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ABSTRACT 

 

Garcia, Oscar, A Mathematical Approach to Gomoku. Master of Science (MS), May, 2020, 34 

pp., 3 tables, 4 figures, 7 references, 16 titles. 

 This goal of this thesis is to design and implement a light weighted AI for playing 

Gomoku with high level intelligence. Our work is built upon an innovative algebraic monomial 

theory to help assess values for each possible move and estimate chances for the AI to win at 

each move. With the help of the monomial theory, we are able to convert winning configurations 

into monomials of variables that represent the underlying board positions.  In the existing 

approaches to building an AI for playing Gomoku, one common challenge is about how to 

represent the present configuration of the game along with the history of the moves of the two 

players. Compared with the usual 2D matrix of the board positions, our monomials can make the 

AI easily understand the current state and the history of the game, and they also allow the AI to 

compute the potential values for future moves from the current state and the history of moves 

made by the players. In addition, when we adopt the Monte Carlo Tree Search to probe for a 

possible winning strategy for the AI, those monomials help reduce the search space, in addition 

to help estimate rates for exploration of the historical moves and exploitation of the future 

moves. Based on the proposed algebraic monomial theory, we have implemented a lightweight 

powerful AI that is capable of playing Gomoku at highly competitive level. At this stage, our AI 

can win top rated AIs (up to top 7) from the most recent Gomocup rating. 
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CHAPTER I 

 

INTRODUCTION 

 

 Gomoku is a strategy board game traditionally played on a GO Board. The game is 

played by two players alternatively placing a black or white stone on the intersection positions 

on the board. The goal of a player is to form a chain of 5 stones either horizontally, vertically, or 

diagonally, while simultaneously preventing the opponent from doing so. 

 At an initial glance, Gomoku appears to be a simple game similar to Tic-Tac-Toe. With 

rules so simple that you can explain to a three year old and play with anyone who just knows 

how to place stones on a board, you would be amazed by the fact that Gomoku can be so hard to 

master. Surprisingly under its simplicity guise, Gomoku is a highly complex game. As is well-

known, Go is the most challenging board game in the world. In 1980, Lichtenstein and Sipser [6] 

proved that Go is PSPACE-hard. In 1983, Robson [7 ] proved that Go is EXPTTIME-hard. In 

comparison with the computational complexity of Go, Reisch [4] proved in 1980 that Gomoku is 

PSPACE-complete.  To make the matter more puzzling, Gomoku is asymmetrical, meaning that 

the black player seems to have a bit more advantage to win. In fact, in 1994, Allis [5] proved in 

his Ph.D. dissertation that there is a winning strategy for the black player for Gomoku. Such an 

asymmetry would add more challenge to build an AI to win when it plays white. One must know 

Allis’ result does not mean that there is an efficient way for the black player to find the winning 
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strategy.  Finding a strategy to win is still a quite gruesome task due to the sheer amount of 

possible states the game may generates as the players continue playing. Notably, the branching 

factor of Gomoku is 210, while the branch factor for Go is 250.  

Despite the vast computational complexity challenges, there have been remarkable 

achievements on building AIs to play the most difficult games.  AlphaGo [1] made its historical 

win over Lee Sedol, one of the best Go Masters in March 1996.  The later version AlphaGo Zero 

is even more powerful. AlphaGo has been quoted to cost around $25 million dollars solely for 

the hardware [2]. Training a network for some powerful AI like AlphaGo is another incredibly 

hard task that requires huge amount of game data. Even for Gomoku, when two highly 

competitive players play the game, it would easily last over 10 minutes to finish. Thus, 

generating and collecting game data for training and self-learning of building AI would be a 

tremendous task.  

Besides game data generating, Gomoku has three unique properties that would prevent us 

to from applying existing powerful AI like AlphaGo directly, even though the framework of 

AlphaGo is quite universal. (1) As shown by Allis in 1994 [5], the strategies for black and white 

players are asymmetrical. (2) The game length of Gomoku is on average 30 moves, while the 

average game length for Go is 150. Such a short game length allows far less tolerance for an AI 

for Gomoku to make a mistake. (3) It is true that Gomoku values locality more than global view, 

but how to utilize the local potentials without composing the global potentials? 
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Method 

 In this thesis, we will develop an innovative approach to building an AI for Gomoku.  

We first present an algebraic monomial theory to present the game states and to potential values 

for each move. Unlike other  AIs that have treated the board as an image, such as AlphaGo [1],  

we instead treat the monomials to represent game configurations and histories. This monomial 

approach is less intensive for an AI to process when compared to layers of 2D matrices needed 

for history recordings. Our new approach also allows for more information to be extracted when 

compared to a series of points on the game board. The most important aspect of our monomial 

solution lies on its ability to scale so that a light weighted AI can be developed and run 

efficiently on usual computing devises such as PCs, laptops, tablets and smart phones, without 

compromising its competitiveness.   
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CHAPTER II 

 

MONOMIALS 

 

 The foundation of the work in this thesis is based on algebraic monomials. A monomial is 

a product of algebraic variables such that the degree of every variable is 1. For example, 

𝑥1𝑥2𝑥3𝑥4 is a monomial, but 𝑥1𝑥2
3𝑥3𝑥4 is not because the degree of 𝑥2 is 3. We know that we 

can play Gomoku on a 15 × 15 board or a typical 19 × 19 Go board. For simplicity, we focus on 

a 19 × 19 board, and all the work can be easily applied to a 15 × 15 board.  

 A 19 × 19 board has 361 grid points, and for each of these points we introduce a variable 

to represent it. Since the goal of a player is to form a list of 5 consecutive points with the player’s 

stones, either horizontally, vertically or diagonally, we can create a monomial to represent each 

of such winning configurations. Such a monomial is simply the product of five variables for 

those five consecutive points. In general, for an 𝑛 × 𝑛 board, if we define a list of c consecutive 

points, either horizontally, vertically or diagonally, with the second colored stone as a winning 

configuration, then we devise a formula as shown in Figure 1 to show the total number of 

possible winning configurations for the board. 

2(n (n – c + 1) + (n – c + 1)2) 

Figure 1. Formula used to calculate monomial amount. 

n = board size 

c = chain size 
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For the typical 19 × 19 Go board, according to our formula, we have a total of 1020 monomials 

representing all possible winning configurations for a player.   

 The roles of the algebraic variables and the monomials are symmetrical for the black and 

white players. Thus, for simplicity, we just need to discuss how these variables and  monomials 

can help a black player play the game. At the beginning of the game, the black player will have a 

set of 1020 monomials. When the black player places a stone on a point represented by a variable 

𝑥1, in terms of algebra, this is the same as the black player sets the variable 𝑥1 to 1. Considering 

that the black player has a monomial 𝑥1𝑥2𝑥3𝑥4𝑥5 before setting 𝑥1 to 1, then after setting 𝑥1 to 

1, the monomial 𝑥1𝑥2𝑥3𝑥4𝑥5 becomes 𝑥2𝑥3𝑥4𝑥5. If the white player ignores 𝑥2, 𝑥3, 𝑥4, 𝑥5, the 

black player can keep setting 𝑥2, 𝑥3, 𝑥4, 𝑥5 to 1 in four additional moves, thus the monomial is 

changed to 1, implying that the black payer wins the game. In reality, the white player is not so 

naïve. After the black player sat 𝑥1 to 1, the white player could place a white stone on the point 

represented by 𝑥2. In algebra, this is the same as setting 𝑥2 to 0. By doing so, the white player 

basically sets the monomial 𝑥2𝑥3𝑥4𝑥5 to 0, thus completely eliminating a possible winning 

configuration for the black player. The effect of setting a variable to 1 is symmetrical for black 

and white players: When the black player sets a variable to 1 on his own behalf, symmetrically 

he sets the variable to 0 to hurt the white player; when the white player sets a variable to 0 to 

harm the black player, symmetrically he sets the variable to 1 to further his chance to win. 

A monomial for a black player is active (or alive), if none of the variable in the monomial 

has not set to 0 by the white player. A monomial is inactive (or dead), if at least one of its 

variables has been set to 0 by the white player. A variable in a monomial is called free, if it has 

not been set to 1 or 0 by a player.  
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As can be understood from the above discussion, at each move, the black player finds a 

variable to set it to 1 with his goal to change one of his active monomials to 1, while at the same 

time to prevent  the white player from doing so. As the game progresses, the black player needs 

to assess his offense strategy and defense strategy. For offense, he needs to find a way to move 

one his alive monomials to 1. For defense, he needs to eliminate any possible monomial that can 

be changed to 1 by the white player. The black player needs to find some competitive policy to 

balance the offense and defense strategies.  

 

Benefits 

Potential Values for Board Points 

 At each move, the black player needs to know how to choose a point to increase his 

chance to win and meanwhile to diminish the white player’s chance to win. To do so, the black 

player needs to find some good way to assess potential values for every remaining move from 

the current game state and the history of the game. It turns out that the monomials can help with 

potential value assessing.  

 For any point 𝑝 that is represented by a variable 𝑥, we say that a monomial 𝑚 covers 𝑝, if 

𝑥 is contained in 𝑚.  

 For variable 𝑥, we define the score for 𝑥 as follows: s(x) = 1, if x is a free variable; 

𝑠(𝑥) = 2, if 𝑥 = 1, i.e., the black player has already placed a stone on the point represented by 𝑥; 

and 𝑠(𝑥) = 0, if 𝑥 = 0, i.e., the white player has already set a white stone on the point 

represented by 𝑥.  

 For any monomial m, the score of m is  

 𝑠(𝑚) = ∏ 𝑠(𝑥).𝑥 𝑖𝑛 𝑚  
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 At any step of the game, with the help of monomials, the value of any point 𝑝 is defined 

in the following:  

 𝑣(𝑝) = ∑ 𝑠(𝑚)𝑚 𝑐𝑜𝑣𝑒𝑟𝑠 𝑝  

It is easy to verify that for any a point 𝑝 on the game board,  the number of monomials covering 

it is between 3 and 20.  The value 𝑣(𝑝)  is a good indicator of p’s potential to help the black 

player to win the game.  

Symmetrically, we can define the potential value for any point on the game board for the 

white player.  

 

Efficiency to Aid Search 

 Although there are more monomials (1020 total) than the number of points on the game 

board (361 total),  those monomials allow a more streamlined approach to handling the state of 

the game board. One of the key factors lies with the amount of calculations required for 

computing the potential values when compared to using points directly. For example, a point 

within the center region of the board would require the recalculation of up to 40 points. These 40 

points consist of 10 adjacent points on each of the four orientations. With monomials, we only 

need to deal with up to 20 monomials, or 5 monomials per orientation. Also, as the game 

progresses, these monomials tend to become inactive, hence, to be discarded,  at quite a rapid 

pace. A single move can wipe out up to 20 of the opponent's monomials while only a single point 

would be deemed inactive. Thus, with the monomial approach, the resources required to update 

the state of the board shrinks rapidly as the game progresses. 
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Guidance for Locality Analysis 

 Another key feature of the monomials lies with the benefits provided for easier locality 

analysis. While dealing with the points directly may be less efficient, we still need to utilize 

points to carry out locality analysis to for vital patterns for offense or to detect critical pattern for 

defense. When used without guidance, locality analysis tends to be a resource intensive task to 

identify which points are required to be updated.  As can be seen in Figure 2, if the black player 

is about to place a stone on point A, then this point A would no longer affect the previously 

occupied point, because the white stone created a local blockage between point A and the black 

stone on the right side. 

 By relying solely on the points, it becomes quite difficult to manage the locality analysis 

as exhibited as above. In order to do this and other types of locality analysis, we  would need to 

check all adjacent points within a certain distance and identify if the white player occupies a 

point  to enact some blockage or to launch an assault. Due to the sheer amount of point checks 

required, such locality analyses would significantly increase the amount of resources needed to 

manage the game.  

 On the other hand, with the help of monomials, many types of local analysis, such as the 

one mentioned above, would become a breeze. As shown in Figure 2, the white stone eliminates 

all monomials covering it, including those covering the black stone and the point A. The 

surviving monomials would automatically encode the blockage between the point A and the 

black stone on the right, so no point check or testing is needed. Hence, it is evident that the 

 

Figure 2. Example of a point no longer sharing a 

mutual monomial. If point A was to be taken by the 

black player, it would not influence the black point 

previously taken by the black player. 
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monomials provide us with a simple and efficient solution to manage points with the history data 

that are readily available.  

 

Locality and Incremental Property for Potential Value Updating 

It is worthy of noticing that the score updating process for monomials has incremental 

property and local characteristic. For the local characteristic, when the black player or the white 

players sets a value to a variable, i.e., places a stone at a point, this action only impacts the scores 

of the alive monomials containing the variable. Thus, we only need to update at most 20 

monomials.  For incremental property, when we need to update score for a monomial, we just 

need to multiple its old score by 2 in response to a move made by the black player, or set the 

score to zero to make the monomial dead in response to a move made by the white player.  

It is also worthy of noticing that the potential value updating for every active point 𝑞 is 

incremental and local in response to a move made at 𝑝. The updating formula is given below:  

 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒(𝑞) = 

𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒(𝑞) + ∑ 𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒(𝑚) −

𝑚 𝑎𝑙𝑖𝑣𝑒 𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟𝑒𝑠 𝑝 𝑎𝑛𝑑 𝑞

𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒(𝑚) 

  

The above locality and incremental properties make fast updating possible for re-

calculating monomial scores and point potential scores with respect to a move made by the black 

(or white) player.  
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Figure 3. Example of choices the AI may 

have to decide on.  

A, B, C are all valid options if the AI plays 

white. Otherwise B is the winning choice. 

Decision Making 

 Monomials also provide the benefit of easily assessing the potentials for future moves 

from the current state and the game history data. For a simple example, consider that the black 

player has alive monomial 𝑚 with score 8, i.e., 𝑠(𝑚)  =  8. This simple score of 8 tells us a lot 

of information, including the following facts: For 5 consecutive variables contained in m, 3 

variables have been taken by the black players, 2 variables remain free, and importantly, there is 

a chance for the black player to one of the 2 free variables to win. Symmetrically, this applies to 

the white player so that the black player can detect from a monomial of score 8  that there is a 

potential threat from the white player. Those monomials scores can help us to build a decision 

tree to find competitive strategies for offense or for defense.  

Precisely, such a decision tree can easily guide the AI on deciding what moves should 

occur based on the given situation. Take the case in Figure 3 for example. Assume that the AI 

plays black. If currently the AI has its turn to make a move, then  among many possible moves, 

including in including A, B and C, choosing B is a winning move, because B and the three black 

stones will form an open four (i.e., four consecutive black (or white) stones with two free ends). 

Choosing A or C will not create an immediate threat to the opponent white player, because the 

white player can choose one of the remaining positions to put off the threat. On the other hand, if 

the AI was playing the white, and it is the AI’s turn to move,  then A, B, or C are rational choices 

because placing a white stone on any of them will eliminate the threat coming from the three 

black stones.  
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CHAPTER III 

 

ARCHITECTURE 

 

 The overall architecture of our AI for play Gomoku has gone through many modifications 

throughout the span of the project. These versions share many features as each was built upon its 

predecessor. Thus, rather than going through all versions, in this chapter we will discuss 3 major 

revisions that occurred throughout the project. 

 

      Version 1 

 The initial design of the AI was implemented with a rather simple architecture with less 

sophisticated decision making. As seen in Table 1 and 2, all decision makings are based on 2 

simple tables containing the basic information pertaining to surviving monomials of the game. 

  

 

Table 1. Monomial Table.  

In Table 1, Active attribute indicates whether a monomial is alive or dead; Value stores the score; 

Orientation tells the alignment of the monomials is horizontal, vertical, right diagonal or left 

diagonal; Taken indicates whether each variable of the five underlying variables is taken of not.

Active Value Orientation Taken 

bool int int bool, bool, bool, bool, bool 
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In Table 2, we record the potential value for each point.   

 

Table 2. Point Table.  

We use the monomial table to identify whether a guaranteed strategy to win or lose was 

present given the current game state and the history of the game states. These strategies may be 

found based on checking monomial scores.  

It follows from the monomial score definition given in Chapter 2 that a monomial may 

have scores from 0 to 25 = 32. A score of 0 means that the white players has set one of the five 

variables contained in the  monomial to 0, thus making this monomial dead. A sore of 32 means 

that the monomial achieves a winning case, thus making the black player win the game.   As 

discussed in Chapter 2, once a monomial has a score of 8, then it sheds light for a player to win. 

With some additional analysis of the free variables in that monomials, we can help the player to 

follow the light to win.  The same can be applied to the white player.  We shall check the scores 

of all active monomials and search for a list of moves to win or to shatter the opponent player’s 

chance to win.   If configured correctly, monomials allow for finding an offensive (or a 

defensive) strategy, a list of several decisive moves.  The monomial table has enough 

information for us to detect those offensive or defensive strategies. As exhibited in Figure 3, if an 

active monomial with a sore of 8, then an immediate action has to be taken to prevent the 

potential loss or to guarantee a win, depending on which player has right to move at the moment. 

While the monomial table is used to help re-calculate the potential values for points and 

to search for offensive or defensive strategies, the point table will be used to decide all low 

priority moves. The potential values of the free points are used to decide which move would be 

most beneficial. A point with high potential scores signifies that it is covered by multiple active 

Score 

int 
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monomials with relatively higher scores. Choosing such a point will increase the scores of those 

active monomials, thus creating better chance of victory, because the possibility of generating an 

offensive or defensive strategy is getting larger.  

 The above decision making is good and has a tendency to choose an aggressive offensive 

play style initially, simply because the decision-making focuses on the attack moves. This play 

style incurs a variety of issues, often ending up losing the game quickly to a competitive 

opponent player.  The main issue is the repetitive decision making that is possible to leave some 

pattern to be detected by a competitive opponent. Once the opponent detects such a pattern of 

decision making, the opponent can find ways to deceive the AI so as to defeat it. On the defense 

side, while the AI can essentially predict and prevent a loss three turns ahead of the current state, 

it cannot do so farther ahead three or more turns. Moreover, the AI lacks the ability to adaptively 

learn from the opponent’s moves. Based on our experiments, when the opponent finds a way to 

win, he can simply recreate such a winning play scenario to repeatedly beat the AI. 

 Another apparent issue is the speed of the architecture. While the AI is capable of making 

decisions moderately fast, but the AI tends to spend the majority of the time on redundant 

calculations. These calculations simply consist of updating, in response to each move, the 

information within the tables such as monomial scores and status changes of points (or variables) 

contained in monomials. While these calculations are simple and each can be performed quickly, 

yet the sheer amount of calculations needed would incur a significant impact on the overall 

throughput of the system. Based on our experiments, these calculations take up to about 80% of 

the overall time. 
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Version 2 

 Having learned from the previous design and implementation of Version 1, in this section 

we present major revisions aiming at overcoming the flaws of the previous version. Our priority 

focuses on improving the speed of the architecture, because the time performance is a bottleneck 

for carrying out the implementation of all features. Additionally, we hope to further improve the 

AI’s ability to detect decisive moves beyond 3 turns. Alongside this ability for probing ahead, 

improvements on strategies for decision making are required. 

 

State Tables 

The original design of the system requires a large amount of resources to manage the 

game board. While acceptable at the beginning, this design leaves little room for new tools to be 

introduced. This is caused by the massive number of variables that need to be rewritten or 

updated as the game progresses. In Version 2, we shall introduce additional variables to help 

manage monomial and point tables in order to aid decision making and strategy searching. 

Without new improvements, those new variables will compromise system performance further. 

Hence, we shall devise new methods for efficient updating of monomials and variables.  

 

Monomials 

Given any monomial, a point (or equivalently, a variable representing the point) 

contained in the monomial has a binary status, active or inactive (i.e., free), corresponding to 

being occupied or unoccupied by a player. Recall that from the game board, a monomial 

represents a line segment of 5 consecutive points horizontally or diagonally. Often, it is good to 

know the status of the two end points of the line segment. Hence, to maximize the benefits of 



15 

monomials, we add two end points to a monomial such that a monomial is represented with 7 

points. On the border of the game board, there may no end points for a monomial. In such cases, 

a virtual end point is added to conform to a uniform representation for all monomials. With the 

addition of two end points, a monomial has 27 = 128 possible configurations, a big number but 

manageable.  

 Rather than continuing on the same path toward organizing monomials as before, here in 

our new approach we choose to pre-generate all monomial configurations that can help us to 

know how monomials may interact with each other. Those configurations can be used readily 

throughout the game with the addition of two tables – the state table and the monomial table.  

The state table consists of all the monomial configurations with related data generated before a 

game commences. This table remains static throughout the game and is only used as a reference 

to identify the characteristics a monomial may have. The monomial table, on the other hand, is 

repurposed as a 1020 ×  1 table. This table is used to store a monomial’s current state by storing 

the index of the corresponding configuration found within the state table. Rather than performing 

a large, tedious amount of calculations, with these tables, only one index entry needs to be 

updated per monomial that is affected by a mover, thus resulting in a significant boost in speed.  

 As can be seen in Table 3, the state table shows a simplified version of the monomial 

state. The monomials are generated in a binary format as mentioned previously. For example, the 

first monomial generated is the base monomial where all points are unoccupied, and we simply 

denote it as monomial M00. There exist 4 statuses for this monomial configuration in terms of 4  
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Point 1 Point 2 Point 3 Point 4 Point 5 Left Side Occupied Right Side Occupied 

False False False False False False False 

False False False False False False True 

False False False False False True False 

False False False False False True True 

False False False False True False False 

False False False False True False True 

False False False False True True False 

False False False False True True True 

. . . 

Table 3. Row 1-8 of a simplified monomial state table (only configuration information  

displayed).  

possible statuses of its two end points. The first row with both end points as False indicates that 

the two end points of M00 are unoccupied. Analogies between the binary values the two end 

points and their statuses are easy to see for the next three rows. In binary representation of 

Boolean and integer values, False equals 0 and True equals 1. And, two bits 00 represents integer 

0, and 01, 10   and 11 represent integers 1, 2 and  3, respectively. Thus, first four row of the state 

table can be denoted as M00, M01, M02 and M03, In general, let 𝑀𝑥𝑦 to denote the 𝐼(𝑥, 𝑦)-th row 

of the state table, where 𝐼(𝑥, 𝑦) is called the index, or the row number, 1 ≤ 𝑥 ≤ 32, 1 ≤ 𝑦 ≤ 4. 

Precisely, x encodes the 5-digit binary representation of a monomial configuration and y 
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represents the 2-digit binary representation of two end point statuses. Furthermore, it is easy to 

verify that  

𝐼(𝑥, 𝑦) = 4𝑥 + 𝑦. 

It follows from the above analysis, when a monomial in configuration 𝑀𝑥𝑦 needs to be updated 

to a new configuration𝑀𝑥′𝑦′
 , we only need to change its row index 𝐼(𝑥, 𝑦) to the row index of 

the new configuration 

𝐼(𝑥′, 𝑦′) = 4𝑥′ + 𝑦′, 

which is easy to calculate from 𝑥 and 𝑦, because 𝑥’ is resulted from one bit-flip of 𝑥 or 𝑦′ is 

resulted from one bit-flip of y.  

 The state table brings up remarkable enhancement in system speed, because now we can 

efficiently update the game board statuses. In the previous version of the system, the majority of 

the information found within a row would have to be revised and updated, leading to many 

values to be overwritten, thus overall status updating is a time-consuming task. With the state 

table of pre-generated information and easy index calculation of configurations, our new method 

is able to release a significant amount of resources. 

  

Points   

Like what have been improved for monomials, we will devise new methods to work with 

the point table. The point table is split into 2 tables, one table stores the states while the other 

stores all information related to these states. Unlike the monomials, certain changes are needed 

for representing points.  

First and foremost,  points have multiple configurations. While the monomial table is 

transformed into a 1020 ×  1 table, the point table is, instead, transformed into a 361 × 4 table. 
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Every point has a configuration corresponding to each orientation type (horizontal, vertical, right 

diagonal, or left diagonal). A point on the game board border or near the border does not have all 

four orientation types, but to conform with an easy approach, we shall add virtual orientations for 

those points. By this way, we need to store 4 configurations for every point.  

Second, a configuration of any given variable can be treated as the concatenation of 1 to 5 

monomials. Take for example,  assume that the horizontal configuration of a point 𝑥5 is the list 

of 9 consecutive points on the line segment centered at 𝑥5, denoted from left to right as 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9. This configuration is composed of 5 monomials 𝑥1𝑥2𝑥3𝑥4𝑥5, 

𝑥2 𝑥3 𝑥4 𝑥5 𝑥6, 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7, 𝑥4𝑥5𝑥6𝑥7𝑥8, and 𝑥5𝑥6𝑥7𝑥8𝑥9. If point 𝑥3 is taken by the 

opponent, then the horizontal configuration for point 𝑥5 become𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9s, which is 

composed of two monomials, 𝑥4𝑥5𝑥6𝑥7𝑥8, and 𝑥5𝑥6𝑥7𝑥8𝑥9. When the AI occupies some points 

in the configuration, say, 𝑥7 and 𝑥9, the configuration turns into 𝑥4 𝑥5 𝑥6 𝑥8, which is still 

composed of two monomials 𝑥4𝑥5𝑥6𝑥8, an𝑥5𝑥6𝑥8d. Those configurations are similarly generated 

using binary bits, but they must keep point 𝑥5 free. If the opponent player takes 𝑥5, then all the 

active monomials contributing to the configurations of 𝑥5 will become dead, thus the 

configurations are no longer helpful for the AI. On the other hand, if the AI takes 𝑥5, then the 

configurations can help the AI to create threat to the opponent player. The above analysis can be 

generalized to any point.  

Using these configurations, we shall generate all possible states that may occur 

throughout the game. The number of states for any point is given by the formula in Figure 4. For 

illustration, we consider the configuration 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 for point 𝑥5 again. Here, 

the number of active points in this configuration is 9. When we focus on point 𝑥5, we would like 

to know how many different states its neighboring 8 active points can form? we end up with 
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4 × 28 possible states. 28 is derived from two possible choices available for each of the 8 points 

to participate in a state, either yes or no. the factor 4 is derived from the additional consideration 

of the left end of 𝑥1 and the right end of 𝑥9, and we need to know whether these two end points 

are blocked (or taken) by the opponent, thus leaving us with a factor of 4 more possibilities. 

Recall that the leftmost monomial of the configuration is 𝑥1𝑥2𝑥3𝑥4𝑥5 and that the rightmost is 

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9.  We only need to consider the left end point of 𝑥1 and the right end point of 𝑥9, 

because the other end points of the 5 monomials of the configuration are already included in 

points 𝑥2 to 𝑥9.   

For a configuration of length less than 9, it is trickier to estimate  the exact number of 

states that can be derived from it. For example, let us continue with point 𝑥5 and consider a 

configuration of length 8 for 𝑥5. Following the discussions above, we have two possible cases: 

(a) the configuration is  𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9; and (b) the configuration is 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8. 

This leads to the conclusion that the opponent has already taken point 𝑥1 in case (a) or 𝑥9 in case 

(b). Once again, 𝑥5 is our focus point, hence it must remain free.  Thus, we have 27possible 

states for either case (a) or case (b). Like before, we still need to consider end points. For case 

(a), since 𝑥1 is already taken by the opponent,  we only need to consider the rightmost endpoint, 

which is right next to point 𝑥9. Thus, this endpoint leaves us with a factor of 2 more possibilities. 

Similarly, for case (b), we only need to consider the leftmost end point, which is left next to 𝑥1,  

leaving us with a factor of 2 more possibilities. In summary, there are 27( 2 + 2) =

27( 2 × 5 + 2 −  8)  possible states with respect to a configuration of length 8.  

Continuing on point 𝑥5, let us consider one more configuration of length 7. Here, we have 

three cases for such a configuration:  (a) 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7; (b) 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8; and (c) 

𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9. As for configurations of length 8,  each of cases (a) and (c) corresponds to 
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one end point with two possibilities. But case (b) implies that the two end points are already 

taken by the opponent, leaving no more additional possibilities. Hence, the total number of states 

that can be derived from configurations of length 7 for point 𝑥5 is 26(2 + 2 + 1) =

26(2 × 5 + 2 −  7).  

Now, we can see a general trend of the number of states that can be derived from 

configurations for point 𝑥5: For configurations of length 𝑘 with 5 ≤ 𝑘 ≤ 8,  the total number of 

states is 2𝑘−1(2 × 5 + 2 – 𝑘); and for k = 9, the total number is 4 × 2𝑘−1. These observations 

can be generalized to any given point and to monomials of length 𝑛, 𝑛 ≥ 5. We present the total 

number of states in the general setting in Figure 4.  

 

As one can tell from the estimate given in Figure 4,  for any given point, finding all 

possible states that can be derived from its configurations can be quite troublesome. 

Furthermore, it is even more of a hassle to calculate ID’s of those states, because doing so would 

require considering binary statuses of the points involved in configurations of variable lengths, 

and whether the opponent has already occupied the end points or not. Therefore, rather than 

performing the search tasks guided by the formula in Figure 5 up to 32 times per player per turn, 

we instead store the information needed within the state table. At every row of the state table, 

each configuration is augmented with the ID of every state that may be reached within 1 move. 

Figure 4. The total number of states derived from 

configurations for any given point 𝑥 on a single 

orientation. 𝑛 refers to the size of the monomials.  

For Gomoku, 𝑛 =  5.  

 

 

𝑓(𝑥) = 4 × 2𝑘−1 + ∑ 2𝑘−1(2𝑛 + 2 − 𝑘)

2𝑛−2

𝑘=𝑛
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This allows us to look up and identify the next ID easily from the current ID, and the processing 

time would be similar to that of updating the monomial tables.  

 

These state table for the point provide us with an efficient manner of analyzing the data 

found within the board. The main advantage of the state table is storing of concatenated 

configurations of all active monomials with respect to all free points. These configurations allow 

fast discovery of features possessed by a free point. For example, these configurations can help 

the AI the detect whether a point can form a “combo” by its two configurations on two different 

orientations. “Combos” are threating moves and will be discussed in detail later.  

 

Decision Making 

 As mentioned previously the decision making of the initial version of our AI is too 

simple-minded, so that the opponent player is able to predict the AI’s moves after seeing many of 

the AI’s moves. A number of  games have been played and analyzed in order to identify what 

exactly would lead the AI to lose. We want to know whether a loss of the AI is caused by some 

fluke of the opponent player and by a list of well calculated moves. One of the major 

observations tells us that the AI is not able to learn from the same mistakes. For example, the 

opponent may create 2 threatening monomials simultaneously, leaving the AI in a vulnerable 

status without knowing any defensive move. Using this knowledge learned from analysis, the AI 

is enhanced with an ability to detect these threats which area  referred as “combos.”  

 A “combo” consists of two monomials that lie on two different orientations but interest at 

a free point 𝑝 with following property: Once a player plays a stone at the point 𝑝, then the two 

monomials will represent two winning configurations so that the opponent become defenseless.  



22 

By the definition, when a player finds a combo, the player can create a threat to the opponent.  

The combos can be found by searching for monomials of different orientations which share a 

common point and are 1 turn away from becoming a threat. While searching for combos is a 

resource intensive task, yet the new point table provides enough resources for this task. If a union 

exists between 2 of the intersecting monomials on two different orientations, a combo is formed, 

leading to a win or loss within 5 turns. The combos ultimately allow the AI to look ahead by an 

additional 2 turns for wins and losses.  

 In addition to combos, another crucial enhancement of our AI is the inclusion of  Monte 

Carlo Tree Search (MCTS). As stated earlier, our AI is not able to probe many moves ahead. The 

new resources of organizing monomials and points make it possible to incorporate a MCTS 

component, a resource intensive process. This MCTS component can effectively perform many 

simulations of rollout expansion until either a max depth is reached, or a player achieves victory. 

This MCTS quickly resolves most of the original faults of our AI and helps significantly enhance 

its competitiveness.   

 

Performance 

 This implementation was overall a huge successful. The performance of the new version 

of our AI is increased significantly, making it ever much more difficult for a human plyer to win. 

With the combination of tools at its disposal, we soon realize that it become quite difficult to test 

our AI with human player, because we can no longer to find a human player to win it. Due to this 

challenging situation, it becomes necessary to test our AI against other top-rated Gomoku AI’s. 

While our AI can easily win a human player among those we know, including ourselves, wining 

over some top-ranked Gomoku AI’s is by no means an easy task. Although our AI can win some 
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of the top-ranked Gomoku AIs, yet this version has not been able to beat any one of the top-10 

ranked Gomoku AI’s from the latest Gomocup list.   

 

Version 3 

 In order to eliminate the flaws encountered in the development of the two previous 

versions of the architecture, we decide to remove the point tables. This leaves the final version of 

the architecture to solely rely on monomials to manage the board. 

 

Goal 

 Our goal for this thesis is to build an AI to win the top-10 ranked Gomoku AIs from the 

latest Gompcup list. With this in mind, we shall overhaul the previous architectures and also 

Include Monte Carlo Tree Search (MCTS) to find a competitive strategy ahead of many moves.   

The successes of AlphaGo [1] and the existing Gomoku AIs make us believe that MCTS is a 

valuable tool to be included in our system. After many experiments, we realize that the reliance 

of MCTS on combos for its search becomes an issue. While combos may provide a winning 

strategy, the AI must also take the entire board into account. Sometimes, when the AI attempts to 

create a combo, the opponent player is able to find a set of moves to overtake the combo. This 

will force our AI to immediately turn onto the defensive mode, and in the end our AI may loss 

the game because of a single mis-calculated move. The mistake occurs, because  once a combo is 

identified the AI tends to over prioritize the winning move, so that the AI may simply overlook 

some of the opponent's possibility to win. Thus, rather than concentrating on combos, the final 

version will invest the good share of its resources on MCTS. While the combos are still used, yet 
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they are mainly used to guide the MCTS toward finding a competitive strategy for offense or 

defense.   

 The first major change is to introduce additional information to the monomial state table.  

Instead of having a score based on 20 to 25, new scores are provided for a monomial to indicate 

whether the AI needs to take an action for the monomial, such as if the opponent occupies a point 

in a monomial, whether this will force the AI to react. The new scores are implemented in order 

to make up for the removal of the point tables. The new scores help provide a clearer picture than 

the previous scores that are no longer used for points.  

In the previous approach, recall that  a unique score is assigned to every monomial. For 

our new design, we assign two rank scores to every monomial. We do not need to concern with 

any monomial with an old score of 25, because such a score means a win or loss depending on 

which player owns the monomial. We also do not concern with any monomial with an old score 

of 0, which means that the monomial is dead or inactive. Hence, we shall address monomials 

with old scores from 20, 21, 22, 23 and 24. An old score of 2𝑖 , 0 ≤ 𝑖 ≤ 4, implies that an active 

monomial has 𝑖 variables occupied by the player who owns it.  

The new rank scores range from 0 to 9. A monomial of an old score of 24 is assigned a 

new rank score of 0 or 1,  with 0 representing that this monomial guarantees a win, but with 1 

representing that this a win is possible but can be blocked.  

A monomial of an old score of 23 is assigned a new rank score of 2 or 3,  and this 

assignment continues for a monomial of an old score of 22𝑜𝑟21. Finally, for a monomial of an 

old score of 20, it is assigned a new rank score of 8 or 9. An odd rank score represents a 

monomial can be blocked, while an even rank score represents that a monomial cannot be 

blocked. 
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The new rank scores are quite beneficial for building a decision tree. Previously, a 

decision tree may have located a monomial of an old score of 23, but we have to do additional 

checking to determine if additional action is required to move to toward a victory. However, with 

the new rank scores, such a monomial may have a rank score of 2 or 3, with 2 meaning no 

additional is needed but 3 meaning further action is needed. Hence, there is no need to do 

additional checking. The rank score system helps streamline the decision-making processes for 

the decision tree and the MCTS. 

In our implementation, with the help of the new rank scores for monomials, we are able 

to increase the search tree depth more than twice for MCTS. This increase of the search depth 

allows far broader search for a wining strategy. In addition, for scenarios where the search was 

solely focusing on guaranteed winning possibilities, now the AI has the resources to consider all 

possible options that may be taken by the opponent. Evidently, this additional ability allows the 

AI  to decide, with higher confidence,  whether a move would truly help achieve victory. These 

new changes, while seeming simple, require a variety of setting ups to be done. For example, to 

help MCTS increase the search tree depth, a naïve approach to simply double the search tree 

depth will slow down the speed of the previous MCTS a factor of 4. With the new system, since 

the point table is no longer needed and hence reliance on points is removed, the speed of the new 

MCTS is more than quadrupled despite the doubling of the search tree depth.  

 

Result 

 While our AI was previously unable to obtain a single win against any of the top-10 

ranked Gomoku AI’s from the latest Gomocup ranking,  the new version of our AI is capable of 

beating some of the top-10 ranked AI’s. For example, for the top 7th ranked Gomoku AI, Wine, 
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the previous versions of our AI achieved only a single win against it during a number of 

competitions done in a span of several months. However, the new version of our AI has achieved 

a 20% winning rate over Wine when our AI plays first.  
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CHAPTER IV 

 

MONTE CARLO TREE SEARCH 

 

Monte Carlo Tree Search (MCTS) has been successfully used in AlphaGo [1]. This type 

of MCTS is included in AlphaGomoku [3], which is a rather direct application of the AlphaGo 

algorithm. To help probe for competitive offensive and defensive strategies ahead of many 

moves, we have implemented a similar MCTS component in our system to assist with decision 

making. Our implementation of MCTS remains practically identical to the one developed in 

AlphaGo [1], but there is one major difference. Unlike the MCTS used for AlphaGo, in our 

system a policy value network has not been introduced to work alongside with the MCTS. Thus, 

at the present stage, our system is incapable of learning from past experiences to better guide the 

MCTS. To make up for this lack of self-learning ability, human knowledge of the game has been 

integrated into the decision-making process to assist with MCTS to search for better strategies 

for offense or defense.  

 In all other aspects the MCTS in our system functions identical to the standard approach. 

During the search process, a search tree is built. Each node represents a state the game board 

may reside in.  The children nodes similarly represent states that can be reached from the parent 

node within one turn. These nodes are primarily scored based on how many times they are 
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visited along with a reward value to identify how well the node may perform when compared to 

its visit count.  

 Each node can be categorized based on whether it resides on an even or odd layer of the 

tree. The root resides on layer zero, representing the state of the board when the MCTS is 

initiated. Afterward, all odd layers represent nodes for the AI’s turn to play, while all even layers 

represent nodes for the opponent’s turn. When a rollout simulation occurs, the result ends in one 

of two states: If a player is victorious a score of +1 is provided to the current leaf node and back 

propagated to the root. This score affects each player’s node differently as the score flips with 

each node alternatively layer by layer. By this way, all winning player’s nodes along the path will 

gain a score of +1, while all opponent's nodes along the path will receive a penalty score of –1. If 

the maximum depth for a rollout simulation is reached, the result is treated as a tie, leading to all 

scores remaining unchanged for the nodes visited during the back propagation. 

All equations such as the upper confidence bound remain the same as those used in Alpha 

Gomoku [3]. The only key difference is that the policy value score is treated as 1 in our approach 

due to the lack of a policy value network. Along with this setting, the MCTS is initialized with an 

extremely low temperature value to promote exploration for the initial 50 rollout simulations. 

Afterwards, the temperature is raised, allowing all future simulations outcomes to be based 

primarily on the mean action value. 

 In total, the implemented system functions with the help of two MCTS components. The 

primary MCTS functions like that of AlphaGo [1].  It performs simulations to find the best 

possible strategy until a time limit is reached. Its counterpart, denoted as the winning MCTS, 

focuses on identifying whether a winning strategy is present within the board. These two MCTS 
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components function primarily the same way but differ in node selection for expansion, the 

winning MCTS tends to prune nodes which fail to guarantee victory.  

 The winning MCTS has a variety of tweaks to perform its task efficiently. The main 

change is the moves considered. Due to the nature of the game if one considers a wide variety of 

options, then it be unfeasible to simulate all the paths within a reasonable amount of time, much 

less so if one wants to guarantee a winning outcome. With the goal of searching for guaranteed 

wins we shall concentrate on the moves which force the opponent to react defensively. These 

moves, in most cases, would leave the opponent with 1 to 3 possible options. As the simulations 

progress nodes are pruned based on which player they refer to. For a node representing the AI’s 

move, we require that all its children nodes contain a path toward victory. This can be seen as 

assuring that, no matter how the opponent may react with, there is a list of moves that would lead 

the AI to win. For the opponent’s nodes, on the hand, we require that at least one child node 

contains a path to win since these nodes referring to the systems turn. Nodes which fail to meet 

these requirements are pruned from the tree. This results in either a tree containing a path to win 

no matter how the opponent may react with, or a tree with no nodes left, implying that no 

guaranteed strategy to win has currently been found. Due to the extremely limited number of 

possible moves, this version of the MCTS find its outcome on average within 2 seconds.  This 

version is used to allow the system to identify when the main MCTS is no longer required, 

allowing for all future moves to be based solely on the output tree. 

 The primary MCTS, on the other hand, functions as a typical MCTS. It performs 

simulation after simulation until the maximum amount of time is reached. Once this occurs, a 

point is chosen based on whichever it contains the maximum mean action value. As usual for any 

MCTS, not all moves are considered. A handful of moves are selected based on assessment 
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statistics of the AI’s and the opponent’s monomials. This heuristic effectively ignores moves with 

less importance, such as those with no nearby neighbors occupied. This selection process for 

potential moves is used throughout tree node expansion in order to minimize the amount of 

resources spent on undesirable moves. 

 The primary and winning MCTS components cooperate with each to find the best 

strategy of winning. While the primary MCTS can provide us an idea about which move boasts 

the best probability of winning, yet it is not capable of considering all options to guarantee the 

winning outcome. This is crucial for the game of Gomoku because of its relatively short game 

length. A game can be set in stone as early as turn 9. Failing to win at the earliest chance simply 

leaves the opponent with more opportunities to win. The primary MCTS is called on average 4 to 

8 times per game. At each turn, if the winning MCTS fails to find a guaranteed strategy of 

winning,  the primary MCTS is called. This is repeated until a winning path of moves is found, 

allowing for all future moves to be performed instantly. Our implemented system is able to 

perform, for every second, nearly 200 simulations of rollout expansion with a maximum depth of 

30 moves. With a limit set to 1 minute per turn, our AI can decide its final choice of moves that 

are backed by over 10,000 simulations.  

 Even though thousands of simulations are examined, yet there still exist issues with the 

final decision. Most noticeably, when playing against top rated competitive AI’s, losses still 

occur for our AI. These losses are likely resulted from cases where multiple moves appear to 

have similar success rates. Such cases tend to lead the simulations to be split equally for those 

moves, such that not enough simulations are done on either of those moves to truly assess which 

moves is truly more beneficial. Similarly, in some cases the lack of sufficient simulations may 

result in choosing a move with flaws because of the lack of exploration to certain tree paths.   
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Overall, our AI is capable of winning against other top rated, highly competitive AI’s. 

Further improvement on MCTS, such as implementing and training a network to assist with 

guiding exploitation of the unknown nodes and exploration of known nodes, is bound to be 

highly beneficial. 
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CHAPTER V 

 

SUMMARY AND CONCLUSION 

 

 By transforming Gomoku algebraic monomials, we are able to successfully create an AI 

that is capable of playing the game at a highly competitive level. The architecture and tools 

developed for the AI are all based on monomials.  We have tested our AI against the top-ranked 

Gomoku AI’s from the latest Gomocup list. For the current version, our AI is able to win up to 

the 7th top ranked AI. Precisely, for the 7th top ranked AI, the winning chance of our AI is about 

20% from two separate sets of the games.  

 Obviously, there is still much more to be done to continue the growth of this AI. First and 

foremost, the MCTS can be improved with the addition of multi-threading. This would 

significantly make much more simulations of rollout expansion to be done, so that it become 

possible to relieve the issue where simulations are equally split among moves showing equal 

potential. Similarly, the introduction of a neural network to guide the MCTS would be a huge 

addition. As proved by AlphaGo [1], such a policy value network can be incorporated with the 

MCTS to help an AI learn from self-play. 
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