the
performance of a closed-loop control system can be characterized by computing the
following measures:

Integrated absolute error (IAE)

(o]

IAE = JO le(t)|dt (1)

Integrated squared error (ISE)

ISE = J:e(t)zdt @)

and Integrated time-weighted absolute error (ITAE)

(o]

ITAE = J tle(t)|dt (3)

0

Small values of (1) to (3) indicates better control performance.

1.2.2 Setpoint tracking

Whenever there is a change in the setpoint (reference input), it is expected that
the system output should immediately follow the new reference value. The reference-
tracking capability of a closed-loop system is characterized by its rise-time (z;) and
settling-time (z;). ¢, is the time consumed in system output raising from 10% to 90%
of the expected value. Moreover, ¢, is the time consumed in system output to reach up
to (and stay within) £2% or £5% of the final value. The system output is expected to
have less overshoot, ;, ; and steady state error (error ‘e’ after reaching steady state)
during a change in setpoint. In addition to the above, performance measures like IAE,
ISE and ITAE are also used to characterize the servo performance.
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1.2.3 System robustness

The plant model (G,m) used to design controllers is an approximate version of the
actual plant dynamics (G, ). Therefore, it is important to ensure that the controller
designed using Gom to be robust enough to control G,. As per [22], the rule to achieve
closed-loop robust stability is

Hlm(S)Td(S)H <1lVwe (—oo, oo) (4)

Here, T4(s = jw) denotes complementary sensitivity function. /(s = jw) is the
multiplicative uncertainty as given below:

Go(s) — Gom()
Gom ()

In(s) = | | (5)

From the magnitude plots of Ty and [,,, the robust stability of a system is analyzed
graphically. Furthermore, system robustness can be measured with maximum sensi-
tivity (Ms).M; is defined as the inverse of the shortest distance from the Nyquist curve
of the loop transfer function to the critical point ‘—1’. For an unity feedback system
having a controller G. and process model Gy,, M; is obtained as follows:

1
1+ Ge(jo)Gp(jw)

M = max |

| (6)

It is expected for M to remain within 1.2 and 2 to ensure a good tradeoff between
performance and robustness for stable plants with time delay [4].

1.2.4 Control signal

Softness of the control action u; () is computed by its total variation (TV).
Mathematically, TV is given as

TV =) lua(i+1) —uz(i)| 7)
i=1

Moreover, the maximum magnitude of the control signal is given by
Uz max =Max{u,(¢)V}. TV and 43 max must remain as small as possible in practice.

1.3 Motivation for this book

The following observations are made from the contemporary works pertaining to
PID-based industrial process control:

i. While many authors report performance improvement by using complex
control strategies that require large number of controller and filter parameters
[23], simple and effective PID control schemes are more feasible in practical
scenarios [13].

ii. The studies discussed in [3-23] use linearized plant models which have its
own limitations when employed for controlling nonlinear systems that occur
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in practice. Hence, PID controller design for nonlinear processes have
attracted good research attention in recent times [24].

iii. Many of the control strategies discussed in this chapter are limited to single-
input single-output systems. Therefore, they require careful re-designing to
be extended for multi-input-multi-output systems (MIMO) [25].

iv. Advanced control strategies like active disturbance rejection control (ADRC)
[26] is widely preferred these days to achieve improved disturbance rejection

which is vital in process industries.

v. Recently, auto-tuning strategies using relay feedback mechanism has also
received much attention [27].

Motivated by the above, the subsequent chapters of this book are presented to
introduce the readers to some simple PID controller design strategies for unstable
processes, nonlinear systems and MIMO systems. Also, considerable attention has

been given to familiarize the reader with the concept of ADRC and relay-based auto
tuning strategies.
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