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  ABSTRACT 
 
 
Orrostieta Chavez, Roberto., Water-Soluble Polymers with Ceramic/Metal Nanoparticles for Use 

as Anode Materials in Lithium-Ion and Sodium-Ion Batteries. Master of Science (MS), December 

2020, 110 pp, 9 tables, 49 figures, 136 references, 78 titles.  

Aqueous solutions of poly(vinylpyrrolidone) (PVP) with 20, 25, and 28 wt.% 

concentrations were successfully spun into fibers by centrifugal spinning. The pristine PVP 

fibers were annealed and carbonized to produce flexible carbon fibers for use as binder-free 

anodes in lithium-ion and sodium-ion batteries. These flexible carbon fibers were prepared by 

developing a novel three-step heat treatment to reduce the residual stresses in the pristine PVP 

precursor fibers and to prevent fiber degradation during carbonization. The average diameters of 

the pristine, annealed, and carbonized fibers were obtained using scanning electron microscopy 

(SEM), which showed that the average diameter of the carbon fibers increased with increasing 

polymer concentration. Thermal characterization of the pristine and annealed fibers was carried 

out by thermogravimetric analysis (TGA). The TGA results showed that the annealed fibers 

yielded a residual mass percentage of 36.0 % while the pristine PVP fibers suffered a higher 

mass loss and only retained 26.5% of the original mass above 450 °C in an inert gas. The 

electrochemical performance of the carbon-fiber anodes was evaluated by conducting 

galvanostatic charge/discharge cycles, rate performance, cycle voltammetry experiments, and 

impedance tests. The 20, 25, and 28 wt.% derived binder-free anodes were tested in Li-ion and 

Na-ion half-cells.
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TiO2/C and Sn/C composite fibers were prepared by the centrifugal spinning of 

TiO2/PVP and Sn/PVP solutions and subsequent heat treatment.  

 The successful preparation of centrifugally spun composite fibers from aqueous 

solutions was only achieved with TiO2. Based on existing results in the literature, a higher vapor 

pressure leads to faster solvent evaporation and promotes fiber formation. Thus, a mixture of 1:1 

water:ethanol (wt./wt.) was used to prepare the Sn/PVP precursor fibers as well as TiO2/PVP 

precursor fibers. Nonetheless, the centrifugally spun Sn/C and TiO2/C composite fibers prepared 

with the PVP/water/ethanol precursor solutions had a larger average diameter than those 

prepared from PVP aqueous solutions, which affected their electrochemical performance. In 

order to understand the constraints impeding the formation of Sn/C composite fibers from 

aqueous solutions, the viscosity and surface tension of aqueous Sn/PVP and TiO2/PVP precursor 

solutions were investigated using a programable rheometer (BROOKFIELD, RVDV-III U) and 

Goniometer, Kyowa-DropMaster, respectively. The results showed that the addition of particles 

to the PVP aqueous solutions did not play a significant role in the viscosity nor the surface 

tension of the PVP aqueous solutions. Thus, other causes such as particle dispersion were 

investigated. It was observed that an inferior particle dispersion was obtained in water when 

compared to that in ethanol. Finally, alternative methods to produce composite fibers from 

polymer aqueous solutions are discussed for future research endeavors  
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CHAPTER I 

INTRODUCTION 

In today’s modern society, up to 68% of the world’s energy supply is derived from fossil 

fuels (coal (42%), natural gas (21%), and oil (5%)) while only 3% is generated by renewable 

energy technologies and the remaining 29% energy percentage is divided between nuclear 

(14%), and hydro (15%) energy production methods [1]. However, there are several reasons why 

society should walk away from fossil fuels as its main source of energy. For example, green 

gasses generated from fossil fuels deteriorate air quality, harming the health of those exposed to 

it, and increase the Earth’s temperature (Global Warming) [2]. In order to overcome challenges 

such as the ever-growing energy demand, the increasing scarcity of non-renewable fossil fuels, 

and the negative environmental impact of these energy sources, environmentally friendly 

alternatives are being improved (solar cells, wind turbines, etc.) [1]. Nonetheless, to fully achieve 

the positive impact of these renewable energy sources, energy storage technology must 

ambitiously progress alongside renewable energy technologies to fulfill the aspiration of a 

cleaner energy production industry. A potential candidate for electrical energy storage is lithium-

ion batteries (LIBs). LIBs are already vastly adopted in applications such as consumer 

electronics and, more recently, electric vehicles because of their high energy density and long 

cycle stability [3].
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Perhaps, one of the best examples of the implementation of LIBs for renewable grid energy 

storage is the “energy farm” in South Australia. In 2007, Tesla and Neoen partnered to construct 

the world’s largest LIB (100 MW, 129 MWh) [4]. A simulation study on the deployment of 

stored energy in Australia shows that energy storage can reduce the levelized cost of electricity 

by 13 - 22% and reduce energy spillage by 76%  [4].  It is evident that storage devices, such as 

LIBs, can help with energy regulation, contingency reserves, and adaptability from peak to off-

peak periods. However, the relatively low abundance, geometrically-constrained mineral 

reserves of lithium, and its high demand make the depletion of lithium sources a possibility 

within the foreseeable future [5], [1], [6], [7]. Because of this scarcity, potential ion alternatives 

such as sodium-ion (Na+) are good candidates to replace lithium, especially in larger-scale 

battery applications. Sodium, in contrast to lithium, is widely recognized as an abundant and 

low-cost metal [5], [8]. For comparison, lithium is found in 20 parts per million (PPM) while 

Sodium is found in 23,600 PPM [9]. Unfortunately, sodium-ion batteries (SIBs) face intrinsic 

challenges due to the larger size of the sodium ion (0.98 Å radius) compared to that of a lithium-

ion (radius of 0.69 Å) [10]. Such a larger size prevents intercalation of Na+ with graphite anodes 

[5], [9]. Currently, work is being conducted to achieve the intercalation of Na+ with graphite. For 

example, hard carbon (HC) is being extensively studied as a potential negative electrode for SIBs 

[9]. HC is non-graphitizable and has turbostratic domains spaced by curved graphene nanosheets 

that create larger interlayer spacings than the well-defined interlayer spacing in graphite (3.3 Å). 

Hence, the complex molecular-level structure of HC can reversibly accommodate large size ions 

such as Na+ [11]. Moreover, composite materials are being developed to improve the 

electrochemical performance of SIBs. Among the approaches selected, composite fiber anodes 

have been explored in some detail. Conventionally, electrospinning is adopted to fabricate such 
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composite fiber at a laboratory scale. However, due to the low fiber production yield of this 

method (< 0.3 𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚

), higher fiber yield production methods such as centrifugal spinning (1 𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚

) 

have gained attention to effectively  produce these composite materials at a larger scale  [12]. 

Thus, this work strives to develop a high fiber yield procedure from aqueous precursor solutions 

via centrifugal spinning for use in LIB and SIBs. 

1.1. Objectives & Contributions 

Composite materials have enabled engineers to pursue technologies otherwise limited by 

material performance. Substantial improvements in material properties (e.g., mechanical, 

thermal, electrical, etc.) can be achieved by the addition of fillers in polymer matrices [13]. Due 

to their high surface area to volume ratio, composite nanofibers have been extensively used in 

applications such as biomedical, filtration, tissue engineering, and energy storage [14], [15], [16], 

[17]. In particular, carbon fibers prepared by electrospinning and subsequent heat treatment of 

polymer-fiber precursors have been widely used in energy storage applications [18]. The carbon 

phase in these carbon fibers (CFs) can be either amorphous or graphitic, depending on the heat 

treatment performed during the carbonization process. Graphite is the commercially available 

anode material for lithium-ion batteries (LIBs) due to its low working potential, long cycle life, 

and low cost. However, the low theoretical capacity of the graphite anode (372 mAh g-1) fails to 

satisfy the increasing demand for high-performance LIBs, particularly for hybrid and electric 

vehicles [19]. Li-alloys embedded in flexible CFs with amorphous carbon can be directly used as 

binder-free anodes in LIBs. The flexible amorphous carbon phase can buffer the volume change 

of the Li-alloy phase [19]. In addition, amorphous carbon fibers with many structural defects can 

accommodate more Li+ than the ordered lattice in graphite [20]. Composite CFs can be prepared 

to contain ceramic and/or metallic fillers and can be directly used as anode materials in LIBs 
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with improved electrochemical performance such as rapid Li+ diffusion, long cycle life, and high 

specific capacity. Currently, polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and 

polyacrylonitrile (PAN) are the most used polymer precursors to produce carbon fibers for LIB 

applications [21]. Among these, PAN is the most exploited polymer to produce CFs due to its 

high melting point and high carbon yield of more than  80% [22], [23]. Centrifugally spun PAN-

derived CF anodes have delivered a steady charge capacity (Li-disinsertion) of 297 mAh g–1 after 

100 cycles at 100 mA g–1 [24]. Unfortunately, PAN has a high cost [25] and its most frequently 

used solvent, dimethylformamide (DMF), has been linked to cancer and birth defects [26]. 

Nevertheless, the demand for CFs continues to increase. Therefore, researchers and industry 

need to turn their attention to less hazardous and more environmentally benign carbon precursors 

such as PVP and PVA. Both PVP and PVA, in contrast to PAN, are water-soluble and have been 

used in energy storage applications  [23], [26], [12], [27], [28], [29]. However, PVA has a 

relatively lower carbon yield and in the case of PVP severe shrinkage is observed after 

carbonization [28, 30] [26]. PVP is considered a potential carbon precursor alternative due to its 

low cost and higher carbon yield (~87). Electrospun CFs derived from PVP  have delivered a 

reversible specific capacity as high as 450 mAh g-1 at the 100th cycle [23]. Moreover, high 

production rates of PVP fibers have been achieved via the centrifugal spinning of PVP/ethanol 

solutions [27, 28].  

There are reports about the successful preparation of composite CFs derived from aqueous 

PVA solutions. For example, Si/C composite-fiber anodes prepared by the centrifugal spinning 

of aqueous Si/PVA precursor solutions and subsequent heat treatment delivered a steady capacity 

of 758 mAh g-1 after 50 cycles, while PVA-derived CFs delivered 178 mAh g-1 [12]. [26]. 

Although the centrifugally spun PVA fibers had smaller diameters than centrifugally spun PVP 
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fibers, the lower fiber yield of aqueous PVA solutions during centrifugal spinning could become 

a challenge for the adoption of PVA-based carbon fibers at a large-scale. PVP, on the other hand, 

has a much higher fiber yield than PVA during centrifugal spinning, and, to the best of our 

knowledge, there have not been studies on the use of centrifugally spun CFs derived from 

aqueous PVP precursor solutions for use as anodes for LIBs nor SIBs. However, hematite 𝛼𝛼-

Fe2O3 short fibers have been synthesized from centrifugally spun aqueous PVP/Fe (NO3)3∙9H2O 

precursor solutions and implemented in PAN/DMF solutions to fabricate Fe3O4/C composite-

fiber anodes for LIBs [31]. These Fe3O4/C composite fiber anode delivered a capacity of 505 

mAh g-1 at the 100th cycle at 100 mA g-1 [31].  The synthesized 𝛼𝛼-Fe2O3 short fibers had a 

hollow multiwalled structure with a wall thickness of 55 ± 15 nm and an outer diameter of 850 

± 90 nm, suggesting the feasibility of the successful CFs with hollow structures derived from 

PVP aqueous solutions [31]. PVP is less commonly used to produce CFs due to its large volume 

shrinkage after carbonization [30]. However, it has been shown that the carbon yield from PVP 

can be increased by adopting a more complex heat treatment [22], [32]. This study strives to 

maximize the production of CFs by optimizing the PVP concentration in aqueous solutions for 

centrifugal spinning and implementing a novel heat treatment that aims to decrease the large 

volume shrinkage observed in PVP fibers at higher carbonization temperatures. Based on the 

results obtained in this work, a feasible pathway towards large-scale production of CFs from 

100% aqueous PVP solutions can be achieved via centrifugal spinning and subsequent three-step 

heat treatment. 
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CHAPTER II 

LITERATURE REVIEW 

The following subsection will introduce the working principle on metal-ion batteries, a 

description of the use of composite fiber electrodes, and the working mechanisms of the 

materials used as anodes in LIBs and SIBs.  

2.1. Working Principle of Metal-Ion Batteries 

The main active components in a LIB include the cathode, anode, electrolyte, and separator. 

These components are shown in the schematic in Fig. 1. 

Fig. 1. Schematic of active components in lithium-ion batteries. 

During the charging process, Li-ions move from the cathode, through the ionically 

conductive electrolyte, and react with the active material in the anode. During discharge, the Li-

ions move back to the cathode passing once again through the separator, which is permeable to 



7 

ionic flow but prevents short-circuits in the battery from direct contact of the electrodes 

[33], [34], [35]. The working principle of SIBs is similar. The main difference is that the cathode 

is composed of sodium-containing layered oxides (NaxCoO2 where Na+ is the ion moving 

between the electrodes [2], [9]  [36]. 

The most used cathode materials in LIBs are LiCoO2 and LiFePO4, which are 

commercially available in the form of a slurry dispersed on a collector (aluminum foil) [37]. 

Similarly, anode materials, such as the commercially available graphite, can be prepared in slurry 

form and coated on a copper current collector (copper foil). Graphite remains the dominant 

anode material for LIBs, because of its flat potential profile, high coulombic efficiency, and good 

cycling performance. However, alternative anode materials with theoretical capacities higher 

than that of graphite (372 mAh g–1) are being studied to satisfy the demand for superior energy 

storage devices. Slurry-based anodes possess the advantage over binder-free anodes of being 

loaded with higher percentages of active materials that determine the energy density of the 

electrode. Moreover,  a conductive agent that improves the transport of electrons (e.g., carbon 

black), and a polymer binder that maintains the slurry paste adhered to the current collector are 

added to the active material to improve the performance of the electrode [1]. Homogeneous 

slurries can be prepared with a high loading of active material (>70%) and dispersed on the 

copper collector. Nonetheless, slurry-based electrodes face challenges of their own. If a binder 

does not maintain the slurry in contact with the current collector, the active material will 

gradually lose physical contact with the current collector [38]. Loss of physical contact is usually 

caused by the volume change during the insertion/disinsertion of Li+ into the anode. In slurry-

based anodes, the nanostructure of the active material can be modified to buffer any volume 

change of the electrode. Nanofibers, on the other hand, can endow active materials with 
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enhanced matrix nanostructures in which they are dispersed to further improve the volumetric 

buffering capabilities of the anode. Thus, composite fibers with high active material loading and 

good dispersion in the carbon-fiber matrix can result in binder-free anodes with improved 

electrochemical performance compared to slurry-based anodes. Centrifugal spinning (CS) has 

proven to be capable of producing beneficial structures such as hollow and porous fibers that 

facilitate Li+/Na+ transport, shorten electron pathways, and buffer volume changes [39], [40], 

[41], [42].  

Separators based on composite fibers can also be fabricated from nonwoven 

nano/microfibers. Several factors must be considered when designing a separator. Some key 

requirements include minimal ionic resistance, mechanical and dimensional stability, and 

electrolyte uptake [33], [34]. Currently, polyolefin microporous membranes are the separators 

used in commercial LIBs because of their electrochemical stability, adequate thickness, and good 

mechanical strength [43], [44]. However, polyolefin separators are known for poor wettability 

and dimensional instability at elevated temperatures; such dimensional instability could 

eventually lead to internal short-circuiting and thermal runaway [33], [43], [44]. Thus, research 

is also being conducted to overcome these issues by using nonwoven nanofibers as separator 

materials. 

Another important aspect that determines the performance of electrodes is the solid 

electrolyte interphase (SEI). When carbon intercalates with lithium, exposed carbon reacts with 

the electrolyte to form an ionically conductive passivation layer known as solid electrolyte 

interphase (SEI) [45], [46]. Most of the SEI layer forms during the first cycle (formation cycle) 

in which not only the constituents of the anode material are consumed, but also Li-ions [46]. 

Mitigating the effect of the SEI layer formation on the irreversible capacity and electrochemical 
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performance of metal-ion batteries has been a challenge to overcome by the scientific 

community [46]. Nanostructured materials with high surface area, such as carbon nanofibers, can 

produce a thin and stable solid electrolyte interface (SEI) layer which can result in electrodes 

with high charge-discharge rates, thus improving the specific power and energy density of the 

battery [19].  Another aspect that causes the formation of SEI is the use of anode materials with 

lower working voltage than the electrolyte used in the battery. The lower and upper working 

voltages of electrolytes are known as the lowest unoccupied molecular orbital (LUMO) and the 

highest occupied molecular orbital (HOMO), respectively. For commercial organic electrolytes 

such as dimethyl carbonate/diethyl carbonate (DMC/DEC), the LUMO and HOMO have values 

of 1.2 and 4.2 eV, respectively [47]. When the working voltage of an anode is below the LUMO 

of the electrolyte, such as in the case of graphite (0.2 V vs Li/Li+) and DMC/DEC, the electrolyte 

will be reduced to reach the anode’s working voltage and form SEI in the process [3]. In carbon 

fibers, the low working voltage can be ameliorated by introducing active materials with a higher 

working voltage. Some examples of these materials are introduced in the following sections. 

Also, the application of nanofibers in metal-ion batteries will be further discussed.  

2.2. Application of Nanofibers in Batteries 

Flexible binder-free anodes can be prepared with active materials (e.g., nanoparticles) 

embedded in a carbon-fiber (CF) matrix to produce composite CFs. The use of these composite 

CFs can decrease the cost of battery fabrication because CFs can directly be used as binder-free 

anodes without the need for conductive fillers or a current collector (copper foil) [48]. Moreover, 

composite CFs have attracted attention due to their high surface-area-to-volume ratio and high-

rate of Li+ insertion when structural or surface defects are present [49], [50]. The specific surface 

area of the CFs can be enhanced by different preparation methods. For example, the fiber 
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morphology has been improved by the generation of pores, which can increase clearance space 

for volume change and Li+ diffusion on the electrode surface [51]. Additionally, non-calcinated 

non-woven fibrous mats can also be used as battery separators [33]. To improve efficiency, the 

separator must feature small volume and high porosity [52]. Non-woven fibrous mats usually 

have a thickness between 100 to 200 𝜇𝜇m and base density between 9 and 30 g cm–2 [53]. Fiber-

based battery separators must have a fiber diameter smaller than 5 𝜇𝜇m [53]. Fibers with a larger 

diameter can cause the presence of locally open spaces that could not properly prevent direct 

contact between the electrodes [53]. For this reason, non-woven membranes are used as a 

support layer for separators impregnated with gel polymer electrolytes [53] [46]. Nevertheless, 

fibers with diameters smaller than 5 𝜇𝜇m can be prepared with current manufacturing 

technologies such as electrospinning and centrifugal spinning. PVDF is the most commonly used 

polymer in the preparation of separators, but polymers such as PAN and PMMA are also 

implemented to improve the thermal stability and mechanical strength of non-woven membrane 

separators [54], [55]. Moreover, composite nanofibers can also be prepared to improve the 

performance of nanofiber-based separator membranes. Some commonly added fillers to the 

polymer fiber matrix include Al2O3, SiO2, and TiO2 because these materials can increase 

mechanical strength, thermal stability, and ionic conductivity [44], [55].  

2.3. Anode Materials for Metal-Ion Batteries 

Graphite is the primary commercial anode material for LIBs owing to its flat potential 

profile, stable capacity during prolonged charge/discharge cycles, and high coulombic efficiency. 

However, graphite anode exhibit relatively low theoretical capacity (372 mAh g–1) and low 

specific power caused by the low Li+ diffusivity (10–8 cm2 s–1)  [56]. Extensive research efforts 

have been made to overcome the deficiencies of graphite anodes. Metals, semimetals, metal 
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oxides, and metal sulfides have been proposed as alternative anode materials to address the 

challenges facing the commercial graphite anode. These materials are based on lithiation-

delithiation mechanisms such as intercalation, alloying, and conversion reactions (23) [19]. The 

intercalation, alloying, and conversion reaction mechanisms, which determine the behavior of 

active materials during the charge/discharge cycles, will be discussed in the following sections.  

Then, an overview of other manufacturing methods to produce separator membranes and CFs 

will be provided. 

2.4. Intercalation Reaction Anode Materials 

Anodes based on the Li+ intercalation-deintercalation reaction (e.g., graphite, layered 

structures of TiO2, MoO2, and metal sulfides such as MoS2, WS, TiS2, etc.) undergo a process in 

which the ions are incorporated as a guest within the host crystal lattice without destroying the 

active material structure [57].  Even though the limited intercalation sites lead to relatively low 

capacities,  the intercalation mechanism is capable of retaining capacity over many cycles 

because it does not modify the structure of the host material [37]. Nonetheless, the insertion of 

ions results in a volume expansion, which ultimately leads to loss of contact between the active 

material and current collector [40].  In this regard, composite CFs possess an advantage since 

their conductive structure functions as a current collector as well. As an illustration of this 

mechanism, the intercalation reaction of Li+ in graphite in a commercial LIB is illustrated in 

reactions (1), (2), and (3). During battery charging, Li+ is released (oxidation reaction 1) from the 

cathode (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂2), travels through the separator aided by the electrolyte, and intercalates in to the 

graphite (reduction reaction 2) [58]. During battery discharging the opposite occurs. Here, the 

Li+ intercalates within the graphite without altering its structure (reaction 3) [2].  
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Cathode: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂2
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
�⎯⎯⎯�

𝑑𝑑𝑚𝑚𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
�⎯⎯⎯⎯⎯⎯� 𝐿𝐿𝐿𝐿1−𝑥𝑥𝐿𝐿𝐿𝐿𝑂𝑂2 + 𝑥𝑥𝐿𝐿𝐿𝐿+ + 𝑥𝑥𝑒𝑒−  (1)

Anode: 

6𝐿𝐿 + 𝑥𝑥𝐿𝐿𝐿𝐿+ + 𝑥𝑥𝑒𝑒−
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
�⎯⎯⎯�

𝑑𝑑𝑚𝑚𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
�⎯⎯⎯⎯⎯⎯� 𝐿𝐿𝐿𝐿𝑥𝑥𝐿𝐿6 (2)

Overall: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂2 +  6𝐿𝐿
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
�⎯⎯⎯�

𝑑𝑑𝑚𝑚𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎
�⎯⎯⎯⎯⎯⎯� 𝐿𝐿𝐿𝐿 𝑥𝑥 𝐿𝐿6 + 𝐿𝐿𝐿𝐿1−𝑥𝑥𝐿𝐿𝐿𝐿𝑂𝑂2 (3) 

2.5. Alloying Reaction Anode Materials 

Anode materials based on the alloying mechanism are not limited by their atomic framework; 

this allows this type of materials to host a larger number of Li-ions [37]. Since the ions break the 

bonds of the hosting material, higher specific capacities are achieved. Silicon, for example, is 

capable of forming metallic alloy phases such as Li13Si7, Li13Si4, Li10Si3, and Li22Si5, among 

others [59], with Li22Si5 (or Li4.4Si) having a theoretical capacity of 4200 mAh g–1 [60]. 

Nonetheless, the addition of 4.4 Li-ions per Si atom leads to a volume increase greater than 

400%. Hence, even though alloying reaction materials are in principle capable of offering higher 

specific capacities, their commercialization has been deterred due to their large volume changes 

occurring after repeated charge/discharge cycles.  

Metal oxides can react with Li+ via alloying, insertion, or conversion mechanisms. In 

alloying-based metal oxides, lithium oxide and metal are formed in the initial lithiation cycle. In 
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subsequent cycles the newly available metal alloys with lithium. For example, chemical reactions 

4 and 5 show the alloying reaction of SnO2 metal oxide. 

SnO2 + 4Li+ + 4e– → Sn + 2Li2O  (4) 

Sn + 2Li2O + 4.4Li+ + 4.4e– ↔ Li4.4Sn + 2Li2O (5) 

In this reaction, a steady reversible capacity is achieved once the formation of lithium oxide 

has been completed (reaction 1) by exhausting the oxygen in tin oxide [57], [60]. In the 

subsequent lithiation cycles, the newly formed inactive lithium oxide no longer reacts with the 

Li+. However, Sn is now capable of alloying with the remaining available Li+ supply (reaction 

2). 

Despite their large volume expansion, materials based on the alloying mechanism are 

extensively sought after because of their greater specific capacities. Multiple approaches have 

been explored to alleviate the strains caused by the volume expansion of the electrode. It has 

been shown that the large volume change is an intrinsic characteristic of materials that react 

based on alloying, and attempts to repress this volume change will come at the price of a lower 

capacity [61]. For composite CFs, one of the approaches used to allow volume expansion of 

silicon or other metalloids without highly increasing the overall anode volume is the production 

of porous or hollow structured nanofibers. For example, porous Sn/SnOx nanoparticles have been 

successfully inserted in the pores within CFs [62]. This allows free space within the pore to be 

filled by the active material when it expands. In another example, Si nanoparticles were 

encapsulated in folded graphene cylinder-like structures [26]. The folded graphene network not 

only increased the overall conductivity of the CFs but also buffered the volumetric expansion of 

silicon that provoked mechanical stresses that in turn lead to the pulverization of fibers. 
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2.6. Conversion Rection Anode Materials 

Transition metal oxide and metal sulfide anodes exhibit improved electrochemical 

performance compared to graphite anodes due to their redox catalytic properties [63]. Transition 

metal oxides based on a conversion mechanism (redox reaction) are of great interest for anode 

materials. During the conversion reaction, the formation of decomposed lithium oxide (Li2O) is 

accompanied by the formation of metal nanoparticles via oxidation-reduction reactions [19]. This 

mechanism is illustrated in reaction 6 [64]. 

𝑀𝑀𝑥𝑥𝑂𝑂𝑦𝑦 + 2𝑦𝑦𝐿𝐿𝐿𝐿  ↔ 𝑦𝑦𝐿𝐿𝐿𝐿2𝑂𝑂 + 𝑥𝑥 (6) 

During a conversion reaction, the ability to partially reversibly decompose Li2O back into a 

metal oxide leads to high reversible capacities and high energy densities [19]. Unfortunately, 

metal oxide anodes based on a conversion reaction mechanism suffer from low coulombic 

efficiency during the first cycle, unstable SEI layer formation, large potential hysteresis, and 

capacity fading during cycling [65]. 
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CHAPTER III 

STATE OF THE ART 

3.1. Nanofibers Manufacturing Processes and Electrochemical Performance of Centrifugally 
Spun Composite Carbon Fibers 

In this section, we discuss some of the top-down processing methods capable of producing 

fibrous structures for battery applications with emphasis on the centrifugal spinning method. 

These methods include melt blowing, biocomponent fiber spinning, phase invention, 

electrospinning, and centrifugal spinning. Short introductions to their production procedures and 

working mechanisms are presented with emphasis on the use of fibers in battery applications. A 

more detailed discussion is offered for the centrifugal spinning method since it is the selected 

method to fabricate carbon fibers in this work. Subsequently, a collection of all composite-fiber 

anodes for LIBs and SIBs prepared via centrifugal spinning is presented. 

3.1.1. Melt Spinning 

Melt blowing is a process in which a molten polymer is extruded through a small die and 

stretched by pressurized hot air to form microfibers (Fig. 2) [66]. The technology was first 

developed by the American Naval Research Laboratory and further designs such as Exxon’s 

commercial-scale melt blowing mechanism emerged thereafter [67]. With this method, fibers 

with diameters ranging between 0.5 and 2 𝜇𝜇m can be produced [67], [66].
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Fig. 2. Single-orifice melt-blowing process schematic. 

One of the main advantages of melt blowing is that there is no need to use a solvent to 

liquify the polymer. For this reason, melt blowing can be a relatively low-cost manufacturing 

process to produce separators for metal-ion batteries [66]. The implementation of melt blowing 

has been proposed to fabricate thin, but strong, separators with materials such as polyesters, 

polyamides, and polymethyl pentene [68]. Of these polymers, polymethylpentene showed 

tolerance to high temperatures while polyester and polyamide exhibited excellent dimensional 

stability at high temperatures [68]. Finally, derived novel technologies are emerging to enable 

the production of nanofibers. An example is blow spinning. This hybrid approach combines 

electrospinning with melt-blown spinning. In this process, polymer solutions, with or without 

active materials, are prepared using volatile solvents. A high-speed airflow is then applied 

alongside a needle where the solution is being injected. The airflow forms the solution jet that 

ultimately forms fibers [69]. Although this method brings solvents back into the process, blow 
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spinning can produce fibers with a smaller average diameter than melt blowing, ranging from 

100 to 1000 nm, thus making them appealing for battery applications [69]. 

3.1.2. Bicomponent Fiber Spinning 

In the bicomponent fiber spinning process, two melted polymers are co-extruded through 

a coaxial spinning head, or nozzle, to form filaments with designed cross-sectional profiles [70]. 

Fig. 3 shows a schematic of the fiber melt spinning line. 

Fig. 3. Schematic of a bicomponent fiber melt spinning line [71]. 

Among the available cross-sectional profiles, side-by-side, core/sheath, and islands-in-

the-sea are the most common (Fig. 3) [71]. These profiles can be obtained by simply changing 

the spinning head die. This versatility in cross-sectional profiles can potentially enable 

optimization of fiber parameters such as mechanical strength, surface area, and thermal stability. 

In battery applications, hollow and finned fibers (Fig. 4) are remarkably attractive since 

they increase surface area. Thus, this processing method could also be explored to produce 

nonwoven fiber membranes for use as battery separators. However, some challenges must be 

overcome before achieving the manufacturing capability to produce these complex fiber profiles 

for battery applications. To begin with, fibers with these cross-sectional profiles have a diameter 

ranging between 0.5 to 20 𝜇𝜇m [72] and, as mentioned before, fibers used as separators must have 
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an average diameter of less than 5 𝜇𝜇m. These novel structures indeed increase the surface area of 

the fibers, but they remain too large for battery applications. However, the reduction of their 

dimensions for the benefit of battery applications is a goal worth exploring. 

Fig. 4. Schematic describing the method for creating novel CF structures [72]. 

3.1.3. Phase Inversion 

Phase inversion is a mainstream method to prepare membranes because it can 

conveniently be adapted for large scale production [73]. However, it involves the implementation 

of large amounts of organic solvents which are a safety hazard due to their toxic and/or 

flammable nature [73]. The two main types of phase inversion are thermally induced phase 

separation (TIPS) and non-solvent induced phase inversion (NIPS). During the TIPS process, a 

thermodynamically unstable polymer solution forms two phases, one being polymer-rich and the 

second being polymer-lean [74]. The phase separation process is induced by either cooling below 

the binodal solubility curve or by adding an immiscible solvent to the solution [75]. After 

removing the solvent and drying the polymer-rich and polymer-lean phases, a porous structure is 

formed due to the difference in density between the two phases [74]. Similarly, during NIPS, a 

homogeneous dope solution is exposed to a coagulation bath where the solution becomes 
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thermodynamically unstable. The unstable solution then traverses a binodal curve which leads to 

a polymer-rich and polymer-lean phases that become the membrane structure and pores, 

respectively [76]. Membranes manufactured via phase inversion are used in applications such as 

food industries, wastewater treatment, and energy storage. Recently, polymer fiber membranes 

have been developed by the NIPS method for use as separators in LIBs. For example, 

PVDF/PAN fibrous membranes have been produced via TIPS with controllable morphology 

(pore size), tensile strength, thermal stability, electrolyte uptake, and ionic conductivity via the 

composition of PAN:PVDF ratios [77]. In that work, the results showed that PAN:PVDF 

separators enhanced the resistance to shrinkage due to high temperatures (160 °C) although the 

ionic conductivity decreased from ~3.5 mS/cm in the 100% PVDF separator to ~2.0 mS/cm in 

the PVDF70/PAN30 blend. Moreover, the phase inversion process also enables the production of 

composite membranes such as Al2O3/PVDF-HFP, and PVDF/PAN/SiO2 for battery separator 

applications [78], [79]. For these composite membranes, a PVDF70/PAN30 with 1 wt.% SiO2 

separator exhibited an improved ionic conductivity compared to the PVDF separator [79]. 

3.1.4. Electrospinning 

The electrospinning process has been known since 1900 when it was first introduced by 

Cooley [80]. Electrospinning is capable of producing fibers with dimensions down to the 

nanoscale, but it was not until the 1990s that the nanotechnology field realized the potential of 

using nanofibers [81]. Today, the fabrication of nanofibers via electrospinning is broadly 

employed at the laboratory scale because of its simplicity, cost-effectiveness, and versatility [82]. 

Moreover, electrospinning possesses unique advantages such as improved dispersion and 

tangential alignment of nanowires and single-walled carbon nanotubes (SWCNTs) within the 

nanofibers [83]. During electrospinning, a high voltage is applied to a needle from which the 
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polymer solution (or melt) is drawn. The charge difference between the needle and collector 

induces tension forces that eject a thin solution thread and aligns nanofibers with 1D 

nanostructured active materials. Soon after the solution is ejected, the solvent evaporates and 

forms nanofibers in the form of a Taylor cone (Fig. 5) [35], [80]. For these reasons 

Electrospinning has been widely used to prepare composite membranes and composite CFs for 

applications in LIBs and SIBs [35], [84].  In the following section, centrifugal spinning will be 

discussed and compared to the electrospinning method.   

Fig. 5. Electrospinning set up. 

3.1.5. Centrifugal Spinning 

Centrifugal spinning (CS) is a low-cost and operationally safe manufacturing alternative 

that is gaining momentum in the production of fibers for multiple applications, mainly due to its 

much higher fiber yield [85], [86]. Moreover, CS overcomes some disadvantages that 

electrospinning faces such as the use of a high voltage (<10 kV) to stretch the fibers during 

processing, and solvent limitations due to insufficient dielectric constant [87], [24], [41].  In CS, 

centrifugal forces are applied to a polymer solution or melt, to overcome its surface tension and 

stretch the polymer droplet (jet) to form nanofibers [41]. The process begins when a fluid is 

loaded into a spinneret. Then, centrifugal forces are applied to the solution/melt at high rotational 
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speeds resulting in a polymer jet ejected from the needles attached to the arms of a spinneret. 

This curved jet is subsequently stretched by extensional forces to form thin fibers deposited on 

the collectors [85], [88], [41]. Finally, nonwoven fibers are collected in discrete steps to form a 

multilayered membrane. Fig. 6 shows the CS setup with the spinneret at the center and 8 

collectors equally spaced around the spinneret.  

Fig. 6. Centrifugal spinning spinneret and collector schematic. 

While parameters such as viscosity (polymer concentration) and evaporation rate (for 

solutions) play important roles in the production of both electrospun and centrifugally spun 

fibers [49] [88], temperature (for melts) and rotational speed are parameters that only apply for 

centrifugal spinning. These CS exclusive parameters enable researchers to have greater control 

over the centrifugally spun nanofiber structure. A further crucial difference between centrifugal 

spinning and electrospinning is that the drawing forces applied to the solution during centrifugal 

spinning are not affected by the collection distance as in the electrospinning method due to the 

distance-dependent voltage [88]. Thus, choosing the optimum collection distance for centrifugal 

spinning depends only on the solvent evaporation rate. If the fiber collection distance is small, 
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the diameter of the fiber will be larger but once the critical distance for solvent evaporation is 

reached, the collection distance becomes less relevant [88]. In CS, there is a critical rotational 

speed that must be reached to eject the solution from the spinneret. Furthermore, a second critical 

angular velocity exists after the solution jet has been initiated. This velocity is reached once the 

extensional forces on the solution jet have achieved steady-state forces. As a consequence of this 

constant pull, the solution exits the spinneret at a higher rate and the jet diameter is reduced well 

below that of the outlet nozzle [88].  

It is important to note here that the elongation of the polymer jet during the centrifugal 

spinning of binary systems (polymer/solvent) can initiate phase separation. When the solution jet 

is formed and elongation begins, flash vaporization, decompression of the polymer solution, and 

cooling due to the consumption of heat during vaporization accompany the process [89]. During 

this process, the polymer jets become thermodynamically unstable and phase separation takes 

place by forming polymer-rich and solvent-rich phases [89]. In this aspect, this process can be 

considered a TIPS method, and evaporation of solutions with solvent mixtures can lead to porous 

structures due to phase separation. For solvent mixtures, the solvent with a higher vapor pressure 

evaporates more rapidly, leaving behind the solvent with lower vapor pressure. As the higher 

vapor pressure solvent evaporates, the lower vapor pressure solvent clusters and becomes the 

solvent-rich phase that eventually forms pores in the fibers [41]. In the case of a centrifugal 

spinning of polymer solutions containing solid nanoparticles, one can assume that if the particles 

are found in the polymer-rich phase, then this can result in the agglomeration of nanoparticles in 

the fiber matrix prevent lithiation with the active material.  Similarly, particle agglomerations 

could be found in the solvent-rich phase, but in this case, the particles will be placed in the pores, 

which is beneficial for battery applications to reduce the volume expansion of the electrode.  
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3.2. Centrifugally Spun Anode Materials for Lithium-ion Batteries 

The electrochemical design of anodic materials widely varies based on multiple parameters. 

Such parameters include coatings, nanoparticle addition, binder material. Etc. In the case of 

nanofiber production for anodic purposes, nanofibers saturated with metal, metal oxide, ceramic, 

and composite nanoparticles have seen an increased interest in recent years because of their 

attributes: controllable fiber diameter, high surface area – to volume ratio, low density and high 

pore volume [90]. Thus, In the following sections, the up-to-date materials added to centrifugally 

spun nanofibers to enhanced anodic performance in LIBs and SIBs will be presented.  

3.2.1. Carbon Nanofibers for LIBs 

Carbon nanofibers (CNFs), a nanostructured material have produced excellent cycling 

performance results after 50 cycles [91]. Carbon fibers can be prepared from different polymer 

precursor solutions or melts. Solutions made with polymers such as PAN, PVP, PVA, 

polyvinylidene fluoride (PVDF), among others [92],  have been used as CFs precursors. 

Currently, 95 % of CFs are produced from PAN precursor nanofibers due to their high carbon 

yield after carbonization [93], [94]. When used in LIBs, carbon-fiber anodes prepared from 

centrifugally spun PAN precursor fibers have delivered a reversible capacity of 297 mAh g–1 

after 100 cycles at 100 mAg–1 [24]. The performance of carbon nanofibers can be enhanced by 

adding additives such as metal oxides, metal sulfites, metal nanoparticles, ceramic nanoparticles, 

etc. In the following section, active materials used in LIBs are compiled and presented in groups 

based on their insertion mechanism.  
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3.2.2. Alloying Based Materials for LIBs 

Common characteristics of alloying based materials include their high theoretical 

capacity accompanied by a large volume change during charge/discharge cycles, which can lead 

to anode fracture and crumbling. To retain the higher capacity offered by alloying based 

materials, volume buffering structures need to be implemented in centrifugally spun fibers. In 

general, two main methods have successfully achieved high capacities for highly expandable 

materials. One approach involves introducing pores in the fibers where the particles are placed. 

This clearance between the particles and fibers is filled by the expansion of the nanoparticles 

after lithiation, thus decreasing the overall volume change of the anode [95], [96], [97], [98]. The 

other method involves constraining the volume change of the particles by encapsulating them in 

a carbon matrix [26], [26], [99], [100]. These approaches can be implemented in the future to 

improve the electrochemical performance of centrifugally spun composite-fiber anodes for LIBs. 

Table 1 illustrates a list of alloy-based materials used in the preparation of composite-fiber 

anodes via CS for LIBs.  
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Table 1. Alloying based materials used in the preparation of composite carbon fibers via 
centrifugal spinning for use as anodes in LIBs. 

Composit
e Fiber 
Anode 

Material 

Polymer 
Precursor(s), 
Additive(s), 

and Solvent(s) 

Spinning 
Conditions 

Stabilization and 
Carbonization 

Electrochemical 
Performance (tested 

at 100 mA g-1) 
Reference 

Si/C 14 wt.% 
PVA/DI water 
+ 19% Si/DI
water

5000 rpm 
for 5 min, 

Partially 
carbonized by acid 
treatment followed 
by carbonization at 
800 °C for 30 min.  

758 mAh g-1 after 50 
cycles   

[12] 

Sn/C [12 wt.% PAN 
(15% 
Sn)]/DMF 

8000 rpm Stabilized at 280 
°C for 5 hrs. and 
carbonized at 800 
°C for 2 hrs.  

715 and 724 mAh g-1 
after 50 cycles for nano 
and microparticles, 
respectively  

[24] 

Sn/C [12 wt.% PAN 
(15% 
Sn)]/DMF 

8000 rpm Stabilized at 280 
°C for 5 hrs. and 
carbonized at 800 
°C for 2 hrs.  

675 mAh g-1 after 100 
cycles with a ten 
minutes rest between 
each discharge cycle. 

[90] 

Sb/C [4g PVB + 5g 
SbCl3]/40.0 
mL methanol 

Not 
Specified 

Carbonized at 600 
°C for 2 hrs.  

315.9 mAh g-1 after 100 
cycles 

[101] 

Sb/C [4g PVB + 4g 
SbCl3]/40.0 
mL methanol 

Not 
Specified 

Carbonized at 600 
°C for 2 hrs.  

254.4 mAh g-1 after 100 
cycles 

[101] 

Sb/C [4g PVB + 6g 
SbCl3]/40.0 
mL methanol 

Not 
Specified 

Carbonized at 600 
°C for 2 hrs.  

131.1 mAh g-1 after 100 
cycles 

[101] 

3.2.3. Transition Metal Oxide Materials for LIBs 

Metal oxides can host Li-ions either by alloying, intercalation, or conversion. In some 

cases, metal-oxides exhibit a two-step reaction in which a conversion reaction first forms a 

lithium oxide layer, followed by the alloying mechanism (alloying or intercalation) of the 

transition metal. In this collection of materials, metal oxides comprise the largest group of 

materials implemented in centrifugally spun composite fibers. Table 2 shows a summary of the 

different materials prepared via CS and their electrochemical performance. 
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Table 2. Transition metal oxides used in the preparation of composite carbon fibers via 
centrifugal spinning for use as anodes in LIBs 

Composite 
Fiber 
Anode 

Material 

Polymer 
Precursor(s), 
Additive(s), 

and Solvent(s) 

Spinning 
Conditions 

Stabilization and 
Carbonization 

Electrochemical 
Performance 

(tested at 100 mA 
g-1)

Reference 

CuO/C [12 wt.% PAN 
(15 wt.% 
CuO)]/DMF 

7,000 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs.   

~ 160 mAh g-1 after 
100 cycles   

[102] 

MoO2/C [12 wt.% PAN 
(50, 60, 70, and 
80 wt.%.  
MoO2)]/DMF 

6,800 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs.   

629, 575, 597, 710 
mAh g-1 during the 
first cycle, 
respectively.  

[103] 

Fe3O4/C [12 wt.% PAN 
(15 wt.% 
FeACAC)]/DM
F 

7,000 rpm Stabilized at 280 °C 
for 4 hrs. and 
carbonized at 600 °C 
for 6 hrs.   

300 mAh g-1 after 
100 cycles  

[92] 

TiO2/C [15 wt.% PVP 
(17:4 wt. ratio 
Titanium/PVP)]
/[10:1 wt. ratio 
ethanol/acetic 
acid  

7,000 rpm Stabilized at 280 °C 
for 5 hrs and 
carbonized at 550 °C 
for 5 hrs.   

228.9 mAh g-1 after 
100 cycles  

[27] 

TiO2/C (5 g PVP + 3 g 
TBOT)/[40 mL 
methanol] 

20,000 to 
30,000 rpm 
(0.1 mm 
diameter 
aperture) 

Dried at 60 °C for 12 
h. 

Pre-oxidized at 300 °C 
for 2 h. 
carbonization at 600 
°C for 2 h. 

150 mAh g–1 
after 200 cycles. 

[104] 

𝛼𝛼 Fe3O4/C [28 wt.% PVP 
(2g 
Fe(NO3)39H2H)
]/H2O 
[12% wt. 
PAN]/DMF 

7000-7500 
rpm 

PVP - Stabilization at 
600 °C for 1 hr.  

PAN - Stabilized at 
240 °C for 30 mins. 
and carbonized at 800 
°C for 1 hr.    

505 mAh g-1 after 
100 cycles 

[31] 

Fe3O4/Fe3C
/C 

(5 g PVP + 3 g 
Fe(acac)3)/[40 
mL methanol] 

20,000 to 
30,000 rpm 
(0.1 mm 
diameter 
aperture) 

Dried at 60 °C for 12 
h. 
Pre-oxidized at 300 °C 
for 2 h. 
carbonization at 600 
°C for 2 h. 

400 mAh g–1 
after 200 cycles. 

[104]



27 

𝛼𝛼-Fe2O3/ 
TiO2/C 

[15 wt.% PVP 
(1 g titanium 
(IV) butoxide,
1.5 g iron (III)
acetylacetonate)
]/ethanol/acetic
acid (10:1)

7000 rpm PVP – Stabilization at 
200 C for 2 h 
carbonization at 550 
°C for 5 h.  

340 mAh g–1 
after 100 cycles.  

[14] 

Fe3O4/Fe3C
/TiO2/C 

5 g PVP/[40 mL 
methanol + 3 
mL TBOT ]  

20,000 to 
30,000 rpm 

Dried at 60 °C for 12 
h. 

Pre-oxidized at 300 °C 
for 2 h. 
carbonization at 600 
°C for 2 h. 

700 mAh g–1 after 
400 cycles 

[104] 

NiO/C [12 wt.% PAN 
(15 wt.% 
NiO)]/DMF 

7,000 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs.   

~ 200 mAh g-1 after 
100 cycles  

[102] 

SnO2/C [12% wt.% 
PAN (15% 
SnO2)]/DMF 

7,000 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs.   

211 mAh/g after 50 
cycles  

[102] 

SnO2/NiO/
C 

[12% PAN (15 
wt.% Sn 2-
ethylhexanoate, 
10 wt.% Nickel 
(II) acetate
tetrahydrate)]/D
MF

8000 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 800 °C 
for 2 hrs.   

633 mAh/g after 
100 cycles with a 
ten minutes rest 
between each 
discharge cycle.  

[90] 

ZnO/C [12 wt.% PAN 
(15 wt.% 
ZnO)]/DMF 

7,000 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs.   

~ 235 mAh/g after 
80 cycles  

[102] 

3.2.4. Transition Metal Sulfides Materials for LIBs 

There are only two metal sulfide materials so far utilized in the production of composite 

carbon fibers via centrifugal spinning for LIB applications. Table 3 contains the materials 

discussed in the following subsections. 
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Table 3. Transition metal sulfides used in the preparation of composite carbon fibers via 
centrifugal spinning for use as anodes in LIBs 

Composite 
Fiber 
Anode 

Material 

Polymer 
Precursor(s), 
Additive(s), 

and Solvent(s) 

Spinning 
Conditions 

Stabilization and 
Carbonization 

Electrochemical 
Performance Reference 

MoS2/C [12 wt.% PAN 
(80% MoS2)] 
/DMF 

Not 
Specified 

Stabilized at 155 °C for 
75 mins then Stabilized 
at 280 °C for 75 mins 
and carbonized at 810 
°C for 1 hr. 

250 mAh g–1 after 100 
cycles 

(tested at 100 mA g–1) 

[103] 

TiS2/C [12 wt.% PAN 
(30 wt.% 
TiS2)]/DMF 

Not 
Specified 

Stabilized at 280 °C for 
5 hrs. and carbonized at 
800 °C for 2 hrs. 

250 mAh g–1 after 100 
cycles 

(tested at 50 mA g–1) 

[105] 

3.2.5. Discussion on Composite Carbon Fibers for LIBs  

Multiple nanostructures such as nanoparticles, quantum dots, nanorods, and nanosheets have 

been integrated into electrospun composite CFs since this has been the most adopted method 

used in laboratory research. However, there is plenty of room in CS for the implementation of 

active materials with different nanostructure configurations. In most cases, the capacity of the 

electrospun anodes is higher due to their smaller average diameter. However, future 

implementation of centrifugal spinning to fabricate fibers could help optimize the surface area of 

fibers and, in turn, improve the performance of the centrifugally spun fibers to match and exceed 

the performance of the more widely implemented electrospun fibers.  

3.3. Centrifugally Spun Anode Materials for Sodium ion Batteries 

3.3.1. Carbon Nanofibers for SIBs 

Research to develop compatible materials for SIBs has seen increasing interest over 

recent years [106], [107], [108]. One of the major challenges is the larger ion size. Na+ has an ion 

radius of 0.98 Å compared to the smaller Li+ radius of 0.69 Å [10]. In fact, the smaller ion size of 
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Li+ was the key parameter that stimulated a higher interest in LIBs when both materials were 

initially proposed [107]. Consequently, Na-ions are less capable to intercalate/alloy into the host 

material. SIBs with a graphitic anode exhibit low capacities of ~ 35 mAh g–1 due to the sluggish 

intercalation of Na+ into graphite [109]. CFs prepared by centrifugal spinning and subsequent 

thermal treatment have been prepared with the objective to alter the structure of the CFs and 

improve intercalation kinetics between Na+ and carbon. The produced CFs were used as anodes 

in Na-ion half-cells and delivered a reversible capacity of 88 mAh g–1 after 100 cycles [28]. Even 

after modifying the structure of the CFs to favor Na+ intercalation, the carbon-fiber anode 

delivered less than half the capacity of centrifugally spun CF anode for LIBs. Among the efforts 

to overcome the challenges that SIBs face, centrifugally spun composite fibers have been 

developed for use as anodes in SIBs.  

3.3.2. Alloying Based Materials for SIBs 

There are limited available results on the use of alloying based materials as precursors for 

centrifugally spun composite-fiber anodes in SIBs. The material composition, additives, heat 

treatments, and the electrochemical performance of these composite-fiber anodes are compiled in 

Table 4. 
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Table 4. Alloying based materials used in the preparation of composite carbon fibers via 
centrifugal spinning for use as anodes in SIBs. 

Composite 
Fiber 
Anode 

Material 

Polymer 
Precursor(s), 
Additive(s), 

and Solvent(s) 

Spinning 
Conditions 

Stabilization and 
Carbonization 

Electrochemical 
Performance 

(tested at 100 mA g-

1) 

Reference 

SnSb/C [15 wt.% PAN 
(50 wt.% 
SnO2/Sb2O5)]/
DMF 

Not 
Specified 

Stabilized at 250 °C for 
2.5 hrs. and carbonized 
at 700 °C for 2 hrs.   

359 mAh g–1 after 
50 cycles  

[110] 

SnSb/C [15 wt.% PAN 
(100 wt.% 
SnO2/Sb2O5)]/
DMF 

Not 
Specified 

Stabilized at 250 °C for 
2.5 hrs. and carbonized 
at 700 °C for 2 hrs.   

345 mAh g–1 after 50 
cycles  

[110] 

SnSb/C [15% PAN (100 
wt.% 
SnO2/Sb2O5)]/
DMF (Carbon 
Coated) 

Not 
Specified 

Stabilized at 250 °C for 
2.5 hrs. and carbonized 
at 700 °C for 2 hrs.   

781 mAh g–1 after 
50 cycles  

[110] 

SnSb/rGO [13 wt.% PAN ( 
1:1: 2 wt. ratio 
Sn(CH3COO)/S
b(CH3COO)3/P
AN)]/DMF  
(Carbon 
Coated) 

4000 rpm Stabilized at 280 °C for 
2.5 hrs. and carbonized 
at 700 °C for 1 hrs.   

324.5 mAh/g after 
200 cycles 

(tested at 50 mA g–1) 

[111] 

3.3.3. Transition Metal Oxide Materials for SIBs 

Only two metal oxide materials have been used in the preparation of composite-fiber 

anodes via CS for SIBs. Like in the case of alloying based materials, multiple material 

compositions, additives, or further treatments were involved. A concise list of this material 

configuration and their electrochemical performance results are collected in Table 5.  
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Table 5. Transition metal oxides used in the preparation of composite fibers via centrifugal 
spinning for use as anodes in SIBs. 

Composite 
Fiber 
Anode 

Material 

Polymer 
Precursor(s), 
Additive(s), 

and Solvent(s) 

Spinning 
Conditions 

Stabilization and 
Carbonization 

Electrochemical 
Performance Reference 

SnO2/C [12 wt.% PAN 
(15% SnO2

)]/DMF 

7,000 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs. 

198 mAh g–1 after 50 
cycles 
(Tested at 100 mA g–1) 

[102] 

SnO2 /C Not Specified Not 
Specified 

Oxidized at 500 °C 
for 3 hrs. 

158 mAh g–1 after 50 
cycles 
(tested at 640 mA g–1) 

[112] 

SnO2/C & 
SnO2/C 
CVD 
treated 

[13 wt.% PAN 
(40% SnCl2)] 
/DMF 

4000 rpm Oxidized at 500 °C 
for 3 hrs. CVD for 
30 60 and 90 mins. 

71, 111, 158, 147 
mAh g–1 after 30 
cycles 
(tested at 40 mA g–1) 

[113] 

SnO2/C & 
SnO2/C 
CVD 
treated 

[13 wt.% PAN 
(40% SnCl2)] 
/DMF 

4000 rpm Oxidized at 500 °C 
for 3 hrs. CVD for 
30 60 and 90 mins. 

39, 99, 86, 100 mAh 
g–1 after 50 cycles. 
(tested at 640 mAh g–-

11) 

[113] 

MoO2/C [12 wt.% PAN 
(80% wt.  
MoO2)] /DMF 

6,800 rpm Stabilized at 280 °C 
for 5 hrs. and 
carbonized at 700 °C 
for 2 hrs.   

~130 mAh g–1 after 
100 cycles   
(tested at 100 mA g–1) 

[103] 

3.3.4. Discussion on Composite Carbon Fibers for SIBs  

Compared to LIB anodes, there is more room for innovation in SIBs since not as many 

materials, fiber structures, or post carbonization treatments have been investigated. The 

following are some examples of electrochemical performance improvement of electrospun fiber 

anodes in SIBs by post carbonization treatments and the design of ternary composite materials. 

The centrifugally spun SnO2/C composite anodes delivered a specific capacity of 198 mAh g–1 

after 50 cycles at 100 mAg–1 [102]. On the other hand, electrospun fibers with partially reduced 

SnO2 nanoparticles were embedded in carbon fibers followed by carbon coating and thermal 

reduction processes [114]. After 50 cycles at a current density of 100 mA g–1, the SnO2/C 

composite-fiber electrode delivered a high specific capacity of 536 mAh g–1 at 100 mA g–1 [114]. 
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Also, centrifugally spun SnSb/C composite-fiber anodes yielded a capacity of 345 mAh g–1 after 

50 cycles at a current density of 100 mA g–1  [110]. Similar experiments have been conducted by 

electrospinning. In a study, SnCl2 and SbCl3 were used as precursors for SnSb alloy. Moreover, 

TEOS was included in the solution as the silica precursor. All these precursors were 

homogenized in a PVP/DMF solution from which electrospun porous SnSb/SiO2/C CFs were 

obtained [115]. The incorporation of silica in the carbon matrix helped to buffer the volume 

change and maintained the structural integrity of the fibers [115]. The SnSb/SiO2/C composite 

fiber anode exhibited a high specific capacity of 660 mAh g–1 at a galvanostatic current density 

of 200 mA g–1 after 100 cycles [115]. As one can observe for the SnSb binder-free anodes, the 

addition of TEOS resulted in a significant improvement in the electrochemical performance of 

electrospun composite fibers. These comparisons illustrate how further fiber treatments or 

ternary composites could also improve the performance of centrifugally spun composite fibers. 
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CHAPTER IV 

METHODOLOGY 

4.1. Material Characterization 

The morphology of CFs was examined by scanning electron microscopy (SEM; Sigma VP 

Carl Zeiss, Germany) coupled with an energy dispersive spectroscopy (EDS) system (EDAX, 

Mahwah, NJ, USA) to investigate the elemental composition. To determine the average fiber 

diameter, 300 measurements were taken, 60 per image, across a total of 5 different SEM images 

scaled on ImageJ software. Similarly, the histograms were produced using the 300 randomly 

selected measurements. Thermogravimetric analysis (TGA; 209 F3 Tarsus NETZSCH, 

Germany) was conducted in air and nitrogen atmospheres to investigate the effect of annealing 

on fiber degradation. Raman spectra of PVP powder and precursor nanofibers prepared from 

aqueous PVP solutions of different concentrations (20, 25, and 28 wt. %) were obtained with a 

Renishaw InVia confocal spectrometer operating at 785 nm. The surface tension of PVP 

solutions was measured using Goniometer, Kyowa-DropMaster series. Finally, the viscosities of 

PVP and composite precursor solutions were determined using a programable rheometer 

(BROOKFIELD, RVDV-III U). 
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4.2. Electrochemical Testing 

The electrochemical performance of the carbon-fiber anodes was evaluated using CR2032-

type coin cells. CFs with a half-inch diameter were punched out and used directly as binder-free  

anodes. Lithium foil was used as the counter electrode in Li-ion half cells. Similarly, sodium 

cubes (fisher scientific) were used to prepare the sodium-chip counter electrode for half-cell 

SIBs. The weight of these anodes ranged between 4-9 mg. The Li-ion and Na-ion half cells 

(CR2032) were assembled in a glovebox (Mbraun, USA) under a controlled environment with 

high purity argon. Glass microfibers were used as the separator (9934-AH, Whatman Glass 

microfibers). 1 M LiPF6 solution in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 

v/v) was prepared and used as the electrolyte for LIBs. Sodium Perchlorate (NaClO4) solution in 

ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 v/v) was prepared and used as the 

electrolyte for SIBs. Cyclic voltammetry (BSC-810 Bio-logic, France ) experiments were 

performed on Li-ion and Na-ion half cells at a rate of 0.1 mV s–1 between 0 and 3 V. 

Galvanostatic charge/discharge experiments were conducted at a current density of 100 mA g–1 

from 0.05 to 3.0 V (CT2001A Landt, China). The rate performance was evaluated at current 

densities of 50, 100, 200, 400, 500, and 50 mA g–1 (BT 2000 Arbin, US). Electrochemical 

impedance spectroscopy (EIS) experiments were performed using an Autolab128N at a 

frequency range of 100 kHz to 0.1 kHz. 
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CHAPTER V 

       EXPERIMENTAL 

5.1. Materials 

Poly(vinylpyrrolidone) (PVP) with an average molecular weight (Mw) of 1,300,000 and 

Ethanol (200 proof) were purchased from Sigma-Aldrich USA. Deionized (DI) water, 18 MΩ 

cm, was produced in-house (Milli-Q, Millipore Ltd., U.K.). 1 M LiPF6 salt and dimethyl 

carbonate (DMC) were purchased from Alpha Aesar. Ethylene carbonate (EC) was purchased 

from Sigma Aldrich. Commercial lithium-foil chips were purchased from MTI Corp. USA. 

Sodium cubes immersed in mineral oil and Sodium Perchlorate (NaClO4) were purchased from 

fisher scientific. Titanium (IV) oxide (TiO2 anatase, 99.7%, <25 nm,) was purchase from Sigma 

Aldrich. Tin nanopowder (Sn, 99.9%, 60-80nm) was purchased from Us Research Nanomaterials 

Inc. 

5.2. Procedures 
5.2.1. Carbon Fibers Preparation 

The precursor fibers were prepared from 20g aqueous solutions with PVP concentrations 

of 10, 15, 20, 25, and 28 wt.%. The solutions were homogenized by magnetic stirring at 70 °C 

for 5 h. Solutions with concentrations of 25 wt.% or higher were subjected to an additional 5 h of 

stirring to achieve complete homogenization. The PVP solutions were then spun in laboratory-

scale centrifugal spinning equipment (FiberRio Cyclone L-1000M). The spinneret was equipped 

with 30-gauge regular bevel needles (EXELINT, U.S.A). A variety of spinneret rotational speeds 
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and spinning times were explored for each solution concentration. The centrifugal spinning 

parameters and solution properties used to prepare the PVP fibers are given in Table 6. 

Table 6. Spinning parameters for the fabrication of centrifugally spun PVP fibers. 

Polymer 
concentration 

(wt.%) 

Rotational speed 
(rpm) 

Spinning 
time (min) 

Humidity during 
successful fiber 

yield (%) 

Fiber 
formation 

10 4000 – 9000 3 – 8 35 - 60 No 

15 4000 – 9000 3 – 8 35 - 60 No 

20 6000 4 < 40 Yes 

25 9000 5 < 60 Yes 

28 9000 8 < 60 Yes 

Fibers were collected and subsequently annealed at 150 °C for 24 h, in air (1 °C/min) 

(ELF 11/6 Carbolite Gero, UK). They were left in air to reach room temperature and then placed 

in a tube furnace (OTF-1200X MTI Corporation, US) to be pre-oxidized in air at 270 °C for 4 h 

(1 °C/min) followed by carbonization in an Argon atmosphere at 700 °C for 3 h (5 °C/min).   

5.2.2. Composite Carbon Fibers Preparation 

For the preparation of the precursor solutions discussed in the following sections, the 

active materials were weighed with respect to the polymer weight. The same three-step heat 

treatment used to prepare the carbon fibers in section 5.2.1 was used to prepare the carbon fiber 

composites discussed in this work. Table 7, at the end of this section, summarizes the stirring 

time and temperature as well as the different spinning parameters used for each solution. 

To compare the electrochemical performance of the composite fibers prepared from 

aqueous and mixture (water:ethanol) PVP-based solutions, TiO2/C and Sn/C composite fibers 

were also prepared using ethanol as the solvent and a PVP concentration of 12 wt.%. Active 
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material concentrations of 15, 25, and 35 wt.% were used for TiO2 while concentrations of 10 

and 15 and 25wt.% were used for Sn. The stirring and spinning parameters used to prepare these 

solutions are illustrated in Table 7. 

   5.2.2.1. TiO2/C Composite Fibers 

 20g of aqueous solutions with 28 wt.% PVP concentration were prepared by first 

dispersing, 15, 25, and 35 wt.% of TiO2 particles in the solvent followed by the addition of the 

polymer to the solution. Next, the aqueous solutions were homogenized by magnetic stirring at 

70 °C for 5 h. The solutions were then cooled down to room temperature and put in a vortex to 

accelerate their homogenization. Finally, they were put back on a hot plate for 5 more hours of 

magnetic stirring at 70 °C.  

Similarly, 20g solutions with 22 wt.% PVP concentration were prepared by first 

dispersing, 15, 25, and 35 wt.% TiO2 particles in a 1:1 water:ethanol (wt./wt.) solvent mixture 

followed by the addition of the PVP. The solutions were then homogenized by magnetic stirring 

at 50 °C for 5 h. 

   5.2.2.2. Sn/C Composite Fibers 

Sn/PVP precursor solutions were prepared by first dispersing 10, 15, and 25 wt.% Sn 

particles in a 1:1 water:ethanol (wt./wt.) solvent mixture followed by the addition of 22 wt.% 

PVP. The 20 g solutions were then homogenized by magnetic stirring at 50 °C for 5 h.  
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Table 7. Parameters used to homogenize solutions during magnetic stirring and spin composite 
fibers by centrifugal spinning. 

PVP 
Concentration 

wt.% 
Solvent  Active 

Material 

Stirring 
Time 
(h) 

Stirring 
Temperature 

(C) 

Spinning 
time 

(min:sec) 

Spinning 
speed 
(rpm) 

28 DI Water TiO2 10 70 9 10,000 
22 Water:Ethanol TiO2 5 50 6 9,000 
12 Ethanol TiO2 N/A 25 0:40 7,000 
22 Water:Ethanol Sn 5 50 6 9,000 
12 Ethanol Sn N/A 25 0:40 7,000 

5.2.3. Surface tension 

PVP aqueous solutions with concentrations of 20, 25, and 28 wt.% were prepared 

following the same procedures used to prepare the carbon-fiber precursor solutions. In addition, 

aqueous solutions with 20 wt.% PVP and active material (Sn and TiO2) concentrations of 10, 20, 

and 30 wt.% were prepared by magnetic stirring at 70 °C for 5 h. The density of the solutions 

was determined by weighing 2 mL of each solution in a close container. Solution droplets were 

formed using the goniometer. 10 drops were formed for each solution and the surface tension of 

each drop was measured 10 times for a total of 100 measurements per solution. Finally, the 

average of these 100 measurements was calculated to determine the surface tension of each 

solution. 

5.2.4. Viscosity measurements 

Viscosity was measured by inserting the rheometer’s viscosity probe in a 10 mL 

graduated cylinder containing 10 mL of each solution used to characterize the surface tension. 

After reaching steady state at angular velocities of 40, 80, 120, 160, 200, and 240 rpm, viscosity 

measurements were taken. Finally, an average viscosity was determined from the viscosity 

values taken at different angular speeds. 
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CHAPTER VI 

RESULTS AND DISCCUSIONS 

6.1. Material Characterization 

6.1.1. Fiber Formation and Morphology of PVP Fibers 

 Fig. 7 shows the fibers during centrifugal spinning as well as their appearance when 

collected, annealed, and carbonized. Among the three different PVP concentrations, the 25 wt.% 

solution had the highest fiber yield (Fig. 7a). In previous studies, the centrifugal spinning of PVP 

precursor solutions in ethanol with concentrations less than 20 wt.% resulted in bead-free PVP 

nanofibers with a high yield of fibers [27] [28]. When using water as the solvent, PVP fibers 

were only produced with polymer concentrations of 20 wt.% or higher. At 25 wt.%, the fiber 

production rate from an aqueous PVP solution was able to match that from PVP/ethanol 

precursor solutions. The 20 wt.% PVP solution also produced similar amounts, but at this 

concentration, the production of fibers became more sensitive to higher humidity levels whereas 

the 25 and 28 wt.% solutions were unaffected by humidity. Although the 28 wt.% PVP solution 

was not as sensitive to humidity, it yielded beaded fibers.  

The better production rate of the more concentrated solutions can be explained by several 

factors. It has been hypothesized that solvents with higher volatility lead to higher viscosity 

during the fiber formation in centrifugal spinning [116]. Therefore, the faster vaporization rate 

of ethanol leads to a higher viscosity at the tip of the needle before producing a fiber jet.
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To compensate for the lower vapor pressure of water, higher polymer concentrations are 

needed to increase the viscosity of the solution at the tip of the needles [116]. Another 

observation is that successful fiber production was only achieved at higher spinneret rotational 

speeds compared to solutions prepared with ethanol only. This is also due to the lower 

evaporation rate of water. Since increasing rotational speed increases the solvent evaporation 

rate, faster speeds are needed for the complete depletion of water from the fibers [116]. 

Fig. 7. a) Centrifugal spinning setup, b) pristine collected fiber membrane, c) annealed fiber 
membrane, and d) carbonized fibers. 

The fibrous mats retained a similar overall volume and surface area after annealing, but 

their appearance, weight, and average fiber diameter changed. The fibers turned from white to a 

light yellow color and an average of 21.3% weight loss was recorded after annealing. This is 

attributed to the excess water in the fibers that was removed during annealing. After 

carbonization, the fibers suffered an average of 63.2% weight loss. Although the fibers shrank 

due to the carbonization process, they remained flexible. From this point forward, carbon fibers 
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prepared from aqueous solutions with 20, 25, and 28 wt.% PVP will be referred to as 20C-W, 

25C-W, and 28C-W.  

Fiber flexibility is crucial because it allows the CFs to be used as binder-free anodes in 

LIBs. Moreover, these flexible fibers were achieved at a higher carbonization temperature than 

that in similar studies, which is beneficial electronic conductivity of the fibers [14], [27], [28]. 

Results on CFs prepared from electrospun PAN precursor fibers and subsequent thermal 

treatment showed that carbonization temperature plays a central role in increasing conductivity 

[117]. Achieving such high conductivities enables stand-alone CF anodes to function properly 

without the addition of conductive fillers or a current collector. 

To compare the structure of the CFs obtained from annealed and pristine fibers, both PVP 

precursor fibers were oxidized and then carbonized using the above-mentioned heat treatment. 

This comparison corroborated that the annealing process is crucial to produce flexible CFs. Fig. 

8 shows the pristine (bottom) and annealed (top) fibers before carbonization and the resultant 

structure. As shown in Fig. 8, when the carbonization of PVP fibers was performed without the 

annealing process, brittle carbon fibers were obtained. On the other hand, the annealed fibers 

reduced fiber shrinkage during carbonization while maintaining a flexible structure.   

Fig. 8. a) Pristine (bottom) and annealed (top) fibrous membranes, b) Carbonized fibers from 
pristine (bottom), and annealed (top) fibrous membranes. 
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Fig. 9 shows the average diameter of the pristine, annealed, and carbonized fibers 

prepared from PVP precursor solutions with different concentrations of 20, 25, and 28 wt.%. It 

can be observed in Fig. 9 that even though the 25wt.% solution produced the highest fiber yield, 

it also produced fibers with the largest diameter. Nevertheless, these fibers still have a smaller 

diameter than centrifugally spun PVP fiber prepared with ethanol only (1.99 𝜇𝜇𝜇𝜇) [28]. 

 Fig. 10, Fig. 11, and Fig. 12 show the SEM images, diameter distribution, and 

histograms of the pristine, annealed, and carbonized fibers prepared from the 20, 25, and 28 

wt.% PVP solutions, respectively. A common behavior observed is that the annealing process 

resulted in increased diameters of the pristine fibers. For the 28 wt.% PVP pristine fibers, one 

can observe that the fiber diameter not only increased, but a significant change in morphology 

also took place. The pristine 28 wt.% PVP fibers had a “ramen-like” structure, but their 

morphology changed to a more homogeneous cylindrical cross-section after annealing. Another 

observation is that beads are less present in fibers prepared from the 20 and 25 wt.% PVP 

solutions.  
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Fig. 9. Average diameters of pristine, annealed, and carbonized fibers prepared from the 20, 25, 
and 28 wt.% PVP aqueous solutions. 
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Fig. 10. SEM images of fibers prepared from 20 wt.% PVP precursor solution, fiber 
diameter distribution, and histogram: a) pristine fibers, b) annealed fibers, and c) carbon 

fibers. 
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Fig. 11. SEM images of fibers prepared from 25 wt.% PVP precursor solution, fiber 
diameter distribution, and histogram: a) pristine fibers, b) annealed fibers, and c) 

carbon fibers. 
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Fig. 12. SEM images of fibers prepared from 28 wt.% PVP precursor solution, fiber 
diameter distribution, and histogram: a) pristine fibers, b) annealed fibers, and c) carbon 

fibers. 
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6.1.2. Fiber Formation and Morphology of Composite Fibers 

PVP aqueous solutions with different concentrations of 10, 15, 20, 25, and 28 wt.% were 

prepared with active material loading of 10, 15, and 25 wt.% for Sn, and 15, 25, and 35 wt.% for 

TiO2. A wide range of angular velocities (1000 – 10,000 rpm) and spinning times (≤ 9 min) 

were explored to determine the spinning parameters needed for the formation of composite 

fibers. Nonetheless, the fiber production rate needed to collect an entire fibrous mat was not 

achieved in the case of solutions with Sn. PVP/TiO2 fiber membranes were successfully spun at 

higher rates in PVP aqueous solutions with a 28 wt.% PVP. However, the fiber diameter of these 

fibers was large, and beads were found (Fig. 13). In addition, the fiber formation was 

inconsistent and no distinct solution attribute for successful fiber formation could be recognized. 

Fibers with 15, 25, and 35 wt.% of TiO2 were subsequently carbonized to prepare the TiO2/C 

composite-fiber anodes. These composite carbon fibers will be referred to as 28C/15TiO2-W, 

28C/25TiO2-W, and 28C/35TiO2-W from this point forward. The diameter distribution 

(histograms) for these carbon fiber composites are shown in Figures A1 through A3 in the 

appendix. 

Fig. 13. Fiber Morphology of a) pristine, b) annealed, and c) carbonized fibers prepared from 28 
wt.% PVP precursor solution with 25 wt.% TiO2. 

In order to consistently produce composite fibers at higher rates, the vapor pressure of the 

precursor solution must be increased by adding a volatile solvent. In this work, ethanol was 
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chosen as the volatile solvent due to its higher vapor pressure compared to that of water [118]. 

Raoult’s law was used for water/ethanol solvent mixtures at different ratios to approximate the 

increase in vapor pressure [119]. As an illustration, the following calculations show the 

procedure followed to estimate the vapor pressure of a 10g water/ethanol mixture at 25 oC with 

10 wt.% water.  

1g H2O ∗
1 mol H2O

18.01 g
= 0.0555 moles of H2O in 1g of water = nwater 

9g C2H6O ∗
1 mol C2H6O

46.08 g
= 0.1953 moles of C2H6O in 9g of ethanol = nethanol 

Xwater =  
nwater

nwater + nethanol 
= 0.2213 

Xethanol =  
nethanol

nwater + nethanol 
= 0.7787 

Ethnol partial pressure: Pethanol = Xethanol ∗ Pethanolo = 45.7876 mm Hg 

where Pethanol o is the pressure of pure ethanol: 58.8 mm Hg 

Water partial pressure: Pwater = Xwater ∗ Pwatero = 5.2670 mm Hg 

where Pwater 
o is the pressure of pure water: 23.8 mm Hg 

Solvent mixture vapor pressure: Psolvent = Pethanol + Pwater = 51.046 mm Hg 

Similar calculations were performed for multiple water compositions to produce the results 

shown in Table 8 and Fig. 14. The results in Figure 14 show the vapor pressure (mm Hg) in a 

water/ethanol solvent mixture as a function of water wt.% where the vapor pressure of 

water/ethanol mixture decreases with increasing water concentration. 



48 

Table 8. Vapor pressure of water/ethanol solvent mixtures at different ratio compositions 

Water/Ethanol 
solution 

10 g Solution 
W/E 

Number of 
Moles 

Mole 
fractions 

Partial 
pressure 
(mm Hg) 

Solution 
Vapor 

Pressure (mm 
Hg) 

Water 
Wt% 

Ethanol 
Wt% 

Water 
Wt. 
(g) 

Ethanol 
Wt. (g) Water Ethanol Xw Xe Pw Pe Water/Ethanol 

0 100 0 10 0.00 0.22 0.00 1.00 0.00 58.80 58.80 
10 90 1 9 0.06 0.20 0.22 0.78 5.27 45.79 51.05 
20 80 2 8 0.11 0.17 0.39 0.61 9.28 35.86 45.15 
30 70 3 7 0.17 0.15 0.52 0.48 12.45 28.05 40.50 
40 60 4 6 0.22 0.13 0.63 0.37 15.00 21.74 36.74 
50 50 5 5 0.28 0.11 0.72 0.28 17.11 16.53 33.64 
60 40 6 4 0.33 0.09 0.79 0.21 18.88 12.16 31.04 
70 30 7 3 0.39 0.07 0.86 0.14 20.38 8.44 28.82 
80 20 8 2 0.44 0.04 0.91 0.09 21.68 5.24 26.92 
90 10 9 1 0.50 0.02 0.96 0.04 22.81 2.45 25.26 
100 0 10 0 0.56 0.00 1.00 0.00 23.80 0.00 23.80 
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Fig. 14. Vapor pressure vs. water composition for a 10 mg ethanol-water solvent mixture 

It is important to mention that although Raoult’s law can be used to approximate the 

vapor pressure of the solvent mixture, it cannot be used to approximate the vapor pressure of 
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polymer solutions due to the polymer three-dimensional network swelling and the elastic 

component that gelation introduces to the solution [120] [121].  

For aqueous PVP solutions, the material concertation threshold to produce nano/micro 

fibers was 20 wt.%. Therefore, the required minimum solvent vapor pressure to produce fibers at 

15 wt.% was sought after. It was observed that fibers can be produced at 15 wt.% PVP with a 

maximum water percentage of 70% in ethanol, or minimum vapor pressure of 28.82 mm Hg 

(Table 8). Similarly, PVP solutions (15 wt.%) with 10 wt.% Sn were prepared with different 

water concentrations for the precursor solution. It was observed that a minimum of 50 wt.% of 

water in ethanol produced composite fibers. However, the fiber yield was poor. Moreover, beads 

and solution droplets were still observed in the fibers and casing of the centrifugal spinning 

machine, respectively.  

Studies on the surface tension of aqueous PVP solutions show that the surface tension 

decreases with increasing polymer concertation while viscosity exponentially increases [122]. 

These behaviors are beneficial since the time for bead formation is proportional to viscosity and 

inversely proportional to surface tension [116]. Hence, increasing the polymer concentration in 

the solution would increase the time for bead formation due to Rayleigh instabilities and allow a 

longer evaporation time for fiber formation with a homogeneous cylindrical cross-section. Based 

on this hypothesis, the water percentage in ethanol was kept at 50% while the polymer 

concentration was increased to 20 and 25 wt.% PVP while maintaining a 10 wt.% Sn as active 

material. After some iterations, an optimum polymer concertation of 22 wt.% PVP in 50% water 

(or 1:1 water: ethanol (wt./wt.)) was determined for the successful production of composite 

fibers. Solutions with Sn concentrations of 10, 15, and 25 wt.% were prepared. However, only 

the solutions with 10 and 15 wt.% Sn produced fibers. The carbon fibers formed from these 
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Sn/PVP precursor fibers will be referred as 22C/10Sn-W:E, and 22C/15Sn-W:E. Similarly, 

TiO2/C composite fibers prepared from TiO2/PVP precursor solutions using the water:ethanol 

solvent mixture will be referred as 22C/15TiO2-W:E, 22C/25TiO2-W:E, and 22C/35TiO2-W:E 

from this point forward. For simplicity, Fig. 15 shows a schematic for carbon and composite 

carbon fibers nomenclature interpretation. 

Fig. 15. Interpretation for carbon and composite carbon fibers anodes nomenclature structure. 

Despite the successful high fiber yield of composite fibers with the 1:1 water:ethanol 

solvent, the morphology of the produced fibers was unfavorable. Particles in both cases, pristine 

and annealed fibers, were seldomly found (Fig. 16a and Fig. 16b; Fig. 17a and Fig. 17b). This 

lack of particle exposure was attributed to the large fiber diameter obtained due to the addition of 

ethanol to the solution [41]. In general, particles were only spotted when large agglomerations 

outgrew the diameter of the fibers. Even though the average fiber diameter decreased after the 

carbonization process and more particles were exposed on the surface of the carbon fibers, the 

average diameter of the composite carbon fibers remained larger than desired (Fig. 16c and Fig. 

17c). For comparison, the fiber diameters for 28C/TiO2-W and 22C/TiO2-W:E carbon fibers with 

all three, 15, 25, and 35, active materials loadings are presented in Fig. 18. The histograms with 

linear distribution curves for the 22C/15TiO2-W:E, 22C/25TiO2-W:E, and 22C/35TiO2-W:E 

carbon fibers are shown in Figures A4 through A6 in the appendix. 
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Fig. 16. Fiber Morphology of a) pristine, b) annealed, and c) carbonized 22 wt.% PVP/10 wt.% 
Sn in 1:1 water:ethanol solvent. 

Fig. 17. Fiber Morphology of a) pristine, b) annealed, and c) carbonized 22 wt.% PVP/25 wt.% 
TiO2 in 1:1 water:ethanol solvent. 
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Fig. 18. Average diameter of C/TiO2-W and C/TiO2-W:E carbon fibers. 

6.1.3. Viscosity and Surface tension 

To corroborate an increase in viscosity and decrease of surface tension with increasing 

polymer concentration, viscosity and surface tension tests were performed on solutions with 

different PVP concentrations of 20, 25, and 28 wt.%. The results in Table 8 show that the 

increase in polymer concentration indeed increased solution viscosity and reduced the surface 

tension. The effect of nanoparticles on viscosity and surface tension was also investigated by 

comparing a 20 wt.% PVP aqueous solution to polymer solutions with the same concentration 

(20 wt.% PVP) and 10, 20, and 30 wt.% Sn or TiO2 loads. The obtained results are also presented 

in Table 9. In general, the surface tension and solution viscosity decreased with increasing 

nanoparticle concentration in the solution.  
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Table 9. Surface tension (mN/m) and Viscosity (cP) measurements for PVP/water and 
PVP/water/active material solutions. 

Material 
Surface 
Tension 
(mN/m) 

Viscosity 
(cP) 

Density 
(g/cc) 

kinematic 
viscosity (cSt or 

mm^2/s) 

Average 
Surface 
Tension 

Average 
Viscosity 

(cP) 
20% PVP - 

H2O 56.45 4626 0.872 5305.05 

N/A  N/A 25% PVP - 
H2O 55.23 16133 0.883 18270.67 

28% PVP - 
H2O 49.07 53450 0.847 63105.08 

20% PVP/10% 
Sn - H2O 54 3635 0.84 4327.38 

54.80 6,430.00 
20% PVP/20% 

Sn - H2O 57.02 8455 0.881 9597.05 

20% PVP/30% 
Sn - H2O 53.37 7200 0.856 8411.21 

20% PVP/10% 
TiO2 - H2O 52.03 4992 0.85 5872.94 

51.84 4,744.67 
20% PVP/20% 

TiO2 - H2O 51.16 4309 0.846 5093.38 

20% PVP/30% 
TiO2 - H2O 52.32 4933 0.861 5729.38 

As observed in Table 9, an increase in polymer concentration plays a much greater role in 

viscosity and surface tension than the addition of nanoparticles to the aqueous solution. Thus, 

other factors that could prevent the production of composite fibers in aqueous solutions were 

explored. During the viscosity measurement, it was observed that the viscosity at the lower 

portion of polymer solutions with Sn was slightly lower than the viscosity at the upper portion of 

the solution. This observation led to the investigation of particle dispersion in water and ethanol 

solutions. To perform this comparison, 5 wt.% Sn and 5 wt.% TiO2 were dispersed in 10g water 

and ethanol followed by 30 minutes of ultrasonication and 1 minute of mixing in a vortex. Then, 

the solutions were left overnight to compare particle sediments the next day in both solutions 

(Fig. 19). It was evident that particles remained more dispersed in ethanol than in water. Well-
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defined particle rich and particle poor layers were observed in the Sn/water solution. This 

comparison could explain the unsuccessful formation of Sn/C composite fibers from aqueous 

precursor solutions due to needle clogging. Moreover, this behavior could also explain the 

irregularity of successful TiO2/PVP composite fibers formation using aqueous solutions because 

different periods took place between the homogenization of the aqueous TiO2 solutions and their 

subsequent spinning attempt.  

The implementation of nanostructures such as nanoparticles, nanofibers, nanowires, 

nanorods, or nanosheets in fluids is a new class of lubricants in tribology. This class of fluid 

lubricants is known as nanofluids [123]. In that field, ceramic and metal nanoparticles are 

dispersed in base fluids such as water and oil and it has been observed that particle dispersion is 

a major challenge affecting the effective performance of these nanofluids, especially for metal 

nanoparticles. In general, some of the techniques that ameliorate particle dispersion in water 

include intensive use of ultrasonic equipment, variation in pH values, and the addition of surface 

agents (dispersants and surfactants) [123]. 

Fig. 19. Comparisons between TiO2 and Sn particle dispersion in ethanol and water ~12hrs after 
dispersion. 
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6.1.4. Raman Spectroscopy of Carbon Fibers 

The Raman lines of PVP powder and corresponding centrifugally spun nanofibers are 

shown in Fig. 20. There are no significant differences among these spectra. This was expected as 

the size of the nanofibers is not sufficiently small to incur confinement effects. In the low Raman 

shift regions, relatively few broad lines were recorded in the pristine and annealed PVP fibers at 

133, 365, and 556 cm–1. They are tentatively assigned to longitudinal acoustic modes or ring 

vibrations. C-C ring vibrations and breathing modes were reported at 760 and 937 cm–1, 

respectively [124], [125]. 

Fig. 21a and Fig. 21b show the effect of the annealing at 150 °C on the PVP nanofibers 

obtained from the 20 % PVP solution. A detailed analysis showed that the main consequences of 

the annealing process were manifested by a decrease in the amplitude of the Raman lines and 

their broadening. It was noticed that within experimental errors, the line positions were not 

significantly affected by annealing and that all intense lines were still present in the spectrum of 

the annealed nanofiber. Similar behavior was observed for the annealed nanofibers obtained 

from 25 % and 28 % PVP solutions. 
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Fig. 20. Raman lines of PVP powder and PVP pristine fibers prepared from solutions with PVP 
concentrations of 20, 25, and 28 wt.%. 
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Fig. 21. A comparison between the Raman spectra of pristine and annealed fibers prepared from 
the 20 wt.% PVP solution in water. 

Fig. 22 shows the Raman spectra of the PVP powder and the corresponding pristine, 

annealed, and carbonized nanofibers obtained from a solution containing 20 wt.% PVP in water. 

The annealing process of the PVP nanofibers decreased drastically the intensity of the Raman 

lines while very the carbonization process of the PVP nanofibers at 700 °C produced substantial 

changes in the Raman spectra of the nanofibers. Most of the lines assigned to PVP powder or 

nanofibers are completely erased by the carbonization process. Apparently, only the line located 

at 1235 cm–1 survived, although it is slightly shifted and broadened. The most intense line 

located at 1363 cm–1 was identified as the D band in carbonaceous materials [126]. The G line is 

located at about 1568 cm–1 [126], being weak and broad and appears as a shoulder of the D band. 

Furthermore, the line observed at 1874 cm–1 was tentatively assigned to C=O bonds, reflecting 

the oxidation of the polymer chains, while the line at 2368 cm–1 was identified as G’ (i.e., as an 

overtone 2 phonon process) of the D band [126].  Finally, the line at 3269 cm–1 may be assigned 

as an overtone of the G band [126], [127]. Thus, the carbonization process of the PVP nanofibers 

resulted in the appearance of the D and G bands, a feature that was reported in a previous study 

[128].  
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Fig. 22. Raman spectra of PVP powder, and PVP pristine, annealed, and carbonized fibers 
prepared from the 20 wt.% solution. 

6.1.5. Thermogravimetric Analysis of Carbon Fibers 

TGA was conducted on pristine and annealed PVP fibers in air and nitrogen atmospheres 

to assess the resilience of annealed fibers to degradation. In this analysis, a heating rate of 5 

°C/min was used for all the samples in a range between 25 and 700 °C. In both air and nitrogen 

atmospheres, the annealed fibers yielded more residue than the pristine fibers. The residual 

masses for both samples are illustrated in Fig. 23. Under an airflow, the annealed fibers yielded a 

residual mass of 3% while the pristine fibers only yielded a 0.6%. Thus, the annealed PVP fibers 

produced about five times more residue than the pristine PVP fibers.  When both annealed and 

pristine fibers were heated in an inert flow (nitrogen), the annealed fibers yielded a residual mass 

of 11.3 % while the pristine fibers yielded 5.4%. In this case, the annealed fibers produced twice 

the amount of residue produced by the pristine fibers, indicating that the carbon yield in the 

annealed fibers is higher. This comparison shows that, indeed, annealed fibers have a higher 

resistance to degradation. Even though both annealed and pristine fibers reached a degradation 

plateau at the same temperature (~450 °C under nitrogen and ~650 °C in air), the lower 
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degradation rate in the annealed fibers enabled them to retain more carbon when the degradation 

temperature thresholds were reached. Nevertheless, it is crucial to mention that these residual 

mass percentages are based on the initial mass (100%) of the fibers at room temperature. In 

Figure 10, an initial mass drop was observed in both air and nitrogen atmospheres at 

temperatures below the onset of degradation. This initial mass loss is attributed to the 

evaporation of water absorbed by the PVP fibers, which is hydrophilic. This is supported by 

Raman spectra, which did not reveal the disappearance (or appearance) of new Raman lines upon 

annealing. Thus, using the first plateau as the reference of 100% weight, higher percentages of 

residual mass for both the pristine and annealed PVP fibers can be determined. Using the TGA 

data analyzer software (TG 209 F3 Tarsus, NETZSCH, Germany), the mass changes between the 

first and second plateaus were determined as -63.9% and -73.6% for the annealed and pristine 

fibers, respectively. Thus, residual masses of 36.1% and 26.5% can be obtained (Fig. 24) for the 

annealed and pristine fibers, respectively. Furthermore, these values are congruous with the 

average mass losses weighed right after the annealing process (63.2 wt.%). Based on the EDS 

analysis performed on the residues obtained from annealed and pristine fibers under nitrogen, the 

annealed fibers yielded 85% carbon out of its TGA residue, while the pristine fibers yielded 89% 

carbon. Thus, using these adjusted values, the annealed PVP fibers yielded 30.6% carbon while 

the pristine PVP fibers yielded 23.1% carbon. 
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Fig. 23. TGA analysis of the pristine and annealed PVP fibers in air and nitrogen atmospheres. 
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The higher mass loss observed in the pristine fibers can be attributed to the lack of fiber 

stabilization [22]. As a result, the pristine fibers were unable to maintain a long continuous fiber 

structure due to the high carbonization temperature. Based on heat treatment studies, higher 

carbonization temperatures turned fibers into rods [32]. This is confirmed by the structure of the 

pristine derived CFs shown in Fig. 25.  

Fig. 25. Carbon fiber structure obtained from pristine PVP nanofibers 

6.2.  Electrochemical Results 

Cycle voltammetry (CV), cycle performance, impedance spectroscopy, and rate 

performance experiments were conducted on Li-ion and Na-ion half cells using the flexible 

carbon fibers directly as anodes. TiO2/Cnd Sn/C fiber composite-fiber anodes were also used 

directly as binder-free anodes in Li-ion half cells. 

6.2.1. Cycle Voltammetry 

   6.2.1.1. Carbon-Fiber Anodes in LIBs 

Cyclic voltammetry (CV) tests were performed on the 20C-W, 25C-W, and 28C-W 

anodes. For all three carbon-fiber anodes, a broad anode oxidation peak was observed at ~0.1V 

during the anodic scan. Reduction peaks during the cathodic scans appeared in all three anodes 

at~0.1, ~0.5V, and ~1.5V due to the formation of the solid electrolyte interphase (SEI) and the 
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decomposition of the electrolyte [129]. Fig. 26 shows the CV for the 25C-W carbon fibers. 

Similar results were obtained for the 20C-W and 28C-W carbon fiber anodes; their CVs can be 

found in Figures A7a and A7b of the appendix.  
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Fig. 26. Cycle voltammetry of 25C-W carbon fibers in half-cell LIBs. 

   6.2.1.2. Carbon-Fiber Anodes in SIBs 

The 20C-W, 25C-W, and 28C-W carbon fibers were also used as anodes in Na-ion half 

cells. Similar to the CV results of LIBs, the anodes in SIBs exhibited wide oxidation peaks 

during the anodic scans (~0.1V) and well-defined reduction peaks at ~0.1 and ~0.7V (Fig. 27) 

due the formation of SEI. In the ordinate axis, a much smaller current range output was observed 

for these batteries. This was expected since the specific capacity delivered by graphite in SIBs is 

lower [130] [131]. Although the current output of carbon fibers is lower in SIBs than LIBs, the 

anodes show consistent CV profiles in both cases. Thus, flat capacity profiles are expected for 

both SIBs and LIBs. Similar results were obtained for the 20C-W and 28C-W carbon fiber 

anodes in SIBs; their CVs can be found in Figures A8a and A8b in the appendix. 
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Fig. 27. Cycle voltammetry of 25C-W carbon fibers in half-cell SIBs. 

   6.2.1.3. Composite TiO2/C Anodes in LIBs. 

It is seen in Fig. 28a, Fig. 28b, and Fig. 28c that oxidation (delithiation) nor reduction 

peaks (lithiation) characteristic of TiO2 were not observed in the 28C/15TiO2-W, 28C/25TiO2-

W, and 28C/35TiO2-W composite-fiber anodes in Li-ion half-cells. 22C/15TiO2-W:E, and 

22C/35TiO2-W:E, on the other hand, revealed oxidation (~2.2 V) and reduction peaks (~1.65 V) 

characteristic of TiO2 (Fig. 29a and Fig. 29c) [27], [132]. Nonetheless, the overall current range 

(ordinate axis) corresponding to carbon interaction with the Li-ion is much smaller. This is 

attributed to the larger fiber diameter in 22C/TiO2-W:E that reduces the overall carbon surface 

area available for lithiation/de-lithiation.  
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Fig. 28. Cycle voltammetry for the a) 28C/15TiO2-W, b) 28C/25TiO2-W, and c) 28C/35TiO2-
W composite- carbon fibers in half-cell LIBs. 
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Fig. 29. Cycle voltammetry of a) 22C/15TiO2-W:E, b) 22C/25TiO2-W:E, and c) 22C/35TiO2-
W:E composite- carbon fibers in half-cell LIBs. 
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   6.2.1.4. Composite Sn/C Anodes in LIBs 

Fig. 30 shows the CV results of the 22C/10Sn-W:E, and 22C/15Sn-W:E composite-fiber 

anodes. It is observed in Fig. 30 a and Fig. 30b that the CV profile of 22C/Sn-W:E is similar to 

that of 22C/TiO2-W:E composite-fiber anodes because the characteristic oxidation peaks (~0.4, 

~0.6, and ~0.8 V) of Sn are observed in the CV [133], but the overall range of the current output 

is reduced due to the larger fiber diameter. Nonetheless, distinct Sn reduction peaks (0.34, 0.5, 

and 0.62 V) were not revealed in the CV results [133]. Finally, the 22C/15Sn-W:E shows a wider 

current range characteristic of carbon as well as oxidation peaks for the Sn active material. Thus, 

a higher capacity is expected from these fibers. 
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Fig. 30. Cycle voltammetry of a) 22C/10Sn-W:E, and b) 22C/15Sn-W:E composite carbon fibers 
in half-cell LIBs. 

6.2.2. Cycle Performance 

   6.2.2.1. Carbon fiber Anodes in LIBs 

The charge-discharge profiles and cycle performance of the 25C-W carbon-fiber anodes 

are shown in Fig. 31. The charge-discharge plots and cycle performance for the 20C-W and 28C-

W carbon-fiber anodes are shown in the appendix (Figures A9a and A9b, respectively). The 

galvanostatic charge-discharge experiments were performed at a current density of 100 mA g–1. 
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At the 1st cycle, the 20C-W, 25C-W, and 28C-W anodes delivered a charge capacity of 205, 189, 

and 275 mAh g–1, respectively. After the first cycle, the CF anodes maintained a consistent 

capacity and after 100 cycles, the 20C-W, 25C-W, and 28C-W carbon fiber anodes delivered 

charge capacities of 185, 194, and 214 mAh g–1, respectively. Fig. 32 shows the charge 

capacities of the three anodes for 100 cycles at 100 mA g–1. The large drop in capacity after the 

first cycle can be attributed to the high surface area of the fibers and the growth of the solid 

electrolyte interphase (SEI) layer on the electrode surface. As a result, the coulombic efficiency 

at the first cycle for the 20C-W, 25C-W, and 28C-W was 39.8, 34.2, and 44.4 %, while the 

coulombic efficiencies reached 99.6, 99.3, and 99.6%, respectively, after 100 cycles. 
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Fig. 31. a) Charge-discharge and b) cycle performance for 25C-W anodes in half-cell LIB. 
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Fig. 32. Specific charge capacity for the 20C-W, 25C-W, and 28C-W carbon fibers in half-cell 
LIBs. 

   6.2.2.2. Carbon Fibers Anodes in SIBs 

The charge-discharge profiles and cycle performance of the 25C-W carbon-fiber anodes in 

Na-ion half cells are shown in Fig. 33. The charge-discharge plots and cycle performance for the 

20C-W and 28C-W carbon-fiber anodes in SIBs had similar profiles and their plots can be found 

in Figures A10a and A10b of the appendix. The charge capacity vs. cycle performance plots for 

the 20C-W, 25C-W, and 28C-W anodes in SIBs are shown in Fig. 34. The galvanostatic charge-

discharge experiments were performed at a current density of 100 mA g–1. At the 1st cycle, the 

20C-W, 25C-W, and 28C-W anodes delivered a charge capacity of 90, 86, and 95 mAh g–1, 

respectively. After 100 cycles, the 20C-W, 25C-W, and 28C-W carbon-fiber anodes delivered 

charge capacities of 54, 56, and 53 mAh g–1, respectively. As expected, the capacity of the SIBs 

is lower than that observed in LIBs. This can be due to the sluggish Na-ion insertion, the larger 

size of Na-ions, and SEI formation at the first cycle. Finally, the coulombic efficiency at the first 
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cycle for the 20C-W, 25C-W, and 28C-W was 40.8, 41.5, and 43.6 %. After 100 cycles, the 

coulombic efficiency reached values of 99.8, 99.9, and 99.8%, respectively. In SIBs, the fiber 

diameter deviations seemed to not play an impactful role in the electrochemical performance. 

Thus, further investigation of the effect of fiber diameter on the sodiation-desodiation process 

needs to be conducted 
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Fig. 33. a) Charge-discharge and b) cycle performance for 25C-W anodes in Na-ion half-cell. 
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Fig. 34. Specific charge capacity for the 20C-W, 25C-W, and 28C-W carbon fibers in half-cell 
SIBs. 
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   6.2.2.3. Composite TiO2/C Anodes in LIBs 

The 28C/15TiO2-W, 28C/25TiO2-W, and 28C/35TiO2-W composite-fiber anodes 

delivered an initial capacity of 228, 148, and 203 mAh g-1, respectively (Fig. 36). After the first 

cycle, the 22C/TiO2-W composite anodes maintained a consistent capacity and after 100 cycles 

they delivered charge capacities of 147, 109, and 145 mAh g–1, respectively. On the other hand, 

the 22C/15TiO2-W:E, 22C/25TiO2-W:E, and 22C/35TiO2-W:E composite-fiber anodes delivered 

an initial capacity of 43, 20, and 57 mAh g-1, and after 100 cycles, they delivered charge 

capacities of 103, 85, and 104 mAh g–1, respectively.  

Fig. 35a, Fig. 35b, and Fig. 35c show the charge-discharge profiles for 28C/25TiO2-W, 

22C/25TiO2-W:E, and 12C/25TiO2-E, respectively, to compare their profiles. It is seen that only 

the composite fibers prepared with ethanol generated charge profiles characteristic of TiO2. An 

observation between the capacity profile of 28C/TiO2-W and 22C/TiO2-W:E is the higher 

capacity output of the 28C/TiO2-W. This is accredited to the smaller fiber diameter rather than 

the presence of TiO2 in the fibers since there is no capacity plateau at ~2.1V of TiO2 during 

delithiation [132]. This is also supported by the lack of TiO2 working voltage peaks in the CV 

plots for the 28C/TiO2-W anodes (Fig. 28a, Fig. 28b, and Fig. 28c). Although interactions 

between the active material and working electrode can be observed to some degree in the CV 

plots for the C/TiO2-W:E anodes (Fig. 29a and Fig. 29c), the charge-discharge profiles for 

22C/TiO2-W:E did not reveal a plateau for TiO2 in the plots. Even if more active material could 

have been exposed in C/TiO2-W:E anodes, their larger fiber diameter limited their overall 

surface area, leading to an overall lower capacity. For further reference, the charge/discharge 
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plots for 28C/15TiO2-W and 28C/35TiO2-W are shown in Figures A11a and A11b while the 

charge/discharge plots for 22C/15TiO2-W:E and 22C/35TiO2-W:E are shown in Figures A12a 

and A12b. The charge/discharge plots for 12C/15TiO2-E and 12C/35TiO2-E are shown in 

Figures A13a and A13b. Finally, Fig. 36 and Fig. 37 show the charge capacities of all three TiO2 

compositions in C/TiO2-W and C/TiO2-W:E anodes, respectively. In general, higher specific 

charge capacities were delivered by the 28C/TiO2-W anodes. However, the higher capacity of 

the C/TiO2-W composite carbon-fibers is attributed to the smaller diameter of the carbon fibers 

which in turn increased the carbon surface area readily available for lithiation/delithiation.  
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Fig. 35. Charge-discharge profiles of a) 28PVP/25TiO2-W, b) 22PVP/25TiO2-W:E, and c) 
12C/25TiO2-E composite fiber anodes in Li-ion half-cells. 
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Fig. 36. Specific charge capacity for 28C/15TiO2-W, 28C/25TiO2-W, and 28C/35TiO2-W 
composite-fiber anodes in Li-ion half-cells. 
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Fig. 37. Specific charge capacity for 22C/15TiO2-W:E, 22C/25TiO2- W:E, and 22C/35TiO2- 
W:E composite-fiber anodes in Li-ion half-cells. 

   6.2.2.4.  Composite Sn/C Anodes in LIBs 

The 22PVP/10Sn-W:E and 22PVP/15Sn-W:E composite-fiber anodes delivered an initial 

capacity of 49 and 105 mAh g-1 (Fig. 39). A capacity increment took place in the following 



71 

cycles. After 100 cycles, the 22PVP/10Sn-W:E and 22PVP/15Sn-W:E composite-fiber anodes 

delivered a capacity of 142 mAh g-1, and 133 mAh g-1, respectively. For the 22PVP/10Sn-W:E 

(Fig. 38a) there were no significant plateaus distinctive of Sn as the active material. This lack of 

Sn/Li-ion interaction explains the low initial capacity during the first cycle compared to the 

initial capacity of Sn-based anodes reported as reported in the literature [24]. On the other hand, 

the 22PVP/15Sn-W:E composite-fiber anodes (Fig. 38b) revealed almost straight charge lines 

that validated the presence of Sn particles in the lithiation process. Thus, the higher active 

material loading enabled the interaction between the working electrode (Li-ion) and the active 

material (Sn). Small plateaus are observed at ~0.6 and ~0.9 V which agrees with results reported 

in the literature and the observed oxidation peaks during the anodic scan of CVs in Fig. 30b 

[133]. A charge-discharge plot for 12PVP/15Sn-E composite fiber-anodes was also included in 

Fig. 38c to compare its charge-discharge profile with the one revealed by the 22PVP/15Sn-W:E 

composite carbon-fibers. It can be observed that the 22PVP/15Sn-W:E generated a similar 

profile as the 12PVP/15Sn-E. However, the overall delivered capacity was lower in 

22PVP/15Sn-W:E than 12PVP/15Sn-E. Previous studies have developed carbon fibers from 15 

wt.% PVP in ethanol using centrifugal spinning and these carbon fibers had an average diameter 

of 1.99 𝜇𝜇m [28]. Thus, the better particle dispersion in ethanol could have improved the 

electrochemical performance of the 12PVP/15Sn-E despite the large fiber diameter. Finally, the 

charge capacities for the 22PVP/10Sn-W:E and 22PVP/15Sn-W:E composite-fiber anodes in 

LIBs are shown in Fig. 39 to compare their capacities as a function of cycle number 
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Fig. 38. Charge-discharge profiles of a) 22PVP/10Sn-W:E, b) 22PVP/15Sn-W:E, and c) 
12PVP/15Sn-E composite fiber anodes in Li-ion half-cells. 
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Fig. 39. Specific charge capacity for 22C/10Sn-W:E, and 22C/15Sn- W:E composite-fiber 
anodes in Li-ion half-cells. 
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6.2.3. Rate performance 

   6.2.3.1. Carbon Fiber Anodes for LIBs 

Fig. 40 shows the rate performance of the 20C-W, 25C-W, and 28C-W anodes at current 

densities of 50, 100, 200, 400, 500, and back to 50 mA g–1 in a voltage range between 0.01 and 

3.0 V. These current densities and voltage range were applied to22 all the anode materials 

presented in this work. The results show that the charge capacity decreases as the current rate 

increases due to the faster rates of lithiation/delithiation that overwhelm the pace of 

insertion/disinsertion of Li-ions into the electrodes. It is also observed that the specific capacity 

at higher current rates decreases more rapidly for the carbon-fibers anodes prepared from PVP 

solutions with higher concentrations; this can be attributed to their larger fiber diameter. In these 

anodes, the larger fibers become a bottleneck during faster rates due to less available surface area 

for lithiation. Nonetheless, the 28C-W also delivered the highest capacities at lower current 

densities. It is speculated that the higher polymer concentrations yielded carbon fibers with a 

higher carbon density. Thus, the higher carbon contents enabled more lithium to diffuse and 

accommodate in the anode material when the pace of lithiation did not overwhelm the anode’s 

surface area. After cycling back to 50 mA g–1, the 20C-W, 25C-W, and 28C-W carbon-fiber 

anodes recovered ~96.9, ~94.2, and ~96.9 % of their initial capacity during the first 10 cycles at 

50 mAh g–1, respectively. Moreover, the anodes also delivered a flat capacity at each current 

rate. This was expected since there is not an added active material that could produce anode 

pulverization after cycling caused by excessive volume change.  



74 

0 10 20 30 40 50 60
0

100

200

300

400

C
ha

rg
e 

C
ap

ac
ity

 (m
A

h 
g-1

)

Cycle Number

 20C-W
 25C-W
 28C-W

50 mAh g-1

200 mAh g-1

400 mAh g-1

100 mAh g-1

500 mAh g-1

50 mAh g-1

Fig. 40. Specific charge capacity for the 20C-W, 25C-W, and 28C-W carbon fibers in Li-ion 
half-cells. 

   6.2.3.2. Carbon Fibers Anodes for SIBs 

Fig. 41 shows the rate performance of the 20C-W, 25C-W, and 28C-W anodes in Na-ion 

half cells. Compared to the rate performance of the C-W anodes in LIBs, the overall charge 

capacity delivered by the anodes in SIBs is lower at each current density, presumably due to 

sluggish Na-ion kinetics and its larger ion size. Similar to the anode behavior in LIBs, the 28C-

W anode showed the best performance at lower current densities. However, fiber diameter did 

not increase the rate of capacity loss at higher current densities as it did in LIBs. After cycling 

back to 50 mA g–1, the 20C-W, 25C-W, and 28C-W carbon-fiber anodes recovered ~122, ~94, 

and ~89 % of their initial capacity during the first 10 cycles at 50 mAh g–1.  
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Fig. 41. Specific charge capacity for the 20C-W, 25C-W, and 28C-W carbon fibers in Na-ion 
half cells.  

   6.2.3.3. Composite TiO2/C Anodes for LIBs 

Fig. 42 and Fig. 43 show the rate performance for the 28C/TiO2-W and 22C/ TiO2-W:E 

composite-fiber anodes, respectively. After cycling back to 50 mA g–1, the 28C/TiO2-W 

composite-fiber anodes recovered ~98, 106, and ~94 % of their initial capacity during the first 10 

cycles at 50 mA g–1. Similarly, the 22C/ TiO2-W:E recovered ~112, ~106, and ~101 %. As seen 

in the figures, the 22C/ TiO2-W:E suffered a higher capacity loss at higher current rates due to 

their larger fiber diameter. Among the 28C/TiO2-W anodes, the 28C/25TiO2-W suffered the 

highest loss in capacity since they had the largest fiber average diameter (Fig. 18). Similarly, 

among the 22C/ TiO2-W:E, the 22C/ 15TiO2-W:E suffered the largest capacity drop due because 

they possess the largest average diameter (Fig. 18). 
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Fig. 42. Rate performance for 28C/15TiO2-W, 28C/25TiO2-W, and 28C/35TiO2-W composite-
fiber anodes in Li-ion half cells.  
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   6.2.3.4.  Composite Sn/C Anodes for LIBs 

The 22C/10Sn-W:E, and 22C/15Sn-W:E composite fiber anodes had a promising start. 

However, they quickly collapsed after failing to deliver a notable capacity at 200 mA g-1 (Fig. 

44). This collapse was expected due to the intrinsic large volume expansion of Sn [134], the 

large fiber diameter, and the lack of as hollow or porous fiber morphology to buffer the volume 

expansion. The 22C/Sn-W:E anodes were capable of delivering ~72 and ~91% of their initial 

capacity during the first 10 cycles. Even though these anodes can operate at low current rates, 

their charging/discharging rate and relatively low specific capacity cannot satisfy the expected 

performance expected in today’s market. 
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6.2.4. Impedance Spectroscopy 

   6.2.4.1. Carbon Fiber Anodes for LIBs 

The electrochemical impedance spectroscopy (EIS) results for the 20C-W, 25C-W, and 

28C-W fiber anodes in LIBs showed a predictable behavior. All these anodes had a similar initial 

impedance due to ion transfer in the electrolyte solution which occurs before the onset of the 

semicircles observed in Fig. 45. The diameter of the semicircles in Fig. 45 increases with 

increasing fiber diameter. This is expected since the lower surface area decreases the space 

available for electrode/electrolyte interface interactions such as Li-ion/electrolyte solvent 

separation (forming Li+ during this process), Li-cation diffusion through the surface of the 

anode, and finally, Li-cation intercalation with the host material, which is represented by the 

straight line at the end of the semicircle (i.e., Warburg impedance, diffusion) [135], [136], [134].  
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Fig. 45. Impedance spectroscopy for the 20C-W, 25C-W, and 28C-W carbon fibers in Li-ion half 
cells. 
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   6.2.4.2. Carbon Fibers Anodes for SIBs 

The SIBs produced impedance plots with inconsistent range patterns. The impedance plots 

shown in Fig. 46 were selected because they had the closest ranges to each other. Nonetheless, 

three consistent behaviors were noticed. The range of the semicircles in SIBs were smaller than 

in SIBs. Thus, the resistance on the electrolyte/electrode interface was smaller in SIBs than in 

LIBs. However, the resistance due to ion transfer in the electrolyte becomes a larger portion of 

the overall electrode transfer resistance. Finally, good electron and ion mobility within the anode 

material was obtained since the three semicircles intercepted the real axis at the end of their 

semicircles and steep diffusion lines were formed. 
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Fig. 46. Impedance spectroscopy for the 20C-W, 25C-W, and 28C-W carbon fibers in Na-ion 
half cells. 
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   6.2.4.3. Composite TiO2/C Anodes for LIBs 

The EIS plots of the 28C/15TiO2-W, 28C/25TiO2-W, and 28C/35TiO2-W composite-fiber 

anodes in Li-ion half cells had very similar behavior to the carbon-fiber anodes in LIBs. This can 

be explained by the lack of TiO2/Li-ion interaction observed in their CVs and charge-discharge 

profiles of these anodes. EIS further corroborates the lack of interaction of these two composite-

fiber anodes. The impedance plots for the 22C/15TiO2-W:E, 22C/25TiO2- W:E, and 

22C/35TiO2- W:E composite-fiber anodes in Li-ion half cells have a similar range in the real 

axis to those observed in the 28C/15TiO2-W anodes. However, Fig. 48 shows that Z’ intercepts 

at the end of the semicircles are not achieved due to the electronic flow resistance within the 

anode materials.   
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Fig. 47. Impedance spectroscopy for 28C/15TiO2-W, 28C/25TiO2-W, and 28C/35TiO2-W 
composite-fiber anodes in Li-ion half cells. 
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   6.2.4.4. Composite Sn/C Anodes for LIBs 

In the case of the 22C/10Sn-W:E anode, a similar range to those obtained in the 

22C/TiO2- W:E anodes was observed. Presumably, the similar impedance profile can also be 

attributed to the lack of active material interaction with the working electrode and the lower 

conductivity achieved in the composite fibers fabricated with the solvent mixture. However, in 

Fig. 49, a slightly smaller semicircle and z’ axis intersection are observed for the 22C/15Sn-W:E 

anode, proving a better electronic conductance in anodes where the presence of Sn played a role. 

More importantly, the diffusion line is slanted with a smaller angle between the real axis. This 

sluggish diffusion of the Li-ions in the electrode can be attributed to the slower lithiation 

mechanism of alloying-based reaction materials such as Sn, whose atomic structure must be 

modified to host more Li-ions. 
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CHAPTERVII

CONCLUSIONS 

In this work, a higher production rate of nanofibers from aqueous PVP solutions was 

achieved using centrifugal spinning and subsequent thermal treatment. Solutions with PVP 

concentrations of 10, 15, 20, 25, and 28 wt.% were prepared, of which only the 20, 25, and 28 

wt.% produced fibers. Although beads were less apparent in lower concentration solutions, the 

highest fiber yield was achieved at 25 wt.% PVP. Moreover, at PVP concentration of 25 wt.%, 

the fiber formation was not affected by higher humidity levels. Flexible carbon fibers were 

produced from the 20, 25, and 28 wt.% PVP precursor fibers using a novel three-step heat 

treatment which reduced the volume shrinkage due to the high temperature (700 °C) used during 

the carbonization process.  

Composite carbon fibers were also prepared with TiO2 in aqueous polymer solutions. 

However, inconsistent fiber yield during spinning and the unsuccessful production of Sn 

composite fibers from aqueous polymer solutions led to the implementation of a 1:1 (wt./wt.) 

water:ethanol solvent mixture to achieve the consistent formation of composite fibers by 

centrifugal spinning. However, the increase in vapor pressure, due to the addition of ethanol, 

yielded fibers with a larger than desired diameter and as a result, the electrochemical 

performance of the batteries decayed. On the other hand, the electrochemical performance of the 

C/TiO2 composite-fiber anodes (28C/TiO2-W) prepared from aqueous solutions did not suffer a 
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decrease in electrochemical performance as large as the anodes prepared with the water:ethanol 

mixture. However, the higher capacity of 28C/TiO2-W was mainly attributed to their smaller 

fiber diameters and the interaction of carbon with the working electrode rather than the ceramic 

nanoparticles. 

Among the possible reasons for the unsuccessful formation of Sn and TiO2 composite 

fibers, the properties of the aqueous solutions, namely the high surface tension of water and poor 

particle dispersion in aqueous solutions, are some of the issues encountered during this research.  

Nevertheless, successful fiber formation using aqueous PVP solutions was achieved at high 

production rates, opening the doors for the exploration of composite fiber production from 

aqueous PVP solutions at high rates. Given these results, a new venue to produce binder-free 

carbon composite anodes from aqueous polymer solutions at a larger scale can be pursued to 

reduce the environmental impact and the health hazards encountered during the production of 

fibers. Moreover, this work lays a foundation for the development of high rate composite 

nanofibers production using water as the sole solvent. 

7.1. Future Work 

Future research will be performed on the effect of higher angular velocities to accelerate the 

solvent’s evaporation rate by forced convection without altering the intrinsic properties of water. 

It is not recommended to try to increase the vapor pressure of the solvent as the larger vapor 

pressure leads to larger viscosities at the tip of the nozzle during spinning and produces fibers 

with larger diameters. If the capabilities of the centrifugal spinning equipment do not allow 

higher than 10,000 rpm, a longer distance between the center of the spinneret to the nozzle tip 

can be retrofitted in the equipment to increase the solvent’s evaporation rate by force convection 
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without increasing the angular velocity. Alternatively, the evaporation rate of water can be 

increased by decreasing the humidity of the production environment [118]. 

In addition, mechanical homogenization before centrifugal spinning is also recommended 

when using aqueous PVP solutions to increase particle dispersion. Similarly, the mechanical 

homogenization in mixture based (water:ethanol) solutions before centrifugal spinning is also 

recommended since 12C/TiO2-E and 12C/Sn-E composite fibers revealed charge-discharge 

profiles distinctive of TiO2 and Sn despite the large fiber diameter (1.99 𝜇𝜇m) of 15C-E carbon 

fibers reported in the literature [28].  

Methods to incorporate nanoparticles in the precursor fibers could also be explored by 

introducing the nanoparticles in the fiber membrane rather than in the precursor solution. For 

example, during this research, composite PVP/water and PVA/Si/water fibers were produced 

using two Forcespining cyclones to prepare multilayer membranes. However, the 

electrochemical performance of the composite carbon fibers prepared from these membranes 

collapsed due to the volume expansion of silicon. However, an interesting morphology was 

observed in SEM images. On some occasions, the different degradation rates of PVA and PVP 

enabled the merging of composite PVA/Si fibers and PVP fibers after annealing. Nonetheless, 

the Si/C composite fibers separated from the PVP-based carbon fibers after carbonization. 

At the beginning of this work, multiple water-soluble polymers were used to produce 

composite carbon fibers. PEO was among those options because it is water-soluble and 

composite fibers have been successfully prepared using centrifugal spinning in the past with this 

polymer. However, PEO degrades and cannot be carbonized. Thus, multilayer fibers prepared 

from aqueous PVP and composite PEO aqueous solutions could lead to the dispersion of 
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particles on PVP-based carbon fibers owing to the complete degradation of PEO on the PVP 

carbon fibers. 

Finally, centrifugally spun porous and hollow fibers prepared from aqueous polymer 

solutions and their use as binder-free anodes in LIBs and SIBs need to be investigated. Hollow 

PVP fibers have been previously produced with centrifugal spinning and ethanol as the solvent 

[27].To achieve this goal, mineral oil was added to the solution to produce a phase separation 

during the stretching of the solution jet with polymer-rich and polymer-lean phases. However, oil 

and water are immiscible. Emulsions with oil and water can be achieved using surfactants such 

as sodium dodecyl sulfate (SDS). Attempts to emulsify oil and water were performed in this 

work. However, more work needs to be done to determine the optimum oil:water:SDS ratios to 

avoid producing a wax-like solution that did not produce fibers. As discussed above, there are 

many alternatives yet need to be explored for the successful production of composite fibers. To 

achieve this, novel procedures need to be developed.
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APPENDIX A 
 
 
HISTOGRAMS WITH LINEAR DISTRIBUTION & ELECTROCHEMICAL PERFORMACE 

PLOTS FOR SUPPLEMENTAL CFs & COMPOSITE CFs IN LIBs & SIBs 
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Figure A1: Histogram and linear distribution for 28C/15TiO2-W composite carbon fibers. 
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Figure A2: Histogram and linear distribution for 28C/25TiO2-W composite carbon fibers
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Figure A3: Histogram and linear distribution for 28C/35TiO2-W composite carbon fibers. 
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Figure A4: Histogram and linear distribution for 22C/15TiO2-W:E composite carbon fibers. 
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Figure A5: Histogram and linear distribution for 22C/25TiO2-W:E composite carbon fibers. 
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Figure A6: Histogram and linear distribution for 22C/35TiO2-W:E composite carbon fibers. 
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Figure A7. CVs for a) 20C-W and b) 28C-W carbon fiber anodes in Li-ion half cells 
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Figure A8. CVs for a) 20C-W and b) 28C-W carbon fiber anodes in Na-ion half cells 
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Figure A9. Charge-discharge plots and cycle performance for the a) 20C-W and b) 28C-W 
carbon-fiber anodes in Li-ion half cells 
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Figure A10. Charge-discharge plots and cycle performance for the a) 20C-W and b) 28C-W 
carbon-fiber anodes in Na-ion half cells 
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Figure A11. Charge-discharge plots and cycle performance for a) 28C/15TiO2-W and 
b)28C/35TiO2-W composite carbon fibers in Li-ion half cells  
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Figure A12. Charge-discharge plots and cycle performance for a) 22C/15TiO2-W:E and 
b) 22C/35TiO2-W:E composite carbon fibers in Li-ion half cells 
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Figure A13. Charge-discharge plots and cycle performance for a) 12C/15TiO2-E and b) 
12C/35TiO2-E composite carbon fibers in in Li-ion half cells 
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Table A1. State-of-the-Art Equipment 

 
Equipment Purpose Results Obtained 

DSC Characterize the endothermic 
and exothermic peaks for my 
water-soluble fibers 

The results were used to 
calculate the specific heat 
capacity of the fibers. 

SEM/EDS  Used to characterize all 
materials prepared in this 
work 

Morphology, fiber diameter, 
and elemental mapping  

Forcespinning Fabricate fibers Multiple fiber mats used to 
produce carbon fiber anodes 

TGA Identifying the effect of 
annealing of fibers on their 
degradation rate during heat 
treatment. 

The results showed that 
implementing annealing heat 
treatment before 
carbonization yielded more 
carbon fibers. 

MBRAUN Glovebox Controlling the environment 
during the battery assembly 
process  

Production of LIB and SIB 
batteries  

LANH Cycle performance Plotting up to 100 
charge/discharge cycles on 
batteries. 

BioLogic  Cyclic voltammetry (CV) Used to identify the voltage at 
which the batteries' active 
materials go REDOX reaction 
and ionic diffusion.  

Arbin Rate performance Charge/discharge cycles at 
different current rates to 
observe their delivered 
capacity. 

NOVA Impedance test Used to identify the resistance 
to ion transport and the rate of 
ions diffusion 
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Table A2. State-of-the-Art Software 
 

Software Purpose Results Obtained 
ORIGIN Plotting electrochemical 

results, histograms, and 
normal distribution for fiber 
diameter measurements. 

CV, rate performance, cycle 
performance, and 
spectroscopy impedance, 
normal distribution for as-
spun, annealed, and 
carbonized fibers. 

EndNote Managing and sorting 
citations in publications and 
thesis manuscript  

Two publications as coauthor. 
One first-author publication 
and a review article as first-
author  

Adobe illustrator  Designing schematics for 
research papers 

Schematics were included in 
publications and thesis 
manuscript. 

Microsoft Word Writing research papers/thesis Two publications as coauthor. 
One first-author publication 
and a review article as first-
author 

PowerPoint  Preparing presentation 
material  

Biweekly PowerPoint 
presentations to present to my 
advisor. 

Excel Organizing Data  Used to organize extracted 
data from electrochemical 
tests.  

NOVA Impedance Spectroscopy Used to perform potential 
static impedance  

ARBIN Rate performance Used to set up the different 
current rates and indicate the 
anode weight.  

BT LAB CV  Used to run the CV test on 
BioLogic. 

LANH Cycle performance  Used to set up cycle 
performance properties such 
as current density, number of 
cycles, rest or non-rest 
cycling, and formation cycles.  
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