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ABSTRACT

Huerta, Juan J., On coupled reaction diffusion equations and their applications. Master of Sci-

ence (MS), December, 2020, 65 pp., 37 figures, 8 references.

Reaction-diffusion equations are nonlinear partial differential equations that have been

used extensively in mathematical modeling. An interesting case in this type of equation is the

Fisher-Kolmogorov system, which has been used to study a low-grade glioma, a group of primary

brain tumors. In the first part of this thesis, a stochastic version of the Fisher-Kolmogorov system

will be studied, and exact and numerical solutions will be presented.

The second part of this thesis will show how the speed of information propagation affects

disease spread and vaccination uptake through networks in epidemics. In this model, the information

reaches different people at different distances from the center of information containing the health

data. The Fisher-Kolmogorov equations are used to depict the vaccine and disease information

propagation on a network embedded into a straight line. The Fisher-Kolmogorov equations are

coupled equations with the SIR (Susceptible-Infected-Recovered) model to examine the anticipated

mutual influence. Numerical simulations of the model are presented. It is shown how the propagation

of information about the disease impacts the probability of vaccination and, consequently, the

vaccination rate.

iii





DEDICATION

To my family and friends that supported me throughout this journey.

iv





ACKNOWLEDGMENTS

I would like to acknowledge Dr. Erwin Suazo and Dr. Tamer Oraby; they both helped me so

much through this thesis. It was fun working with them.

v





TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Lotka-Volterra equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER II. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS . . . . . . . . . . . . . . 10

2.1 Solutions for a System of Stochastic Fisher-Kolmogorov . . . . . . . . . . . . . . 10

2.1.1 Preliminaries and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Traveling waves for a particular case of the Fisher-Kolmogorov . . . . . . . . . . . 14

2.2.1 Exact solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Numerical Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER III. SIR WITH NETWORKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Classical SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 SIR Model with networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 SIR Model with Networking . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Numerical solutions for the Fisher-Kolmogorov system . . . . . . . . . . . 37

3.3.2 Computational Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CHAPTER IV. CONCLUSION AND FUTURE RESEARCH . . . . . . . . . . . . . . . . . . . . . . . 47

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi





LIST OF FIGURES

Page

Figure 1.1: Null clines (a) of the competition model . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2: Null clines (b) of the competition model . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3: Null clines (c) of the competition model . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.4: Null clines (d) of the competition model . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.5: Schematic phase trajectories near the steady states (a) . . . . . . . . . . . . . . 7

Figure 1.6: Schematic phase trajectories near the steady states (b) . . . . . . . . . . . . . . 7

Figure 1.7: Schematic phase trajectories near the steady states (c) . . . . . . . . . . . . . . 8

Figure 1.8: Schematic phase trajectories near the steady states (d) . . . . . . . . . . . . . . 8

Figure 2.1: Exact solution for MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.2: Exact solution for MV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.3: Exact solutions for MI and MV . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.4: Stochastic Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.5: Numerical solution for M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.6: Numerical solution for N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.7: Exact solution for M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.8: Exact solution for N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.9: Error for M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.10: Error for N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.1: Flow of SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.2: Classical SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.3: SIR graph model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.4: Susceptible with x and t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.5: SIR with p(x, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.6: Proportion of Infected-from exact . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.7: With Susceptible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.8: Proportion of Infected-comparison to exact . . . . . . . . . . . . . . . . . . . 40

Figure 3.9: Surf of MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



Figure 3.10: Surf of MV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.11: Surf of S(x, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.12: Proportion of Susceptible-Infected . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.13: Proportion of Vaccinated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.14: Solution for S (β = γ = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.15: Solution for I (β = γ = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.16: Solution for S (β = 10,γ = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.17: Solution for I (β = 10,γ = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.18: Solution for S (β = 1,γ = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.19: Solution for I (β = 1,γ = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



CHAPTER I

INTRODUCTION

In this chapter, we are going to explain the Lotka-Volterra equations, also known as the

predator-prey equations. They are pair of nonlinear differential equations, mainly used to describe

the dynamics of biological systems between two species. The Lotka-Volterra system is a Kol-

mogorov model used for competition, diseases, mutualism, etc. The competition exclusion, also

known as Gause’s law, is a proposition that when two species compete for the same limited resources

both cannot coexist. One of the competitors will always have an ever so slight advantage over the

other which in the long run will lead to extinction. If the weaker competitor does not go extinct,

it will lead to an evolutionary shift to a different ecological niche. As a consequence, competing

species often evolve to coexist. This also helps the population of each species to maintain the slight

advantage over the competing species since the population changes over time.

1.1 Lotka-Volterra equations

In a scenario of J.D. Murray [6], we study two or more species which compete for the same

limited food or in some way prevent each other’s growth. The species compete with each other for

territory, which relates to resources such as food, water, etc. If the species both fight for the same

resource, as a result one of the species will become extinct as two or more complete competitors

cannot coexist. If the weaker competitor does not become extinct, it shifts and adapts to other

resources to avoid competition or the two species adapt to share the resources with one another in

order to coexist.

1



Let us consider the Lotka-Volterra competition model with two species N1 and N2,

dN1

dt
= r1N1[1−

N1

K1
−b12

N2

K1
], (1.1)

dN2

dt
= r2N2[1−

N2

K2
−b21

N1

K2
], (1.2)

where r is the linear birth rate and K is the carrying capacity, where it is the maximum population

size of the species that the environment can sustain given the resources available. b12 is the

competitive effect of N2 on N1, and b21 is the competitive effect of N1 on N2. They are all positive

constants.

We can simplify this model if we nondimensionalize it by

u1 =
N1

K1
, u2 =

N2

K2
,

τ = r1t, ρ =
r2

r1
, (1.3)

a12 = b12
K2

K1
, a21 = b21

K1

K2
.

Thus, equation (1.1) and (1.2) change to

du1

dτ
= u1[1−u1−a12u2] = f1(u1,u2), (1.4)

du2

dτ
= ρu2[1−u2−a21u1] = f2(u1,u2). (1.5)

The steady states and phase plane singularities u∗1,u
∗
2 are solutions to f1(u1,u2) = f2(u1,u2) = 0.

Hence, the solutions we get are

1. (u∗1,u
∗
2) = (0,0)

2. (u∗1,u
∗
2) = (1,0)

3. (u∗1,u
∗
2) = (0,1)

4. (u∗1,u
∗
2) = ( 1−a12

1−a12a21
, 1−a21

1−a12a21
).

2



The last solution is only of relevance if u∗1,u
∗
2 ≥ 0 are finite in which a12a21 6= 1. The null clines of

(1.4) and (1.5) are the straight lines

f1 = 1−u1−a12u2 = 0, f2 = 1−u2−a21u1 = 0,

which are going to be graphs in u1,u2 phase plane.

Figure 1.1: Null clines (a) of the competition model

Figure 1.2: Null clines (b) of the competition model

3



Figure 1.3: Null clines (c) of the competition model

Figure 1.4: Null clines (d) of the competition model

4



To see the stability of the solutions of (1.4) and (1.5) we will use the community matrix

(Jacobian). Therefore, we have

A =

 ∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2


(1.6)

=

1−2u1−a12u2 −a12u2

−ρa21u2 ρ(1−2u2−a21u1)


u∗1,u

∗
2

.

The first steady state is (0,0), and by finding the eigenvalues, λ , of the community matrix (1.6), we

get

|A−λ I|=

∣∣∣∣∣∣∣
1−λ 0

0 ρ−λ

∣∣∣∣∣∣∣= 0

=⇒ λ1 = 1, λ2 = ρ.

Now, since the eigenvalues are positive the first steady stable is unstable. For the second steady

state, namely, (1,0), we obtain

|A−λ I|=

∣∣∣∣∣∣∣
−1−λ −a12

0 ρ(1−a21)−λ

∣∣∣∣∣∣∣= 0

=⇒ λ1 =−1, λ2 = ρ(1−a21).

Thus,

u∗1 = 1,u∗2 = 0 is


stable

unstable
if


a21 < 1

a21 > 1.

5



For the third steady state, (0,1), the eigenvalues are

|A−λ I|=

∣∣∣∣∣∣∣
−1−a12−λ 0

−ρa21 ρ(−1)−λ

∣∣∣∣∣∣∣= 0

=⇒ λ1 =−ρ, λ2 = ρ(1−a12).

u∗1 = 0,u∗2 = 1 is


stable

unstable
if


a12 > 1

a12 < 1.

If a12 < 1, we get a positive eigenvalue, making the steady state unstable. For the last steady state,

the eigenvalues are

|A−λ I|=

∣∣∣∣∣∣∣∣
a12−1

1−a12a21
−λ

a12(a12−1)
1−a12a21

ρa21(a21−1)
1−a12a21

ρ(a21−1)
1−a12a21

−λ

∣∣∣∣∣∣∣∣= 0

=⇒ λ1,λ2 = [2(1−a12a21)]
−1[(a12−1)+ρ(a21−1)

±{[(a12−1)+ρ(a21−1)]2−4ρ(1−a12a21)(a12−1)(a21−1)}
1
2 ].

The stability for this steady state depends on ρ,a12,a21 for the Re λ if complex. For the last steady

state we have various cases, which are

1. a12 < 1 and a21 < 1

2. a12 > 1 and a21 > 1

3. a12 < 1 and a21 > 1

4. a12 > 1 and a21 < 1.

6



Figure 1.5: Schematic phase trajectories near the steady states (a)

Figure 1.6: Schematic phase trajectories near the steady states (b)
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Figure 1.7: Schematic phase trajectories near the steady states (c)

Figure 1.8: Schematic phase trajectories near the steady states (d)
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The null clines figures: (1.1) to (1.4) and the steady states figures: (1.5) to (1.8) are related

to the steady state cases (1) to (4). Now, (1.5) is the only positive steady state that is stable and all

trajectories tend to it. Both species go to the steady state so they can coexist. For (1.6), (1,0) and

(0,1) are the stable steady states, and each has a domain of attraction that is separated by a separatrix.

The separatrix passes through the steady state which is a saddle point. Now, (1.7) there is only one

steady state which is (1,0) where u1 dominates causing u2 to go extinct. (1.8) is similar to (1.7),

yet the steady state is (0,1) and u2 dominates and u1 goes extinct. In cases (3) and (4) one of the

species will go extinct due to natural fluctuations in the populations levels; this is the principle of

competitive exclusion.

9



CHAPTER II

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

In this chapter, we study a general Fisher-Kolmogorov system with stochastic noise in time.

Many mathematical models involve Fisher-Kolmogorov equations such as the following [1],

∂C
∂ t

= D∆C+ρ(1−C−Cd)C (2.1)

∂Cd

∂ t
= D∆Cd−

ρ

k
(1−Cd−C)Cd. (2.2)

The Fisher-Kolmogorov equations (2.1) and (2.2) are used to study a low-grade glioma which are a

group of primary brain tumors. These tumors grow slowly with a median of survival time of more

than 5 years. They are more common in children and adults under the age of 40. Radiation therapy

is known to have a relevant effect on the survival, but in some cases it will be deferred to avoid side

effects while maintaining its beneficial effect. A system can be modeled for the density of the tumor

cells, C, and for the density of the damaged tumor cells, Cd , [1], [2], and [8].

In this section, we study solutions for the following stochastic Fisher-Kolmogorov System

with random noise:

dm = (D(t)mxx + γ(t)mx +β (t)(1−m−n)m−µ(t)m)dt +σ(t)mxdWt (2.3)

dn = (D(t)nxx + γ(t)nx +β (t)(1−m−n)n−µ(t)n)dt +σ(t)nxdWt . (2.4)

2.1 Solutions for a System of Stochastic Fisher-Kolmogorov

2.1.1 Preliminaries and Results

m

10



Consider the probability space (Ω,F ,P) for which the Brownian motion {Wt , t ≥ 0} is

defined and E(WsWt) = min(s, t) for all s, t ≥ 0. Also consider the filtration Ft := σ(Ws : s ≤ t)

being the smallest σ−algebra to which Ws is measurable for s≤ t.

Then consider the stochastic differential equation (SDE) with variable coefficients [3]

dXt = α(t,Xt)dt +β (t,Xt)dWt , (2.5)

with initial state Xt0 and for t ∈ [t0,T ]. The SDE in (2.5) has a general solution given by

Xt = Xt0 +
∫ t

t0
α(s,Xs)ds+

∫ t

t0
β (s,Xs)dWs

for t ≤ T . If α(t) := α(t,Xt) and β (t) := β (t,Xt), then equation (2.5) has a general solution given

by

Xt = Xt0 +
∫ t

t0
α(s)ds+

∫ t

t0
β (s)dWs

for t ≤ T . The process {Wt ; t ≥ 0} is a Wiener process with respect to a filtration {Ft ; t ≥ 0}. The

initial state Xt0 is Ft0 and the functions α(t) and β (t) are Lebesgue measurable and bounded on

[t0,T ]. The latter implies both the global Lipschitz and linearity growth conditions required to

ensure the existence and (path-wise) uniqueness of a strong solution to (2.5), [3].

Let Xt and Yt be any two diffusion processes like those defined by the solution of equation

(2.5). If F(x,y) is a differentiable function that works as a transformation for two processes Xt and

Yt , then the general bi-variate Itô formula [4] gives

dF(Xt ,Yt) = ∂xF(Xt ,Yt)dXt +∂yF(Xt ,Yt)dYt +
1
2

∂xxF(Xt ,Yt)(dXt)
2 (2.6)

+
1
2

∂yyF(Xt ,Yt)(dYt)
2 +∂xyF(Xt ,Yt)dXtdYt .

F(t,y) is a differentiable function [4].

11



We will use the following particular version of Ito’s formula

dF1 = f1(t,Yt)dt +g1(t,Yt)dWt (2.7)

dF2 = f2(t,Yt)dt +g2(t,Yt)dWt (2.8)

related to the stochastic differential equation

dXt = α(t,Xt)dt +β (t,Xt)dWt (2.9)

where α : [0,T ]×R2→ R2, b : [0,T ]×R2→ R2, Xt = (X1
t ,X

2
t ). Then

f1(t,x) = ∂tF1 +α1(t,x)∂xF1 +
1
2

β
2
1 (t,x)∂xxF1 (2.10)

f2(t,x) = ∂tF2 +α1(t,x)∂xF2 +
1
2

β
2
2 (t,x)∂xxF2 (2.11)

and

g1(t,x) = β1(t,x)∂xU(t,x) (2.12)

g2(t,x) = β2(t,x)∂xU(t,x). (2.13)

We consider a 2-dimensional Wiener process W = {Wt , t ≥ 0} with components W 1
t and W 2

t

which are independent scalar Wiener processes with respect to a common family of σ−algebras

{At , t ≥ 0} .

Theorem 1. Let D, γ, β , µ and σ ∈ Cb([t0,T ]) be bounded continuous functions on [t0,T ].

Then the stochastic system (2.3)-(2.4) has a solution (m(t,z),n(t,z)) = (M(t,Xt),N(t,Xt)) where

12



(M(t,x),N(t,x)) is the solution of

∂tM =

(
D(t)− 1

2
σ

2(t)
)

∂xxM+β (t)(1−M−N)M−µ(t)M (2.14)

∂tN =

(
D(t)− 1

2
σ

2(t)
)

∂xxN +β (t)(1−M−N)N−µ(t)N (2.15)

with M(x,0) = φ1(x) and N(x,0) = φ2(x). Also Xt is the solution of

dXt =

 γ(t)

γ(t)

dt +

 σ(t) 0

0 σ(t)


 dW 1

t

dW 2
t


with Xt = (X1

t ,X
2
t ).

Proof. Applying the Ito formula for the two dimensional case with

f1(t,x) = ∂tM+ γ(t)∂xM+
1
2

σ
2(t)∂xxM

f2(t,x) = ∂tN + γ(t)∂xN +
1
2

σ
2(t)∂xxN

using the expressions (2.14)-(2.15) we get

f1(t,x) = D(t)∂xxM+β (t)(1−M−N)M−µ(t)M+ γ(t)∂xM

f2(t,x) = D(t)∂xxN +β (t)(1−M−N)N−µ(t)N + γ(t)∂xN.

We also obtain

g1(t,x) = σ(t)∂xM(t,x) (2.16)

g2(t,x) = σ(t)∂xN(t,x), (2.17)

which proves the statement.
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2.2 Traveling waves for a particular case of the Fisher-Kolmogorov

In this section, we look for the exact solutions of the coupled Fisher-Kolmogorov equations

in the model (3.3) without the boundary conditions. A solution is obtained by simplifying the model,

which is done by nondimensionalizing it and using special coefficients.

Proposition 1. The following coupled Fisher-Kolmogorov system,

∂MI

∂ t
= DI

∂ 2MI
∂x2 + γI(1−MI−βV IMV )MI +CI

∂MI
∂x (2.18)

∂MV

∂ t
= DV

∂ 2MV
∂x2 + γV (1−MV −βIV MI)MV +CV

∂MV
∂x , (2.19)

admits explicit traveling wave solutions under the following conditions:

i) MI = 1,MV = 0 at z =−∞ and MI = 0,MV = 1 at z = ∞

ii) βV I +βIV = 2.

Proof. We are going to simplify the equations by letting D = DV
DI
,γ = γV

γI

∂MI

∂ t
=

∂ 2MI

∂x2 +(1−MI−βV IMV )MI +CI
∂MI

∂x
(2.20)

∂MV

∂ t
= D

∂ 2MV

∂x2 + γ(1−MV −βIV MI)MV +CV
∂MV

∂x
. (2.21)

Now, we are looking for a solution for MI(x, t) = f (z) and MV = g(z), where z = x−wt.

We have the boundary conditions MI = 1,Mv = 0 at z = −∞ and MI = 0,Mv = 1 at z = ∞. By

substituting MI(x, t) = f (x−w1t) and MV = g(x−w2t) the pdes change to

−w1
∂ f
∂ z

=
∂ 2 f
∂ z2 +(1− f −gβV I) f +CI

∂ f
∂ z

(2.22)

−w2
∂g
∂ z

= D
∂ 2g
∂ z2 + γ(1−g−βIV f )g+CV

∂g
∂ z

. (2.23)

By a special case we let D = γ = 1 and βV I +βIV = 2. If we let the equations (2.22) and (2.23) equal

to zero by moving everything to one side and then adding the equations together where h = f +g,
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we then acquire the following equation

∂ 2h
∂ z2 +w

∂h
∂ z

+h(1−h)+C
∂h
∂ z

= 0,

and by combining like terms, we get

∂ 2h
∂ z2 +(w+C)

∂h
∂ z

+h(1−h) = 0.

The boundary conditions for this Fisher-Kolmogoroff are different with h = 1 at z =±∞,

and which suggest that for all z, h = 1 =⇒ f + g = 1. Now, if we substitute f + g = 1 into the

equation (2.22) we get

−w1
∂ f
∂ z

=
∂ 2 f
∂ z2 +(1− f −βV Ig) f +CI

∂ f
∂ z

,

and by combining like terms and factoring, we obtain

∂ 2 f
∂ z2 +(w1 +CI)

∂ f
∂ z

+(1−βV I) f (1− f ) = 0 (2.24)

with the wavefront speed

w1 ≥ wmin = 2(1−βV I)
1/2,βV I < 1.

Similarly, for equation (2.23), we have

−w2
∂g
∂ z

= D
∂ 2g
∂ z2 + γ(1−g−βIV f )g+CV

∂g
∂ z

.

Then by combining like terms and factoring, the following equation is obtained:

∂ 2g
∂ z2 +(w2 +CV )

∂g
∂ z

+(βIV −1)g(1−g) = 0 (2.25)
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with the wavefront speed

wmin = 2(βIV −1)1/2,βIV > 1.

By Ablowitz-Zappatella on equation (2.24), we look for a solution of the following form:

f (z) = (1+menz)−r m,n,r > 0.

By deriving f (z) and getting each term of equation (2.24), we obtain

d f
dz

=−r(1+menz)−r−1(nmenz)

d2 f
dz2 =−r(−r−1)(1+menz)−r−2(nmenz)(nmenz)

− r(1+menz)−r−1(n2menz)

= r(r+1)(1+menz)−r−2(n2m2e2nz)− r(1+menz)−r−1(n2menz)

f p +1 = (1+menz)−r(p+1).

By substituting each term in equation (2.24),

∂ 2 f
∂ z2 +(w1 +CI)

∂ f
∂ z

+(1−βV I) f (1− f ) =
∂ 2 f
∂ z2 +(w1 +CI)

∂ f
∂ z

+ f −βV I f − f 2 +βV I f 2

= r(r+1)(1+menz)−r−2(n2m2e2nz)

− r(1+menz)−r−1(n2menz)

− r(w1 +CI)(1+menz)−r−1(nmenz)

+(1+menz)−r−βV I(1+menz)−r

− (1+menz)−2r +βV I(1+menz)−2r.
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By factoring (1+menz)−r−2, we get the following

∂ 2 f
∂ z2 +(w1 +CI)

∂ f
∂ z

+ f −βV I f − f 2 +βV I f 2 =(1+menz)−r−2[r(r+1)(n2m2e2nz)

− r(1+menz)(n2menz)

− r(w1 +CI)(1+menz)(nmenz)

+(1+menz)2−βV I(1+menz)2

− (1+menz)−r+2 +βV I(1+menz)−r+2]

=(1+menz)−r−2[r(r+1)n2m2e2nz

− rn2menz− rn2m2e2nz−CIrnmenz−CIrnm2e2nz

− rw1nmenz− rw1nm2e2nz +1+2menz

+m2e2nz−βV I−2βV Imenz−βV Im2e2nz

− (1+menz)−r+2 +βV I(1+menz)−r+2].

Now we can factor m2e2nz and menz,

(1+menz)−r−2[m2e2nz(r(r+1)n2− rn2−CIrn− rnw1 +1−βV I)

menz(−rn2−CIrn− rnw1 +2−2βV I)

+1−βV I− (1+menz)−r+2 +βV I(1+menz)−r+2].

Now by solving, we have

r(r+1)n2− rn2−CIrn− rnw1 +1−βV I = 0 (2.26)

− rn2−CIrn− rnw1 +1−βV I =−1+βV I. (2.27)
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Then we multiply (2.27) by -1

r(r+1)n2− rn2−CIrn+ rnw1 +1−βV I = 0

+ rn2 +CIrn− rnw1−1+βV I = 1−βV I,

and by adding the equations together, we get

r(r+1)n2−1+βV I = 0, (2.28)

where

−rp+2 = 0

=⇒ r =
2
p

for p = 1.

=⇒ r = 2.

We can now substitute r in equation (2.28) and solve for n:

r(r+1)n2−1+βV I = 0

2(2+1)n2−1+βV I = 0

6n2−1+βV I = 0

6n2 = 1−βV I

n =±
√

1−βV I

6
.
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Going back to equations (2.26) and (2.27), we substitute for n and solve for w1, so that

r(r+1)n2− rn2−CIrn− rnw1 +1−βV I = 0

6n2−2n2−2CIn−2nw1 +1−βV I = 0

5
3
(1−βV I)−2CI±

√
1−βV I

6
−2w1±

√
1−βV I

6
= 0

CI±
√

1−βV I

6
+w1±

√
1−βV I

6
=

5
6
(1−βV I)

±
√

1−βV I

6
(CI +w1) =

5
6
(1−βV I)

(CI +w1) =
5
6
(1−βV I)(±

√
6

1−βV I
)

w1 =±5

√
1−βV I

6
−CI

and

−rn2−CIrn− rnw1 +2−2βV I = 0

−2n2−2CIn−2nw1 +2−2βV I = 0

5
3
(1−βV I)−2CI±

√
1−βV I

6
−2±

√
1−βV I

6
w1 = 0

5
3
(1−βV I)−2±

√
1−βV I

6
(w1 +CI) = 0

±
√

1−βV I

6
(w1 +CI) =

5
6
(1−βV I)

w1 =±5

√
1−βV I

6
−CI.

Therefore, the solution of equation (2.24) is

f (z) = (1+menz)−2 where z = x−wt.

Now, by substituting the solution into (2.22), we check that the solution satisfies the equation. Recall
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that

∂ 2 f
∂ z2 +(w1 +CI)

∂ f
∂ z

+(1−βV I) f (1− f ) =(1+menz)−r−2

[m2e2nz(r(r+1)n2− rn2

−CIrn+ rnw1 +1−βV I)

menz(−rn2−CIrn

− rnw1 +2−2βV I)

+1−βV I− (1+menz)−r+2

+βV I(1+menz)−r+2]

and by substituting r,w and n we get

∂ 2 f
∂ z2 +(w1 +1)

∂ f
∂ z

+(1−βV I) f (1− f ) =(1+menz)−4

[m2e2nz((1−βV I)(1−
1
3
− 5

3
+1)

+(−2CI +2CI)(±
√

1−βV I

6
))

menz((1−βV I)(−
1
3
− 5

3
+2)

+(−2CI +2CI)(±
√

1−βV I

6
))

+1−βV I−1+βV I]

=0.

Since we get 0, then it is a solution. Now, for equation (2.25), we have

∂ 2g
∂ z2 +(w2 +CV )

∂g
∂ z

+(βIV −1)g(1−g) = 0

∂ 2g
∂ z2 +(w2 +CV )

∂g
∂ z
−g+βIV g+g2−βIV g2 = 0.

20



Recall that if f +g = 1 then g = 1− f , so the solution is

g(z) = 1− f (z)

= 1− (1+menz)−2, where z = x−wt.

2.2.1 Exact solutions

Figure 2.1: Exact solution for MI
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Figure 2.2: Exact solution for MV

Figure 2.3: Exact solutions for MI and MV
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2.2.2 Numerical Model 1

Consider the following stochastic Fisher-Kolmogorov system (D = 3, γ = 1, β1 +β2 = 2,

C =
√

3, σ = 1 ):

dm = (2.5mxx +2
√

3mx +(1−m−β1n)m)dt +mxdW 1
t (2.29)

dn = (2.5nxx +2
√

3nx +(1−n−β2m)n)dt +nxdW 2
t (2.30)

where

m(0,z) =
(

1+ k exp
(

n1x/
√

3
))−2

(2.31)

n(0,z) = 1−m(0,z), (2.32)

with n1 =
√

(1−β1)/6 for t ∈ [0,1]. By Theorem 1 equation (2.29)-(2.30) has a solution m(t,z) =

M(t,X1
t ) and n(t,z)=N(t,X2

t ) such that M(t,x) and N(t,x) are explicit solutions of the deterministic

equations

∂tM = 3∂xxM+(1−M−β1N)M+
√

3∂xM (2.33)

∂tN = 3∂xxN +(1−N−β2M)N +
√

3∂xN (2.34)

given by

M(t,z) =
(

1+ k exp
(

n1

(
x/
√

3−w1t
)))−2

(2.35)

N(t,z) = 1−M(t,z), (2.36)

with w1 =−5
√
(1−β1)/6−

√
3. Also X1

t and X2
t are solutions of

dX1
t =

√
3dt +dW 1

t (2.37)

dX2
t =

√
3dt +dW 2

t (2.38)
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with initial state X1
0 = z and X2

0 = z and for t ∈ [0,1].

The solutions are given by X1
t = z +

√
3t +W 1

t and X2
t = z +

√
3t +W 2

t for t ∈ [0,1].

Therefore, a particular solution of the stochastic system is

m(t,z) =
(

1+ k exp
(

n1

((
z+
√

3t +W 1
t

)
/
√

3−w1t
)))−2

(2.39)

n(t,z) = 1−
(

1+ k exp
(

n1

((
z+
√

3t +W 2
t

)
/
√

3−w1t
)))−2

. (2.40)

See figure (2.4)- (2.10) for the graph results.

In the following algorithm, we discretize the time and spatial interval and create a stochastic

mesh. We then use the central difference on the deterministic and add boundary conditions. Using

ode45 we solve the model in one function. We then compare the numerical solutions to the exact

solutions and get the error.

Algorithm: Figures (2.4)-(2.10) Main script

Write down all the parameters for both equations and solution

Discretize the time interval [0,T]. Similarly discretize, for the space interval [a,b].

Write down the stochastic mesh and plot it

Write down both functions and boundary conditions for each

Write the number of entries for initial condition of both functions

and combine them into one array

Use a finite (central) difference for time and space for the equations

Use ode45 to solve for the model

Separate the solutions for each equation by using the correct indices

Plot each of the solutions using surf plot

Using the for command write down an iteration method to solve for each of the exact solutions

Plot each by using a surf plot

Get the error of the numerical solutions

Plot the error using surf plot
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Figure 2.4: Stochastic Mesh

Figure 2.5: Numerical solution for M
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Figure 2.6: Numerical solution for N

Figure 2.7: Exact solution for M
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Figure 2.8: Exact solution for N

Figure 2.9: Error for M
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Figure 2.10: Error for N
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CHAPTER III

SIR WITH NETWORKING

In this chapter, we add diffusion to the Lokta-voltera equations from chapter 1, obtaining

Fisher-Kolmogorov equations. Using the principle of competitive exclusion and Fisher-Kolmogorov

equations, the disease and and the vaccine will compete until one of them goes extinct. We will

then coupled the standard SIR model with the information provided by a network. The network

information is rendered by a couple system of Fisher-Kolmogorov equations. We solve the Fisher-

Kolmogorov system by finding the exact solutions using Ablowitz Zappatella. The solutions will

be employed in MATLAB and compared to each other. We can see different situations of the SIR

model and how the disease and vaccine react to one another by changing the parameters.

3.1 Classical SIR

Figure 3.1: Flow of SIR model

In figure (3.1), we see the flow of the SIR model, where the three different populations

interact: susceptible population S, the infected population I and the removed population R. A

susceptible person can only get infected and once infected, the person can be removed by quarantine,

vaccinated, or death. The variables of interest can be consider as proportions such that S+ I+R = 1.
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Yet, if we consider each as actual populations then

S+ I +R = N,

where N is a constant that is defined as a closed population. By figure (3.1), we let S(t) denote

the number of individuals who are susceptible to the disease. I(t) denotes the number of infected

individuals, assumed infectious and able to spread the disease by contact with a susceptible. R(t)

denotes the number of individuals who have been infected and then removed from the possibility of

being infected again or of spreading infection. An individual can go from susceptible to infected by

a force of infection. If there is interaction between the susceptible people and the infected ones, a

fraction of the population will become infected. We will call this effect β , the transmission rate.

Now, from I to R, there is the rate at which people become cured or removed rate which will be

denoted as γ . We always regard β and γ as positive quantities. With all this information we can see

a more clear diagram as in figure (3.2).

Figure 3.2: Classical SIR model

An important note is that R is a variable that is redundant. In most of the cases we will

ignore the R variable. Thus, we will mainly analyze the differential equations form S and I. From

figure (3.2), we can also construct a model, for the time-rate of change of S(t), I(t) and R(t). Which
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is a set of ordinary differential equations:

dS
dt

=−βSI

dI
dt

= βSI− γI (3.1)

dR
dt

= γI

By using the following algorithm, we created a code in MATLAB for the SIR model. We graphed

the model with a fixed population, fixed removed rate γ and random rate of of infection β . In the

function script, we use the function command to combine the set of ordinary differential equations

in (3.1) together in one array.

Algorithm 1: figure (3.3) function script

function

Since all equations are under the same variable, we separate them:

Write the equation for dS
dt

Write the equation for dI
dt

Write the equation for dR
dt

Make the variable equal to the derivative, so it can put them all together.

end

For the main script we have the initial values for each rate of change equation. Con-

stants parameters are used and the time vector is discretized. Using ode45 the model is solved and

then it is plotted to show each population.
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Algorithm 2: figure (3.3) Main script

Create an initial value for S,I and R

Initialize the parameters

Discretize the time vector

Use ode45 to solve the model

Plot each equation

Create a legend for the equations and label the x and y axis appropriately.

From the equations in (3.1), we get the following graph:

Figure 3.3: SIR graph model
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3.2 SIR Model with networking

In this section, we introduce the SIR with networking:

∂S(x, t)
∂ t

=−β (1− p(x, t))S(x, t)I(t)− p(x, t)S(x, t)

dI(t)
dt

= β I(t)
∫

∞

0
(1− p(x, t))S(x, t)dx− γI(t) (3.2)

dR(t)
dt

=
∫

∞

0
p(x, t)S(x, t)dx+ γI(t).

We start by considering S(x, t), the density of the susceptible individuals at a distance x from the

source 0, which is the center of information.

Figure 3.4: Susceptible with x and t.

Thus, we get

S(t) =
∫

∞

0
S(x, t)dx.

I(t) is the fraction of infected in the population and R(t) is the fraction removed in the population.

As well, we have p(x, t) which is the probability an individual at a distance x is going to vaccinate

at a time t. the rate of change of the assembled vaccinated individuals at a time t at distance x is

given by

dV (t)
dt

=
∫

∞

0
p(x, t)S(x, t)dx.

The classical SIR model diagram is now updated to the following:
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Figure 3.5: SIR with p(x, t)

There is a probability that is a common practice for competition of information, where

people can make the decision to vaccinate [7]. We see the exponential difference between MI(x, t)

and MV (x, t) in the probability as follows:

p(x, t) =
1

1+ e−(C1MI(x,t)−C2MV (x,t))
.

The information about the disease and vaccine at time t and distance x are MI and MV . Here,

the disease and the vaccine will compete until one of them goes extinct. Using the principle of

competitive exclusion and Fishers-Komogorov equations, we consider the network of information

modeled as:

∂MI

∂ t
= DI

∂ 2MI

∂x2 + γI(1−MI−βV IMV )MI +CI
∂MI

∂x
∂MV

∂ t
= DV

∂ 2MV

∂x2 + γV (1−MV −βIV MI)MV +CV
∂MV

∂x

MI(x,0) = εII(0)δ0(x) (3.3)

MV (x,0) = 0

MI(0, t) = εII(t)

MV (0, t) = εVV (t).
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3.2.1 SIR Model with Networking

In the previous chapter, in proposition 1, we found the exact solutions for MI(x, t) and

MV (x, t) with constant coefficients. The exact solutions are then applied on the probability since

the probability was the exponential difference between MI(x, t) and MV (x, t). Using MATLAB, we

will apply the network information into the probability. The probability will then be used in the

SIR model (3.2), and by ode45 we will solve the model with the exact solutions in two MATLAB

scripts.

For the next algorithm, we imply the exact solutions of MI(x, t) and MV (x, t). Then they are

applied into the probability p(x, t). The probability is then applied to the SIR model, where it is

then solved in the main script.

Algorithm 1 figures (2.23) and (2.24): function script

function

Globalize the parameters use in both scripts

Create an array for n points plus one

Put the exact solutions for MI(x, t) and MV (x, t) and write a fixed p(x, t)

for 1:n

Compute the derivative of S(x,t) with correct indices

end

Compute the derivative of I(t) for n+1 as well as using trapezoid rule to integrate for x

end

In the second script, we write down all our parameters and the time and space discretization,

plot the graphs and use Ode45 to calculate the derivatives of the function script.
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Algorithm 2 figures (2.23) and (2.24): Main script

function

Globalize the parameters use in both scripts and initialize the rest of the parameters

Create time and space vectors for the discretization

Create an initial condition for MI and MV

Use Ode45 to solve the model and plot I

for i=1:m

Use trapezoid function to solve for S(i)

end

Plot the graph for S

We get the following two graphs showing the data for the S and I, where the parameters are

fixed and using the special case solutions along with a fixed p. The speed of the equations were

changed to get better results.

Figure 3.6: Proportion of Infected-from exact
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Figure 3.7: With Susceptible

3.3 Numerical Results

We are going to numerically solve the coupled system (2.18) and (2.19) by approximating

the derivatives with finite differences. By discretization of the spatial domain and time interval (if

applicable) we will use the boundaries and initial conditions to solve values or nearby points. Using

finite difference, we can put this coupled system into matrices which can then be solved by using

MATLAB to get numerical solutions. This procedure will require the use of Taylor’s expansion and

in some integrals of the model will be solved by the trapezoid rule, which is already integrated in

MATLAB.

3.3.1 Numerical solutions for the Fisher-Kolmogorov system

We will use finite difference on the coupled equations (2.18) and (2.19) to obtain numerical

solutions. Using the central difference over the space variable, we will approximate the right side of

the equations (2.18) and (2.19).

The bi-variate Taylor expansion of U(t + k,x) about (t,x) gives us the following approxima-
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tions:

U(t + k,x)−U(t,x)≈ k∂tU(t,x)

and

U(t,x±h)−U(t,x)≈±h∂xU(t,x)+
1
2

h2
∂xxU(t,x),

which is also equivalent to


h h2

2 0

−h h2

2 0

0 0 k




∂xU(t,x)

∂xxu(t,x)

∂tU(t,x)

=


U(t,x+h)−U(t,x)

U(t,x−h)−U(t,x)

U(t + k,x)−U(t,x)

 ,

Thus, for ∂xU(t,x) and ∂xxU(t,x) we get

∂xU(t,x) =
U(t,x+h)−U(t,x−h)

2h
(3.4)

∂xxU(t,x) =
U(t,x+h)−2U(t,x)+U(t,x−h)

h2 (3.5)

and for ∂tU(t,x)

∂tU(t,x) =
U(t + k,x)−U(t,x)

k
. (3.6)

Similarly, we do the same for V (t,x). We can now substitute (3.4)-(3.6) into equations (2.18) and

(2.19) by letting U(t,x) = MI(x, t) and V (t,x) = MV (x, t), we get the following:
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∂tU(t,x) = DI

(
U(t,x+h)−2U(t,x)+U(t,x−h)

h2

)
+ γI(1−U(t,x)−βV IV (t,x))U(t,x)

+CI

(
U(t,x+h)−U(t,x−h)

2h

)

∂tV (t,x) = DV

(
V (t,x+h)−2V (t,x)+V (t,x−h)

h2

)
+ γV (1−V (t,x)−βIVU(t,x))V (t,x)

+CV

(
V (t,x+h)−V (t,x−h)

2h

)
.

To solve for the model (3.3) we will be using finite difference and putting them as matrices in

MATLAB. As a result we obtain the following algorithms:

Algorithm 1 function script for figures (3.8) - (3.13)

function

Globalize the parameters used in both scripts

Create an array for n-1 points for MI,MV and S

Write the boundary conditions for both MI and MV

Write down the matrix for the discretization

Multiply the appropriate parts of the matrix to the appropriate part of the array with MI ,MV and S

Write down the probability and compute the equations for MI and MV

Compute the derivative of S(x,t) with correct indices

Compute the derivative of I(t) with the trapezoid rule on S(x,t) with correct indices.

Compute the rate of the vaccine with correct indices

Put all of the equations together in one array

end
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In the second script, we give values to the parameters and discretize the time and spatial vectors. We

then use ode45 to solve for the function script. Plots are then used to show the numerical solutions.

Algorithm 2: Plot script for figures (3.8) - (3.13)

Globalize the parameters used in both scripts

Initialize the rest of the parameters

Initialize both time and space vectors for the discretization

Write down the initial conditions for MI,MV ,S, I and for V (vaccine) in one vector

Use ode45 to solve for the function script

Put the boundary conditions with the correct indices

Separate the array to get the solution for MI,MV ,S, I and V

Plot each solution

By putting the same values that we put for the exact solution, we get a similar graph

to figure (3.6). The difference is that this graph has different boundary conditions, so there is a

small difference between the graphs.

Figure 3.8: Proportion of Infected-comparison to exact
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Figure 3.9: Surf of MI

Figure 3.10: Surf of MV
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Figure 3.11: Surf of S(x, t)

Figure 3.12: Proportion of Susceptible-Infected
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Figure 3.13: Proportion of Vaccinated

3.3.2 Computational Simulations

We are going to plot several solutions where all the parameters are one except the diffusion

coefficient and the parameters used for the probability. For the time and space discretization, we

consider n = 49, m = 100, x0 = 0, xn = 50, t0 = 0 and tm = 100. The three cases we will use for

the diffusion are DI = 500DV ,DI = DV and 500DI = DV . For figure (3.14) and figure (3.15), the

parameters used for the probability are CI = 50 and CV = 50, and the parameters used for the SIR

model are β = γ = 1.
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Figure 3.14: Solution for S (β = γ = 1)

Figure 3.15: Solution for I (β = γ = 1)

In the next simulation we are going to use the same parameters from the past simulation

except that we are going to change the SIR model parameters. For figures (3.16) and (3.17), we will
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let β = 10 and γ = 1.

Figure 3.16: Solution for S (β = 10,γ = 1)

Figure 3.17: Solution for I (β = 10,γ = 1)

Similarly, in this next simulation we will leave the probability the same and just change the

parameters from the SIR model. For figure (3.18) and figure (3.19), we will let β = 1 and γ = 10.
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Figure 3.18: Solution for S (β = 1,γ = 10)

Figure 3.19: Solution for I (β = 1,γ = 10)
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CHAPTER IV

CONCLUSION AND FUTURE RESEARCH

Fisher-Kolmogorov equations are reaction diffusion equations which have been used ex-

tensively in mathematical modeling, such as with low-grade glioma, biology and more. In this

thesis, explicit solutions and numerical simulations for a stochastic Fisher-Kolmogorov system

with random noise were presented. Furthermore, the coupled Fisher-Kolmogorov equations are

incorporated with the SIR (Susceptible-Infected-Recovered) model to examine the anticipated

mutual influence: The disease and the vaccine will compete until one of them goes extinct. Using

the principle of competitive exclusion incorporated in Fisher-Kolmogorov equations, we considered

the network of information modeled by equation (3.3). The results showed how the propagation

of information about the disease impacts the probability of vaccination and, consequently, the

vaccination rate.

As part of future research the analysis of spreading speeds and traveling wave speeds of the

Fisher-Kolmogorov equation can be extended to include spatial- or time-dependent heterogeneity in

the growth rate and diffusion coefficients, see [5].
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APPENDIX A

MATLAB CODE

Figure 3.3: SIR Graph Model function code

1 f u n c t i o n ypr ime = s i r o d e s 1 ( ~ , y , mu , beta , gamma )

2 % y ( 1 ) i s S and y ( 2 ) i s I

3 %ypr ime ( 1 ) i s S ’ and ypr ime ( 2 ) i s I ’

4 ypr ime ( 1 ) =mu− beta *y ( 1 ) *y ( 2 ) −mu*y ( 1 ) ;

5 ypr ime ( 2 ) = beta *y ( 1 ) *y ( 2 ) −(mu+gamma ) *y ( 2 ) ;

6 ypr ime ( 3 ) = gamma*y ( 2 ) ;

7 ypr ime =yprime ’ ;

8 end

Figure 3.3SIR Graph Model plot code

1 i n i t i a l = [ 0 . 9 ; 0 . 1 ; 0 ] ;

2 t =0 ;

3 T=100;

4 t s p a n = l i n s p a c e ( t , T , 1 0 0 ) ;

5 mu = 1 / ( 3 6 5 * 5 0 ) ;

6 beta = rand ;

7 gamma = 1 / 7 ;

8 [ T ,Y]= ode45 ( @sirodes1 , t s p a n , i n i t i a l , [ ] , mu , beta , gamma ) ;

9

10 f i g u r e 1 = f i g u r e ;
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11

12 % Cr ea te axes

13 axes1 = axes ( ’ P a r e n t ’ , f i g u r e 1 ) ;

14 hold ( axes1 , ’ on ’ ) ;

15

16 % Cr ea te m u l t i p l e l i n e s u s i n g m a t r i x i n p u t t o p l o t

17 p l o t 1 = p l o t ( T , Y, ’ LineWidth ’ , 2 , ’ P a r e n t ’ , axes1 ) ;

18 s e t ( p l o t 1 ( 1 ) , ’ DisplayName ’ , ’ S u s c e p t i b l e ’ , ’ Co lo r ’ , [ 0 0 0 ] ) ;

19 s e t ( p l o t 1 ( 2 ) , ’ DisplayName ’ , ’ I n f e c t e d ’ , ’ Co lo r ’ , [ 1 0 0 ] ) ;

20 s e t ( p l o t 1 ( 3 ) , ’ DisplayName ’ , ’ Recovered ’ , ’ Co lo r ’ , [ 0 0 1 ] ) ;

21

22 % Cr ea te y l a b e l

23 y l a b e l ( ’ P r o p o r t i o n ’ ) ;

24

25 % Cr ea te x l a b e l

26 x l a b e l ( ’ Time ’ ) ;

27

28 box ( axes1 , ’ on ’ ) ;

29 % S e t t h e r e m a i n i n g axes p r o p e r t i e s

30 s e t ( axes1 , ’ FontName ’ , ’ Times ’ , ’ F o n t S i z e ’ , 2 0 ) ;

31 % Cr ea te l e g e n d

32 l e g e n d 1 = l egend ( axes1 , ’ show ’ ) ;

33 s e t ( l egend1 , ’ L o c a t i o n ’ , ’ b e s t ’ ) ;

Figure 3.6 function code

1 f u n c t i o n ypr ime = s i r o d e s 1 0 ( t , y )

2 % y1 i s S and y2 i s I w h i l e ypr ime ( 1 ) i s S ’ and ypr ime ( 2 ) i s I ’

3 g l o b a l n dx vx n1 w1 beta gamma
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4 ypr ime = z e r o s ( n +1 ,1 ) ;

5 MI=@( x , t ) (1+ exp ( n1 * ( x−w1* t ) ) ) . ^ ( − 2 ) ;

6 MV=@( x , t ) (1 −MI ( x , t ) ) ;

7 P=@( x , t ) ( 1 . / ( 1 + exp (50*MV( x , t ) −40*MI ( x , t ) ) ) ) ;

8 f o r i =1 : n

9 ypr ime ( i ) =− beta *y ( n +1) *(1 −P ( vx ( i ) , t ) ) . * y ( i ) −P ( vx ( i ) , t ) *y ( i ) ;

10 end

11 ypr ime ( n +1)= beta *y ( n +1) *dx* t rapz ( (1 − P ( vx , t ) ) . * y ( 1 : n ) ’ ) −gamma*y ( n

+1) ;

12 end

Figure 3.6 plot code

1 c l e a r a l l

2 c l c

3 g l o b a l n dx vx n1 n2 w1 w2 beta gamma

4

5 %t i m e and space d i s c r e t i z a t i o n

6 n =100;

7 m=50;

8 x0 =0;

9 xn =10;

10 t 0 =0;

11 tm =100;

12 vx= l i n s p a c e ( 0 , 2 0 , n ) ; h=vx ( 2 ) −vx ( 1 ) ;

13 v t = l i n s p a c e ( t0 , tm ,m) ; k= v t ( 2 ) − v t ( 1 ) ;

14 x1= z e r o s ( n +1 ,1 ) ;

15 t 1 = z e r o s (m+1 ,1 ) ;

16 dx =( xn−x0 ) / n ;
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17

18 %p a r a m e t e r s f o r MI and MV

19

20 B1 = . 5 ;

21 c1 =1;

22 n1= − s q r t ( (1 −B1 ) / 6 ) ;

23 w1= 5* s q r t ( (1 −B1 ) / 6 ) −c1 ;

24

25 %p a r a m e t e r s f o r SIR

26 gamma = 1 / 1 4 ;

27 beta = 20*gamma ;

28

29 i n i t i a l =[ ones ( n , 1 ) * . 9 9 / n ; . 0 1 ] ;

30

31 [ T ,Y]= ode45 ( @sirodes10 , vt , i n i t i a l , [ ] ) ;

32

33 f i g u r e 1 = f i g u r e ;

34

35 % Cr ea te axes

36 axes1 = axes ( ’ P a r e n t ’ , f i g u r e 1 ) ;

37 hold ( axes1 , ’ on ’ ) ;

38

39 % Cr ea te m u l t i p l e l i n e s u s i n g m a t r i x i n p u t t o p l o t

40 p l o t 1 = p l o t (Y ( : , end ) , ’ LineWidth ’ , 2 , ’ P a r e n t ’ , axes1 ) ;

41 s e t ( p l o t 1 , ’ DisplayName ’ , ’ I n f e c t e d ’ , ’ Co lo r ’ , [ 1 0 0 ] ) ;

42

43 % Cr ea te y l a b e l
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44 y l a b e l ( ’ P r o p o r t i o n ’ ) ;

45

46 % Cr ea te x l a b e l

47 x l a b e l ( ’ Time ’ ) ;

48

49 box ( axes1 , ’ on ’ ) ;

50 % S e t t h e r e m a i n i n g axes p r o p e r t i e s

51 s e t ( axes1 , ’ FontName ’ , ’ Times ’ , ’ F o n t S i z e ’ , 2 0 ) ;

52 S= z e r o s ( 0 , 1 ) ;

53 f o r i =1 :m

54 S ( i ) = t rapz (Y( i , 1 : n ) ) ;

55 end

56 hold on

57 p l o t 2 = p l o t ( S , ’ LineWidth ’ , 2 ) ;

58 s e t ( p l o t 2 , ’ DisplayName ’ , ’ S u s c e p t i b l e ’ , ’ Co lo r ’ , [ 0 0 0 ] ) ;

59 l egend

Figure 3.8 Function code

1 f u n c t i o n upr ime = s i r o d e s 1 3 ( t , u )

2 % u ( 1 : n −1) i s MI , u ( n : ( 2 n −2) ) i s MV,

3 %u (2 n −1: end −2) i s S and u ( end −1) i s I

4 %u ( end ) i s V

5

6 g l o b a l n h beta gamma Cv Ci mi mv D1 D2 gamma1 gamma2 B1 B2 c1 c2

7

8 upr ime = z e r o s (3* n −1 ,1 ) ;

9

10 u l =mi*u ( end −1) ;
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11 ur =0;

12 v l =mv*u ( end ) ;

13 v r =0;

14

15 E_p= diag ( −1* ones ( n −2 ,1 ) , −1) + diag (1* ones ( n −2 ,1 ) , 1 ) ;

16 E0= b l k d i a g ( D1* eye ( n −1) ,D2* eye ( n −1) ) ;

17 E1 = ( ( ( 1 / h ^2 ) ) . * ( diag ( −2 .* ones ( n −1 ,1 ) ) + diag ( ones ( n −2 ,1 ) , 1 ) + diag (

ones ( n −2 ,1 ) , −1) ) ) ;

18 E1= b l k d i a g ( E1 , E1 ) ;

19 E2 = ( ( 1 / ( h ^2 ) ) . * [ u l ; z e r o s ( n −3 ,1 ) ; u r ; v l ; z e r o s ( n −3 ,1 ) ; v r ] ) ;

20 E3 =[ eye ( n −1) B1* eye ( n −1) ; B2* eye ( n −1) eye ( n −1) ] ;

21 E4= b l k d i a g ( gamma1* eye ( n −1) , gamma2* eye ( n −1) ) ;

22 E5 = ( 1 / ( 2 * h ) ) * b l k d i a g ( c1 *E_p , c2 *E_p ) ;

23 E6 = ( ( 1 / ( 2 * h ) ) .* [ −1* c1 * u l ; z e r o s ( n −3 ,1 ) ; c1 * ur ; −1* c2 * v l ; z e r o s ( n −3 ,1 )

; c2 * vr ] ) ;

24

25 F=@( t , u ) ( E0 *( E1*u ( 1 : ( 2 * n −2) ) +E2 ) +E4*u ( 1 : ( 2 * n −2) ) .* (1 − E3*u ( 1 : ( 2 * n

−2) ) ) +E5*u ( 1 : ( 2 * n −2) ) +E6 ) ; %t h i s u has bo th s y s t e m s j o i n t

t o g e t h e r by t h e E ’ s above .

26

27 P = ( 1 . / ( 1 + exp ( Cv*u ( n : ( 2 * n −2) ) −Ci *u ( 1 : ( n −1) ) ) ) ) ;

28

29 upr ime1 =F ( t , u ) ;

30 temp1=− beta *u ( end −1) *(1 −P ) . * u ( ( 2 * n −1) : ( end −2) ) ;

31 temp2=P . * u ( ( 2 * n −1) : ( end −2) ) ;

32 upr ime2 =temp1 −temp2 ;

33 upr ime3 = beta *u ( end −1) *h* t rapz ( (1 − P ) . * u ( ( 2 * n −1) : ( end −2) ) )
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34 −gamma*u ( end −1) ;

35 upr ime4 = t rapz ( P . * u ( ( 2 * n −1) : ( end −2) ) ) ;

36 upr ime =[ upr ime1 ; upr ime2 ; upr ime3 ; upr ime4 ] ;

37 end

Figure 3.8 plot code

1 c l e a r a l l

2 c l c

3

4 g l o b a l n h beta gamma Cv Ci mi mv D1 D2 gamma1 gamma2 B1 B2 c1 c2

5

6 %space and t i m e d i s c r e t i z a t i o n

7 n =100;

8 T=50;

9 m=50;

10 a =0;

11 b =20;

12 vx= l i n s p a c e ( a , b , n +1) ; h=vx ( 2 ) −vx ( 1 ) ;

13 v t = l i n s p a c e ( 0 , T ,m) ; k= v t ( 2 ) − v t ( 1 ) ;

14 dx = ( b−a ) / ( n +1) ;

15

16 beta = 2 0 / 1 4 ;

17 gamma= 1 / 1 4 ;

18 Cv=50;

19 Ci =40;

20 mi =1;

21 mv=1;

22 D1=1;
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23 D2=1;

24 gamma1 =1;

25 gamma2 =1;

26 B1 = . 5 ;

27 B2=2−B1 ;

28 c1 =2;

29 c2 = −2;

30

31 i n i t i a l =[ mi * . 0 1 ; z e r o s ( ( n −2) , 1 ) ; z e r o s ( ( n −1) , 1 )

32 ; ones ( n −1 ,1 ) * . 9 9 / ( n −1) ; . 0 1 ; 0 ] ;

33

34 [ vT , s o l u t ]= ode45 ( @sirodes13 , vt , i n i t i a l ) ;

35 u= s o l u t ;

36 u l =mi*u ( : , ( end −2) ) ;

37 u r = z e r o s ( l e n g t h ( vT ) , 1 ) ;

38 v l =mv*u ( : , end ) ;

39 v r = z e r o s ( l e n g t h ( vT ) , 1 ) ;

40 u _ f i n a l =[ ul , s o l u t ( : , 1 : ( n −1) ) , u r ] ; %g e t t i n g s o l u t i o n f o r u

41 v _ f i n a l =[ vl , s o l u t ( : , n : ( 2 * n −2) ) , v r ] ; %g e t t i n g s o l u t i o n f o r v

42 S=u ( : , ( 2 * n −1: end −2) ) ;

43 I =u ( : , ( end −1) ) ;

44 V=u ( : , end ) ;

45

46 %p l o t s

47 f i g u r e ( 1 )

48 s u r f ( vx , vT , u _ f i n a l )

49 x l a b e l ( ’ Space ’ )
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50 y l a b e l ( ’ Time ’ )

51

52 f i g u r e ( 2 )

53 s u r f ( vx , vT , v _ f i n a l )

54 x l a b e l ( ’ Space ’ )

55 y l a b e l ( ’ Time ’ )

56

57 f i g u r e ( 4 )

58 s u r f ( vx , vT , [ z e r o s (m, 1 ) S z e r o s (m, 1 ) ] )

59 x l a b e l ( ’ Space ’ )

60 y l a b e l ( ’ Time ’ )

61

62 f i g u r e ( 5 )

63 p l o t ( vT , I , ’ L i n e w i d t h ’ , 2 )

64 hold on

65 p l o t ( vT , h* t rapz ( S , 2 ) , ’ L i n e w i d t h ’ , 2 )

66 x l a b e l ( ’ Time ’ )

67 y l a b e l ( ’ P r o p o r t i o n o f i n d i v i d u a l s ’ )

68 l egend ( ’ I n f e c t e d ’ , ’ S u s c e p t i b l e ’ )

69

70 f i g u r e ( 6 )

71 p l o t ( vT , V, ’ L i n e w i d t h ’ , 2 )

72 x l a b e l ( ’ Time ’ )

73 y l a b e l ( ’ P r o p o r t i o n o f v a c c i n a t e d ’ )

Figures 2.4-2.10: code

1 c l e a r a l l

2 c l c
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3

4 %c o n s t a n t s p a r a m e t e r s

5 D1=3;

6 D2=3;

7 gamma1 =1;

8 gamma2 =1;

9 B1 = . 5 ;

10 B2=2−B1 ;

11 c1= s q r t ( 3 ) ;

12 %c2=2* s q r t ( 3 ) ;

13 sigma1 =1;

14 %sigma2 =1;

15 n1= − s q r t ( (1 −B1 ) / 6 ) ;

16 %n2= s q r t ( ( B2−1) / 6 ) ;

17 w1= −5* s q r t ( (1 −B1 ) / 6 ) −1;

18 %w2= −5* s q r t ( ( B2−1) / 6 ) −1;

19 m0 = 1 ;

20

21 %space and t i m e d i s c r e t i z a t i o n

22 n =50;

23 t 0 =0;

24 T=1;

25 m=50;

26 a =50;

27 b = −50;

28 vx= l i n s p a c e ( a , b , n +1) ; h=vx ( 2 ) −vx ( 1 ) ;

29 v t = l i n s p a c e ( t0 , T ,m) ; k= v t ( 2 ) − v t ( 1 ) ;
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30

31 f =@( t , x ) ( c1 ) ;

32 g=@( t , x ) ( s igma1 ) ;

33 N=1;

34 dw= s q r t ( k ) . * randn (N,m−1) ;

35 BM=[ z e r o s (N, 1 ) cumsum ( dw , 2 ) ] ;

36 dz = .5* k *(dw+ s q r t ( k / 3 ) . * randn (N,m−1) ) ;% Another i n d e p e d e n t BM

37 vrk =vx ’ ;%z

38 f o r j =2 :m

39 Lp= vrk ( : , j −1)+k* f ( v t ( j −1) , v rk ( : , j −1) ) + s q r t ( k ) *g ( v t ( j −1) , v rk

( : , j −1) ) ;

40 Lm= vrk ( : , j −1)+k* f ( v t ( j −1) , v rk ( : , j −1) ) − s q r t ( k ) *g ( v t ( j −1) , v rk

( : , j −1) ) ;

41 Hp=Lp+ s q r t ( k ) *g ( v t ( j −1) , Lp ) ;

42 Hm=Lp− s q r t ( k ) *g ( v t ( j −1) , Lp ) ;

43 vrk ( : , j ) = vrk ( : , j −1)+k* f ( v t ( j −1) , v rk ( : , j −1) ) +g ( v t ( j −1) , v rk ( : ,

j −1) ) . * dw ( : , j −1) . . .

44 + ( 1 / ( 2 * s q r t ( k ) ) ) * ( f ( v t ( j −1) , Lp ) − f ( v t ( j −1) ,Lm) ) . * dz ( : , j −1)

. . .

45 + .25* k *( f ( v t ( j −1) , Lp ) −2* f ( v t ( j −1) , v rk ( : , j −1) ) + f ( v t ( j −1) ,

Lm) ) . . .

46 + ( 1 / ( 4 * s q r t ( k ) ) ) * ( g ( v t ( j −1) , Lp ) −g ( v t ( j −1) ,Lm) ) . * ( dw ( : , j

−1) .^2 − k ) . . .

47 + ( 1 / ( 2 * k ) ) * ( g ( v t ( j −1) , Lp ) −2*g ( v t ( j −1) , v rk ( : , j −1) ) +g ( v t ( j

−1) ,Lm) ) . * ( k*dw ( : , j −1)−dz ( : , j −1) ) . . .

48 + ( 1 / ( 4 * k ) ) * ( g ( v t ( j −1) ,Hp ) −g ( v t ( j −1) ,Hm) −( g ( v t ( j −1) , Lp ) −g (

v t ( j −1) ,Lm) ) ) . * ( ( 1 / 3 ) * (dw ( : , j −1) . ^ 2 ) −k ) . * dw ( : , j −1) . . .
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49 +( k / 2 ) * ( f ( v t ( j ) , v rk ( : , j −1) ) − f ( v t ( j −1) , v rk ( : , j −1) ) ) . . .

50 + ( 1 / k ) * ( g ( v t ( j ) , v rk ( : , j −1) ) −g ( v t ( j −1) , v rk ( : , j −1) ) ) . * ( k*dw

( : , j −1)−dz ( : , j −1) ) ;

51 end

52 f i g u r e ( 1 )

53 p l o t ( v t , vrk , ’b−o ’ , ’ Marke rS ize ’ , 3 , ’ MarkerFaceColo r ’ , [ 1 , 0 , 0 ] )

54

55 L=@( t ) ( i n t e r p 1 ( v t , v rk ( 1 , : ) , t ) −( t ~= v t ( 1 ) ) * vrk ( 1 , max ( [ 1 f i n d ( v t < t

, 1 , ’ l a s t ’ ) ] ) ) ) ;

56

57 %A=(1 / h ^ 2 ) * ( d iag ( −2* ones ( n −1 ,1) , 0 )+d iag ( ones ( n −2 ,1) , −1)+d iag ( ones

( n −2 ,1) , 1 ) ) ;

58 %c1 =1/ h ^ 2 ;

59 %c2 =1/ (4* h ) ;

60 uu1=@( t , x ) (1+m0*exp ( n1 * ( ( ( x / s q r t ( 3 ) ) −w1* t ) ) ) ) . ^ ( − 2 ) ; %f u n c t i o n 1

61 uu2=@( t , x ) (1 −( uu1 ( t , x ) ) ) ; %f u n c t i o n 2

62 u l =@( t ) ( uu1 ( t , i n t e r p 1 ( v t , v rk ( 1 , : ) , t ) ) ) ; %u lower bc

63 ur =@( t ) ( uu1 ( t , i n t e r p 1 ( v t , v rk ( end , : ) , t ) ) ) ; %u upper bc

64 v l =@( t ) ( uu2 ( t , i n t e r p 1 ( v t , v rk ( 1 , : ) , t ) ) ) ; %v lower bc

65 vr =@( t ) ( uu2 ( t , i n t e r p 1 ( v t , v rk ( end , : ) , t ) ) ) ; %v upper bc

66

67 vvx=vx ( 2 : end −1) ;

68 u _ i n i t i a l =uu1 ( 0 , vvx ’ ) ; %n−1 e n t r i e s

69 v _ i n i t i a l =uu2 ( 0 , vvx ’ ) ; %n−1 e n t r i e s

70 i n i t i a l =[ u _ i n i t i a l ; v _ i n i t i a l ] ;

71

72
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73 E0=@( t ) [ ( D1 − ( 1 / 2 ) * sigma1 + L ( t ) . / ( 2 * k ) ) * eye ( n −1) z e r o s ( n −1 , n −1)

; z e r o s ( n −1 , n −1) ( D2 − ( 1 / 2 ) * sigma1+L ( t ) . / ( 2 * k ) ) * eye ( n −1) ] ;

74 E1 = ( ( ( ( 1 / h ^2 ) ) ) . * ( diag ( −2 .* ones ( n −1 ,1 ) ) + diag ( ones ( n −2 ,1 ) , 1 ) + diag (

ones ( n −2 ,1 ) , −1) ) ) ;

75 E1 =[ E1 z e r o s ( s i z e ( E1 ) ) ; z e r o s ( s i z e ( E1 ) ) E1 ] ;

76 E2=@( t ) ( ( ( 1 / ( h ^2 ) ) ) . * [ u l ( t ) ; z e r o s ( n −3 ,1 ) ; u r ( t ) ; v l ( t ) ; z e r o s ( n −3 ,1 )

; v r ( t ) ] ) ;

77 E3 =[ eye ( n −1) B1* eye ( n −1) ; B2* eye ( n −1) eye ( n −1) ] ;

78 E4 =[gamma1* eye ( n −1) z e r o s ( n −1 , n −1) ; z e r o s ( n −1 , n −1) gamma2* eye ( n −1)

] ;

79

80 F=@( t ,w) ( E0 ( t ) * ( E1*w+E2 ( t ) ) +E4*w.* (1 − E3*w) + ( ( 1 / ( 2 * h ) ) . * ( 1 / k ) . * L ( t

) . * ( [ w( 2 : n −1) ; u r ( t ) ;w( n +1: end ) ; v r ( t ) ] −[ u l ( t ) ;w ( 1 : ( n −2) ) ; v l ( t ) ;

w( n : ( end −1) ) ] ) ) ) ; %t h i s u has bo th s y s t e m s j o i n t t o g e t h e r by

t h e E ’ s above .

81

82 %ode45 s o l v i n g t h e s y s t e m

83 [ vT , s o l u t ]= ode45 ( F , vt , i n i t i a l ) ;

84 m _ f i n a l =[ u l ( vT ) , s o l u t ( : , 1 : ( n −1) ) , u r ( vT ) ] ; %g e t t i n g s o l u t i o n f o r

u

85 n _ f i n a l =[ v l ( vT ) , s o l u t ( : , n : end ) , v r ( vT ) ] ; %g e t t i n g s o l u t i o n f o r v

86 T o t a l = m _ f i n a l + n _ f i n a l ;

87 %%

88 %p l o t s

89 f i g u r e ( 2 )

90 s u r f ( vx , vT , m _ f i n a l )

91 x l a b e l ( ’ Space ’ )
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92 y l a b e l ( ’ Time ’ )

93

94 f i g u r e ( 3 )

95 s u r f ( vx , vT , n _ f i n a l )

96 x l a b e l ( ’ Space ’ )

97 y l a b e l ( ’ Time ’ )

98

99 %% Exac t

100 m _ e x a c t s t o =@( t , x ,BM) (1+m0*exp ( n1 . * ( ( x+c1 . * t +sigma1 . *BM) −w1* t ) ) )

. ^ ( − 2 ) ;

101 f o r i =1 :m

102 f o r j =1 : n+1

103 x e x a c t _ 1 ( i , j ) = m _ e x a c t s t o ( v t ( i ) , vx ( j ) ,BM( i ) ) ;

104 end

105 end

106 f i g u r e ( 4 )

107 s u r f ( vx , v t , x e x a c t _ 1 )

108

109 n _ e x a c t s t o =@( t , x ,BM) (1 − m _ e x a c t s t o ( t , x ,BM) ) ;

110 f o r i =1 :m

111 f o r j =1 : n+1

112 x e x a c t _ 2 ( i , j ) = n _ e x a c t s t o ( v t ( i ) , vx ( j ) ,BM( i ) ) ;

113 end

114 end

115 f i g u r e ( 5 )

116 s u r f ( vx , v t , x e x a c t _ 2 )

117
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118 %% E r r o r s

119 e r r 1 = abs ( m _ f i n a l − x e x a c t _ 1 ) ;

120 f i g u r e ( 6 )

121 s u r f ( vx , v t , e r r 1 ) ;

122 z l a b e l ( ’ E r r o r ’ )

123

124 e r r 2 = abs ( n _ f i n a l − x e x a c t _ 2 ) ;

125 f i g u r e ( 7 )

126 s u r f ( vx , v t , e r r 2 ) ;

127 z l a b e l ( ’ E r r o r ’ )
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