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Chapter

CNC Gel Rheology Meets 
Mechanical Characteristics
Aref Abbasi Moud

Abstract

Rheology was used to study the microstructure of cellulose nanocrystal suspensions 
and hydrogels before, during, and after disturbance. Rheological testing is classified 
into two types: linear and nonlinear tests. These tests can be carried out with either 
oscillatory or rotational shear deformations. This manuscript includes recent research 
on cellulose nanocrystals using rheology to familiarize readers with the generality of 
these nanoparticles and their flow behavior in aqueous media, as well as to provide a 
comprehensive overview of current efforts in the literature addressing these materials.

Keywords: cellulose, cellulose nano crystals, rheology, linear and non-linear 
viscoelastic properties

1. Introduction

Cellulose nanocrystals (CNCs) are whisker-shaped particles made of cellulose [1]. 
CNCs, in addition to their thin design, exhibit variable amounts of crystallinity [1]. To 
create a three-dimensional (3-D) structure out of CNC particles, we must gelify them. 
Aside from size and form, additional characteristics influencing CNC gelation include 
van der Waals forces, surface charges, and hydrophobic and hydrogen interactions [2].

Research revealed that changes in surface charge density, such as desulfation or 
high-temperature annealing, may be used to modify the electrostatic forces that keep 
particles apart [3]. As a result, increasing the strength of van der Waals interactions 
among CNCs above electrostatic repulsive forces can cause phase separation [4]. It 
has also been demonstrated that entering a highly concentrated regime by increasing 
CNC loading over 10% wt induces concentration-dependent manner aggregation [5].

Furthermore, self-similar patterns of CNC gels may be created by adding coagu-
lants to CNC solutions, such as salts or polymers. [6] conducted research in which gel 
formation occurred following the addition of NaCl to the CNC solution. Chau et al. 
[7] showed experimentally that raising the ionic strength of suspensions weakens 
electrostatic repulsion among particles as compared to attractive short-range forces 
such as van der Waals and hydrogen bonding. It was also suggested that the stiffness 
of the gel is a function of the charge number of the salt as well as the radii of the 
injected ions. Ure a-Benavides et al. [8] hypothesized that the phase transition point 
for a CNC suspension coagulated with ions is roughly one order of magnitude lower 
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than the gelation threshold for pure CNC suspension. Regardless of recent research on 
the stability of various forms of nanocellulose, [6, 9–16].

As a recap, CNCs are cellulose-based whisker-shaped particles. We must gelify 
CNC particles to construct a three-dimensional structure. Increased van der Waals 
interactions between CNCs can result in phase separation. A CNC solution coagulated 
with ions has a phase transition point that is around one order of magnitude lower 
than the gelation threshold for pure CNC. It was also proposed that the stiffness of the 
gel is a function of the salt’s charge number as well as the radii of the injected ions.

2. Methodology

Various characterization tools, including but not limited to small-angle neutron 
scattering [17], small-angle x-ray scattering [18], confocal laser scanning microscopy 
[19], rheology, and so on, have been employed to analyze CNC gels and suspensions 
in the literature. We concentrate on employing rheology to investigate the flow behav-
ior and mechanical characteristics of CNC gel and suspension. The fundamentals of 
conducting rheological tests and their adaption to CNC may be found in Refs. [20–22] 
and will not be discussed further here.

3. Fundamentals of rheology and its adaptation to CNC

Rheology has been widely used to investigate the microstructural development 
of cellulose nanocrystals (CNC) suspensions and hydrogels before, during, and after 
disturbance. Because of the numerous methods of rheological tests that give important 
insights into the superstructures of CNC colloids at different stages. Indeed, rheological 
examinations may be divided into linear and nonlinear tests, each of which gives distinct 
information about the structural features of a system. These tests can be performed 
using oscillatory or rotational shear deformations. The colloidal transition, which 
encompasses liquid-solid and isotropic-anisotropic transitions, determines the ultimate 
physical characteristics and structural aspects of CNC suspensions. A lot of character-
istics govern these transitions, the most important of which are CNC concentration and 
aqueous phase stability. In general, increasing colloidal loading or lowering CNC particle 
stability in water promotes the formation of colloidal glass or gel. These designs provide 
CNC suspensions remarkable mechanical properties, expanding their applications.

Soft solid structure formation may be easily detected using near and nonlinear rheo-
logical approaches. Qiao et al. [23] used rheological techniques to explore the colloidal 
behavior of CNC suspensions. The authors changed the concentration of CNC particles 
to alter the network structure of suspensions. They established isotropic and biphase gel 
forms of CNC suspensions using rotational flow curves and oscillating frequency sweep 
investigations. Temperature, ionic strength, and CNC concentration can all influence 
the colloidal behavior of systems [24]. This section presents the rheological fingerprint 
of CNC suspensions as investigated by comprehensive rheological studies.

The frequency sweep test is the most well-known small-angle oscillatory shear 
(SAOS) test, in which the samples’ storage modulus (indicative of rigidity) and 
loss modulus (which quantifies how readily applied stress is relaxed or dissipated) 
are monitored against the frequency of deformation at a lock strain amplitude. The 
dynamic moduli of a liquid dominant response (e.g., at low concentrations of CNC 
particles) are frequency-dependent and drop as the frequency decreases, indicating 
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the relaxation processes in a system. Another feature of the liquid-like behavior is 
storage modulus < loss modulus. However, for an ideal elastic gel, the moduli are 
predicted to be frequency independent and storage modulus > loss modulus. As a 
result, the CNC particles emerge when the moduli are frequency invariant (plateau-
like behavior) and conjugated with the storage modulus > loss modulus condition.

Ions, as previously indicated, can alter the structural characteristics of CNC-based 
suspensions and gels. Chau et al. [7] used linear rheological techniques to explore the 
sol\gel transitions of salt-incorporated aqueous CNC suspensions with increasing 
charge and cation size. In comparison to magnesium or aluminum chloride, a greater 
amount of sodium chloride was required to produce gelation at a constant concentra-
tion of CNCs (4 wt%) (Figure 1a). It is predicted that when the cation charge number 
grows, a stronger gel of CNC particles can develop as electrostatic repulsions between 
the particles decrease.

Thus, as anticipated by the DLVO theory, Van der Waals and hydrogen bonding interac-
tions gain primacy, resulting in physical link between particles [26]. The gelation perfor-
mance of different divalent positive ions differs insignificantly (Figure 1b). The SrSO4 
system’s somewhat higher stiffness was due to its reduced solubility; that is, metal cations 
with bigger ionic radii and lower water solubility could bridge two nearby sulphate half 
ester groups of CNC particles and produce a stronger gel. Shafiei-Sabet et al. [27] looked at 
how the degree of sulfation affects the rheological characteristics of CNC suspension. And 
per the results of fast transient sweep studies at the linear viscoelastic region, the degree 
of sulfation has a significant influence on the critical concentrations at which the liquid-
to-solid-like transition occurs. As a consequence, rheological methods were employed to 
show that the surface morphology of CNC particles is important in the gelation of CNC 
suspensions. As a consequence, rheological methods were employed to show that the 
surface chemistry of CNC particles is important in the gelation of CNC suspensions. To put 
it another way, several researchers [28–31] sought to enhance the rheological characteristics 
of CNC suspensions by surface modification and manipulation.

Surfactants can also be used to quickly manipulate the surface properties and 
hydrophilicity of CNC particles [32]. Kushan et al. [33] used cationic 1-decyl 3-methyl 
imidazolium chloride and 1-decyl trimethyl imidazolium ferric tetrachloride to 
modify the rheological properties of CNC solutions. The hydrophobic interaction of 
surfactant tails adsorbed on CNC particles drives the formation of network structure 
at low CNC ratios. Significantly, the gel network value increases in a linear proportion 
with the presence of positively charged micelles in the gelation.

In the case of thermal hydrogel formation (hydrothermal treatment), Lewis et al. 
[3] used linear rheology to investigate the hydrothermal gelation of aqueous suspen-
sions with 4wt. percent particle loading at temperatures ranging from 60 to 90°C. 
They discovered liquid-like behavior in samples treated at 60°C and 70°C (frequency-
dependent dynamic moduli paired with G’ G” condition). The liquid-to-solid reaction 
happened in samples treated at 80°C, and rheological parameters increased by more 
than two orders of magnitude. The value of dynamic moduli was increased further by 
raising the treatment temperature from 80 to 90°C. The gelation of the CNC suspen-
sions at higher treatment temperatures was explained by the surface desulfation of the 
particles during the hydrothermal treatment. This event, which results in the release of 
negatively charged sulfate groups, weakens the energy barrier between CNC particles 
and promotes the instability of CNC particles in suspension. The researchers also 
demonstrated that the rheological properties of CNC suspensions allow them to be 
administered through syringe injection, allowing them to be employed in biological 
applications such as targeted drug delivery and tissue engineering.
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Figure 1. 
Dynamic frequency sweeps of 4% CNC suspensions in the presence of (a) Na + (circles), Mg2+ (squares), Al3+ 
(triangles), (b) Mg2+ (circles), Ca2+ (squares), and Sr2+ (triangles). Differences in storage moduli, G’, and 
loss moduli, G”, are represented by closed and open symbols. The dynamic frequency sweeps were carried out at 
a strain of 0.5 percent. (c) The material function of viscosity of CNC suspension in Deionized water at various 
CNC concentrations. (d) Viscosity against shear rate dependency in 10% CNC suspensions at various electrolyte 
concentrations. (e) Intra-cycle Lissajous-Bowditch plots of CNC suspensions at various salt concentrations, paired 
with confocal pictures. (a) And (b) Reprinted with permission from [7]. Copyright (2015) American Chemical 
Society. (c) and (d) Reprinted by permission from [Springer]: Springer Nature [Cellulose] [25], Copyright 
(2014). (e) Reprinted by permission from [Springer]: Springer Nature [Cellulose] [21], Copyright (2020).
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Besides the chemical composition of CNC particles, the rheological properties of 
these systems may be altered by changing their physical features, such as crystallin-
ity and length [34, 35]. Recently, researchers [35] have shown that the aspect ratio 
of CNC particles has a considerable impact on their rheological reactivity. Gel-like 
rheological behavior, for instance, has been shown at higher concentrations with 
shorter CNC particles [34].

The addition of a secondary component, such as a polymer, can also cause CNC 
suspensions to change from liquid to solid-like [22, 36]. Much study has shown that 
when water-soluble polymers such as poly (vinyl alcohol) are present, the gel forma-
tion forms at lower CNC concentrations with a stronger network (PVA). Meree et al. 
[37] and Moud et al. [22] identified two types of networks in PVA/CNC suspensions. 
Their rheological findings show that polymers mediate CNC networks at lower CNC 
loadings, but CNC-CNC interactions are the primary source of the elastic component 
of networks at higher CNC loadings.

The shift between any of these networks is governed by the percolation threshold. 
At constant concentration, we showed that the addition of PVA enhances the storage 
modulus more than tenfold [21, 22]. The addition of 5% PVA, for example, increased 
the storage modulus of CNCs in water from 25 to 344 Pa for 30 g/L. This was attrib-
uted to CNC particles bridging with direct, primary, and secondary polymer chains. 
According to Zhou et al. [36], the gel-like behavior of CNC suspensions in the pres-
ence of PVA is induced by physical entanglement and hydrogen bonding between 
CNC particles and the PVA chain.

In linear rheological frequency sweep tests, the amount of displacement is so 
small that now the material is not pulled out of dynamic equilibrium. When rotating 
nonlinear testing, nevertheless, the entire network of the specimens is broken (e.g., 
steady-state shear viscosity also known as flow curve test). Flow curve tests examine 
viscosity at various shear rates, which is influenced by sample internal structure. 
The behavior of a Newtonian fluid, like very low concentration CNC suspension, is 
plateau-like (i.e., viscosity is independent of shear rate). The rheological response 
of non-Newtonian fluids, on the other hand, deviates from plateau-like behavior, 
following shear-thinning or shear-thickening tendencies. The nonlinear rheological 
response of CNC colloidal gels under rotational shearing flow, at high particle con-
centrations or in the presence of a polymer, was found to be shear-thinning behavior 
[5, 22, 23, 38]. Furthermore, as the network structure is strengthened, the degree of 
thinning behavior increases [25], which is advantageous to post processing techniques 
such as 3D printing.

Figure 1c and d depict the flow curves of CNC suspensions at varied salt and CNC 
contents. The suspensions are categorized as isotropic or anisotropic for small con-
centrations of CNC particles, such as 1wt. percent and 3wt. percent. Isotropic samples 
display (1) Newtonian plateau behavior at low shear rates, (2) shear-thinning activity 
at medium shear rates due to nanocrystal alignment parallel to the flow direction, and 
(3) a second plateau at higher shear rates due to CNC particle alignment parallel to the 
flow direction. A change from isotropic to anisotropic chiral nematic liquid crystal 
occurs between 3 and 5 wt. percent CNC levels and the viscosity profile comprises 
three separate zones, namely: At lower flow rates, the shear-thinning territory is 
caused by the conformance of chiral nematic liquid crystal domains; at intermediate 
shear rates, the regions are all directed along the shear direction; and at high shear 
rates, the shear stress is strong enough to disturb the liquid crystal domains, causing 
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independent nanocrystals to try to position themselves along the shear direction. 
Sample viscosity over 10% wt. only displays shear thinning behavior across the full 
shear rate window tested, indicating gel formation. See ref. for further details on the 
influence of salinity on the curves of CNC suspensions [25].

Scholars have been interested in nonlinear viscoelastic characterizations under 
large amplitude oscillatory shear (LAOS) flow since the development of better rheom-
eters with superior torque precision and significant computing capability. In opposed 
to SAOS experiments, which are confined to a certain strain and/or time period, the 
development of LAOS flow is not constrained as long as shear flow inhomogeneities 
do not modify the flow dynamics and viscoelastic response. Furthermore, rotational 
shearing tests (e.g., flow curve) do not offer information on viscoelasticity, but LAOS 
may characterize nonlinear viscoelasticity in samples. Additionally, LAOS experi-
ments are relevant to actual flow fields because most processing operations include 
enormous and fast deformations of materials.

The nonlinear viscoelasticity of CNC suspensions/gels under LAOS deformation in 
the presence of salt and PVA was recently investigated [21, 22]. Viscoelasticity tests, 
as demonstrated by Abbasi Moud et al. [21, 22], are very sensitive to minor changes 
in the interior microstructures and provide pertinent data about the filler particles 
network architecture.

This knowledge is often not obtainable via the rheological features of the linear 
framework. Figure 1e, for example, shows Lissajous-Bowditch plots and confo-
cal images of CNC suspension with fixed particle concentrations but variable salt 
loadings. Confocal microscopy indicated that as the solution gelled by raising the salt 
content, the Lissajous-Bowditch plots took on significantly different geometries.

Other techniques, such as stress decomposition and sequence of physical pro-
cesses, were used by the authors to give quantitative (e.g., inter- and intra-cycle 
parameters) and qualitative nonlinear analysis. All CNC/salt and CNC/salt/PVA 
suspensions/gels were shown to display Type III inter-cycle nonlinear behavior 
(weak overshoot where G′ decreases while G′ first increases and then decreases). 
CNC-based systems’ viscous and elastic intra-cycle nonlinearity was discovered to 
be shear-thinning and strain stiffening, respectively. Furthermore, suspensions/gels’ 
inter-cycle nonlinearity was frequency invariant, whereas their intra-cycle response 
was substantially frequency dependent.

Even though nonlinear rheological procedures offer us with unique data on the 
inner core and processability of materials, these constructive experiments should be 
performed with utmost caution. Flow inhomogeneities, as previously indicated, should 
be avoided to acquire reliable nonlinear data. Wall depletion, shear banding, and wall 
sliding are examples of flow inhomogeneities discovered. Hubbe et al. expand on the 
influence of flow inhomogeneities on the characterization of CNC suspensions/gels [39].

Recent papers on the rheological properties of CNC suspensions/gels pave the path 
for sophisticated technologies of these materials. Several factors, including CNC 
concentration, temperature, and the inclusion of salt, polymers, or surfactants, have 
been shown to readily modify the viscoelasticity of CNC suspensions. The storage 
modulus of CNC suspensions varies from ~ 10−3 to ~ 103Pa by adjusting the afore-
mentioned factors [3, 7, 40–53], As an outcome, these systems are adaptable to a 
variety of processing methodologies. In order to make 3D printed structures, print-
able inks, for example, must have precise rheological properties.

Extremely high yield stress τ y  (usually measured by a stress sweep test or by 

fitting rheological models, such as Herschel Bulkley, to flow curve data) confirms the 
strong gel-like structure, making the ink difficult to flow and thus unsuitable for 3D 
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printing processing techniques, despite the fact that it can cause serious problems, 
such as clogging the printing nozzle. Low τ y , on the other hand, causes lateral 

spreading of 3D-printed inks following deposition on a substrate. It was discovered 
that the ideal τ y  for ink printing is around 100 Pa [54].

As a result, the controllable rheological properties of CNC suspensions (i.e., from 
liquid to solid dominant behavior) combined with high shear thinning and proper 
maximum stress allow them to flow easily during 3D printing processes, while their 
viscoelasticity and yield stress keep the structure of the formed filament coherent 
and uniform. Ma et al. [55] for example, studied the printability of CNC suspensions 
by improving the rheological characteristics by altering the concentration of CNC 
particles (0.5–25 wt percent). The greatest print quality and fidelity were determined 
to be 20 percent wt CNC hydrogels. The scientists also looked at the printing qualities 
of CNC hydrogels with high and low methoxy pectin levels. Wang et al. [56] reported 
another innovative rheology-related application of CNC suspensions, demonstrating 
the ability of CNC particles in the stabilization of magneto-rheological fluids.

4. Conclusion and future works

Rheology has been widely used to investigate the microstructural development 
of cellulose nanocrystals (CNC) suspensions and hydrogels. The colloidal transition 
determines the ultimate physical characteristics and structural aspects of CNC sus-
pensions. Temperature, ionic strength, and CNC concentration can all influence the 
behavior of these systems. Ions can alter the structural characteristics of CNC-based 
suspensions and gels. A greater amount of NaCl was required to produce gelation at a 
certain particle concentration (4w. percent).

LAOS can determine the nonlinear viscoelasticity of samples. LAOS tests are 
relevant to real-world flow fields because materials undergo enormous and fast defor-
mations. The viscous and elastic intra-cycle nonlinearity of CNC-based systems was 
revealed to be shear-thinning and strain stiffening. Several factors, including CNC 
concentration, temperature, and the addition of salt, polymers, or surfactants, have 
been shown to readily modify the viscoelasticity of CNC suspensions. As a result, 
these systems are adaptable to a variety of processing methodologies.

Through recap, we offered detailed instructions that walk readers through the 
brief steps of CNC-based system creation, from cellulosic supplies to suspension and 
gel forms. We presented characterization methods that provide information about 
the CNC’s condition in either a glassy or a gel state. This review article’s information 
appears to be well aligned with new processing techniques and applications (e.g., 3-D 
printing) of CNC gel\inks, inspiring the interpretation of microstructural features of 
these complex systems to assist the community and newcomers, as well as contribut-
ing to current and future developments in the field.
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