
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

174,000 190M

TOP 1%154

6,400

Chapter

Pull-Type Security Patch
Management in Intrusion Tolerant
Systems: Modeling and Analysis
Junjun Zheng, Hiroyuki Okamura and Tadashi Dohi

Abstract

In this chapter, we introduce a stochastic framework to evaluate the system
availability of an intrusion tolerant system (ITS), where the system undergoes patch
management with a periodic vulnerability checking strategy, i.e., pull-type patch
management. In particular, a composite stochastic reward net (SRN) is developed to
capture the overall system behaviors, including vulnerability discovery, intrusion
tolerance, and reactive maintenance operations. Furthermore, two kinds of availabil-
ity criteria, the interval availability and the steady-state availability of the system, are
formulated by applying the phase-type (PH) approximation to solve the Markov
regenerative process (MRGP) model derived from the composite SRN. Numerical
experiments are conducted to investigate the effects of the vulnerability checking
interval on the system availability.

Keywords: intrusion tolerance system, security patch management, vulnerability
checking, interval availability, steady-state availability, stochastic reward net, Markov
regenerative process, phase expansion

1. Introduction

Computer systems face an increased number of security threats, which exploit the
system’s potential vulnerability to breach computer security, eventually causing pos-
sible damages such as information leakage and economic losses. Software testing is
important for ensuring a program’s quality, but it is acceptable that perfect software is
impossible to achieve. For example, software vulnerabilities are discovered and
disclosed continuously, even though developers carefully execute software testing in
the development phase [1]. Online vulnerability databases such as MITRE Corpora-
tion’s Common Vulnerabilities and Exposures (CVE) list1 and Open Source Vulnera-
bility Database (OSVDB)2 have reported a vast number of vulnerabilities for recent
years. According to CVE, 69,417 vulnerabilities were discovered in web applications
over the years 1999–2015 [2]. Due to the existence of vulnerabilities, the risk to cyber

1

http://www.cve.mitre.org
2

http://www.osvdb.org

1

security becomes more significant, and the tricks of attacks also become cleverer and
more sophisticated [3]. That means how to guarantee computer security against
malicious attacks is a challenging task.

Computer security generally has three attributes; that is, confidentiality, integrity,
and availability (CIA) [4]. Two typical techniques, i.e., intrusion detection [5] and
intrusion tolerance [6], have been developed and well studied to protect the CIA.
Intrusion detection is traditionally used to prevent intrusion as a proactive barrier by
monitoring the system behavior. For example, misuse detection is to find the detec-
tion signature and anomaly detection is to predict the system’s anomaly by comparing
normal profiles. Nevertheless, unfortunately, intrusion detection is not still efficient
enough to prevent recent and sophisticated malicious attacks. On the other hand,
intrusion tolerance is practical to keep the correct services even under attack by
masking intrusion based on fault-tolerant techniques for software faults. Some
well-known intrusion tolerant systems (ITSs) are, for instance, the SITAR (scalable
intrusion tolerant architecture) [7], a concrete ITS architecture using COTS
(commercial-off-the-shelf) distributed servers, the BFT-WS [8], a Byzantine fault-
tolerant framework for web services providers, and the virtual machine (VM) based
ITS, a multistage ITS in virtualized computing environments [9–11].

However, there is no doubt that the most efficient way to ensure computer secu-
rity is to apply a patch to fix the vulnerable system before a malicious attack occurs.
The problem now in patch management from the user’s perspective is when to apply
the patch because the system may stop while the patch is applied. Even for ITSs, it is
essential to decide on an appropriate patch management strategy. Some literature
studies have considered such a security patch management from the user’s perspec-
tive. For example, Kansal et al. [12] presented a generalized framework to identify the
optimal patch applying strategy and its minimum cost when the level of system
reliability is retained. Uemura et al. [13] focused on typical DoS (denial-of-service)
attacks for SITAR and formulated the optimal security patch management policy via
semi-Markov models in terms of system availability. In [13], a push-type patch man-
agement was considered; that is, the vulnerability information was pushed to a client
whenever a new vulnerability was discovered. In the push-type patch management, a
patch can be applied just after release. But in fact, for open software projects, such as
Apache httpd server, the users need to check the vulnerability information by them-
selves; that is, pull-type patch management. Therefore, this chapter considers the
security patch management of SITAR architecture and discusses the pull-type patch
management strategies.

In this chapter, based on two availability measures, we reveal the effect of the
number of checking on the system availabilities. More specifically, we develop a
composite stochastic reward net (SRN) model [14] with the following four
submodules: a vulnerability model to describe the vulnerability discovery process, an
intrusion tolerance model to capture the system behaviors under reactive defense
strategies after the occurrence of a security failure, a clock model to control the
periodic checking interval, and a maintenance model to adopt the preventive and
corrective actions for security threats. Also, the phase-type (PH) expansion approach
is applied to analyze the Markov regenerative process (MRGP) derived from the SRN
to evaluate two kinds of system availabilities. The stationary analysis of MRGP is
generally achieved by employing an embedded Markov chain (EMC) approach based
on Markov renewal theory [15–18]. Despite this, it is relatively difficult for transient
cases. Besides, for the situation where the state in MRGP has multiple competitive
transitions timed with generally distributed firing time (GEN transition), it is difficult

2

Maintenance Management - Current Challenges, New Developments, and Future Directions

to analyze the MRGP through Markov renewal equations since it is difficult to use the
discretization and supplementary variable method [19]. Therefore, in this chapter,
we seek to bridge this gap by developing the solution with PH expansion [19, 20],
which is to replace general distributions in MRGP with approximate PH distributions
and reduce the original MRGP to an approximate continuous-time Markov chain
(CTMC). The accuracy of PH approximation has been validated in [20]. In
particular, this chapter utilizes PH expansion of MRGP based on the Kronecker
representation.

The remaining part of this chapter is organized as follows. In Section 2, we intro-
duce an overview of an ITS and describe its composite SRN. Section 3 presents the
performance analysis through MRGP analysis and PH-expansion CTMC analysis. In
particular, the system’s interval availability and steady-state availability under patch
management are formulated. In Section 4, we present evaluation results. The
conclusion and future work are given in Section 5.

2. Intrusion-tolerant system

2.1 System architecture

Consider an intrusion-tolerant architecture as in Figure 1, which is the SITAR
architecture [7]. In this figure, the part within the denoted box is regarded as an
intrusion tolerant architecture that enables us to build intrusion-tolerant servers out of
the existing intrusion vulnerable servers S1, S2, … , Si. The architecture consists of five
critical components: proxy server, acceptance monitor, ballot monitor, adaptive

Figure 1.
Intrusion-tolerant architecture.

3

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

reconfiguration module, and audit control module. Pi, Bi, and Ai in the functional
blocks are the logical functions to be executed to satisfy a given service request.

The proxy servers act as public access points for the services provided. When a
request from remote client arrives at one of the proxy servers depending on the
service needs, the proxy servers forward the request to one or more COTS servers
based on the current intrusion-tolerant strategy. After receiving the COTS servers’
responses, the acceptance monitors apply certain validity check to these responses and
then forward them along with a check result indication to the ballot monitors. Besides,
the acceptance monitors detect the signs of compromised servers and produce intru-
sion triggers for the adaptive reconfiguration module. The ballot monitors make a
final response by either a simple majority voting or Byzantine agreement process and
then forward the final response to the proxy servers to be delivered to the remote
client.

The audit control module monitors the behaviors of all the other components in
the system, by verifying their audit logs. When intrusion is detected, the
corresponding information will be sent to the adaptive reconfiguration module. The
adaptive reconfiguration module receives intrusion trigger information from all other
modules, evaluates the threats, the tolerance objectives, and the cost/performance
impact, and finally generates new configurations for the system.

2.2 System behavior

2.2.1 Intrusion tolerance scheme

The system becomes vulnerable once the vulnerability in servers S1, S2, … , Si is
disclosed. In this state, the system may encounter security threats that exploit discov-
ered vulnerabilities. When a malicious attack arrives, the system moves to the active
attack state and attempts to detect the intrusion threat. If the threat is detected
successfully, the system begins to diagnose the detected threat and then tries to mask
the compromised part; otherwise, security failure occurs and then a recovery process,
namely corrective maintenance, is conducted. The system becomes normal again after
the recovery ends.

For the case where the intrusion threat is detected successfully and the masking of
compromised parts succeeds, the system can continually provide services to users
after a minor fix in the background. Once the masking fails, several corrective
inspections are tried in parallel with services. If a fatal system error is inspected, the
system fails and becomes unavailable. In such a case, a recovery operation is executed
to fix a fatal system error. The system goes back to the normal again after the
completion of the recovery operation. If a fatal system error is not found, the system
can keep servicing with a degraded performance if the attack’s damage is not so large,
or move to a fail-secure state otherwise, in which the system stops servicing to users.
In either case, the system becomes normal after removing the system secure errors.

On the other hand, the system applies security patches if preventive maintenance
(i.e., security patch application) is triggered before the attack. After completing the
preventive maintenance, the state becomes normal.

2.2.2 Periodic vulnerability checking strategy

Maintenance strategies aim to prevent malicious attacks by executing the security
patch application. This chapter considers pull-type patch management with a periodic

4

Maintenance Management - Current Challenges, New Developments, and Future Directions

vulnerability checking strategy. Figure 2 illustrates the periodic checking points for
discovered vulnerabilities. The length of one checking interval is given by t0, and the
time points t0, 2t0, … , nt0 are checking points for deciding whether to implement
patches or not. At these checking points, if discovered vulnerabilities exist, the system
stops providing services and executes a patch application. Otherwise, the system
continues to provide services. The pull-type patch management with a periodic
vulnerability checking strategy is described as follows.

Apply the security patch if discovered vulnerabilities exist in the system at the
checking points. The length of the checking interval is denoted by t0 >0ð Þ.

2.3 Stochastic reward net

The SRN is a highly representative model, consisting of: place P, represented by
circle; transition T, represented by box; directed arcs, connecting places and transi-
tions; and token(s). A transition is enabled if all of its input places have at least one
token. When a transition is enabled, it may be fired to remove one token from each
input place and create one token at each output place. Places may be marked by an
integer number of tokens. The overall state of a system is represented by a vector
consisting of the markings on each place. In SPN, there may exist the following types
of transitions; (i) IMM transition (immediate, i.e., they fire in zero time); (ii) EXP
transition (timed with exponentially distributed firing time); and (iii) GEN transition
(timed with generally distributed firing time). In general, the IMM transition, EXP
transition, and GEN transition are often expressed by a thin black bar, a white box,
and a thick black bar, respectively. When more than two transitions are enabled
simultaneously, guard functions are added to these transitions to control the firing
sequence. A transition with a guard function occurs when the value of the guard
function is evaluated to be true. The SRN can capture common characteristics of
computer systems such as concurrency, synchronization, and sequencing, so it is
widely used for stochastic modeling.

In this chapter, we present an SRN with the following submodules for the
aforementioned ITS:

1.Vulnerability model, which depicts the vulnerability discovery process.

2. Intrusion tolerance model, which determines the system operation after a
security threat occurs.

3.Clock model, which controls the checking interval.

4.Maintenance model, which describes the preventive and corrective actions for
security threats.

Figure 3 depicts the composite SRN of the ITS with the pull-type patch manage-
ment described in 2.2.2.

Figure 2.
Periodic vulnerability checking points.

5

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

2.3.1 Vulnerability model

Figure 3a depicts an SRN of the vulnerability discovery process. As in Figure 3a, the
model has two place (Pvulfree and Pvulnerable), one IMM transition (tvulrm) and one EXP

transition (Tvuldisc). A token in Pvulfree denotes that the system is vulnerability-free, i.e., no

vulnerability has been discovered. When Tvuldisc fires, one token is removed from Pvulfree

Figure 3.
Composite SRN for the ITS (a) Vulnerability model, (b) intrusion tolerance model, (c) clock model, and (d)
maintenance model.

6

Maintenance Management - Current Challenges, New Developments, and Future Directions

and put in Pvulnerable, which means that the vulnerability is discovered, and the system
becomes vulnerable. Once the value of the guard function of tvulrm is true (i.e., the system
is under patch application), the system returns the vulnerability-free state immediately.

2.3.2 Intrusion tolerance model

Figure 3b presents an SRN of the intrusion tolerance model, which determines the
system operation after a security threat occurs. In this figure, GEN transitions with
the generally distributed firing times (represented by thick black bars) are used. Each
place and corresponding transition represent the status of progress of an intrusion
tolerant process and are given as Table 1.

Node Description

Pnorm The system is in a normal state.

Patk Threat has occurred in the system. The system attempts to detect the threat.

Pundet Threat cannot be detected. The security failure occurs due to the attack and the system is forced to

undergo recovery processes.

Pdet Threat has been detected. The system begins to diagnosis the detected threat.

Pmask The compromised part is being masked. Concretely, the system provides services to users, though

minor errors causing threat are being fixed in the background.

Ptriage Threat triage state. Several corrective inspections are tried in parallel with services.

Pfail The system fails and starts a recovery operation to fix a fatal system error.

Peval The damage of attack is being evaluated.

Pfsec The system becomes fail-secure. The system stops servicing to users and applies recovery operation.

Pgdeg The system keeps servicing while the quality of service is degraded.

Pcomp The recovery operation is completed.

Tatk The system is attacked by adversary.

Tundet The threat is undetected.

Tdet The threat is detected.

tmask The compromised part is masked.

ttriage Threat triage begins.

Tfail The system fails.

Teval The damage of attack is evaluated.

tfsec The system becomes fail-secure.

tgdeg The system degrades.

Trc1 The system is in recovery process regarding detection failure.

Trc2 The system is in recovery process regarding masking.

Trc3 The system is in recovery process regarding system failure.

Trc4 The system is in recovery process regarding fail-secure.

Trc5 The system is in recovery process regarding graceful degradation.

Table 1.
Places and transitions in SPN for intrusion tolerance model (see Figure 3b).

7

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

2.3.3 Clock and maintenance models

In this chapter, the security patch application is regarded as the maintenance
action. Figure 3d and c describe the maintenance model and its clock model. As in
Figure 3c, the clock model controls the checking interval; that is, if a checking point is
reached, the transition Tmtinterval, corresponding to the checking interval t0, fires, then
the token in Pmtclock is removed, and a token is put into Pmtsignal. Upon confirmation

that the maintenance model has received the signal of reaching a checking point
(i.e., # Pmtinspec

� �

¼ 1), the clock is reset with transition tmtreset immediately. On the

other hand, from Figure 3d, we see that the maintenance model contains four places,
one GEN transition, five IMM transitions, and one token in Pmtwait, indicating that the
system is waiting for a maintenance operation. Besides, a token in Pmtinspec represents
that the system is checking whether to execute a patch application; once there exists
discovered vulnerabilities at the checking point (i.e., the guard function gmttring1 is

true), the system performs patch application; otherwise, the system continues to wait
for the next checking point. A token in Pmtexec means that the system is carrying out
the maintenance, and the time spent is given by transition Tmttime. A token in Pmtcomp

says that a maintenance is completed, and then the system goes back to the normal
state with transition tnorm in Figure 3b and becomes ready for the next maintenance
chance through transition tmtready. Note that transition tmttrig2 indicates the mainte-

nance triggered due to a security threat.
In these above SRNs, the guard functions are shown in Table 2, which determine

the enabled timing and are given by the interrelationships between the transition and
the corresponding places. A marking of composite SRN is given by a vector that
represents the number of tokens for all the places and provides the state of ITS.
Actually, the composite SRN can be described by the underlying stochastic process,
called MRGP [21], and analyzed by using MRGP analysis based on Markov renewal
theory [15, 16]. The MRGP is one of the favored techniques for modeling system
behavior with non-Markovian processes, can adequately represent more complex

Guard function

gvuldisc # Pmtwaitð Þ ¼ 1

gvulrm # Pmtexecð Þ ¼ 1

gatk # Pvulnerableð Þ ¼ 1

gnorm # Pmtcomp

� �

¼ 1

gmtreset # Pmtinspec

� �

¼ 1 # Pmtexecð Þ ¼ 1

gmtinter # Pmtsignal

� �

¼ 1

gnotrig (# Pnormð Þ ¼ 0 # Pvulfree

� �

¼ 1) && # Pmtclockð Þ ¼ 1

gmttrig1 # Pnormð Þ ¼ 1 && # Pvulnerableð Þ ¼ 1 && # Pmtclockð Þ ¼ 1

gmttrig2 # Pcomp

� �

¼ 1

gmtready # Pnormð Þ ¼ 1

Table 2.
Enabling functions in the composite SRN.

8

Maintenance Management - Current Challenges, New Developments, and Future Directions

software intrusion tolerant process and maintenance actions, and has been success-
fully applied in several modeling analyses [16–19].

3. Performance analysis

The performance criteria of interest in this chapter are the interval availability and
the steady-state availability of the system, which require the state probabilities of
MRGP derived according to the analysis of composite SRN described in 2.3 by using
JSPetriNet software package3. The MRGP model of ITS is depicted in Figure 4. In this
figure, the solid lines denote the GEN transitions, whereas the dashed ones denote

EXP transitions. In particular, all states except SG
mtint have two competitive GEN

transitions. In such a case, it is difficult to obtain the state probabilities of MRGP
through Markov renewal equations because it is hard to use the discretization and
supplementary variable method [19]. This chapter, therefore, considers the solution
with phase-type (PH) expansion for analyzing the MRGP model of the ITS. Also,
in this chapter, we utilize the PH expansion of MRGP based on the Kronecker
representation.

3.1 PH approximation

The phase expansion, alternatively PH approximation, is the technique by using
PH distribution, which is defined as the probability distribution of the absorbing time
in a CTMC with absorbing states. The PH distribution is practical, since it can
approximate any probability distribution with high precision. To take benefit from
this property, an approximate CTMC can be obtained by replacing probability
distribution with PH distributions. Without loss of generality, the infinitesimal
generator Q of CTMC is assumed to be partitioned as follows:

Q ¼
T ξ

0 0

� �

, (1)

Figure 4.
State transition diagram of ITS with periodic vulnerability checking strategy.

3

https://github.com/okamumu/JSPetriNet

9

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

where T and ξ correspond to transition rates among transient states and the exit
rates from transient states to the absorbing state, respectively. Let α be an initial
probability vector over the transient states. Then, the cumulative distribution func-
tion (c.d.f.) of a PH-distributed variable with representation α, Tð Þ and its associated
probability density function (p.d.f.) are represented by

FPH tð Þ ¼ 1� α exp Ttð Þ1, f PH tð Þ ¼ α exp Ttð Þξ, (2)

where 1 is a column vector whose elements are all 1. Note that the transient states
are called phases, and the exit rate vector is given by ξ ¼ �T1, according to the
property of CTMC. In particular, the accuracy of approximation depends on the
number of phases.

In the MRGP shown as in Figure 4, the state space is divided into nine classes
(more details on MRGP state classification is referred to [18]);

• S
G
mtint, consisting of the states where only GEN transition, Tmtinterval is enabled.

• S
G
rc1, consisting of the states where both GEN transitions, Trc1 and Tmtinterval, are

enabled.

• S
G
rc2, consisting of the states where both GEN transitions, Trc2 and Tmtinterval, are

enabled.

• S
G
rc3, consisting of the states where both GEN transitions, Trc3 and Tmtinterval, are

enabled.

• S
G
rc4, consisting of the states where both GEN transitions, Trc4 and Tmtinterval, are

enabled.

• S
G
rc5, consisting of the states where both GEN transitions, Trc5 and Tmtinterval, are

enabled.

• S
G
eval, consisting of the states where both GEN transitions, Teval and Tmtinterval, are

enabled.

• S
G
mttime, consisting of the states where both GEN transitions, Tmttime and Tmtinterval,

are enabled.

• S
G
vuldisc, consisting of the states where both GEN transitions, Tvuldisc and Tmtinterval,

are enabled.

The general distributions of GEN transitions, Tx, x∈ mtintf , rc1, rc2, rc3, rc4, rc5,
eval,mttime, vuldiscg are given by Fx tð Þ. In particular, we denote t0 as the length of one
checking interval, following the constant distribution:

Fmtint tð Þ ¼
0 t< t0,

1 t≥ t0:

�

(3)

That means, the checking interval t0 is deterministic.

10

Maintenance Management - Current Challenges, New Developments, and Future Directions

In this chapter, the general distributions are approximated by the following PH
distributions:

Frc1 tð Þ≈ 1� α1 exp T1tð Þ11, f rc1 tð Þ≈ α1 exp T1tð Þξ1,

Frc2 tð Þ≈ 1� α2 exp T2tð Þ12, f rc2 tð Þ≈ α2 exp T2tð Þξ2,

Frc3 tð Þ≈ 1� α3 exp T3tð Þ13, f rc3 tð Þ≈ α3 exp T3tð Þξ3,

Frc4 tð Þ≈ 1� α4 exp T4tð Þ14, f rc4 tð Þ≈ α4 exp T4tð Þξ4,

Frc5 tð Þ≈ 1� α5 exp T5tð Þ15, f rc5 tð Þ≈ α5 exp T5tð Þξ5,

Feval tð Þ≈ 1� αe exp Tetð Þ1e, f eval tð Þ≈ αe exp Tetð Þξe,

Fmttime tð Þ≈ 1� αm exp Tmtð Þ1m, fmttime tð Þ≈ αm exp Tmtð Þξm,

Fvuldisc tð Þ≈ 1� αv exp Tvtð Þ1v, f vuldisc tð Þ≈ αv exp Tvtð Þξv,

(4)

where 11, 12, 13, 14, 15, 1e, 1t, and 1v are the 1’s column vectors, and

ξ1 ¼ �T111, ξ2 ¼ �T212, ξ3 ¼ �T313,

ξ4 ¼ �T414, ξ5 ¼ �T515, ξe ¼ �Te1e,

ξm ¼ �Tm1m, ξv ¼ �Tv1v:

(5)

Let Qx,x, x∈ f ið Þ mtint, 1ð Þ rc1, 2ð Þ rc2, 3ð Þ rc3, 4ð Þ rc4, 5ð Þ rc5, eð Þ eval, mð Þ mttime,

vð Þ vuldiscg be the infinitesimal generator matrix of non-regenerative transitions of SG
x .

The CTMC transition rate matrix from S
G
x to SG

y is denoted byQx,y. On the other hand,

Ak
x,y denote the regenerative transitions from S

G
x to SG

y triggered by transition Tk with

probability Fk tð Þ, k∈ mtintf , rc1, rc2, rc3, rc4, rc5, eval, mttime, vuldiscg.
Then by taking account of one checking interval t0, the MRGP process during this

interval can be approximated by the CTMC with the following infinitesimal generator
as in Eq. (6), in which ⊗ and ⊕ are Kronecker product and sum. Apparently, the
transition probability triggered by transition Tmtinterval in Figure 3c with probability
Fmtint tð Þ is given by Eq. (7). In this equation, I is an identity matrix.

Q ¼

Q i,i Q i,1 ⊗ α1 Q i,2 ⊗α2 Q i,e ⊗αe

Q 1,1⊕T1 Arc1
1,m⊗ ξ1αmð Þ

Q 2,2⊕T2 Arc2
2,m ⊗ ξ2αmð Þ

Q 3,3⊕T3 Arc3
3,m ⊗ ξ3αmð Þ

Q4,4⊕T4 Arc4
4,m⊗ ξ4αmð Þ

Q 5,5⊕T5 Arc5
5,m⊗ ξ5αmð Þ

Q e,3 ⊗ 1eα3ð Þ Aeval
e,4 ⊗ ξeα4ð Þ Aeval

e,5 ⊗ ξeα5ð Þ Q e,e⊕Te

Avuldisc
v,i ⊗ ξv Q v,v⊕Tv

Amttime
m,v ⊗ ξmαvð Þ Qm,m⊕Tm

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(6)

P ¼

Amtint
i,i Amtint

i,m ⊗αm

Amtint
1,1 ⊗ I

Amtint
2,2 ⊗ I

Amtint
3,3 ⊗ I

Amtint
4,4 ⊗ I

Amtint
5,5 ⊗ I

Amtint
e,e ⊗ I

Amtint
v,v ⊗ I

Amtint
m,m ⊗ I

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (7)

11

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

We next consider the checking point when the transition Tmtinterval fires with the
probability Fmtint tð Þ, then the underlying process is actually an EMC with only one
subspace that consists of the states where only GEN transition Tmtinterval is enabled.
Thus, the transition matrix on this regeneration point regarding Fmtint tð Þ is given by

PEMC ¼ exp Q t0ð ÞP: (8)

3.2 Availability measures

It is well known that availability is an important metric commonly used to assess
the performance of repairable systems by considering both the reliability and main-
tainability properties of computer systems. There exist many classifications and defi-
nitions of availability, and they are used for different system environments properly.
For example, when the system has a long lifetime, the steady-state availability [22] is
appropriate to represent the system performance. On the other hand, when one
wishes to ensure the system performance for a specific time period, the interval
availability [23, 24] may be chosen to present the proportion of time during a mission
or time period that the system is available for use. In this chapter, we focus on two
availability criteria: interval availability and steady-state availability of the system.
The interval availability is defined as the expected fraction of a given interval of time
that the system is operational and is appropriate when one wishes to ensure the system
availability for a specific time period. On the other hand, the steady-state availability
is the limiting availability and is appropriate when the targeted system is continuously
operated for a long time.

3.2.1 Interval availability

Let π0 denote the initial probability vector of the PH-expanded CTMC. Without
loss of generality, it is assumed that the system starts at time t ¼ 0. For the time
interval 0, nt0ð �, the interval availability is given by

A
nð Þ
in ¼

1

nt0
ðπ0 þ π0P

EMC þ π0P
EMC2þ

⋯þ π0P
EMC n�1ð ÞÞ

Ð t0
0 exp Qsð Þdsr:

(9)

In the above equation, r is the reward vector of the PH-expanded CTMC, and
defined as

r ¼

rmtint

rrc1 ⊗ 11

rrc2 ⊗ 12

rrc3 ⊗ 13

rrc4 ⊗ 14

rrc5 ⊗ 15

reval ⊗ 1e

rvuldisc ⊗ 1v

rmttime ⊗ 1m

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (10)

12

Maintenance Management - Current Challenges, New Developments, and Future Directions

where ri is the reward vector of system states belonging to corresponding subspace.
For example, the interval availability within the first checking interval becomes

A
1ð Þ
in ¼

1

t0
π0

ðt0

0
exp Qsð Þdsr: (11)

3.2.2 Steady-state availability

Using Eq. (8), the steady-state probability distribution πEMC ¼ πEMC
mtint

�

, πEMC
rc1 , πEMC

rc2 ,

πEMC
rc3 , πEMC

rc4 , πEMC
rc5 , πEMC

eval , π
EMC
vuldisc, π

EMC
mttimeÞ can be computed by solving the following

linear equation:

πEMC ¼ πEMCPEMC, πEMC1 ¼ 1, (12)

where 1 is a column vector whose elements are 1.
Finally, we obtain the steady-state availability of the system:

Ass ¼ πEMCr: (13)

4. Numerical experiments

This section evaluates the interval availability and steady-state availability of the
system, where the system undergoes the pull-type patch management with a periodic
vulnerability checking strategy. Table 3 gives the parameters for EXP transitions in

Parameter Description Value [hrs.]

1=Tatk:rate Mean time to complete an intrusion 1200

1=Tundet:rate Mean time passed since detection start and detection failure 8

1=Tdet:rate Mean time to detect an intrusion 12

1=Tfail:rate Mean time to failure of a triage 6

Table 3.
Model parameters.

Notation Transition Distribution Mean [hrs.] CV

Fvuldisc tð Þ S
G
vuldisc to S

G
mtint

Weibull 1440 0.5

Frc1 tð Þ S
G
rc1 to S

G
mttime

Lognormal 24 0.5

Frc2 S
G
rc2 to S

G
mttime

Lognormal 12 0.5

Frc3 tð Þ S
G
rc3 to S

G
mttime

Lognormal 48 0.5

Frc4 tð Þ S
G
rc4 to SG

mttime
Lognormal 30 0.5

Frc5 tð Þ S
G
rc5 to S

G
mttime

Lognormal 40 0.5

Feval tð Þ S
G
eval to S

G
rc4 (SG

rc5) Lognormal 8 0.5

Fmttime tð Þ S
G
mttime to S

G
mtint

Lognormal 10 0.5

Table 4.
Probability distributions of GEN transitions.

13

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

Figure 5.
Approximate PH distributions ((a) Fvuldisc tð Þ, (b) Frc1 tð Þ, (c) Frc2 tð Þ, (d) Frc3 tð Þ, (e) Frc4 tð Þ, (f) Frc5 tð Þ, (g)
Feval tð Þ, (h) Fmttime tð Þ).

14

Maintenance Management - Current Challenges, New Developments, and Future Directions

Figure 3. The probability distributions for GEN transitions Tvuldisc, Trc1, Trc2, Trc3, Trc4,
Trc5, Teval, and Tmttime are given in Table 4, where the columns of “Mean” and CV
represent the mean time and the coefficient of variation, respectively.

Figure 5a–h draw the original probability distributions for GEN transitions and the
approximate PH distributions with 10 phases. These figures indicate that the PH
distributions are accurate enough to approximate the general distributions.

To investigate the effect of the number of checking, we consider the number of
checking during 1 year, N, varying from 4 to 36. For example, in the case of N ¼ 4,
the length of one checking interval is 3 months. In the case of N ¼ 36, the length of
one checking interval is about 10 days.

Figure 6 depicts the interval availability of the system, which increases monoton-
ically as the number of checking, N, increases. In particular, the interval availability
increases sharply when the number of checking is very small. In such a case, the
length of one checking interval decreased remarkably; for example, when N ¼ 4, it

Figure 7.
Sensitivity of the number of checking on the steady-state availability.

Figure 6.
Sensitivity of the number of checking on the interval availability.

15

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

takes almost 3 months to execute a checking operation, whereas the checking interval
reduces to 2.4 months in the case of N ¼ 5. However, when N increases from 35 to 36,
the checking interval almost does not change. Besides, it is intuitively obvious that a

N t0 [days] Interval availability Steady-state availability

4 91.3 0.99088 0.98679

5 73.0 0.99177 0.98726

6 60.8 0.99248 0.98795

7 52.1 0.99308 0.98862

8 45.6 0.99360 0.98925

9 40.6 0.99405 0.98985

10 36.5 0.99444 0.99040

11 33.2 0.99478 0.99091

12 30.4 0.99507 0.99137

13 28.1 0.99534 0.99180

14 26.1 0.99558 0.99219

15 24.3 0.99580 0.99254

16 22.8 0.99600 0.99287

17 21.5 0.99618 0.99317

18 20.3 0.99634 0.99345

19 19.2 0.99649 0.99372

20 18.3 0.99663 0.99396

21 17.4 0.99676 0.99418

22 16.6 0.99688 0.99439

23 15.9 0.99699 0.99459

24 15.2 0.99709 0.99478

25 14.6 0.99719 0.99495

26 14.0 0.99728 0.99512

27 13.5 0.99736 0.99527

28 13.0 0.99744 0.99542

29 12.6 0.99752 0.99555

30 12.2 0.99759 0.99569

31 11.8 0.99765 0.99581

32 11.4 0.99772 0.99593

33 11.1 0.99777 0.99604

34 10.7 0.99783 0.99615

35 10.4 0.99789 0.99625

36 10.1 0.99794 0.99634

Table 5.
The number of checking per year and its corresponding length of checking interval and availabilities.

16

Maintenance Management - Current Challenges, New Developments, and Future Directions

shorter checking interval generally brings higher availability. Therefore, when N is a
small value, the interval availability is very sensitive to the change in the value of N.

On the other hand, the steady-state availability of the system is shown in Figure 7.
From this figure, it is found that the steady-state availability also increases as the
number of checking, N, increases. Furthermore, more details on the experimental
results about the number of checking per year and its corresponding length of one
checking interval and availabilities are referred to Table 5. From this table, we can see
that for any givenN, the interval availability is higher than the steady-state availability.

5. Conclusion and future work

In this chapter, we presented a stochastic model to evaluate the system availability
of an ITS, where the system undergoes the patch management with a periodic vul-
nerability checking strategy; that is, pull-type patch management. Concretely, a com-
posite SRN model was developed to capture the overall system behaviors, including
vulnerability discovery, intrusion tolerance, and reactive maintenance. Two kinds of
availability criteria, the interval and steady-state availabilities, were formulated by
using phase expansion. In numerical experiments, we evaluated the effect of the
checking number on the system availability, and the results imply that when the
checking number is small (a long checking interval), the variation in the checking
number brings an significant effect into the interval availability. In addition, both
interval availability and steady-state availability increase monotonically as the number
of checking increases. We have also validated the accuracy of the PH approximation
with 10 phases.

The chapter aims is to present a method for formulating the system availability
from both transient and stationary points of view and evaluate the effect of the
number of checking on the system availability. Nevertheless, it is actually well known
that one of the main issues in the design of security patch management is to determine
the optimal length of checking interval bringing the optimal trade-off between system
performance and checking cost. For example, if the checking interval is too short, the
system availability will be high, but the total checking cost will be very high. On the
other hand, if the checking interval is too long, a discovered vulnerability may be
exploited by malicious attacks, which decreases the system availability; in this case,
the checking cost can be reduced, but the total cost due to security failures will be
high. Therefore, it will be interesting, as one of future directions, to find the optimal
checking number (i.e., optimal checking policy) by the consideration of both system
performance and maintenance cost.

Acknowledgements

This chapter is an extension of work originally reported at the 2018 42nd IEEE
International Conference on Computer Software & Applications (COMPSAC’18) [25].
Moreover, this work was supported by JSPS KAKENHI Grant Number 21 K17742.

Conflict of interest

The authors declare no conflict of interest.

17

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

Nomenclature

ITS Intrusion tolerant system
SRN Stochastic reward net
PH Phase-type
MRGP Markov regenerative process
CIA Confidentiality, integrity, and availability
SITAR Scalable intrusion tolerant architecture
COTS Commercial-off-the-shelf
VM Virtual machine
DoS Denial-of-service
EMC Embedded Markov chain
CTMC Continuous-time Markov chain
GEN Generally distributed
EXP Exponentially distributed
c.d.f. Cumulative distribution function
p.d.f. Probability density function
CV Coefficient of variation

Author details

Junjun Zheng1*, Hiroyuki Okamura2 and Tadashi Dohi2

1 Department of Information Science and Engineering, Ritsumeikan University,
Kusatsu, Japan

2 Graduate School of Advanced Science and Engineering, Hiroshima University,
Hiroshima, Japan

*Address all correspondence to: jzheng@fc.ritsumei.ac.jp

© 2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

18

Maintenance Management - Current Challenges, New Developments, and Future Directions

References

[1] Arora A, Krishnan R, Telang R,
Yang Y. An empirical analysis of
software vendors’ patch release
behavior: Impact of vulnerability
disclosure. Information Systems
Research. 2010;21(1):115-132

[2] Abunadi I, Alenezi M. An empirical
investigation of security vulnerabilities
with web applications. Journal of
Universal Computer Science. 2016;
22(4):537-551

[3] Khan YI, Al-Shaer E, Rauf U. Cyber
resilience-by-construction: Modeling,
measuring& verifying. In: Proceedings of
2015Workshop on Automated Decision
Making forActiveCyberDefense. Denver,
Colorado, USA: ACM; 2015. pp. 9-14

[4] Jansen W. Directions in Security
Metrics Research. Darby, PA, USA:
DIANE Publishing Co; 2010

[5]Mukkamala S, Janoski G, Sung A.
Intrusion detection using neural
networks and support vector machines.
In: Proceedings of 2002 International
Joint Conference on Neural Networks
(IJCNN’02). Honolulu, HI, USA; 2002.
pp. 1702-1707

[6] Stavridou V, Dutertre B,
Riemenschneider RA, Saidi H. Intrusion
tolerant software architectures. In:
Proceedings of Darpa Information
Survivability Conference and Exposition
(DISCEX II’01). Anaheim, California,
USA: IEEE; 2001. pp. 230-241

[7]Wang F, Gong F, Sargor C, Goševa-
Popstojanova K, Trivedi KS, Jou F.
SITAR: A scalable intrusion-tolerant
architecture for distributed services. In:
Proceedings of the 2nd Annual IEEE
Systems, Man and Cybernetics
Information Assurance Workshop (SMC-
IAW’01). New York, USA: IEEE; 2001

[8] Zhao W. BFT-WS: A Byzantine fault
tolerance framework for web services.
In: Proceeding of the 11th International
IEEE EDOC Conference Workshop
(EDOC’07). Annapolis, MD, USA: IEEE;
2007. pp. 89-96

[9] Junior VS, Lung LC, Correia M,
Fraga JDS, Lau J. Intrusion tolerant
services through virtualization: A shared
memory approach. In: Proceedings of the
24th IEEE International Conference on
Advanced Information Networking and
Applications (AINA’10). Perth,
Australia: IEEE; 2010. pp. 768-774

[10] Lau J, Barreto L, Fraga JDS. An
infrastructure based in virtualization for
intrusion tolerant services. In:
Proceedings of the 19th IEEE
International Conference on Web
Services (ICWS’12). Honolulu, HI, USA:
IEEE; 2012. pp. 170-177

[11] Zheng J, Okamura H, Dohi T.
Survivability analysis of VM-based
Intrusion tolerant systems. IEICE
Transactions on Information and
Systems. 2015;E-98(12):2082-2090

[12] Kansal Y, Kapur PK, Kumar D.
Assessing optimal patch release time for
vulnerable software systems. In:
Proceedings of 2016 International
Conference on Innovation and
Challenges in Cyber Security. Greater
Noida, India: IEEE; 2016. pp. 308-314

[13]Uemura T, Dohi T, Kaio N.
Availability analysis of an Intrusion
tolerant distributed server system with
preventive maintenance. IEEE
Transactions on Reliability. 2010;59(1):
18-29

[14]Wang D, Madan BB, Trivedi KS.
Security Analysis of SITAR intrusion
tolerance system. In: Proceedings of the

19

Pull-Type Security Patch Management in Intrusion Tolerant Systems: Modeling and Analysis
DOI: http://dx.doi.org/10.5772/intechopen.105766

2003 ACM Workshop Survivable and
Self-regenerative Systems: in association
with 10th ACM Conference on
Computer and Communications Security
(SSRS’03). Fairfax, VA, USA: ACM;
2003. pp. 23-32

[15] Çinlar E. Introduction to
Stochastic Processes. Englewood Cliffs,
NJ, USA: Prentice-Hall Inc; 1975

[16] Fricks R, Telek M, Puliafito A,
Trivedi KS. Markov renewal theory
applied to performability evaluation. In:
Bagchi K, Zobrist G, editors. State-of-the
Art in Performance Modeling and
Simulation. Modeling and Simulation of
Advanced Computer Systems:
Applications and Systems. Amsterdam,
The Netherlands: Gordon and Breach
Publishers; 1998. pp. 193-236

[17]Garg S, Pfening S, Puliafito A,
Telek M, Trivedi KS. Analysis of
preventive maintenance in transaction
based software systems. IEEE
Transactions on Computers. 1998;47(1):
96-107

[18] Zheng J, Okamura H, Li L, Dohi T.
A comprehensive evaluation of software
rejuvenation policies for transaction
systems with MarMarkov arrival. IEEE
Transactions on Reliability. 2017;66(4):
1157-1177

[19]Okamura H, Yamamoto K, Dohi T.
Transient analysis of software
rejuvenation policies in virtualized
system: phase-type expansion approach.
Quality Technology & Quantitative
Management. 2014;11(3):335-351

[20]Okamura H, Dohi T. A phase
expansion approach for transient
analysis of software rejuvenation model.
In: Proceedings of the 8th International
Workshop on Software Aging and
Rejuvenation (WoSAR’16). Ottawa,
Canada: IEEE; 2016. pp. 98-103

[21] Choi H, Kulkarni VG, Trivedi KS.
Markov regenerative stochastic Petri
nets. Performance Evaluation. 1994;20:
337-357

[22]Hosford JE. Measures of
dependability. Operations Research.
1960;8(1):53-64

[23] Rubino G, Sericola B. Interval
availability analysis using operational
periods. Performance Evaluation. 1992;
14(3–4):257-272

[24] Smith M, Aven T, Dekker R, van der
Duyn Schouten FA. A survey on the
interval availability distribution of
failure prone systems. In: Advances in
Safety and Reliability: Proceedings of
ESREL’97. Oxford: Elsevier; 1997.
pp. 1727-1737

[25] Zheng J, Okamura H, Dohi T. A pull-
type security patch management of an
intrusion tolerant system under a
periodic vulnerability checking strategy.
In: Proceedings of the 2018 IEEE 42nd
Annual Computer Software and
Applications Conference
(COMPSAC’18). Tokyo, Japan: IEEE;
2018. pp. 630-635

20

Maintenance Management - Current Challenges, New Developments, and Future Directions

