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Chapter

Stabilization of a Quantum
Equation under Boundary
Connections with an Elastic
Wave Equation
Hanni Dridi

Abstract

The stability of coupled PDE systems is one of the most important topic because it
covers realistic modeling of the most important physical phenomena. In fact, the
stabilization of the energy of partial differential equations has been the main goal in
solving many structural or microstructural dynamics problems. In this chapter, we
investigate the stability of the Schrödinger-like quantum equation in interaction with
the mechanical wave equation caused by the vibration of the Euler–Bernoulli beam, to
effect stabilization, viscoelastic Kelvin-Voigt dampers are used through weak bound-
ary connection. Firstly, we show that the system is well-posed via the semigroup
approach. Then with spectral analysis, it is shown that the system operator of the
closed-loop system is not of compact resolvent and the spectrum consists of three
branches. Finally, the Riesz basis property and exponential stability of the system are
concluded via comparison method in the Riesz basis approach.

Keywords:wave equation, exponential stability, Riesz basis approach, C0–semigroup,
spectral analysis

1. Introduction

There are many coupled systems that have been addressed in the literature, and we
can hint here that coupling may be through the association of PDEs with coefficients
or via boundary conditions of PDEs. The coupling may be strong or weak as the
characteristic is determined based on the results obtained after studying the stability
or control. We can divide the coupled systems according to the coupling form. Firstly,
the parabolic-hyperbolic coupled systems, such as heat wave system, that arise from
the interaction of the fluid structure. See works [1, 2] where stability and control
systems are analyzed. Secondly, we can refer heat-beam system through works [3, 4]
where the researchers used an effective method for stabilization of the system.
Thirdly, in the heat-Schrödinger system, the heat dynamic controller was applied for
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stabilization and Gevrey regularity property in the paper [5]. Finally, in the case of
thermoelastic systems, the exponential stability and Riesz basis property of the
coupled heat equation and elastic structure were discussed in reference [6]. The
exponential stability of thermoplastic systems with microtemperature in reference
[7], for the linear beam system coupled with thermal effect, we refer to the works
[8–12]. For the nonlinear beam system with thermal effect, see reference [13].

From general result related to the previously mentioned research works, we can
conclude that the heat equation plays the role of dynamic boundary feedback con-
troller of the hyperbolic PDE. Also, for the interconnected system of Euler–Bernoulli
beam and heat equation with boundary weak connections where the heat is the
dynamic boundary controller to the whole system, which means that this subsystem
can be presented as a controller for other subsystems.

Euler–Bernoulli beam equation with boundary energy dissipation is analyzed in the
work [14], the problem is given as follows:

ρytt þ EIyxxxx ¼ 0, 0< x< 1,

y 0, tð Þ ¼ yx 0, tð Þ ¼ 0

�EIyxxx 1, tð Þ ¼ �k21yt 1, tð Þ, k1 ∈,

�EIyxx 1, tð Þ ¼ k22yxt 1, tð Þ, k2 ∈,

y x, 0ð Þ ¼ y0 xð Þ yt x, 0ð Þ ¼ y1 xð Þ, 0≤ x≤ 1,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1)

where ρ denotes the mass density per unit length, EI is the flexural rigidity
coefficient. The authors extract some estimates of the resolvent operator on the
imaginary axis by applying Huang’s1 theorem to establish an exponential decay result.

For the asymptotic behavior of the wave equation, we introduce the following
problem:

∂
2w

∂t2
� Δw ¼ 0 in Ω� 0, ∞ð Þ,

w x, tð Þ ¼ 0 on Γ0 � 0, ∞½ Þ,
∂w

∂ν
þ a xð Þ ∂w

∂t
¼ 0 on Γ1 � 0, ∞ð Þ,

8

>

>

>

>

<

>

>

>

>

:

(2)

where ν is the unit normal of Γ pointing toward exterior of Ω: The function

a∈C1
Γ1

� �

with a xð Þ≥ a0 >0 on Γ1: Problem (2) has been treated by Lagnese in [17],

he used a multiplier method2 and proved that the energy decay rate is obtained for
solutions of wave type equations in a bounded region in 

n n≥ 2ð Þ whose boundary
consists partly of a nontrapping reflecting surface and partly of an energy absorbing
surface. We can express this result, as follows:

E tð Þ≤ f tð ÞE 0ð Þ, t≥0, (3)

1 Huang [15] introduced a frequency domain method to study the exponential decay of such stability

problems.
2 The energy multiplier method [16, 17] has been successfully applied to establish exponential stability,

which is a very desirable property for elastic systems.
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with energy defined by

E tð Þ ¼ 1

2
wtk k2L2

Ωð Þ þ ∇wk k2L2
Ωð Þ

� �

: (4)

The decay rate of solutions is a function f tð Þ satisfying f tð Þ ! 0 as t ! ∞: How-
ever, there are difficulties with some boundary condition problems, which makes the
energy multiplier method ineffective in proving the exponential stability property.

Wazwaz [18], used the variational iteration method3 for the study of both linear
and nonlinear Schrödinger equations, these problem is governed by the following
equations:

ut þ iuxx ¼ 0,

u x, 0ð Þ ¼ f xð Þ, i2 ¼ �1

�

(5)

and

iut þ uxx þ γ uj j2ru ¼ 0, r≥ 1,

u x, 0ð Þ ¼ f xð Þ, i2 ¼ �1:

(

(6)

The variational iteration method was used to give rapid convergent successive
approximations as well as to treat linear and non-linear problems in a uniform
manner.

1.1 Statement of the problem

In this work, we consider stabilization for a Schrödinger equation through a
boundary feedback dynamic controller interacted by an Euler–Bernoulli beam equa-
tion with Kelvin-Voigt damping4, the system is described by the following coupled
partial differential equations:

∂
2
t uþ ∂

4
xuþ β∂4x∂tu ¼ 0, 0< x< 1, t>0,

∂tvþ i∂2xv ¼ 0, 0< x< 1, t>0,

(

(7)

boundary conditions are given by

u 1, tð Þ ¼ ∂xu 0, tð Þ ¼ ∂
2
xu 1, tð Þ ¼ v 1, tð Þ ¼ 0, t≥0,

v 0, tð Þ ¼ α∂tu 0, tð Þ, t≥0,

β∂3x∂tu 0, tð Þ þ ∂
3
xu 0, tð Þ ¼ �αi∂xv 0, tð Þ, t≥0,

8

>

<

>

:

(8)

the problem is associated with the following initial conditions:

u x, 0ð Þ ¼ u0 xð Þ, ∂tu x, 0ð Þ ¼ u1 xð Þ, v x, 0ð Þ ¼ v0 xð Þ, 0≤ x≤ 1: (9)

3 The variational iteration method is established by He in [19, 20] is thoroughly used by many researchers

to handle linear and nonlinear models.
4 Kelvin-Voigt is one of the most important types of damping and has been used in many works, see for

example, [10, 21].
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1.2 Energy space

Initial condition (9) is in the following phase space:

H ¼ H2
∗ 0, 1ð Þ � L2 0, 1ð Þ � L2 0, 1ð Þ, (10)

where

H2
∗ 0, 1ð Þ ¼ sjs∈H2 0, 1ð Þ, ∂xs 0ð Þ ¼ s 1ð Þ ¼ 0

� �

:

1.3 Energies

The energy is the sum of the potential energy and the kinetic energy, given by

E tð Þ ¼ 1

2
utk k2L2 0,1ð Þ þ ∂

2
xu

	

	

	

	

2

L2 0,1ð Þ þ vk k2L2 0,1ð Þ

� �

: (11)

Then, we have

d

dt
E tð Þ ¼ �β ∂

2
x∂tu

	

	

	

	

2

L2 0,1ð Þ: (12)

It is clear that E tð Þ is nonincreasing with time.

1.4 Remark

1.The energy dissipation is related to the wave equation, that is, there are no
explicit terms for a part of the Schrödinger subsystem.

2.We note that the weakness of the boundary connections for problems (7)–(9)
lead to a complicated problem in stability analysis.

3. If we take the β coefficient equal to zero in Eq. (12), the system becomes
conservative.

1.5 Notations

1. �, �h iL2 0,1ð Þ is the L
2 0, 1ð Þ�inner product and �k kL2 0,1ð Þ is the L

2 0, 1ð Þ�norm.

2.The symbols ℜ sð Þ andℑ sð Þ indicate the real part and the imaginary of a complex
number s:

3. sð ÞT represents the transposed vector of sð Þ:

2. Well-posedness

2.1 Setting of the semigroup

Setting z ¼ u, ∂tu ¼ w, vð ÞT. Then, we introduce the norm in the Hilbert spaceH as
follows:
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zk k2
H
¼ utk k2L2 0,1ð Þ þ ∂

2
xu

	

	

	

	

2

L2 0,1ð Þ þ vk k2L2 0,1ð Þ

¼ 2E tð Þ,
(13)

for z1, z2 ∈H, the norm (13) is induced by the following inner product

z1, z2h iL2 0,1ð Þ ¼ w1, w2h iL2 0,1ð Þ þ ∂
2
xu1, ∂

2
xu2


 �

L2 0,1ð Þ þ v1, v2h iL2 0,1ð Þ: (14)

System (7) can be written as an abstract Cauchy problem in the phase space (10) as
follows:

d

dt
z ¼ Az, t>0,

z 0ð Þ ¼ z0:

8

<

:

(15)

The solution at time t>0 to problem (15) can be written as:

z tð Þ ¼ S tð Þz0 ¼ etAz0,

where the operator A : D Að Þ⊂H ! H is given by

Az ¼
w

�∂
2
x ∂

2
xuþ β∂2xw

� �

�i∂2xv

0

B

@

1

C

A
, (16)

with domain

D Að Þ ¼ z∈H, Az∈H

∂
2
xuþ β∂2xw∈H2 0, 1ð Þ,

u 1ð Þ ¼ ∂xu 0ð Þ ¼ ∂
2
xu 1ð Þ ¼ v 1ð Þ ¼ 0,

v 0ð Þ ¼ αw 0ð Þ,
β∂3xw 0ð Þ þ ∂

3
xu 0ð Þ ¼ �αi∂xv 0ð Þ,

�

�

�

�

�

�

�

�

�

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

, (17)

Theorem 1.1: Let A defined by (16). Then, A�1 exists and A generates a C0-
semigroup of contractions on H.

Proof:We use the semigroup method, we shall show that:

1.The operator A is dissipative.

2.The operator Id �A is onto (Id is the identity operator).

For the proof of (1). Firstly, we have D Að Þ is dense in H, that is,

D Að Þ ¼ H: (18)

Secondly, by applying the scalar product in the Hilbert space H, we obtain

Az, zh i
H
¼ ∂

2
xw, ∂

2
xu


 �

L2 0,1ð Þ � ∂
2
x ∂

2
xuþ β∂2xw

� �

, w

 �

L2 0,1ð Þ � i∂2xv, v

 �

L2 0,1ð Þ

¼ ∂
2
xw, ∂

2
xu


 �

L2 0,1ð Þ þ ∂
3
xu 0ð Þ þ β∂3xw 0ð Þ

� �

w 0ð Þ
þi∂xv 0ð Þv 0ð Þ þ i∂xv, ∂xvh iL2 0,1ð Þ � ∂

2
xuþ β∂2xw, ∂

2
xw


 �

L2 0,1ð Þ:

(19)
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By using boundary conditions (8), we get

ℜ Az, zh i
H
¼ �β ∂

2
xw

	

	

	

	

2

L2 0,1ð Þ ≤0: (20)

Then, the density property (18) and inequality (20) show that A is dissipative.
For the proof of (2), we shall solve the equation

Az ¼ F

for any F ¼ f 1, f 2, f 3
� �T

∈H, we can express the equation as follows:

w ¼ f 1,

∂
2
x ∂

2
xuþ β∂2xw

� �

¼ �f 2,

i∂2xv ¼ �f 3

8

>

<

>

:

(21)

By using the first equation of (21), we get

∂
4
xu ¼ �f 2 þ β∂4xf 1,

∂
2
xv ¼ if 3:

(

(22)

We solve the following equation for the function v,

∂
2
xv ¼ if 3,

v 1ð Þ ¼ 0, v 0ð Þ ¼ αf 1 0ð Þ,

(

(23)

to obtain

v ¼ ∂xv 0ð Þxþ i

ðx

0
x� yð Þf 3 yð Þdyþ αf 1 0ð Þ,

∂xv 0ð Þ ¼ �i

ð1

0
1� yð Þf 3 yð Þdy� αf 1 0ð Þ:

8

>

>

<

>

>

:

(24)

For u, we solve

∂
4
xu ¼ �f 2 þ β∂4xf 1,

u 1ð Þ ¼ ∂xu 0ð Þ ¼ ∂
2
xu 1ð Þ ¼ 0,

β∂3xwþ ∂
3
xu 0ð Þ ¼ �iα∂xv 0ð Þ,

8

>

<

>

:

(25)

to obtain

u ¼ �
ðx

0
1� xð Þg yð Þdy�

ð1

x
1� yð Þg yð Þdy,

g xð Þ ¼ β ∂
2
xf 1 1ð Þ � ∂

2
xf 1 xð Þ

� �

þ
ðx

0
1� xð Þf 2 yð Þdy

þ
ð1

x
1� yð Þf 2 yð Þdyþ iα∂xv 0ð Þ 1� xð Þ:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(26)
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Eqs. (24) and (26) give a unique z∈D Að Þ satisfying Az ¼ F.

It is easy to check that A�1 is bounded, that is,

0∈ ρ Að Þ:

Therefore, the operator A generates a C0-semigroup of contractions on H by the
Lumer–Philips theorem [22].

3. Spectral analysis

We consider the following eigenvalue problem for the system operator A. Let
Az ¼ λz: Then, we have

w ¼ λu,

∂
2
x ∂

2
xuþ β∂2xw

� �

¼ �λw,

∂
2
xv ¼ iλv,

u 1ð Þ ¼ ∂xu 0ð Þ ¼ ∂
2
xu 1ð Þ ¼ v 1ð Þ ¼ 0,

αλu 0ð Þ ¼ v 0ð Þ,
1þ βλð Þ∂3xu 0ð Þ ¼ �iα∂xv 0ð Þ:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(27)

The first and second equations of system (27) give the following system

1þ βλð Þ∂4xuþ λ2u ¼ 0,

∂
2
xv ¼ iλv,

u 1ð Þ ¼ ∂xu 0ð Þ ¼ ∂
2
xu 1ð Þ ¼ v 1ð Þ ¼ 0,

αλu 0ð Þ ¼ v 0ð Þ,
1þ βλð Þ∂3xu 0ð Þ ¼ �iα∂xv 0ð Þ:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(28)

Lemma
For any λ∈ σp Að Þ, it holds

ℜ λð Þ<0: (29)

Proof: By Theorem 1.1, we have ℜ λð Þ≤0:

5 Letting 0 6¼ λ∈ σp Að Þ with ℜ λð Þ ¼ 0
and z∈D Að Þ satisfying

Az ¼ λz: (30)

By using inequality 20, it follows that

0 ¼ ℜ λð Þ zk k2
H
¼ ℜ Az, zh i

H
¼ �β ∂

2
xw

	

	

	

	

2

L2 0,1ð Þ: (31)

From Eq. (31) and boundary conditions (28)3, we have w ¼ 0:

5
A is dissipative ) ℜ λð Þ≤0, ∀λ∈ σp Að Þ:

7
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From (27)1 we have u ¼ 0: Moreover, Eq. (30) gives

∂
2
xv ¼ iλv,

v 0ð Þ ¼ v 1ð Þ ¼ ∂xv 0ð Þ ¼ 0:

(

(32)

It is easy to check that the above equation has only a trivial null solution v ¼ 0:

Hence, z ¼ 0, and all the points that are located on the imaginary axis are not
eigenvalues of A: Then the proof is completed.

Setting λ ¼ ρ2 in (28), when 1þ βρ2 6¼ 0, we obtain

∂
4
xu ¼ �ρ4

1þ βρ2
u,

∂
2
xv ¼ iρ2v,

u 1ð Þ ¼ ∂xu 0ð Þ ¼ ∂
2
xu 1ð Þ ¼ v 1ð Þ ¼ 0,

αρ2u 0ð Þ ¼ v 0ð Þ,
1þ βρ2
� �

∂
3
xu 0ð Þ ¼ �iα∂xv 0ð Þ:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(33)

Let

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�λ2

1þ βλ

4

s

:

Then, the general solution of system (33) can be expressed as follows:

u ¼ c1 exp axð Þ þ c2 exp �axð Þ þ c3 exp iaxð Þ þ c4 exp �iaxð Þ,
v ¼ d1 exp

ffiffi

i
p

ρx
� �

þ d2 exp �
ffiffi

i
p

ρx
� �

:

(34)

By the boundary conditions of (33), we obtain that the constants c1, ⋯, c4 and
d1, d2 are not identical to zero if and only if det Xð Þ ¼ 0, where

X ¼

ea e�a eia e�ia 0 0

a2ea a2e�a �a2eia �a2e�ia 0 0

a �a ia �ia 0 0

0 0 0 0 e
ffi

i
p

ρ �e
ffi

i
p

ρ

αρ2 αρ2 αρ2 αρ2 �1 �1

a3 �a3 �ia3 ia3
i
ffiffi

i
p

αρ

βρ2 þ 1
� i

ffiffi

i
p

αρ

βρ2 þ 1

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

, (35)

by using boundary conditions (8), we get

c2 ¼ �e2ac1, c4 ¼ �e2iac3, d2 ¼ �e2
ffi

i
p

ρd1:

Then, the solution can be expressed by

u ¼ c1 eax � ea 2�xð Þ
� �

þ c3 eiax � eia 2�xð Þ
� �

, v ¼ d1 e
ffi

i
p

ρx � e
ffi

i
p

ρ 2�xð Þ
� �

,

8
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where c1, c3, d1 are determined by the remaining three boundary conditions of

(36) that det Xð Þ ¼ 0 if and only if det ~X
� �

¼ 0, where

~X ¼

1þ e2a iþ ie2ia 0

1� e2að Þαρ2 1� e2ia
� �

αρ2 �1þ e2
ffi

i
p

ρ

a3 1þ e2að Þ �ia3 1þ e2ia
� � i

ffiffi

i
p

αρ

βρ2 þ 1
1þ e2

ffi

i
p

ρ
� �

0

B

B

B

@

1

C

C

C

A

: (36)

We recall the result of Lemma (29) and in light of this, we know that all eigen-
values have negative real parts. Thus, we only consider those λ that lie in the second
and third quadrants of the complex plane:

S≔ ρ∈jπ
4
≤ argρ≤

3π

4

� �

:

Denote the region S≔ S1 ∪ S2 ∪ S3 such that

S1 ¼ ρ∈Cj π
4
≤ argρ≤

3π

8

� �

,

S2 ¼ ρ∈Cj 3π
8

≤ argρ≤
5π

8

� �

,

S3 ¼ ρ∈Cj 5π
8

≤ argρ≤
3π

4

� �

,

the following theorem gives asymptotic distributions of the eigenvalues in S1, S2,
and S3:

Theorem 1.2: The eigenvalues of A have two families:

σp Að Þ ¼ λ1n, n∈f g∪ λþ2n, λ
�
2n, n∈

� �

,

where

λ1n ¼ in2π2 þ
ffiffiffi

2
p

α2
ffiffiffi

β4
p e

5iπ
8
ffiffiffiffiffiffi

nπ
p

� α4
ffiffiffi

β
p e

iπ
4 þ O n

�1
2

� �

,

λþ2n ¼ �β nπ � π

2

� �4
þ 4

ffiffiffiffi

iβ
p

α2 nπ � π

2

� �2
� 2

ffiffiffiffi

2i
p

α4 nπ � π

2

� �

þ 6iπα4 � 2
ffiffi

i
p

α6
ffiffiffi

β
p

� �

þ O
1

n

� �

,

λ�2n ¼ � 1

β
� 1

β3 nπ � π
2

� �4 þO
1

n8

� �

:

(37)

Therefore, we have

ℜ λ1nð Þ, ℜ λþ2n
� �

! �∞, ℜ λ�2n
� �

! � 1

β
as n ! ∞:

Proof:When ρ∈ S1, it has

ℜ
ffiffi

i
p

ρ
� �

¼ ∣ρ∣ cos arg ρþ π

4

� �� �

≤0:

9

Stabilization of a Quantum Equation under Boundary Connections with an Elastic Wave…
DOI: http://dx.doi.org/10.5772/intechopen.106324



Since

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�λ2

1þ βλ

4

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ρ4

1þ βρ2
4

s

¼
ffiffiffiffi

iρ
p
ffiffiffi

β4
p þ O ρj j�3

2

� �

as ∣ρ∣ ! ∞: (38)

Based on estimate (38), we can state that there is a positive constant γ1 such that

�ℜ að Þ ¼ �
ffiffiffiffiffi

∣ρ∣
p
ffiffiffi

β4
p cos arg

ffiffiffi

ρ
p þ π

4

� �� �

≤ �
ffiffiffiffiffi

∣ρ∣
p
ffiffiffi

β4
p sin

π

16

� �

< � γ1

ffiffiffiffiffi

∣ρ∣
p

,

ℜ iað Þ ¼
ffiffiffiffiffi

∣ρ∣
p
ffiffiffi

β4
p cos arg

ffiffiffi

ρ
p þ 3π

4

� �� �

≤ �
ffiffiffiffiffi

∣ρ∣
p
ffiffiffi

β4
p cos

π

8

� �

< � γ1

ffiffiffiffiffi

∣ρ∣
p

:

Therefore, we get the following estimates

∣e�a∣ ¼ O e�γ1

ffiffiffiffi

∣ρ∣
p� �

, ∣eia∣ ¼ O e�γ1

ffiffiffiffi

∣ρ∣
p� �

, ∣e
ffi

i
p

ρ∣ ≤ 1: (39)

By multiplying some factors, we make each entry of the det ~X
� �

be bounded as
ρ ! ∞

1

a3e2a
det ~X
� �

¼

1þ e�2a iþ ie2ia 0

αe�2a � α α� αe2ia �1þ e2
ffi

i
p

ρ

1þ e�2a �i 1þ e2ia
� � i

ffiffi

i
p

αρ3

βρ2 þ 1
� �

a3
1þ e2

ffi

i
p

ρ
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

: (40)

By using the expression of a and ρ, and the Taylor expansion, we obtain

i
ffiffi

i
p

αρ3

βρ2 þ 1
� �

a3
¼ α

ffiffiffi

β4
p

ffiffiffi

1

ρ

s

þO ρj j�5
2

� �

: (41)

By using Eqs. (41) and (39), we get

1

a3e2a
det ~X
� �

¼

1 i 0

�α α �1þ e2
ffi

i
p

ρ

1 �i
α
ffiffiffi

β4
p

ffiffiffi

1

ρ

s

1þ e2
ffi

i
p

ρ
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

þ O ρj j�5
2

� �

¼ 1þ ið Þα2
ffiffiffi

β4
p

ffiffiffi

1

ρ

s

� 2i

 !

þ e2
ffi

i
p

ρ 1þ ið Þα2
ffiffiffi

β4
p

ffiffiffi

1

ρ

s

þ 2i

 !

þO ρj j�5
2

� �

:

(42)

From the previous equality, we can get det ~X
� �

¼ 0 if and only if

e2
ffi

i
p

ρ ¼ 1� 1� ið Þα2
ffiffiffi

β4
p

ffiffiffi

1

ρ

s

� iα4
ffiffiffi

β
p

ρ
þO ρj j�3

2

� �

: (43)
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Suppose

2
ffiffi

i
p

ρ ¼ 2nπiþ O n
�1
2

� �

, (44)

where n is a sufficiently large integer. Substituting Eq. (43) into Eq. (42), we
arrive at

O n
�1
2

� �

¼ �1ð Þ58
ffiffiffi

2
p

α2
ffiffiffi

β4
p ffiffiffiffiffiffi

nπ
p �

ffiffi

i
p

α4

nπ
ffiffiffi

β
p þO n

�3
2

� �

: (45)

The roots of Eq. (42) have the following asymptotic expressions

ρ1n ¼
ffiffi

i
p

nπ þ �1ð Þ38α2
ffiffiffi

β4
p ffiffiffiffiffiffiffiffi

2nπ
p � α4

2nπ
ffiffiffi

β
p þO n

�3
2

� �

, n>N1, (46)

where N1 is a sufficiently large positive integer. By λ ¼ ρ2, we have

λ1n ¼ in2π2 þ
ffiffiffi

2
p

α2
ffiffiffi

β4
p e

iπ
4 þ O n�

1
2

� �

:

By using the value of a given by Eq. (38), we can obtain the expression of a as
follows:

a1n ¼
�1ð Þ38 ffiffiffiffiffiffi

πn
p
ffiffiffi

β4
p þ O

1

n

� �

: (47)

Similarly, when ρ∈ S2, it is easier to verify that there exists a γ2 >0 such that

ℜ iað Þ≤ � γ2
ffiffiffiffiffi

∣ρ∣
p

,

ℜ
ffiffi

i
p

ρ
� �

¼ ∣ρ∣ cos arg ρþ π

4

� �� �

≤ ∣ρ∣ cos
5π

8

� �

:

8

>

<

>

:

Hence, we get the following estimations

∣eia∣ ¼ O e�γ2

ffiffiffiffi

∣ρ∣
p� �

, ∣e
ffi

i
p

ρ∣ ¼ O e�γ2∣ρ∣
� �

,

by using Eq. (38), we obtain

arg að Þ ¼ arg
ffiffiffiffi

iρ
p

� �

∈
7π

16
,
9π

16

� �

in S2:

Thus, the sign of a is different under the two conditions:

arg ρð Þ∈ 7π

16
,
π

2

� �

and arg ρð Þ∈ π

2
,
9π

16

� �

:

Therefore, we conclude that
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1

a3ea
det ~X
� �

¼

e�a þ ea iþ ie2ia 0

e�aα� eaα α� αe2ia �1þ e2
ffi

i
p

ρ

e�a þ ea �i 1þ e2ia
� � i

ffiffi

i
p

αρ3

βρ2 þ 1
� �

a3
1þ e2

ffi

i
p

ρ
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼

e�a þ ea i 0

e�aα� eaα α �1

e�a þ ea �i
i
ffiffi

i
p

αρ3

βρ2 þ 1
� �

a3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

þ O e�γ2

ffiffiffiffi

∣ρ∣
p� �

¼ ea
ffiffiffi

2
p

aα2

ρ
� 2i

� �

� e�a

ffiffiffi

2
p

iaα2

ρ
þ 2i

� �

þ O e�γ2

ffiffiffiffi

∣ρ∣
p� �

:

From the previous equality, it is seen that det ~X
� �

¼ 0 if and only if

ea
ffiffiffi

2
p

aα2

ρ
� 2i

� �

� e�a

ffiffiffi

2
p

iaα2

ρ
þ 2i

� �

þO e�γ2

ffiffiffiffi

∣ρ∣
p� �

¼ 0: (48)

By using the expression of a and ρ, we obtain

ρ ¼
ffiffiffi

β
p

a2 � 1

2β
3
2a2

þ O
1

aj j4

 !

, (49)

which shows that ∣a∣, ∣ρ∣ ! ∞ at the same time. Now, substitute the value of ρ
given by (48) into equality (47), and we obtain

ea �2iþ
ffiffiffi

2
p

α2
ffiffiffi

β
p

a
þ

ffiffiffi

2
p

α2

2β
5
2a5

þ O aj j�7
� �

 !

� e�a 2iþ i
ffiffiffi

2
p

α2
ffiffiffi

β
p

a
þ i

ffiffiffi

2
p

α2

2β
5
2a5

þ O aj j�7
� �

 !

þO e�γ2∣a∣
� �

¼ 0:

Letting a ¼ xþ iy, it is easily checked that a ¼ x� iy also satisfies the same
asymptotic equation above. Hence, we only need to analyze the asymptotic expression
of a located in the second quadrant. Given the value of a given by (48), when a is
located on the second quadrant, ℜ �að Þ≤0 and ∣e�a∣ ≤ 1. Therefore,

e�2a ¼ �1þ 1� ið Þα2
ffiffiffiffiffi

2β
p

a
� 1� ið Þα4

2a2β
þ 1� ið Þα6

2
ffiffiffi

2
p

a3β
3
2

þ O
1

a4

� �

,

and for the quadrant where a is located, we have

a2n ¼ i nπ � π

2

� �

þ 1þ ið Þα2
ffiffiffiffiffi

2β
p

nπ � π

2

� �� 1� ið Þα4

2β nπ � π
2

� �2

� 1þ ið Þα6

2
ffiffiffi

2
p

β
3
2 nπ � π

2

� �3 þ O
1

n4

� �

:
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Since a ¼
ffiffiffiffiffiffiffiffi

λ2

1þβλ

4

q

or λ2 � βa4λ� a4 ¼ 0, it has

λ�2n ¼
βa4

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4

β2a4

s !

:

Using the Taylor expansion, we obtain the expressions of λþ2n and λ�2n given by (37).

Moreover, by using λ ¼ ρ2, we have the asymptotic expressions of ρþ2n and ρ�2n

ρþ2n ¼ i
ffiffiffi

β
p

nπ � π
2

� �2 þ 2
ffiffi

i
p

α2 þ O n�1ð Þ,

ρ�2n ¼
i
ffiffiffi

β
p þ i

2β
5
2 nπ � π

2

� �4 þO n�8
� �

:

8

>

>

<

>

>

:

(50)

Similarly, in S3, there exists γ3 >0 such that

∣ea∣ ¼ O e�γ3

ffiffiffiffi

∣ρ∣
p� �

, ∣eia∣ ¼ O e�γ3

ffiffiffiffi

∣ρ∣
p� �

, ∣e
ffi

i
p

ρ∣ ¼ O e�γ3∣ρ∣
� �

:

It is easy to check that there is no null point of det ~X
� �

, namely, there is no point
spectrum in S3:

According to the conclusion of Theorem 1.2, it is obvious that � 1
β
is an accumula-

tion point of the point spectrum of the operator A. We thus have the following
corollary.

Corollary

σc Að Þ ¼ � 1

β
: (51)

We next analyze the asymptotic expression of eigenfunctions of the operator A:

Theorem 1.3: Let σp Að Þ ¼ λ1n, n∈f g∪ λþ2n, λ
�
2n, n∈

� �

be the point spectrum of

A. Let λ1n ¼ ρ21n, λ
þ
2n ¼ ρþ2n

� �2
and λ�2n ¼ ρ�2n

� �2
with ρ1n, ρ

þ
2n and ρ�2n being given by

Eqs. (45) and (49), respectively. Then, there are three families of approximated
normalized eigenfunctions of A

1.One family z1n ¼ u1n, λu1n, v1nð Þ, n∈f g, where z1n is the eigenfunction of A
corresponding to the eigenvalue λ1n, has the following asymptotic expression:

∂
2
xu1n, λu1n, v1n

� �

¼ 0, 0, sin an 1� xð Þ½ �ð Þ þ Ox n
�3
4

� �

, (52)

where

an ¼ nπ þ �1ð Þ18α2
ffiffiffi

β4
p ffiffiffiffiffiffiffiffi

2nπ
p þO n�1

� �

(53)

and Ox n
�3
4

� �

means that Ox n
�3
4

� �	

	

	

	

	

	

L2 0,1ð Þ
¼ O n

�3
4

� �

:
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2.The second family zþ2n ¼ uþ2n, λu
þ
2n, v

þ
2n

� �

, n∈
� �

, where zþ2n is the eigenfunction

of A corresponding to the eigenvalue λþ2n, has the following asymptotic
expression:

∂
2
xu

þ
2n, λu

þ
2n, v

þ
2n

� �

¼ 0, sin nπ � π

2

� �

1� xð Þ
h i

, 0
� �

þ Ox n�1
� �

: (54)

3.The third family z�2n ¼ u�2n, λu
�
2n, v

�
2n

� �

, n∈
� �

, where z�2n is the eigenfunction of
A corresponding to the eigenvalue λ�2n, has the following asymptotic expression:

∂
2
xu

�
2n, λu

�
2n, v

�
2n

� �

¼ sin nπ � π

2

� �

1� xð Þ
h i

, 0, 0
� �

þ O n�1
� �

: (55)

The proof is limited to the first result declared in Theorem 1.3.
Proof:We look for z1n associated with λ1n. From the expression ρ1n given by (45)

and a1n given by (46) we have

e�a1ny ¼ e
�1ð Þ

�11
8
ffiffiffi

πx
p

y
ffiffi

β4
p þO n�1ð Þ

, eia1ny ¼ e
�1ð Þ

�7
8
ffiffiffi

πx
p

y
ffiffi

β4
p þO n�1ð Þ

,

e�
ffi

i
p

ρ1n 1�xð Þ ¼ e�inπ 1�xð ÞþO n�1ð Þ,

8

<

:

(56)

and the following estimations:

e�a1nyk k ¼ O n
�1
4

� �

, eia1ny
	

	

	

	 ¼ O n
�1
4

� �

;

e�
ffi

i
p

ρ1n 1�xð Þ
	

	

	

	

	

	 ¼ O 1ð Þ,

where y ¼ x or 2� x∈ 0, 1½ �: According to the matrix ~X given by (36), for ρ with
(45) and a1n given by (46), we obtain

u1 ¼
1

e2ae
ffi

i
p

ρ

1þ e2a iþ ie2ia 0

1� e2að Þαρ2 1� e2ia
� �

αρ2 �1þ e2
ffi

i
p

ρ

eax � ea 2�xð Þ eiax � eia 2�xð Þ 0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ e�
ffi

i
p

ρ � e
ffi

i
p
ρ

ρ2

1þ e�2a iþ ie2ia

e�a 2�xð Þ � eax eiax � eia 2�xð Þ

�

�

�

�

�

�

�

�

�

�

:

By using estimates (39), we can write

u1 ¼
e�
ffi

i
p

ρ � e
ffi

i
p
ρ

ρ2

1 i

e�a 2�xð Þ � eax eiax � eia 2�xð Þ

�

�

�

�

�

�

�

�

�

�

þO e�γ1

ffiffiffiffi

∣ρ∣
p� �

¼ 1

ρ2
e�
ffi

i
p

ρ � e
ffi

i
p

ρ
� �

eiax � eia 2�xð Þ
� �

� i e�a 2�xð Þ � e�ax
� �h i

þ O e�γ1

ffiffiffiffi

∣ρ∣
p� �

:

By the expression ρ1n given by (45), we can obtain

e�
ffi

i
p

ρ � e
ffi

i
p

ρ ¼ �2i sin nπ þO n
�1
2

� �

¼ O n
�1
2

� �

:
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This together with estimates 77 gives, after a direct computation, that

∂
2
xu1 ¼

a2

ρ2
e�
ffi

i
p

ρ � e
ffi

i
p

ρ
� �

eia 2�xð Þ � eiax
� �

� i e�a 2�xð Þ � e�ax
� �h i

þO e�γ1
ffiffi

n
p� �

¼ Ox n
�7
4

� �

,

and

λu1 ¼ e�
ffi

i
p

ρ � e
ffi

i
p

ρ
� �

eiax � eia 2�xð Þ
� �

� i e�a 2�xð Þ � e�ax
� �h i

þO e�γ1
ffiffi

n
p� �

¼ Ox n
�3
4

� �

:

Here,

Ox n
�3
4

� �

means that Ox n
�3
4

� �	

	

	

	

	

	

L2 0,1ð Þ
¼ O n

�3
4

� �

because∥e�ax∥ ¼ ∥eiax∥ ¼ O n
�1
4

� �

:

Similarly, by using estimates (39) and (55), we have

v1 ¼
1

e2ae
ffi

i
p

ρρ2

1þ e2a iþ ie2ia 0

1� e2að Þαρ2 1� e2ia
� �

αρ2 �1þ e2
ffi

i
p

ρ

0 0 e
ffi

i
p

ρx � e
ffi

i
p

ρ 2�xð Þ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ �2α 1þ ið Þ sin an 1� xð Þ½ � þ O e�γ1
ffiffi

n
p� �

,

where an is given by (52). Let

z1n ¼
�1

2α 1þ ið Þ z1,

so, we obtain

∂
2
xu1n, λu1n, v1n

� �

¼ 0, 0, sin an 1� xð Þ½ �ð Þ þO n
�3
4

� �

:

The second and third results of Theorem 3 are obtained by the same procedure as
before.

Corollary

σr 6¼ ∅: (57)

4. Riesz basis property

Lemma.(see [23])
Let λn ∈, n ¼ 1, 2, ⋯, be a sequence that satisfies supn∣ℑ λnð Þ∣ ≤M, where M is a

positive constant. Then the sine system sin λnx, n≥ 1f g is a Riesz basis for L2 0, 1ð Þ
provided that the sequence λn satisfies one of the following conditions:

supn∣ℜ λnð Þ � nπ∣<
π

4
;

supn∣ℜ λnð Þ � nπ þ π

2
∣<

π

4
:
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Lemma.(see [24])
Let A be a densely defined closed linear operator in a Hilbert space H

with isolated eigenvalues λif g∞i¼1: Let ϕif gi¼∞i¼1 be a Riesz basis for H. Suppose
that there is an integer N ≥ 1 and a sequence of generalized eigenvectors ψ if g∞i¼N of A
such that

X

∞

i¼N

ψ i � ϕik k2 <∞:

Then, there exists M a number of generalized eigenvectors ψ i0

� �M

i¼1
of A

such that

ψ i0

� �M

i¼1
∪ ψ if g∞i¼Mþ1

forms a Riesz basis for H.
Theorem 1.4: The generalized eigenfunctions of A forms a Riesz basis for H. As a

result, all eigenvalues with large modules must be algebraically simple and, hence, the
spectrum-determined growth condition holds for

eAt
: Φ Að Þ ¼ S Að Þ

where

Φ Að Þ ¼ inf Φjthere exists anM such that ∥eAt∥≤MeΦt
� �

,

and

S Að Þ ¼ sup ℜ λð Þjλ∈ σ Að Þf g:

Proof: By the bounded invertible mapping:

 u, w, vð Þ ¼ ∂
2
xu, w, v

� �

,

the space H is mapped onto

L2 0, 1ð Þ � L2 0, 1ð Þ � L2 0, 1ð Þ:

The value of an given by (52) satisfies

sup
n
∣ℑ anð Þ∣ ¼ sup

sin π
8 α

2

ffiffiffiffiffiffiffiffi

2nπ
p

ffiffiffi

β4
p

�

�

�

�

�

�

�

�

is bounded and its real part satisfies

sup
n
ℜ anð Þ � nπj j ¼ sup

n

cos π
8 α

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nπ
ffiffiffi

β4
pp

�

�

�

�

�

�

�

�

�

�

≤
π

4
:

Then, it follows that the sequence

sin an 1� xð Þ½ �, n ¼ 1, 2, ⋯f g,
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forms a Riesz basis for L2 0, 1ð Þ. Similarly, the sequences

sin nπ � π

2

� �

1� xð Þ
h i

, n ¼ 1, 2, ⋯
n o

,

form a Riesz basis for L2 0, 1ð Þ:
Let

Ψ1n ¼ sin an 1� xð Þ½ �, 0, 0ð Þ, Ψþ
2n ¼ 0, sin nπ � π

2

� �

1� xð Þ
h i

, 0
� �

and

Ψ
�
2n ¼ 0, 0, sin nπ � π

2

� �

1� xð Þ
h i� �

:

Then, the sequences

Ψ1nf gn≥ 1 ∪ Ψ
þ
2n

� �

n≥ 1
∪ Ψ

�
2n

� �

n≥ 1

forms a Riesz basis for the following space

L2 0, 1ð Þ � L2 0, 1ð Þ � L2 0, 1ð Þ:

Therefore, by the expression of z1n, z
þ
2n, and z�2n given by (51), (53), and (54),

respectively, this implies that there exists N >0 such that

X

∞

n≥N

z1n �Ψ1nk k2 þ zþ2n � Ψ
þ
2n

	

	

	

	

2 þ z�2n �Ψ
�
2n

	

	

	

	

2
h i

≤
X

∞

n≥N

O n�2
� �

<∞:

This shows that there is a sequence of generalized eigenfunctions of A, which
forms a Riesz basis for H, and all eigenvalues with large modulus must be
algebraically simple.

5. Exponential stability

Theorem 1.5: The C0�semigroup S tð Þ generated by the operator A is exponentially
stable, that is,

eAt
	

	

	

	≤Meωt,

where M and ω are positive constants6.
Proof: By the asymptotic distribution of eigenvalues given by Theorem 1.2 and the

continuous spectrum given by Eq. (50), in addition to the empty residual spectrum set
given by Eq. (56), we conclude that S Að Þ ¼ � 1

β
: The proof is completed by the

spectrum-determined growth condition, which is similar to [24–26].

6 By recalling the eigenvalues of A given by 44, we deduce that ω≥ � 1
β
:
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6. Conclusion

The main results of this work are similar to those mentioned in [27], the results are
summarized as follows:

1.The system operator of the closed-loop system is not of compact resolvent
and the spectrum consists of three branches.

2.By means of asymptotic analysis, the asymptotic expressions of eigenfunctions
are obtained.

3.By the comparison method in the Riesz basis approach, exponential stability
is obtained.
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