
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

8-2020

Improving Hardware Implementation of Cryptographic AES Improving Hardware Implementation of Cryptographic AES

Algorithm and the Block Cipher Modes of Operation Algorithm and the Block Cipher Modes of Operation

Chu-Wen Cheng
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Cheng, Chu-Wen, "Improving Hardware Implementation of Cryptographic AES Algorithm and the Block
Cipher Modes of Operation" (2020). Theses and Dissertations. 636.
https://scholarworks.utrgv.edu/etd/636

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/636?utm_source=scholarworks.utrgv.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

IMPROVING HARDWARE IMPLEMENTATION OF CRYPTOGRAPHIC AES

ALGORITHM AND THE BLOCK CIPHER MODES OF OPERATION

A Thesis

 by

CHU-WEN CHENG

Submitted to the Graduate College of
The University of Texas Rio Grande Valley

In partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING

August 2020

Major Subject: ELECTRICAL ENGINEERING

 IMPROVING HARDWARE IMPLEMENTATION OF CRYPTOGRAPHIC AES

ALGORITHM AND THE BLOCK CIPHER MODES OF OPERATION

A Thesis
by

Chu-Wen Cheng

COMMITTEE MEMBERS

Dr. Sanjeev Kumar
Chair of Committee

Dr. Weidong Kuang
Committee Member

Dr. Wenjie Dong
Committee Member

 August 2020

Copyright 2020 Chu-Wen Cheng

All Rights Reserved

iii

ABSTRACT

Cheng, Chu-Wen, Improving Hardware Implementation Of Cryptographic AES Algorithm And

The Block Cipher Modes Of Operation. Master of Science in Engineering (MSE), August 2020,

149 pp., 19 tables, 127 figures, 45 references.

With ever increasing Internet traffic, more business and financial transactions are being

conducted online. This is even more so during these days of COVID-19 pandemic when

traditional businesses such as traditional face to face educational systems have gone online

requiring huge amount of data being exchanged over Internet. Increase in the volume of data sent

over the Internet has also increased the security vulnerabilities such as challenging the

confidentiality of data being sent over the Internet. Due to sheer volume, all data will need to be

effectively encrypted. Due to increase in the volume of data, it is also important to have

encryption/decryption functions to work at a higher speed to maintain the confidentiality of

sensitive data.

In this thesis, our goal is to enhance the hardware speed of encryption process of the

standard AES scheme and its four variants such as AES-128, AES-192, AES-256 and new AES-

512 and implement such functions on an FPGA. We also consider the FPGA implementation of

different modes of AES operation.

By employing parallelism and pipelining approach, we attempt to speed up various

computational components of AES implementations using the Quartus II onto Intel’s FPGA.

This approach shows improvement in the response speed, data throughput and latency.

v

DEDICATION

The contribution and dedication of many people is hidden behind my small achievement.

I want to dedicate this thesis to

My parents

For supporting and encouraging me to believe in myself.

My wife

For taking care of me and kids' need in every way and letting me concentrate on my

study.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all committee members, Professor Sanjeev

Kumar, Professor Weidong Kuang, and Professor Wenjie Dong, for their support. Special thanks

to Dr. Kumar, Chair of Committee, for his patience, advisement, motivation, and immense

knowledge in my studies which aided in accomplishing this thesis. His guidance helped me in all

the time of research and writing of this thesis. I could not have imagined having a better advisor

and mentor for my master study.

Besides my advisor, I would like to thank the rest of my thesis committee: Professor

Weidong Kuang, and Professor Wenjie Dong, for their insightful comments and encouragement.

I thank my fellow colleague in networking lab for the stimulating discussions, for the time we

were working together on conference or journal paper and in our group meeting. Their

friendships are what I hope to keep forever even after I graduate.

Most importantly, none of this could have happened without my family. My parents have

been kind and supportive to me over the last several years and I truly appreciate my wonderful

wife taking great care of my kids while I am in school. This dissertation stands as a testament to

their unconditional love and encouragement.

The support for the research in this thesis is provided in part by the grant awarded to Dr.

Sanjeev Kumar by the National Science Foundation (NSF), Houston Endowment Chair in

Science, Math, and Technology Fellowship, and Lloyd Benston Jr. Endowment Fellowship.

vii

TABLE OF CONTENTS

 Page

ABSTRACT ……………………………………………………………………………………..iii

DEDICATION ……………………………………………………………………………………v

ACKNOWLEDGEMENTS ……………………………………………………………………...vi

TABLE OF CONTENTS ……………………………………………………………………… vii

LIST OF TABLES ……………………………………………………………….……………….x

LIST OF FIGURES ……………………………………………………………………………...xi

CHAPTER Ⅰ. INTRODUCTION ………………………………………………...……………….1

1.1 Statement of the Problem ………………………………………….……………...2

1.2 Symmetric Encryption Algorithm-AES …………………………………………. 3

1.2.1 Background ……………………………………………………………….3

1.2.2 Substitute bytes …………………………………………………………...6

1.2.3 Shift Rows ………………………………………………………………...8

1.2.4 Mix Columns ……………………………………………………………..9

1.2.5 Add Round Key………………………………………………………….10

1.2.6 Key expansion of AES-128, 192, 256 and 512 ………………………… 11

1.3 Block Cipher Modes of Operation ………………………………………………13

1.3.1 Background………………………………………………………………13

1.3.2 Modes of operation………………………………………………………14

1.3.2.1 Electronic Codebook (ECB) …………………………………….14

viii

1.3.2.2 Cipher Block Chaining (CBC) …………………………………. 15

1.3.2.3 Cipher Feedback Mode (CFB) …………………………………. 17

1.3.2.4 Output Feedback Mode (OFB) ………………………………….19

1.3.2.5 Counter Mode (CTR) ……………………………………………20

1.4 Hardware and Software Design Assessment ……………………………………22

1.5 Thesis Outline……………………………………………………………………23

CHAPTER Ⅱ. HARDWARE IMPLEMENTATION OF IMPROVED MIX COLUMN

COMPUTATION OF CRYPTOGRAPHIC AES……………………………….24

2.1 Rijndael Mix Column Computation ……………………………………………..24

2.2 Design Methods and Discussion…………………………………………………26

2.3 Result and Analysis………………………………………………………………29

2.4 Conclusion……………………………………………………………………….33

CHAPTER Ⅲ. A FAST IMPLEMENTATION OF THE RIJNDAEL SUBSTITUTION

BOX FOR CRYPTOGRAPHIC AES…………………………………………...34

3.1 Rijndael Substitution Box Computation…………………………………………38

3.2 Design Methods and Discussion…………………………………………………39

3.3 Result and Analysis………………………………………………………………48

3.4 Conclusion ………………………………………………………………………51

CHAPTER Ⅳ. PERFORMANCE COMPARISON OF AES VARIANTS USING

 HARDWARE IMPLEMENTATIONS ON FPGA ……………………………..52

4.1 Rijndael Key Expansion Computation …………………………………………..52

ix

4.2 Design Methods and Discussion ………………………………………………...55

4.3 Result and Analysis………………………………………………………………55

4.4 Conclusion……………………………………………………………………….60

CHAPTER Ⅴ. COMPARISON AND ANALYSIS ……………………………………………. 61

5.1 Avalanche Effect…………………………………………………………………61

5.2 Timing Simulation of AES In ECB Mode ………………………………………63

5.2.1 Timing Simulation of AES-128………………………………….63

5.2.2 Timing Simulation of AES-192………………………………….76

5.2.3 Timing Simulation of AES-256………………………………….90

5.2.4 Timing Simulation of AES-512………………………………...106

5.3 Timing Simulation of AES In CBC Mode……………………………………...124

5.3.1 Timing Simulation of AES-128………………………………...124

5.3.2 Timing Simulation of AES-192………………………………...130

5.3.3 Timing Simulation of AES-256………………………………...131

5.3.4 Timing Simulation of AES-512………………………………...132

5.4 Comparing of Timing Simulation of AES In ECB and CBC Mode……………133

CHAPTER Ⅵ. CONCLUSION AND FUTURE WORK.……………………………………..142

6.1 Conclusion……………………………………………………………………...142

6.2 Future Work ……………………………………………………………………144

REFERENCES ………………………………………………………………………………...145

BIOGRAPHICAL SKETCH …………………………………………………………………..149

x

LIST OF TABLES

 Page

Table 1: AES Parameters………………….………………………………………………………5

Table 2: S-Box…………………………….………………………………………………………7

Table 3: Delay of Plaintext Encryption …………………………………………………………31

Table 4: Time Delay and Memory results of both implementations…………………………….32

Table 5: Design Parameter Comparison….……………………………………………………...49

Table 6: Total Module Count for AES-128….…………………………………………………..50

Table 7: Delay of Plaintext Encryption….………………………………………………………59

Table 8: Delay of Key Expansion………….…………………………………………………….59

Table 9: Avalanche Effect of DES………….……………………………………………………62

Table 10: Avalanche Effect of AES……….……………………………………………………..62

Table 11: Delay_AES_128_ECB………….…………………………………………………….74

Table 12: Delay_AES_192_ECB………………………………………………………………..88

Table 13: Delay_AES_256_ECB………….…………………………………………………...104

Table 14: Delay_AES_512_ECB………….………………………………………….………..122

Table 15: Delay_AES_128_CBC………….…………………………………………………...128

Table 16: Delay_AES_ECB_KEY………….………………………………………………….133

Table 17: Total Logic Elements_AES_ECB_KEY…………………………………………….135

Table 18: Processing time_AES_ECB_KEY…………………………………………………..137

Table 19: Performance_AES_CBC_KEY……………………………………………………...139

xi

LIST OF FIGURES

 Page

Figure 1: AES-128 Structure……………….……………………………………………………..4

Figure 2: Substitute bytes………………….………………………………………………………7

Figure 3: Shift Rows……………………….……………………………………………………...8

Figure 4: MixColumns…………………….………………………………………………………9

Figure 5: AddRoundKey………………….……………………………………………………...10

Figure 6: AES-128 Key Expansion………….…………………………………………………...11

Figure 7: AES-192 Key Expansion……….……………………………………………………...12

Figure 8: AES-256 Key Expansion……….……………………………………………………...12

Figure 9: AES-512 Key Expansion……….……………………………………………………...13

Figure 10: Electronic codebook mode of operation (ECB)………………………… …………..15

Figure 11: Cipher block chaining mode of operation (CBC)………………… ………………...16

Figure 12: Cipher feedback mode of operation (CFB).………………………………………….18

Figure 13: Output feedback mode of operation (OFB)…………………………………………..19

Figure 14: Counter mode of operation (CTR)…………………………………………… ……..21

Figure 15: Altera Cyclone IV 4CE115 FPGA Device…………………………………………...22

Figure 16: Basic information about the computer……………………………………………….23

Figure 17: Rijndael Mix Columns computation example………………………………………..25

Figure 18: Internal schematic of each submodule………………………………………………27

Figure 19: Module block diagram for parallelized configuration approach……………………..28

xii

Figure 20: Internal schematic of M4 submodule………………………………………………...29

Figure 21: Delay of M2 submodule……………………………………………………………...30

Figure 22: Delay of M3 submodule……………………………………………………………...30

Figure 23: Delay of M4 submodule……………………………………………………………...30

Figure 24: Timing simulation showing delay without parallelism………………………………30

Figure 25: Timing simulation showing delay with parallelism………………………………….31

Figure 26: Time delay analysis of mixed columns………………………………………………32

Figure 27: Substitute Bytes………………………………………………………………………35

Figure 28: S-Box table…………………………………………………………………………...37

Figure 29: S-box Matrix Computation in GF (2) ………………………………………………37

Figure 30: Baseline RTL…………………………………………………………………………40

Figure 31: Design 1 S-box Segmentation………………………………………………………..41

Figure 32: Design 1 Module Map………………………………………………………………..41

Figure 33: Design 1 RTL………………………………………………………………………...42

Figure 34: Design 2 S-box Segmentation………………………………………………………..43

Figure 35: Design 2 Module Map………………………………………………………………..43

Figure 36: Design 2 RTL………………………………………………………………………...44

Figure 37: Design 3 RTL………………………………………………………………………...45

Figure 38: Design 4 RTL………………………………………………………………………...46

Figure 39: Design 5 RTL………………………………………………………………………...47

Figure 40: Average Delay (in nanoseconds) Comparison……………………………………….50

xiii

Figure 41: Comparison of Number of Logic Elements used…………………………………….51

Figure 42: Add Round Key………………………………………………………………………53

Figure 43: AES-512 Key Expansion …………………………………………………………….53

Figure 44: Delay of Mix Columns Module………………………………………………………56

Figure 45: Delay of ShiftRows Module………………………………………………………….56

Figure 46: Delay of Key Module………………………………………………………………...56

Figure 47: Delay of XOR32 Module…………………………………………………………….57

Figure 48: Delay of SBOX1 Module…………………………………………………………….57

Figure 49: Delay of Key Expansion Module…………………………………………………….57

Figure 50: Delay of Round Module……………………………………………………………...57

Figure 51: Delay of Encryption Module…………………………………………………………58

Figure 52: Timing Simulation For AES-128 after Round 1……………………………………..64

Figure 53: Timing Simulation For AES-128 after Round 2……………………………………..65

Figure 54: Timing Simulation For AES-128 after Round 3……………………………………..66

Figure 55: Timing Simulation For AES-128 after Round 4……………………………………..67

Figure 56: Timing Simulation For AES-128 after Round 5……………………………………..68

Figure 57: Timing Simulation For AES-128 after Round 6……………………………………..69

Figure 58: Timing Simulation For AES-128 after Round 7……………………………………..70

Figure 59: Timing Simulation For AES-128 after Round 8……………………………………..71

Figure 60: Timing Simulation For AES-128 after Round 9……………………………………..72

Figure 61: Timing Simulation For AES-128 after Round 10……………………………………..73

xiv

Figure 62: Delay_AES_128_ECB ……………………………………………………………….75

Figure 63: Processing time_ AES_128_ECB ……………………………………………………75

Figure 64: Timing Simulation For AES-192 after Round 1……………………………………..76

Figure 65: Timing Simulation For AES-192 after Round 2……………………………………..77

Figure 66: Timing Simulation For AES-192 after Round 3……………………………………..78

Figure 67: Timing Simulation For AES-192 after Round 4……………………………………..79

Figure 68: Timing Simulation For AES-192 after Round 5……………………………………..80

Figure 69: Timing Simulation For AES-192 after Round 6……………………………………..81

Figure 70: Timing Simulation For AES-192 after Round 7……………………………………..82

Figure 71: Timing Simulation For AES-192 after Round 8……………………………………..83

Figure 72: Timing Simulation For AES-192 after Round 9……………………………………..84

Figure 73: Timing Simulation For AES-192 after Round 10……………………………………85

Figure 74: Timing Simulation For AES-192 after Round 11……………………………………86

Figure 75: Timing Simulation For AES-192 after Round 12……………………………………87

Figure 76: Delay_AES_192_ECB ………………………………………………………………89

Figure 77: Processing time_ AES_192_ECB……………………………………………………89

Figure 78: Timing Simulation For AES-256 after Round 1……………………………………..90

Figure 79: Timing Simulation For AES-256 after Round 2……………………………………..91

Figure 80: Timing Simulation For AES-256 after Round 3……………………………………..92

Figure 81: Timing Simulation For AES-256 after Round 4……………………………………..93

Figure 82: Timing Simulation For AES-256 after Round 5……………………………………..94

xv

Figure 83: Timing Simulation For AES-256 after Round 6……………………………………..95

Figure 84: Timing Simulation For AES-256 after Round 7……………………………………..96

Figure 85: Timing Simulation For AES-256 after Round 8……………………………………..97

Figure 86: Timing Simulation For AES-256 after Round 9……………………………………..98

Figure 87: Timing Simulation For AES-256 after Round 10……………………………………99

Figure 88: Timing Simulation For AES-256 after Round 11…………………………………..100

Figure 89: Timing Simulation For AES-256 after Round 12…………………………………..101

Figure 90: Timing Simulation For AES-256 after Round 13…………………………………..102

Figure 91: Timing Simulation For AES-256 after Round 14…………………………………..103

Figure 92: Delay_AES_256_ECB ……………………………………………………………..105

Figure 93: Processing time_ AES_256_ECB ………………………………………………….105

Figure 94: Timing Simulation For AES-512 after Round 1……………………………………106

Figure 95: Timing Simulation For AES-512 after Round 2……………………………………107

Figure 96: Timing Simulation For AES-512 after Round 3……………………………………108

Figure 97: Timing Simulation For AES-512 after Round 4……………………………………109

Figure 98: Timing Simulation For AES-512 after Round 5……………………………………110

Figure 99: Timing Simulation For AES-512 after Round 6……………………………………111

Figure 100: Timing Simulation For AES-512 after Round 7…………………………………..112

Figure 101: Timing Simulation For AES-512 after Round 8…………………………………..113

Figure 102: Timing Simulation For AES-512 after Round 9…………………………………..114

Figure 103: Timing Simulation For AES-512 after Round 10…………………………………115

xvi

Figure 104: Timing Simulation For AES-512 after Round 11…………………………………116

Figure 105: Timing Simulation For AES-512 after Round 12…………………………………117

Figure 106: Timing Simulation For AES-512 after Round 13…………………………………118

Figure 107: Timing Simulation For AES-512 after Round 14…………………………………119

Figure 108: Timing Simulation For AES-512 after Round 15…………………………………120

Figure 109: Timing Simulation For AES-512 after Round 16…………………………………121

Figure 110: Delay_AES_512_ECB ……………………………………………………………123

Figure 111: Processing time_ AES_512_ECB ………………………………………………...123

Figure 112: Timing Simulation For AES-128 in CBC Mode ………………………………….124

Figure 113: Timing Simulation For AES-128_1 in CBC Mode………………………………..125

Figure 114: Timing Simulation For AES-128_2 in CBC Mode………………………………..126

Figure 115: Timing Simulation For AES-128_3 in CBC Mode………………………………..127

Figure 116: Total Logic elements_AES_128_CBC …………………………………………...128

Figure 117: Delay_AES_128_CBC ……………………………………………………………129

Figure 118: Processing time_AES_128_CBC …………………………………………………129

Figure 119: Timing Simulation For AES-192 in CBC Mode…………………………………..130

Figure 120: Timing Simulation For AES-256 in CBC Mode…………………………………..131

Figure 121: Timing Simulation For AES-512 in CBC Mode…………………………………..132

Figure 122: Delay_AES_ECB_KEY …………………………………………………………..134

Figure 123: Total Logic Elements_AES_ECB_KEY ………………………………………….136

Figure 124: Processing time_AES_ECB_KEY ………………………………………………..138

xvii

Figure 125: Delay_AES_CBC_KEY …………………………………………………………..140

Figure 126: Total Logic Elements_AES_CBC_KEY…………………………………………..140

Figure 127: Total Logic Elements_AES_CBC_KEY…………………………………………..141

1

CHAPTER Ⅰ

INTRODUCTION

With today’s development and expansion of networks and internet-connected devices,

information security is an issue of increasing concern. Cryptography plays a key role in

information security by providing confidentiality when transmitting data. It prevents

unauthorized access so that data is not disturbed. With the emergence and rapid growth of cloud

computing, current encryption technologies are often threatened making it important to study the

characteristics of existing algorithms to match this advancement. Confidentiality is one of the

focuses in network security for digital communication systems, where large data blocks go

through a cryptographic algorithm with a cipher key that increases the security and complexity of

the output ciphertext. For the past several years, multiple security algorithms have been

developed as standard to be utilized in the data encryption process, such as the Data Encryption

Standard (DES), Triple Data Encryption Standard (3DES), and the current one, designated by the

U.S. National Institute of Standards and Technology (NIST), the Advanced Encryption Standard

(AES).

AES, also known as Rijndael algorithm, is a symmetric encryption algorithm that has a

minimum input data block size of 128-bits which undergo a series of permutations, substitutions,

and digital logic operations over several rounds. Encryption algorithms are always improving on

ciphertext complexity, required hardware storage allocation, and execution time. Field

Programmable Gate Arrays (FPGA’s) are a hardware alternative for encryption algorithm

2

implementation because, although the logic units in it are fixed, the functions and

interconnections between them are based on the user’s design which allow for improvement in

performance and speed. The research presented in this thesis focuses on improving performance

by analyzing the AES algorithm for efficient implementations, on an Altera Cyclone IV FPGA

using the Intel Quartus II software and Verilog Hardware Description Language.

1.1 Problem Statement

With the emergence of high-performance cloud computing and increase in traditional

businesses such as shopping and education moving completely on Internet during these days of

pandemic, it is important to keep confidential data safe. Due to huge volume of data being

exchanged over Internet, it is even more important for the security encryption schemes to

efficiently utilize hardware implementations to perform at much higher speeds to provide fast,

efficient, and secure data transmissions. There have been several AES hardware implementations

related work done in literature [8-44]. Many literatures have proposed Mix Column Computation

and S-box hardware lookup table implementations however none of the prior work utilized

implementation on newer Intel’s Cyclone IV FPGA involving parallelism and pipelining

together. In this thesis, we hypothesize that various AES components can be made faster by

utilizing parallelism and pipelining in their computation via FPGA implementations thus

improving the overall speed of AES encryption process.

Some of our published work showed processing speed improvement for components

such as AES Mix Columns module [28] and S-box module [45] where parallelism and pipelining

in the computation were utilized to improve overall AES performance of those functions. In this

3

thesis, we considered the FPGA implementation for the entire AES algorithm based on

improvement on these components. This thesis also presents high speed, fully pipelined FPGA

implementation of AES Encryption in two different operation modes. Furthermore, we also

evaluated the overall performance for the four variants of AES such as AES-128, AES-192,

AES-256, and AES-512. The work in this thesis aims to speed up overall AES encryption by

reducing processing delays and optimize silicon area for such implementations. Comparisons are

conducted on both a theoretical basis and through timing simulations on the Intel Quartus II

software to reveal the implication of increased complexity on the hardware performance of AES.

Our work in this thesis involves Writing Verilog Code for design and verification of digital

circuit and Simulating the code on "Quartus II".

1.2 Symmetric Encryption Algorithm- AES Algorithm

1.2.1 Background

The Advanced Encryption Standard (AES), also known as Rijndael, is an electronic data

encryption specification established by the National Institute of Standards and Technology

(NIST) in 2001 [1]. AES is a subset of the Rijndael block cipher. Developed by two Belgian

cryptographers Vincent Rijmen and Joan Daemen, they submitted a proposal to NIST during the

AES selection process. Rijndael is a series of passwords and block size passwords.

In the United States, AES was announced by the National Institute of Standards and

Technology on November 26, 2001 as the US FIPS PUB 197 (FIPS 197) and is now used

worldwide. It replaces the Data Encryption Standard (DES) released in 1977. The algorithm

4

described by AES is a symmetric key algorithm, meaning that the same key is used to encrypt

and decrypt data.

Figure.1 shows the overall structure of the AES encryption process. The cipher takes a

plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, 32, or 64 bytes (128,

192, 256, or 512 bits). The algorithm is referred to as AES-128, AES-192, AES-256, or AES-512,

depending on the key length. The input to the encryption and decryption algorithms is a single

128-bit block.

Figure 1: AES-128 Structure

5

The cipher consists of rounds, where the number of rounds depends on the key length: 10

rounds for a 16-byte key, 12 rounds for a 24-byte key, 14 rounds for a 32-byte key, 16 rounds for

a 64-byte key (Table 1).

Table 1: AES Parameters

 Key Size
(words/bytes/bits)

4/16/128 6/24/192 8/32/256 16/64/256

Plaintext Block Size
(words/bytes/bits)

4/16/128 4/16/128 4/16/128 4/16/128

Number of Rounds 10 12 14 16

Round Key Size
(words/bytes/bits)

4/16/128 4/16/128 4/16/128 4/16/128

Expanded Key Size
(words/bytes)

44/176 52/208 60/240 68/272

The overall data computation [1], [2] to obtain Rijndael cipher consists of

1. An initial “Add Round key’ step to add obscurity

2. 9/11//13/15 rounds of 4 steps to adds confusion, diffusion, non-linearity

 Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the

block

 Shift-Rows: A simple permutation

6

 Mix-Columns: A substitution that makes use of arithmetic over GF (2^8)

 Add-Round-Key: A simple bitwise XOR of the current block with a portion of the

expanded key

3. A Final 10th/12th/14th/16th step of Substitute bytes, ShiftRows, and AddRoundKey to add

obscurity

1.2.2 Substitute bytes

The forward substitute byte transformation, called SubBytes, is a simple table lookup

(Figure 2). AES defines a matrix of byte values, called an S-box (Table 2), that contains a

permutation of all possible 256 8-bit values. Each individual byte of State is mapped into a new

byte in the following way: The leftmost 4 bits of the byte are used as a row value and the

rightmost 4 bits are used as a column value. These row and column values serve as indexes into

the S-box to select a unique 8-bit output value.

In this layer, each byte in the state will be substituted by values obtained from

substitution boxes. This is done to achieve more security according to diffusion-confusion

Shannon's principles for cryptographic algorithms design.

7

Figure2: Substitute bytes

Table 2: S-Box

8

1.2.3 Shift Rows

The forward shift row transformation, called ShiftRows, is depicted in Figure 3. The first

row of State is not altered. For the second row, a 1-byte circular left shift is performed. For the

third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular left shift

is performed.The following is an example of ShiftRows.

This layer is to provide diffusion for all the state. It contains two sub-layers to ensure the

high-degree diffusion after transformation for many rounds.

.

Figure3: Shift Rows

9

1.2.4 MixColumns

The forward mix column transformation, called MixColumns, operates on each column

individually [3]. Each byte of a column is mapped into a new value that is a function of all four

bytes in that column. The transformation can be defined by the following matrix multiplication

on State (Figure 4).

This layer is to provide diffusion for all the state. It contains two sub-layers to ensure the

high-degree diffusion after transformation for many rounds.

Figure4: MixColumns [28]

10

1.2.5 AddRoundKey

In the forward add round key transformation, called AddRoundKey, the 128 bits of State

are bitwise XORed with the 128 bits of the round key. As shown in Figure 5, the operation is

viewed as a columnwise operation between the 4 bytes of a State column and one word of the

round key; it can also be viewed as a byte-level operation.

In this layer, the operation is to conduct XOR operation on round key (round key is

obtained from the extension of secret key operation) and state. This layer is to establish the

relationship between the key and the cipher-text more complicated and to satisfy the confusion

principle.

Figure 5: AddRoundKey

11

1.2.6 Key expansion of AES-128, 192, 256, and 512

The AES key extension algorithm takes a four-word (16-byte) key as input and produces

a linear array of 44/52/60/68 words (176/208/240/272bytes). This is enough to provide a four-

character round key for the initial AddRoundKey phase and each field, 10/12/14/16 rounds of

password. The key is copied into the first four words of the extended key. The rest of the

extended key is filled with four words at a time. Each added word depends on the previous word

and the word is returned in four positions. In three of the four cases, a simple XOR was used. For

words in the w array whose position is a multiple of 4/6/8/10, a more complex function is used.

Figure 6,7,8,9 illustrate the generation of the extended key, using the symbol “⊕”to represent

the complex function.

Figure 6: AES-128 Key Expansion

12

Figure7: AES-192 Key Expansion

Figure 8: AES-256 Key Expansion

13

Figure 9: AES-512 Key Expansion

1.3 Block Cipher Modes of Operation

1.3.1 Background

A mode of operation is a technique for enhancing the effect of a cryptographic algorithm

or adapting the algorithm for an application such as applying a block cipher to a sequence of data

blocks or a data stream. It can be used with any symmetric block cipher algorithm such as DES,

3DES or AES. NIST originally defined four modes of operation, as part of FIPS 81, through

which block ciphers can be applied to a variety of applications. However, with newer

applications the NIST extended the list of federal recommended modes to five in Special

Publication 800-38A.

14

1.3.2 Modes of Operation

In this section, we will discuss the different modes of operation of a block cipher. These

are procedural rules for a generic block cipher. Interestingly, the different modes result in

different properties being achieved which add to the security of the underlying block cipher. A

block cipher processes the data blocks of fixed size. Usually, the size of a message is larger than

the block size. Hence, the long message is divided into a series of sequential message blocks, and

the cipher operates on these blocks one at a time.

1.3.2.1 Electronic Codebook (ECB)

This mode is a most straightforward way of processing a series of sequentially listed

message blocks. The user takes the first block of plaintext and encrypts it with the key to produce

the first block of ciphertext. He then takes the second block of plaintext and follows the same

process with same key and so on so forth. The ECB mode is deterministic, that is, if plaintext

block p1, p2…, pM are encrypted twice under the same key, the output ciphertext blocks will be

the same.

In fact, for a given key technically we can create a codebook of ciphertexts for all

possible plaintext blocks. Encryption would then entail only looking up for required plaintext

and select the corresponding ciphertext. Thus, the operation is analogous to the assignment of

code words in a codebook, and hence gets an official name − electronic codebook mode of

operation (ECB). It is illustrated as follows –

15

Figure 10: Electronic codebook mode of operation (ECB) [2]

In reality, any application data usually have partial information which can be guessed.

For example, the range of salary can be guessed. A ciphertext from ECB can allow an attacker to

guess the plaintext by trial-and-error if the plaintext message is within predictable.

For example, if a ciphertext from the ECB mode is known to encrypt a salary figure, then a small

number of trials will allow an attacker to recover the figure. In general, we do not wish to use a

deterministic cipher, and hence the ECB mode should not be used in most applications.

1.3.2.2 Cipher Block Chaining (CBC)

CBC mode of operation provides message dependence for generating ciphertext and

makes the system non-deterministic. The operation of CBC mode is depicted in the following

illustration. The steps are as follows −

 Load the n-bit Initialization Vector (IV) in the top register.

 XOR the n-bit plaintext block with data value in top register.

 Encrypt the result of XOR operation with underlying block cipher with key K.

16

 Feed ciphertext block into top register and continue the operation till all plaintext blocks

are processed.

 For decryption, IV data is XORed with first ciphertext block decrypted. The first

ciphertext block is also fed into to register replacing IV for decrypting next ciphertext

block.

Figure 11: Cipher block chaining mode of operation (CBC) [2]

In CBC mode, the current plaintext block is added to the previous ciphertext block, and

then the result is encrypted with the key. Decryption is thus the reverse process, which involves

decrypting the current ciphertext and then adding the previous ciphertext block to the result.

17

Advantage of CBC over ECB is that changing IV results in different ciphertext for identical

message. On the drawback side, the error in transmission gets propagated to few further blocks

during decryption due to chaining effect. It is worth mentioning that CBC mode forms the basis

for a well-known data origin authentication mechanism. Thus, it has an advantage for those

applications that require both symmetric encryption and data origin authentication.

1.3.2.3 Cipher Feedback Mode (CFB)

In this mode, each ciphertext block gets ‘fed back’ into the encryption process in order to

encrypt the next plaintext block. The operation of CFB mode is depicted in the following

illustration. For example, in the present system, a message block has a size ‘s’ bits where 1 < s <

n. The CFB mode requires an initialization vector (IV) as the initial random n-bit input block.

The IV need not be secret. Steps of operation are −

 Load the IV in the top register.

 Encrypt the data value in top register with underlying block cipher with key K.

 Take only ‘s’ number of most significant bits (left bits) of output of encryption process

and XOR them with ‘s’ bit plaintext message block to generate ciphertext block.

 Feed ciphertext block into top register by shifting already present data to the left and

continue the operation till all plaintext blocks are processed.

 Essentially, the previous ciphertext block is encrypted with the key, and then the result is

XORed to the current plaintext block.

18

 Similar steps are followed for decryption. Pre-decided IV is initially loaded at the start of

decryption.

Figure 12: Cipher feedback mode of operation (CFB) [2]

CFB mode differs significantly from ECB mode, the ciphertext corresponding to a given

plaintext block depends not just on that plaintext block and the key, but also on the previous

ciphertext block. In other words, the ciphertext block is dependent of message. CFB has a very

strange feature. In this mode, user decrypts the ciphertext using only the encryption process of

the block cipher. The decryption algorithm of the underlying block cipher is never used.

Apparently, CFB mode is converting a block cipher into a type of stream cipher. The encryption

algorithm is used as a key-stream generator to produce keystream that is placed in the bottom

register. This key stream is then XORed with the plaintext as in case of stream cipher. By

converting a block cipher into a stream cipher, CFB mode provides some of the advantageous

19

properties of a stream cipher while retaining the advantageous properties of a block cipher. On

the flip side, the error of transmission gets propagated due to changing of blocks.

1.3.2.4 Output Feedback (OFB) Mode

It involves feeding the successive output blocks from the underlying block cipher back to

it. These feedback blocks provide string of bits to feed the encryption algorithm which act as the

key-stream generator as in case of CFB mode. The key stream generated is XOR-ed with the

plaintext blocks. The OFB mode requires an IV as the initial random n-bit input block. The IV

need not be secret.

Figure 13: Output feedback mode of operation (OFB) [2]

20

1.3.2.5 Counter (CTR) Mode

It can be considered as a counter-based version of CFB mode without the feedback. In

this mode, both the sender and receiver need to access to a reliable counter, which computes a

new shared value each time a ciphertext block is exchanged. This shared counter is not

necessarily a secret value, but challenge is that both sides must keep the counter synchronized.

Both encryption and decryption in CTR mode are depicted in the following illustration. Steps in

operation are −

 Load the initial counter value in the top register is the same for both the sender

and the receiver. It plays the same role as the IV in CFB (and CBC) mode.

 Encrypt the contents of the counter with the key and place the result in the bottom

register.

 Take the first plaintext block P1 and XOR this to the contents of the bottom

register. The result of this is C1. Send C1 to the receiver and update the counter.

The counter update replaces the ciphertext feedback in CFB mode.

 Continue in this manner until the last plaintext block has been encrypted.

 The decryption is the reverse process. The ciphertext block is XORed with the

output of encrypted contents of counter value. After decryption of each ciphertext

block counter is updated as in case of encryption.

21

Figure 14: Counter mode of operation (CTR) [2]

It does not have message dependency and hence a ciphertext block does not depend on

the previous plaintext blocks. Like CFB mode, CTR mode does not involve the decryption

process of the block cipher. This is because the CTR mode is really using the block cipher to

generate a keystream, which is encrypted using the XOR function. In other words, CTR mode

also converts a block cipher to a stream cipher. The serious disadvantage of CTR mode is that it

requires a synchronous counter at sender and receiver. Loss of synchronization leads to incorrect

recovery of plaintext. However, CTR mode has almost all advantages of CFB mode. In addition,

it does not propagate error of transmission at all.

22

1.4 Hardware and Software Design Assessment

We use the EDA tools available on the Altera website to evaluate our designs [4-7].

These tools, the Quartus II Web Edition and the Altera University Program Simulator, allow

code to be built, compiled, synthesized, simulated, and finally programmed into DE2 hardware.

In this work, we use Altera's Cyclone IV DE2-115 board EP4CE115F29 platform as shown in

Figure 15. Cyclone IV technology was released in 2017. The model EP4CE115F29C7 has a

density of 114,480 LE and it contains an internal 50 MHz clock. The development board is

available on the Terasic website. The basic information about the computer we run the

experiments is shown as Figure 16.

Figure 15: Altera Cyclone IV 4CE115 FPGA Device [7]

23

Figure 16: Basic information about the computer

1.5 Thesis Outline

This thesis is organized as follows. The first chapter discusses the introduction of

cryptography, a brief overview of the symmetric encryption algorithm- AES, a brief overview of

block cipher mode of operation, and problem statement. Chapter II discusses the Mix Column

modules in detail and how to improve the computation by parallelism and pipelining. Chapter III

focuses the S-box modules in detail how to improve the computation by parallelism and

pipelining. Chapter IV discusses the performance comparison of AES variants which is the Key

Expansion in detail. Chapter V gives the experimental results and simulation analysis of AES

scheme and its four variants including AES-128, AES-192, AES-256 and new AES-512 with

different modes of operation, on the FPGA platform. Finally, Chapter VI provides conclusion

and the future work.

24

CHAPTER II

HARDWARE IMPLEMENTATION OF IMPROVED MIX COLUMN COMPUTATION OF

CRYPTOGRAPHIC AES

With today’s development and expansion of networks and internet-connected devices,

information security is an issue of increasing concern. Confidentiality is one of the focuses in

network security for digital communication systems, where large data blocks go through a

cryptographic algorithm with a cipher key that increases the security and complexity of the

output ciphertext. AES is a symmetric encryption algorithm that has a minimum input data

block size of 128-bits which undergo a series of permutations, substitutions, and digital logic

operations over several rounds. Encryption algorithms are always improving on ciphertext

complexity, required hardware storage allocation, and execution time. Field Programmable Gate

Arrays (FPGA’s) are a hardware alternative for encryption algorithm implementation because,

although the logic units in it are fixed, the functions and interconnections between them are

based on the user’s design which allow for improvement. The research presented focuses on the

development and analysis of an efficient AES-128 Mix Columns algorithm implementation,

utilized in the data block encryption rounds, on an Altera Cyclone IV FPGA using the Intel

Quartus II software and Verilog Hardware Description Language.

2.1 Rijndael Mix Column Computation

Intensive computation of AES takes place in the Rijndael Mix Column segment. The Mix

Column transformation operates on each column of the 4-byte by 4-byte matrix formed from the

25

input 128-bit data block. Each byte of the column is mapped into a new value that is a function

of all four bytes in that column. The implementation of Mix Columns is based on the

mathematical analysis in the Galois field, GF (2). For the AES algorithm this irreducible

polynomial is:

 𝑚(𝑥) = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1 (Equation 2.1.1)

The columns of the matrix are multiplied by modulo 𝑥 + 1 with a fixed polynomial c

(x), given by:

 𝑐(𝑥) = [03]𝑥 + [01]𝑥 + [01]𝑥 + [02] (Equation 2.1.2)

This polynomial is coprime to 𝑥 + 1 and therefore invertible. Only the multiplication

module and the 32-bit XOR module of each processing unit (one column) are needed for the

design because the elements of the multiplication and addition in the Galois field are

commutative and associative. In Figure 17 shows a Mix Columns computation example. With

this approach, the function of Mix Columns can be achieved.

Figure17: Rijndael Mix Columns computation example

26

Many researchers have published comparative analysis and optimized the speed of

hardware implementations on the performance of different modes of operation. The results, from

[8-20], reveal that the scheme has low hardware resource consumption, high throughput and an

excellent overall performance ratio. Here, we focus on the development and analysis of an

efficient AES-128 Mix Columns algorithm implementation in two different approaches.

2.2 Design Methods and Discussion

Our first approach involved building the circuit modules around the traditional row-

column multiplication method. This was done by creating codes for each row of the Rijndael

mix columns matrix producing a total of four distinct sub-modules (shown in Figure 18). Each

module would take 4 bytes (a column of the incoming data block matrix) and produce a single

corresponding byte of the output matrix. This approach resulted in a circuit configuration that

was simplistic in concept, however based on Figure 19, the circuit reveals only partial bit

parallelization which could potentially deter the performance of the circuit because of misaligned

clock cycles.

Our second approach focused on forcing a more parallel behavior into the circuit to align

the input signals together potentially resulting in decreased delay. As seen in Figure 20, three

distinct sub-modules were created that separate the Rijndael multiplication with factors 2 and 3

and adds an additional module ‘M4’ as a 4-input XOR function. Each of the 16 bytes of the

input data block matrix will go through the same sub-modules, aligning them during their clock

cycles, and producing the 16-byte output matrix at approximately the same cycle.

27

Figure 18: Internal schematic of each submodule

28

Figure 19: Module block diagram for parallelized configuration approach

29

Figure 20: Internal schematic of M4 submodule

2.3 Result and Analysis

The following data presented is modeled after previous performance comparison attempts

mentioned in [8-20]. According to the AES algorithm we mentioned in Section 2, we can

distinguish Rijndael Mix Column into many operations or functions. In addition, we used the

Quartus II software to perform the timing simulations for each operation or function in each step,

as shown in Figure21~25. Finally, we developed the following tables to compare the

performance.

30

Figure 21: Delay of M2 submodule

Figure 22: Delay of M3 submodule

Figure 23: Delay of M4 submodule

Figure 24: Timing simulation showing delay without parallelism

31

Figure 25: Timing simulation showing delay with parallelism

Function Operation Type Processing Time(ηs) AES 128

Sub Bytes Substitution (S-Box) 12 10

Shift Row Assign 7.75 10

Mix Columns

M2 (Left Shift + XOR2) 6.84

10.51

9

M3(XOR2) 7.02 9

M4(XOR4) 8.83 9

Add Round

Key
XOR2 7.02 11

Total Processing Time (ηs) 369.3

Table 3: Delay of Plaintext Encryption

The results in Table 3 for Mix Columns were obtained for each submodule operation.

The final simultaion shows that the delay for each operation combines to give a reduced parallel

result.

32

Table 4: Time Delay and Memory results of both implementations

Figure 26: Time delay analysis of mixed columns

The results and calculations shown in Table 3 evaluate the Total Logic Elements (TLE)

and the Peak Virtual Memory (PVM) of the non-parallelized program “Without parallelism” and

Without parallelism…

With parallelism
Reduced Delay: 5996250 ms

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

1Kbyte 1Mbyte 10Mbyte 100Mbyte 1Gbyte 10Gbyte

D
el

ay
 (m

s)

Data

Delay Evaluation

Without parallelism With parallelism

33

the parallelized one “With parallelism”. The graphical evaluation of the gathered data is depicted

below.

Compared to the non-parallelized program, the parallelized version showed a significant

decrease in needed logic elements and virtual memory for implementation. Based on the data in

Table 4, at 10 GB of input data the parallelized implementation reduces the Rijndael Mix

Columns operation delay by approximately 33.4%.

Based on encryption time for Mix Columns, we created a Delay Evaluation (Table 4) and

made a plot to show the performance of the different approaches in terms of encryption time. We

plotted for different file sizes shown in Figure 26 and observed that the 2nd approach, which

parallelized the circuit signals more, had less time delay than the 1st approach. It was also

noticed that the difference in memory allocation and size corresponded to the difference in delay.

2.4 Conclusion

In this Chapter, we conduct our study on the most popular encryption algorithm AES. We

targeted one mode of operation, Cipher Block Chaining (CBC), in terms of encryption time and

delay on the Mix columns section. The results in Table 4 reveals that using parallelism in signal

processing results in reduced time delay, logic elements and virtual memory. In the following

chapter, we will focus on other sections for parallelization and try to implement AES on the

FPGA. Finally, we will be able to obtain optimized area and speed hardware implementations of

AES based on the sub-pipelined architecture.

34

CHAPTER Ⅲ

A FAST IMPLEMENTATION OF THE RIJNDAEL SUBSTITUTION BOX FOR

CRYPTOGRAPHIC AES

Today’s current standard in Cryptography is the Symmetric Advanced Encryption

Standard (AES) as selected by the US National Institute of Standards and Technology (NIST). It

is also known as Rijndael Encryption Algorithm. Compared to various components of the AES,

Rijndael S-box (substitution box) is the only non-linear component of the cryptosystem and

significantly affects the overall performance of the AES encryption scheme. In this chapter, we

investigate various implementations for improving the hardware performance of the Rijndael S-

box component of the AES algorithm in terms of delay and size on the Altera Cyclone IV FPGA

(Field programmable gate arrays) using the Intel Quartus II software and Verilog Hardware

Description Language (Verilog HDL).

The AES encryption algorithm accepts blocks of 128 or 192 or 256 bits and applies a series

of substitutions and permutations [1-2]. A special substitution termed as "SubBytes

Transformation" is also called Rijndael S-box, named after its designers. S-box is the main core

structure of every block cipher system and controls the hardware complexity of Rijndael cipher

elements due to its particular characteristics, a non-linear byte substitution and operating on each

of the State bytes independently. The purpose of S-box is to produce confusion between the

ciphertext and the secret key. There are 256 = 16 × 16 possible 8-bit numbers, and so the S-box

can be represented as a 16 ×16 table mapping inputs to outputs.

35

S-box provides reversible conversion of plain text segments during the encryption process,

while providing the opposite conversion during the decryption process. It is a single simple

function that is applied to each byte over and over again during the encryption phase. Each of the

256 possible byte values is converted to another byte value by the transformation, which is a

complete permutation as mentioned at Chapter 1. As a result, no two different byte values are

changed to the same byte values.

Figure 27: Substitute Bytes

The AES S-box is shown as Figure 27[1-2]. To find the output from the S-box table, the

byte input is split into two 4-bit halves. The first half provides the row number and the second

36

half provides the column number for the Byte substitution. For example, an S-box transformation

of 8'b11000011or 0xC3 can be found in a cell at the intersection of a row labeled C0 in

hexadecimal and a column labeled 03 in hexadecimal. Therefore, 8'b11000011or 0xC3 becomes

8'b00101110 or 0x2E.

Several hardware implementations related work is available in literature [8-20]. Many

literatures have proposed S-box hardware lookup table implementations [21-27]. To reduce LUT

space requirements, the basic idea of Shannon’s expansion theorem is applied. It helps achieve a

logical design that has a greater number of levels with less implementation cost. This

optimization technique reduces the complexity of the whole S-box which means it requires fewer

arithmetic operations. As it simplifies table indexing, it simply consumes less power. Besides

this optimization technique, including a smaller number of iterations will decrease the delay

producing algebraic and matrix operations. In this chapter, we simulate different design

techniques for the AES non-linear byte substitution in the Quartus-II simulator for a Cyclone IV

FPGA platform. We verified the output performance of various implementations of the S-box in

terms of delay and size.

37

Figure 28: S-box table [2]

Figure 29: S-box Matrix Computation in GF (2)

38

3.1 Rijndael S-Box Computation

S-box treats the values as a polynomial in Galois Field in factor 2 (GF (2)) [1-2, 21-

27], irreducible polynomial uses 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1. It's calculation basically involves two

steps:

 The inverse multiplication: derived from multiplicative inverse over GF (2). "00" is

mapped to itself.

 The affine transformation: applying the affine (on GF (2)) transformation.

Using Rijndael’s finite field for affine transformations the following expresses it as an

equation for an input vector signal “X”.

𝐺𝐹(2) =
()

 (Equation 3.1.1)

Equation 1.1 shows the affine transform in Galois Field (2) as a function, with the

characteristic irreducible polynomial as the denominator. This polynomial is represented in

hardware as the binary string “100011011” for Boolean addition operations in the algorithm.

The matrix representation of this function for S-box is shown in Figure 28. The input signal

“b[7:0]” represents the 8-bit multiplicative inverse vector which undergoes Boolean XOR and

addition operations to obtain the S-box output vector “a[7:0].” Figure 29 has various equations

displayed in Boolean logic for quick implementation that represent the vector computation that

occurs within the Rijndael multiplication and are shown in sequence as equations below.

𝑠 = 𝑏 ⨁ (𝑏 ≪ 1) ⨁ (𝑏 ≪ 2) ⨁ (𝑏 ≪ 3) ⨁ (𝑏 ≪ 4) ⊕ 63 (Equation 3.1.2)

39

𝑠 = 𝑏 ⊕ 𝑏() ⊕ 𝑏() ⊕ 𝑏() ⊕ 𝑏() ⊕ 𝑐 (Equation 3.1.3)

𝑠 = 𝑏 𝑥 31 𝑚𝑜𝑑 257 ⨁ 99 (Equation 3.1.4)

However, the Rijndael S-box is not economical because it is based on the LUTs and uses

more resources during implementation. To achieve high throughput and low power consumption,

many literatures have proposed S-box hardware lookup table implementations [21-27]. In this

chapter, we focused on how to efficiently implement pipeline technology utilizing FPGA

platform to make S-box fast and verify the performance of various implementations of S-box in

terms of latency and size.

3.2 Design Methods and Discussion

This research proposes three unique new designs based on restricting the way the S-box

is implemented. The baseline implementation is a 256-line Look-Up-Table (LUT) that is

conducted using sequential logic. Using the LUT in the design logic can significantly impact the

amount of logic elements (LE’s) that get used up by the FPGA. This method of adopting the

basic principles of Shannon's expansion theorem achieves a logical design, which a greater

number of levels, reduces the space requirement of the LUT, and lowers the implementation

cost. This optimization technique reduces the complexity of the S-box module which results in

fewer arithmetic operations. As it simplifies table indexing, it additionally consumes less power.

This design, along with the reduced number of iterations, significantly lowers the delay for the

algebraic and matrix operations. The designs are shown in the figures below and depict how the

40

S-box is segmented to create smaller LUT’s combined with multiplexer (MUX) logic for the

correct output selection.

Baseline:

The baseline Verilog HDL module implements the Substitution Box as a single LUT.

The Register Translation Language (RTL) shows the baseline LUT module in Figure 30. This

module is a direct implementation of the standard Rijndael Substitution Box shown in Figure 2,

where an 8-bit input vector corresponds to a specific 8-bit output vector. This module relies on

sequential logic, which consumes both a significant amount of hardware Logic Elements (LE’s)

and processing time from input to output.

Figure 30: Baseline RTL

Design 1 (Row Column Parallelization of S-Box):

Design 1 aims to parallelize the Substitution Box by determining each corresponding 4-

bit output in the same amount of clock cycles. This approach for the Substitution Box focuses on

41

separating the rows and columns of the 256-byte LUT (Figures 31-33). Each value in the row

and column of the Substitution Box uses a nibble of the input byte-wise vector to determine the

corresponding substitute value. This design utilizes 2 LUT’s for each nibble (HIGH and LOW)

of the input byte-wise vector and generates 16 possible output values that feed into a 16-to-1

Multiplexer (MUX) which uses the opposite nibble to select the correct 4-bit output. The

module then concatenates the output of each MUX to create the correct corresponding output

byte-wise vector.

Figure 31: Design 1 S-box Segmentation

Figure 32: Design 1 Module Map

42

Figure 33: Design 1 RTL

Design 2 (Expanded RC Parallelization of S-Box):

Design 2, shown in Figures 34-36, aims to extend the technique of Design 1 by creating 4

LUT’s instead of 2 for further parallelization. This design further segments the LUTs required to

compute the corresponding substitute value. Through this LUT segmentation extension of the

baseline Rijndael LUT S-Box, Design 2 attempts to produce the correct byte-wise output while

increasing its LUT variable search, compared to Design 1, in the same clock cycle.

43

Figure 34: Design 2 S-box Segmentation

Figure 35: Design 2 Module Map

44

Figure 36: Design 2 RTL

Design 3 (Reduced LUT Parallization of S-Box): Design 3, shown in Figure 37-38,

aims to parallelize the Rijndael S-Box by creating size reduced LUT’s from the standard

Substitution Box, shown in Figure 27. The standard Substitution Box is separated into 4 LUT’s

45

one for each 8-byte by 8-byte quadrant. The byte-wise input vector goes through each of the 4

LUT’s with only a single LUT generating the correct output vector while the others produce a

logic zero. The output of all LUT’s are then fed into a 4-to-1 byte-wise adder that combines all

values to determine the output 8-bit substitution value.

Figure 37: Design 3 RTL

46

Design 4 (Further Re. LUT Parallelization of S-Box): Design 4 aims to further reduce

the LUT parallelization technique of Design 3 by creating smaller LUT’s from the segmented

quadrants. This approach extends the segmentation of the Rijndael S-Box by four times

compared to Design 3. The aim of Design 3 and 4 is to parallelize the process of determining the

correct output value by reducing the memory consumption of the sequential logic used to

generate the LUT’s. The use of an adder to determine the output increases the LE cost of the

module but attempts to significantly reduce the processing delay.

Figure 38: Design 4 RTL

47

Design 5 (Shannon’s Expansion of S-Box): Design 5, shown in Figure 39, uses

Shannon’s expansion to reduce the processing time and cost consumption of the Substitution

Box. This design uses the 8th and 7th MSB’s (most significant bits) of the input byte-wise vector

to determine the correct output substitute value through MUX logic. The input to the MUX logic

includes four 6-byte x 6-byte LUT’s that represent the possible outcomes that could be selected

based on all variations of the 8th and 7th MSB such as “00”, “01”, “10”, and “11”. This approach,

like the previous designs, aims to not only increase the searching process on the same clock

cycle but reduce the LUT size for each search to achieve low LE cost and faster throughput.

Figure 39: Design 5 RTL

48

3.3 Result and Analysis

The implementation of all Substitution Box designs was simulated on the Cyclone IV

FPGA using NIST test vectors; the results are shown in Table 5. The baseline design is the initial

direct implementation of the Rijndael Substitution Box from [1-2]. The baseline generated an

average of 11.41 nanoseconds of delay while consuming 208 LE’s. The results from the first

implementation, displayed in Table 5, showed an increase in both average delay by 0.11 ns for

design 1 and 0.52 ns for design 2. Design 3 showed the most efficient output compared to the

baseline LUT; design 3 was able to generate the correct output 1.08 ns faster and with a 31.3%

decrease in LE hardware consumption.

The Substitute Bytes module is repeated a total of 200 times, shown in Table 6, in the final

implementation of AES-128. Compared to the other submodules that make up the AES-128

algorithm, only the byte-wide 2-input XOR (XOR2) module was instanced more than Substitute

Bytes by a total of 120 times (Table 6). To improve the AES-128 algorithm in efficiency and

throughput, it is crucial to target the most repetitive submodule since improvements in its

implementation would be magnified. However, the XOR2 submodule is simply an expanded XOR

gate that requires significantly less LE consumption than the Substitute Bytes module which is a

256-byte size LUT. The I/O delay and LE consumption for design 3 would be multiplied by the

module count and would reduce the total delay of the AES encryption algorithm by approximately

200 ns compared to the baseline. The concept for design 3 and the other implementations, show

the effectiveness of pipelining in processor operations. By segmenting the LUT into separate

modules, each can be executed on the same clock cycle and reduce the overall delay of the process.

49

This was expected to bring a trade-off between the hardware consumption to reduce the delay

however design 3 was able to improve on both areas.

Many literatures have proposed S-box hardware lookup table implementations [21-27].

The logic design using the basic principles of Shannon's expansion theorem is achieved. By

comparing the suggested designs to other reported techniques, analysis of the results indicates that

the proposed design 3 is capable of significantly outperforming the other four designs in terms of

delay and area as measured by the simulation. From the simulations of the proposed designs, we

observed that the throughput can be increased by reducing the delay of the critical path taken by

the input byte-wise vector specifically in the LUT segment. By targeting one of the most utilized

modules in the AES computation scheme, the efficiency of the overall implemented algorithm can

be improved on. The achieved lower LE cost and faster throughput will multiply based on the

number of instances of the submodule included in the final design of AES-128 and can lead to

improvements in the extended iterations of AES such as AES-192, AES-256, and AES-512[30-

40].

Table 5: Design Parameter Comparison

Design Average Delay (ns) Logic Elements Virtual Pins

Baseline 11.41 208 (<1%) 16 (3%)

Design 1 11.52 208 (<1%) 16 (3%)

Design 2 12.33 294 (<1%) 16 (3%)

Design 3 10.73 65 (<1%) 16 (3%)

Design 4 18.41 352 (<1%) 16 (3%)

Design 5 11.36 208 (<1%) 16 (3%)

50

Table 6: Total Module Count for AES-128

AES-128 Top Level Module

Sub module Instances
Peak Virtual

Memory (MB)
Pins/529

Logic Elements
/114,480

Substitute Bytes 200 4788 16 (3%) 280 (<1%)

Mix Column 144 4770 16 (3%) 3 (<1%)

XOR2 320 4782 24 (5%) 8 (<1%)

XOR4 144 4770 40 (8%) 8 (<1%)

Increment Bytes 10 4789 70 (13%) 857 (<1%)

Subkey Round 10 4769 288 (54%) 128 (<1%)

Figure 40: Average Delay (in nanoseconds) Comparison

51

Figure 41: Comparison of Number of Logic Elements used

3.4 Conclusion

 This chapter discusses the design and simulation of the AES non-linear byte substitution

techniques[45]. By simulating the designs in the Quartus-II software on a Cyclone IV FPGA

platform, we verified the output performance of various implementations of the S-box module

with pipelining techniques in terms of delay and size as shown in Figure 40-41. From the

simulations of the proposed designs, we observed that the throughput can be increased by

reducing the delay of the critical path taken by the input byte-wise vector specifically in the LUT

segment. The techniques proposed in our most optimized design 3 shows us how to achieve high

throughput and low power consumption using the effectiveness of pipelining in processor

operations.

52

CHAPTER Ⅳ

PERFORMANCE COMPARISON OF AES VARIANTS USING HARDWARE

IMPLEMENTATIONS ON FPGA

AES has been extensively analyzed and is now widely used in modern-day technologies.

It is a symmetric encryption algorithm that has a minimum input data block size of 128-bits that

undergoes a series of permutations, substitutions, and digital logic operations over several

rounds. This chapter evaluates AES-128, AES-192, AES-256, and AES-512 on various

parameters and compares their hardware performance through I/O delays when implemented on

the Cyclone IV Field Programmable Gate Array (FPGA). Through this comparison, the research

presented provides a detailed scope at the complexity versus hardware consumption cost for all

iterations of AES to conclude the most efficient implementation.

4.1 Rijndael Key Expansion Computation

The AES key expansion computation takes a four-word (16-byte) key as its input shown

as Figure 42. and produces a linear array of 44/52/60/68 words (176/208/240/272 bytes) to

generate enough exclusive keys to accommodate for the respective round size 10/12/14/16 of

AES. The key is copied into the first four words of the extended key. The rest of the extended

key is filled with four words at a time. Each added word depends on the previous word and the

word is returned in four positions. In three of the four cases, a simple XOR was used. For words

in the ‘w’ array whose position is a multiple of 4/6/8/16, a more complex function is used. Figure

53

43 illustrates the generation of the extended key, using the symbol “⊕” to represent the complex

function.

Figure 42: Add Round Key

Figure 43: AES-512 Key Expansion

54

From the AES algorithm [1-2] we can find that the main difference between AES-128,

AES-192 and AES-256 except for the different rounds is key expansion. As we can see from the

Figure6~8, the Key Expansion routine for AES-256 is slightly different than for AES-128 and

AES-192. Here, we chose AES-512 as an example to illustrate how to generate the key needed

for each round base on the Key Expansion routine for AES-256.

The process of computing 512-bit round keys are depicted in the Figure 9 and algorithms

are as follows:

 The elements of the original input key (512 bits) arranged in words and arranged from the

most significant byte to the least significant byte key length are divided into four words,

each word being 32 bits of equal size, thus Six words are formed in each line.

 All subkeys are stored in the key extension array, the elements are W[0], W[1],..., W[67]

because there are 17 subkeys for maintaining 16 rounds and 4 iterations. The first subkey

Key0 is obtained from the first word of the original input key from AES, and the Key0 is

copied to the first four elements of the key array [W0, W1, W2, W3]. The Key1 is copied

to the second four elements of the key array [W4, W5, W6, W7], the Key2 is copied to

the first four elements of the key array [W8, W9, W10, W11], the Key3 is copied to the

first four elements of the key array [W12, W13, W14, W15], and the remaining subkeys

Obtained by the steps defined below.

 All other element of the array is computed as follows:

If (i mod 16) =0 then 𝑊 =𝑇 ⊕ 𝑊()

55

Here 𝑇 = {SubWord (RotWord(𝑊()))}⊕ 𝑅𝑐𝑜𝑛
()

If (i mod 16) ≠0 and (i mod 4) =0 then 𝑊 = {SubWord (𝑊())} ⊕ 𝑊()

If (i mod 16) ≠0 but (i mod 4) ≠0 then 𝑊 = 𝑊()⊕ 𝑊()

 After calculating all the elements of the word Matrix [W0, W1, W67], we compute

17 subkeys from K0 to K12 by taking the first four words, so that Key0 = [W0, W1, W2,

W3], Key1 = [W4, W5, W6, W7], ... Key17 = [W64, W65, W66, W67]. We can also see

that we only use up to Rcon4. (For AES-128, we use up to Rcon10. For AES-192, we use

up to Rcon8. For AES-256, we use up to Rcon7.)

4.2 Design Methods and Discussion

This research will focus on extending the FPGA implementation to the entire algorithm;

furthermore, we also evaluate the overall performance for the different variants of AES such as

AES-128, AES-192, AES-256, and AES-512. The work in this thesis aims to speed up AES

encryption overall and reduce processing delays. Comparisons are conducted on both a

theoretical basis and through timing simulations on the Intel Quartus II software to reveal the

implication of increased complexity on the hardware performance of AES in terms of Logic

Elements (LE’s) and transport delays.

4.3 Result and Analysis

According to the AES algorithm we mentioned in section 2, we can distinguish each step

into several operations or functions. We used the Quartus II software to perform timing

56

simulations for each operation or function in every step, as shown in Figure 44~Figure 51. The

following data presented is modeled after previous hardware performance comparison attempts

mentioned in [3, 9-11,17-24].

Figure 44: Delay of Mix Columns Module

Figure 45: Delay of ShiftRows Module

Figure 46: Delay of Key Module

57

Figure 47: Delay of XOR32 Module

Figure 48: Delay of SBOX1 Module

Figure 49: Delay of Key Expansion Module

Figure 50: Delay of Round Module

58

Figure 51: Delay of Encryption Module

The performance comparison is based on the timing simulations of the different key sizes

for the AES variants. The calculation results are shown in the Table 7 and Table 8 and were

conducted through scalar multiplication of the base processing time in nanoseconds for AES-128

and AES-192. The results show a linear trend where an increase in key size results in an

increase in delay time for the plaintext encryption portion (Table 7); the overall encryption time

is increased by approximately 14% from the 128-bit key to the 192-bit key, 29% to the 256-bit

key, and 38% to the 512-bit key. In contrast, the results for the key expansion portion did not

follow a similar linear trend; the overall key expansion time is increased by approximately 10%

from the 128-bit key to the 192-bit key, and 19% to the 256-bit key as well as the 512-bit key.

The data from the key expansion simulation revealed how the AES-256 and AES-512 variants

shared a similar processing time despite AES-512 being computational stronger due to its

extensive architecture.

59

Table 7: Delay of Plaintext Encryption

Function
Operation

Type
Processing
Time(ηs)

AES 128 AES 192 AES 256 AES 512

Sub Bytes
Substitution

(S-Box)
12 10 12 14 16

Shift Row Assign 7.75 10 12 14 16

Mix
Columns

M2(Left Shift
+ XOR2)

6.84

10.51

9 11 13 15

M3(XOR2) 7.02 9 11 13 15

M4(XOR4) 8.83 9 11 13 15

Add
Round

Key
XOR2 7.02 11 13 15 17

Total Processing Time (ηs) 369.3 443.9 518.4 593.0

Processing Time Percent Increase

Compared to AES-128 (%)
16.8 28.8 37.7

Table 8: Delay of Key Expansion

Function
Operation

Type
Processing
Time(ηs)

AES 128 AES 192 AES 256 AES 512

RotWord Assign 6.31

12.17

10 12 14 16

SubWord
Substitution

(S-Box)
12 10 12 14 16

XOR2(32bits) 8.51 50 54 59 56

Total Processing Time (ηs) 547.2 605.6 672 671

Processing Time Percent Increase

Compared to AES-128 (%)
9.6 18.6 18.5

60

4.4 Conclusion

The results show how the encryption time varies with key size selection. It was not only

found out from the AES algorithm but also from the actual simulation data, that when the key

size increases, the encryption time for the four function modules of AES also increases.

However, this increase is not proportional to the increase in key expansion processing time

(Table 8). Despite having more rounds and increased complexity, AES-512 was found to be

slightly computationally faster (or comparable) in processing time for key expansion than AES-

256. When seeking to secure data confidentiality at the highest level, AES-512 offers this with

only an 18% increase in processing time compared to the baseline variant AES-128 (which is not

as secure as AES-512).

61

CHAPTER Ⅴ

COMPARISON AND ANALYSIS

5.1 Avalanche Effect

Each of the encryption technique has its own strong and weak points. In order to apply an

appropriate technique in a particular application we are required to know these strengths and

weakness. Therefore, the analysis of these techniques is critically necessary. A desirable property

of any encryption algorithm is that a small change in either the plaintext or the key should

produce a significant change in the cipher text.

However, a change in one bit of the plaintext or one bit of the key should produce a

change in many bits of the cipher texts. This property is known as Avalanche Effect. Avalanche

Effect can be calculated by using above equation.

The performance of proposed algorithm is evaluated using Avalanche Effect due to one-

bit variation in plaintext (before being mapped in various binary codes) keeping encryption key

constant in a binary code [41].

Avalanche Effect is calculated for various combination of plaintext and encryption key

by mapping them in various binary codes.

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝒇𝒍𝒊𝒑𝒑𝒆𝒅 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑 𝑡𝑒𝑥𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑 𝑡𝑒𝑥𝑡

The two characteristics of the symmetric encryption algorithm described in the system

overview are confusing and spreading. The data in Table 9 and Table 10 are converted into a

binary column as follows:

62

Table 9: Avalanche Effect of DES [2]

DES

Ciphertext C1(binary) 1001 1000 1100 0110 0101 0000 0001 0111

1010 1001 1100 0001 1101 1101 0101 0010

Ciphertext C2(binary) 0110 1000 1011 1110 1010 0010 0000 0111

1001 1100 1101 0101 0010 0111 1111 1000

Table 10: Avalanche Effect of AES [2]

AES

Ciphertext

C1 (binary)

01010000 00000011 01110010 01011001 00100001 00110111 00110001 00011000

01010100 01111101 01001100 01101011 00010110 01001101 01001011 00110111

Ciphertext

C2(binary)

01110001 01001011 00101101 00111011 00001110 01000100 01001100 00011111

01011000 00101111 00100001 00111001 01011110 01111000 01100100 01111000

We can observe that the confusion and diffusion of DES is not as good as AES. There are

too many repetitions of the ciphertext of DES and the ciphertext after changing one bit. The

changes in ciphertext 0 and 1 are relatively concentrated and not evenly dispersed. Therefore, it

can be seen that the ciphertext complexity after the encryption algorithm is not enough, in terms

of individual blocks. The avalanche effect data shows that the avalanche effect of DES is

63

relatively poor, while AES is closer to the theoretical value of 50%, and AES is the advanced

encryption standard. Although DES encryption can be used, AES is definitely more secure than

DES in terms of security. When the input (plaintext or key) to any cryptographic algorithm is

changed slightly, then there must be significant change in the output. It is the most desirable

property of any cryptographic algorithm is the avalanche effect. It was a term coined by Horst

Feistel. It accounts for the randomization in the algorithm or can be thought of as a metric for

diffusion & confusion. Normally, a change of about 50% is desirable as it makes the algorithm

truly random.

5.2 Timing Simulation For AES-128, AES-192, AES, 256 and AES-512 in ECB Mode

Based on my previous works in chapter Ⅱ, Ⅲ, and Ⅳ, I can build the most efficiency

modules of AES variants in different operation modes [42-44]. In this session, I discuss the

performance of AES-128, AES-192, AES-256 and AES-512 in ECB mode. Via the Quartus II,

we can find the device we are using, the processing time, and the total logic elements from the

compilation report. We can also see the block diagram in register level. By running the timing

simulation, we can find out the delay for each experiment.

5.2.1 Timing Simulation For AES-128

 In order to observe the performance changes, we run the simulation and recorded the

results of each round as below.

64

Figure 52: Timing Simulation For AES-128 after Round 1

65

Figure 53: Timing Simulation For AES-128 after Round 2

66

Figure 54: Timing Simulation For AES-128 after Round 3

67

Figure 55: Timing Simulation For AES-128 after Round 4

68

Figure 56: Timing Simulation For AES-128 after Round 5

69

Figure 57: Timing Simulation For AES-128 after Round 6

70

Figure 58: Timing Simulation For AES-128 after Round 7

71

Figure 59: Timing Simulation For AES-128 after Round 8

72

Figure 60: Timing Simulation For AES-128 after Round 9

73

Figure 61: Timing Simulation For AES-128 after Round 10

74

 Using the data collected from Figure 52-61, we built the Table 11 and created Figure 62
and Figure 63.

Table 11: Delay_AES_128_ECB

 Key

(ns)

KeyAdd /Ciphertext

(ns)

Logic elements

(114480)

Processing time

(H:M:S)

Round1 25.07 24.31 4632 1:41

Round2 28.84 32.05 9114 3:55

Round3 38.62 42.21 13604 12:43

Round4 48.87 54.91 18084 24:43

Round5 58.28 61.37 22602 37:45

Round6 67.91 73.24 27095 50:33

Round7 79.58 85.2 31633 1:05:30

Round8 95.29 98.96 36113 1:21:45

Round9 91.57 102.75 40608 1:38:44

Round10 110.46 116.43 45085 1:54:46

The results in Figure 62 show a linear trend where an increase in round number results in

an increase in delay time for key expansion and the plaintext encryption portion. However, the

processing time is not a linear trend as shown in Figure 63, because the processing time is based

on the operating system.

75

Figure 62: Delay_AES_128_ECB

Figure 63: Processing time_ AES_128_ECB

25.07 28.84
38.62

48.87

58.28
67.91

79.58

95.29 91.57

110.46

24.31
32.05

42.21

54.91
61.37

73.24

85.2

98.96 102.75

116.43

0

20

40

60

80

100

120

140

Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round10

De
la

y
(n

s)

Round number

Delay_AES_128_ECB

Key (ns) KeyAdd /Ciphertext (ns)

101 233
763

1483

2265

3033

3930

4905

5924

6886

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(s

)

Processing time

76

5.2.2 Timing Simulation For AES-192

Figure 64: Timing Simulation For AES-192 after Round 1

77

Figure 65: Timing Simulation For AES-192 after Round 2

78

Figure 66: Timing Simulation For AES-192 after Round 3

79

Figure 67: Timing Simulation For AES-192 after Round 4

80

Figure 68: Timing Simulation For AES-192 after Round 5

81

Figure 69: Timing Simulation For AES-192 after Round 6

82

Figure 70: Timing Simulation For AES-192 after Round 7

83

Figure 71: Timing Simulation For AES-192 after Round 8

84

Figure 72: Timing Simulation For AES-192 after Round 9

85

Figure 73: Timing Simulation For AES-192 after Round 10

86

Figure 74: Timing Simulation For AES-192 after Round 11

87

Figure 75: Timing Simulation For AES-192 after Round 12

88

Using the data collected from Figure 64-75, we built the Table 12 and created Figure 76 and

Figure 77.

Table 12: Delay_AES_192_ECB

 Key KeyAdd

(Ciphertext)

Logic elements

(114480)

Processing time

Round1 19.90 24.99 4568 3:57

Round2 22.75 35.58 8202 8:02

Round3 30.19 43.34 12668 25:54

Round4 38.55 55.56 17172 48:53

Round5 41.65 64.00 20813 1:13:55

Round6 51.71 71.93 25307 1:41:24

Round7 62.47 81.24 29400 2:13:31

Round8 61.23 98.70 33493 2:42:55

Round9 70.46 106.34 37990 3:16:26

Round10 80.02 108.71 42524 4:00:45

Round11 80.34 119.90 46189 4:38:08

Round12 89.34 126.53 50.547 5:30:47

The results in Figure 76 show a linear trend where an increase in round number results in

an increase in delay time for key expansion and the plaintext encryption portion. However, the

89

processing time is not a linear trend as shown in Figure 77, because the processing time is based

on the operation system.

Figure 76: Delay_AES_192_ECB

Figure 77: Processing time_ AES_192_ECB

19.9 22.75 30.19 38.55
41.65 51.71

62.47 61.23 70.46 80.02 80.34
89.34

24.99
35.58 43.34

55.56
64 71.93

81.24
98.7 106.34 108.71

119.9 126.53

0
20
40
60
80

100
120
140

De
la

y
(n

s)

Round number

Delay_AES_192_ECB

Key KeyAdd (Ciphertext)

237 482
1554

2933
4435

6084
8011

9775
11786

14445
16688

19847

0

5000

10000

15000

20000

25000

Ti
m

e
(s

)

Round number

Processing time

Processing time

90

5.2.3 Timing Simulation For AES-256

Figure 78: Timing Simulation For AES-256 after Round 1

91

Figure 79: Timing Simulation For AES-256 after Round 2

92

Figure 80: Timing Simulation For AES-256 after Round 3

93

Figure 81: Timing Simulation For AES-256 after Round 4

94

Figure 82: Timing Simulation For AES-256 after Round 5

95

Figure 83: Timing Simulation For AES-256 after Round 6

96

Figure 84: Timing Simulation For AES-256 after Round 7

97

Figure 85: Timing Simulation For AES-256 after Round 8

98

Figure 86: Timing Simulation For AES-256 after Round 9

99

Figure 87: Timing Simulation For AES-256 after Round 10

100

Figure 88: Timing Simulation For AES-256 after Round 11

101

Figure 89: Timing Simulation For AES-256 after Round 12

102

Figure 90: Timing Simulation For AES-256 after Round 13

103

Figure 91: Timing Simulation For AES-256 after Round 14

104

Using the data collected from Figure 78-91, we built the Table 13 and created Figure 92

and Figure 93. The results in Figure 92 show a linear trend where an increase in round number

results in an increase in delay time for the plaintext encryption portion. However, the processing

time is not a linear trend as shown in Figure 93, because the processing time is based on the

operation system.

Table 13: Delay_AES_256_ECB

 Key KeyAdd (Ciphertext) Logic elements Processing time

Round1 * 22.15 3672 1:51

Round2 * 32.98 8138 3:39

Round3 * 43.29 12610 12:55

Round4 * 54.78 17096 23:15

Round5 * 70.15 21582 34:01

Round6 * 81.22 26044 46:26

Round7 * 91.90 30514 59:58

Round8 * 102.29 35007 1:13:51

Round9 * 107.28 39476 1:28:01

Round10 * 124.23 44016 1:41:29

Round11 * 126.22 48548 2:04:37

Round12 * 135.30 53076 2:18:57

Round13 * 135.16 57595 2:32:55

Round14 * 148.28 61953 2:48:36

105

Figure 92: Delay_AES_256_ECB

Figure 93: Processing time_ AES_256_ECB

22.15

32.98

43.29

54.78

70.15

81.22

91.9

102.29

107.28

124.23

126.22

135.3

135.16

148.28

0

20

40

60

80

100

120

140

160

De
la

y
(n

s)

Round number

Delay_AES_256_ECB

KeyAdd (Ciphertext)

111 219
775

1395
2041

2789
3598

4431
5281

6089

7477
8337

9175
10116

0

2000

4000

6000

8000

10000

12000

Ti
m

e
(s

)

Round number

Processing time

Processing time

106

5.2.4 Timing Simulation For AES-512

Figure 94: Timing Simulation For AES-512 after Round 1

107

Figure 95: Timing Simulation For AES-512 after Round 2

108

Figure 96: Timing Simulation For AES-512 after Round 3

109

Figure 97: Timing Simulation For AES-512 after Round 4

110

Figure 98: Timing Simulation For AES-512 after Round 5

111

Figure 99: Timing Simulation For AES-512 after Round 6

112

Figure 100: Timing Simulation For AES-512 after Round 7

113

Figure 101: Timing Simulation For AES-512 after Round 8

114

Figure 102: Timing Simulation For AES-512 after Round 9

115

Figure 103: Timing Simulation For AES-512 after Round 10

116

Figure 104: Timing Simulation For AES-512 after Round 11

117

Figure 105: Timing Simulation For AES-512 after Round 12

118

Figure 106: Timing Simulation For AES-512 after Round 13

119

Figure 107: Timing Simulation For AES-512 after Round 14

120

Figure 108: Timing Simulation For AES-512 after Round 15

121

Figure 109: Timing Simulation For AES-512 after Round 16

122

Using the data collected from Figure 94-109, we built the Table 14 and created Figure 110 and

Figure 111.

Table 14: Delay_AES_512_ECB

 Key KeyAdd

(Ciphertext)

Logic elements

(114480)

Processing time

Round1 * 15.17 3520 1:36

Round2 * 27.84 7040 3:21

Round3 * 36.01 10560 10:15

Round4 * 45.20 14080 19:32

Round5 * 54.18 17600 27:24

Round6 * 61.80 21120 34:20

Round7 * 70.92 24640 47:09

Round8 * 82.98 28160 49:35

Round9 * 92.25 31680 58:04

Round10 * 95.86 35200 1:06:20

Round11 * 108.27 38720 1:16:03

Round12 * 114.39 42240 1:24:01

Round13 * 116.78 45760 1:32:30

Round14 * 138.34 49280 1:42:10

Round15 * 138.26 52800 1:48:35

Round16 * 143.36 56128 1:56:01

The results in Figure 110 show a linear trend where an increase in round number results

in an increase in delay time for the plaintext encryption portion. However, the processing time is

not a linear trend as shown in Figure 111, because the processing time is based on the operating

system.

123

Figure 110: Delay_AES_512_ECB

Figure 111: Processing time_ AES_512_ECB

15.17

27.84

36.01

45.2

54.18

61.8

70.92

82.98

92.25

95.86

108.27

114.39

116.78

138.34

138.26

143.36

0

20

40

60

80

100

120

140

160

De
la

y
(n

s)

Round number

Delay_AES_512_ECB

KeyAdd (Ciphertext)

96 201
615

1172

1464

2060

2809

2975

3484

3980

4563

5041

5550

6130

6515

6961

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(s

)

Round number

Processing time

Processing time

124

5.3 Timing Simulation For AES-128, AES-192, AES, 256 and AES-512 in CBC Mode

To implement the AES algorithm in CBC mode, we simply used the module we designed

for ECB mode twice and we only run the simulation for the final cyphertext of AES-128, AES-

192, AES, 256 and AES-512 in CBC Mode. However, since there are limited logic elements and

total pins, we had to put the key into the program code.

5.3.1 Timing Simulation of AES-128

Figure 112: Timing Simulation For AES-128 in CBC Mode

125

Figure 113: Timing Simulation For AES-128_1 in CBC Mode

126

Figure 114: Timing Simulation For AES-128_2 in CBC Mode

127

Figure 115: Timing Simulation For AES-128_3 in CBC Mode

128

Since there are limited logic elements and total pins, we had to put the key into the

program code. Using the data collected from Figure 112-115, we were able to build the Table 15

and created Figure 116, 117 and 118. The results in Figure 116-118 show there are only minor

differences for delay, total logic elements, and processing time between our design in CBC

mode. However, the average delay of the first Ciphertext in CBC mode is only 88.52 ns which is

23.7 % less than the delay of the first Ciphertext in ECB mode. It is because of the design of the

code that is we had to put the key into the program code. Using the same strategy putting the key

into the program code, we run the timing simulation for AES-192, AES-256 and AES-512 in

CBC Mode as shown in Figure 119-121.

Table 15: Delay_AES_128_CBC

 Ciphertext 1 Ciphertext 2 Logic elements Processing time

AES_128 86.22 169.93 70144 2:16:47

AES_128_1 86.22 169.93 70144 2:23:54

AES_128_2 92.43 169.44 70144 2:17:29

AES_128_3 89.22 171.8 70144 2:18:12

Figure 116: Total Logic elements_AES_128_CBC

70144 70144 70144 70144

70100

70150

70200

AES_128 AES_128_1 AES_128_2 AES_128_3

N
um

be
r

AES_128_CBC

Total Logic elements

Logic elements

129

Figure 117: Delay_AES_128_CBC

Figure 118: Processing time_AES_128_CBC

86.22 86.22 92.43 89.22

169.93 169.93 169.44 171.8

0
20
40
60
80

100
120
140
160
180
200

AES_128 AES_128_1 AES_128_2 AES_128_3

De
la

y
(n

s)

AES_128_CBC

Delay_AES_CBC

Ciphertext 1 Ciphertext 2

8207
8634

8249 8292

5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000

AES_128 AES_128_1 AES_128_2 AES_128_3

Ti
m

e
(s

)

AES_CBC_KEY

Processing time

Processing time

130

5.3.2 Timing Simulation of AES-192

Figure 119: Timing Simulation For AES-192 in CBC Mode

131

5.3.3 Timing Simulation of AES-256

Figure 120: Timing Simulation For AES-256 in CBC Mode

132

5.3.4 Timing Simulation of AES-512

Figure 121: Timing Simulation For AES-512 in CBC Mode

133

5.4 Comparing of Timing Simulation of AES In ECB and CBC Mode

Table 16: Delay_AES_ECB_KEY

 AES-128 AES-192 AES-256 AES-512

Round1 24.3 25.0 22.2 15.2

Round2 32.1 35.6 33.0 27.8

Round3 42.2 43.3 43.3 36.0

Round4 54.9 55.6 54.8 45.2

Round5 61.4 64.0 70.2 54.2

Round6 73.2 71.9 81.2 61.8

Round7 85.2 81.2 91.9 70.9

Round8 99.0 98.7 102.3 83.0

Round9 102.8 106.3 107.3 92.3

Round10 116.4 108.7 124.2 95.9

Round11 119.9 126.2 108.3

Round12 126.5 135.3 114.4

Round13 135.2 116.8

Round14 148.3 138.3

Round15 138.3

Round16 143.4

134

Figure 122: Delay_AES_ECB_KEY

 From the Figure 122, we can observe that the delay is increasing as the key size becomes

larger. However, the increase of delay for AES-256 and AES-512 are not absolutely related to

AES-128 and ASE-256 because the basic method of key expansion is different. We can also

observe that from the total logic elements for each type of AES shown in Table 17 or Figure 123.

116.4

126.5

148.3 143.4

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

De
la

y
(n

s)

Round number

Delay_AES_ECB_KEY

AES-128 AES-192 AES-256 AES-512

135

Table 17: Total Logic Elements_AES_ECB_KEY

 AES-128 AES-192 AES-256 AES-512

Round1 4632 4568 3672 3520

Round2 9114 8202 8138 7040

Round3 13604 12668 12610 10560

Round4 18084 17172 17096 14080

Round5 22602 20813 21582 17600

Round6 27095 25307 26044 21120

Round7 31633 29400 30514 24640

Round8 36113 33493 35007 28160

Round9 40608 37990 39476 31680

Round10 45085 42524 44016 35200

Round11 46189 48548 38720

Round12 50547 53076 42240

Round13 57595 45760

Round14 61953 49280

Round15 52800

Round16 56128

136

Figure 123: Total Logic Elements_AES_ECB_KEY

 We can observe and assume that ASE-128 and AES-192 are using the same method of

key expansion, and then when it comes to AES-256, it is using another Key Expansion routine

which is slightly different than for AES-128 and AES-192. As we designed the AES-512 key

based on the Key Expansion routine for AES-256, we can observe the pattern form the

performance of delay and total logic elements.

45085

50547

61953

56128

0

10000

20000

30000

40000

50000

60000

70000

N
um

be
r

Round number

Total Logic Elements

AES-128 AES-192 AES-256 AES-512

137

Table 18: Processing time_AES_ECB_KEY

 AES-128 AES-192 AES-256 AES-512

Round1 101 237 111 96

Round2 233 482 219 201

Round3 763 1554 775 615

Round4 1483 2933 1395 1172

Round5 2265 4435 2041 1464

Round6 3033 6084 2789 2060

Round7 3930 8011 3598 2809

Round8 4905 9775 4431 2975

Round9 5924 11786 5281 3484

Round10 6886 14445 6089 3980

Round11 16688 7477 4563

Round12 19847 8337 5041

Round13 9175 5550

Round14 10116 6130

Round15 6515

Round16 6961

138

Figure 124: Processing time_AES_ECB_KEY

 Based on the data we obtained from Table 16-18, we can observe the development of

AES algorithm. To make AES-128 securer, AES-192 extended the key size so the delay

increased as well as the processing time as shown in Table 18 and Figure 124 and the total logic

elements which means the cost increased. Next, to make AES-256 securer than AES-128 and

AES-192, not only the key size increased but also the key expansion routine changed. The

additional benefit of that is reducing the processing time. Finally, when it comes to AES-512,

AES-512 follows the same concept with AES-256 and uses the slightly different Key Expansion

6886

19847

10116

6961

0

5000

10000

15000

20000

25000

Ti
m

e
(s

)

Round number

Processing time

AES-128 AES-192 AES-256 AES-512

139

than for AES-128 and AES-192. As a result, the processing time is even much less than all

others.

 To test the CBC mode in this device, we used 2 different block plaintexts (each block

plaintext is 128 bits). Since there are limited logic elements and total pins, we had to put the key

into the program code. The average delay of the first Ciphertext for AES-128 in CBC mode is

only 88.52 ns which is 23.7 % less than the delay of the first Ciphertext for AES-128 in ECB

mode. It is because of the design of the code that is we had to put the key into the program code.

However, from Table 19, we can also observe the delay of Ciphertext 2 is approximately twice

of Ciphertext 1 due to the block plaintexts are different, and so the delay of each Ciphertext will

be slightly different.

Table 19: Performance_AES_CBC_KEY

 Ciphertext 1 Ciphertext 2 Logic elements Processing time

AES_128 86.22 169.93 70144 2:16:47

AES_128_1 86.22 169.93 70144 2:23:54

AES_128_2 92.43 169.44 70144 2:17:29

AES_128_3 89.22 171.8 70144 2:18:12

AES_192 104.28 199.78 84224 2:55:15

AES_256 113.3 222.46 98304 3:31:42

AES_512 128.83 251.58 112384 4:11:47

140

Figure 125: Delay_AES_CBC_KEY

Figure 126: Total Logic Elements_AES_CBC_KEY

86.22 86.22 92.43 89.22
104.28 113.3

128.83

169.93 169.93 169.44 171.8
199.78

222.46

251.58

0

50

100

150

200

250

300

AES_128 AES_128_1 AES_128_2 AES_128_3 AES_192 AES_256 AES_512

De
la

y
(n

s)

AES_CBC_KEY

Delay_AES_CBC_KEY

Ciphertext 1 Ciphertext 2

70144 70144 70144 70144

84224

98304

112384

50000

60000

70000

80000

90000

100000

110000

120000

AES_128 AES_128_1 AES_128_2 AES_128_3 AES_192 AES_256 AES_512

N
um

be
r

AES_CBC_KEY

Total Logic elements

Logic elements

141

Figure 127: Total Processing time_AES_CBC_KEY

From Figure 125 -127, we can observe that the results show a linear trend where an

increase in key size results in an increase in delay, number of logic element and processing time

for the plaintext encryption portion.

8207 8634 8249 8292

10515

12702

15107

7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

Ti
m

e
(s

)

AES_CBC_KEY

Processing time

Processing time

142

CHAPTER Ⅵ

CONCLUSION AND FUTURE WORK

6.1 Conclusion

 Cryptography plays a key role in information security by providing confidentiality when

transmitting data. In network security for digital communication systems, where large data

blocks go through a cryptographic algorithm with a cipher key that increases the security and

complexity of the output ciphertext. With the emergence and rapid growth of cloud computing

in the past several years, multiple security algorithms have been developed and utilized in the

data encryption process, and the current one, designated by the U.S. National Institute of

Standards and Technology (NIST), the Advanced Encryption Standard (AES).

 Encryption algorithms are always improving on ciphertext complexity, required hardware

storage allocation, and execution time. In our previous works, we presented an FPGA

implementation of the AES Mix Columns module and S-box module where parallelism and

pipelining in the computation was utilized. From the AES algorithm, we can find that the main

difference between AES-128, AES-192 and AES-256 except for the different rounds is key

expansion. The Key Expansion routine for AES-256 is slightly different than for AES-128 and

AES-192. As the length of the Key changes, the key expansion method and numbers change as

well. In the current standard, the length of the Key can only go up to 256 bits. Although, several

AES-512 key expansion implementation related work is available in literature using 22 rounds.

143

According to the basic concept of the standard designed by National Institute of Standards and

Technology (NIST) and many studies, we decided to choose 16 as the number of rounds.

 This research focused on extending the FPGA implementation to the entire algorithm and

will presents high speed, fully pipelined FPGA implementation of AES Encryption in different

operation modes.; furthermore, we also evaluated the overall performance for the different

variants of AES such as AES-128, AES-192, AES-256, and AES-512. The presented work

attained speed up (i.e. high throughput No. of block processed per second) at the same time,

silicon area optimization. Comparisons are conducted on both a theoretical basis and through

timing simulations on the Intel Quartus II software to reveal the implication of increased

complexity on the hardware performance of AES.

 The results show how the encryption time varies with key size selection. It was not only

found out from the AES algorithm but also from the actual simulation data, that when the key

size increases, the encryption time for the four function modules of AES also increases.

However, this increase is not proportional to the increase in key expansion processing time.

Despite having more rounds and increased complexity, AES-512 was found to be slightly

computationally faster in processing time for key expansion than AES-256. When seeking to

secure data confidentiality at the highest level, AES-512 offers this with users only experiencing

an 18% increase in nanosecond processing time compared to the baseline variant AES-128. As

the information industry continues to introduce a demand for more secure transmissions, users

wanting to implement stronger variants of AES can default to AES-512 as opposed to AES-256

144

with no detrimental results in the processing speed. In addition, the increase in key length to 512

makes the AES algorithm highly resistant to new attacks and has acceptable data encryption

speed.

6.2 Future work

 In the future, we can focus on the other modes which we were not able to implement, and

we can focus on how to obtain optimized area and speed hardware implementations of AES

based on the sub-pipelined architecture on the other FPGA. The main thing is to extend and to

make an AES encrypted block which can be used as in advanced microprocessors or

microcontrollers.

145

REFERENCES

[1] "Advanced Encryption Standard (AES)." Federal Information Processing Standards, US
National Institute of Standards and Technology, 26 November 2001,
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[2] William Stallings. "Cryptography and Network Security 5th ed." ISBN-10: 0136097049

[3] Kit Choy Xintong. "Understanding AES Mix-Columns Transformation Calculation."
http://www.angelfire.com/biz7/atleast/mix_columns.pdf

[4] Altera (2017) Quartus Prime Design Software, http://fpgasoftware.intel.com/17.0/?edition=lite

[5] John, L. (2016) "Altera Parts History. " University of California, Berkeley, http://www-
inst.eecs.berkeley.edu/~cs294-59/fa10/resources/Altera-history/Alterahistory

[6] Altera (2017) Cyclone IV DE2-115 User Manual, Version 2.3, http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&No=502&PartNo=4

[7] Altera DE2 Board, Terasic, N.P. (2016) , https://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=139&No=502

[8] Del Rosal, Edni, and Sanjeev Kumar. "A Fast FPGA Implementation for Triple DES
Encryption Scheme." Circuits and Systems 8.09 (2017): 237

[9] M.R.M. Rizk, M. Morsy. "Optimized Area and Optimized Speed Hardware Implementations
of AES on FPGA." 22 January 2008, https://ieeexplore.ieee.org/document/4437462

[10] Nalini C,Dr. Anandmohan P.V, Poomaiah D.V, and V.D.kulkami, "Compact Designs of
SubBytes and MixColumn for AES",
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4809193

[11] Leventis, Paul, et al. "Cyclone/spl trade: a low-cost, high-performance FPGA." Proceedings
of the IEEE 2003 Custom Integrated Circuits Conference, 2003.. IEEE, 2003.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1249357

[12] L. AIi, I. Aris, F. S. Hossain and N. Roy, "Design of an ultra high speed AES processo for
next generation IT security," Computers and Eleetrieal Engineering, Vol.37 (6), pp.1160-1170,
Nov. 2011.

[13] Raneesha K, Rema Vellody and R Nandakumar, "HARDWARE EFFICIENCY
COMPARISON OF AES IMPLEMENTATIONS", 2012 International Conference on
Communication Systems and Network Technologies

146

[14] Chih-Chung Lu and Shau-Yin Tseng, “Integrated Design of AES (Advanced Encryption
Standard) Encrypter and Decrypter,” Proc. IEEE Int. Conf. on Application-Specific Systems,
Architectures, and Processors, (ASAP’02), pp. 277-285, 2002

[15] Guang-liang Guo, Quan Qian, and Rui Zhang, "Different Implementations of AES
Cryptographic Algorithm", 2015 IEEE 17th International Conference on High Performance
Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded
Software and Systems (ICESS)

[16] C. L. Duta, G. Michiu, S. Stoica and L. Gheorghe. “Accelerating Encryption Algorithms
Using Parallelism”, 2013 19th International Conference on Control Systems and Computer
Science (CSCS). IEEE Press, Bucharest, May 2013, pp.549-554, DOI: 10.1109/CSCS.2013.92.

[17] J. Fang. “Mix Column round transformation Optimization and Improvement in the AES
Algoritm”, Control & Automation, Vol.25, No.21, pp. 49-50.

[18] Tanzilur Rahman, Shengyi Pan, Qi Zhang (2010) Design of a High Throughput 128-bt
AES(Rijndael Block Cipher),Proceedings of the International MultiConference of Enigneers and
Computer Scientists 2010 Vol II, March 17-19,2010.Hong Kong.

[19] Hossain FS, Ali L, Abedin Syed MA. (2011), "Design of a very low power and High
Throughput AES Processor", IEEE conference on Computer and Information Technology
(ICCIT), doi:10.1109/ICCITechn. 2011.6164810 pp. 339–343.

[20] Dilna.v, C. Babu “Area Optimized and high throughput AES algorithm based on permutation
data scramble approach”, in International Conference on Electrical, Electronics and Optimization
techniques (ICEEOT)- 2016.

[21] Rijmen, Vincent. "Efficient Implementation of the Rijndael S-box." Katholieke Universiteit
Leuven, Dept. ESAT. Belgium (2000). http://luca-giuzzi.unibs.it/corsi/Support/papers-
cryptography/rijndael-sbox.pdf

[22] Satoh, Akashi, et al. "A compact Rijndael hardware architecture with S-box optimization."
International Conference on the Theory and Application of Cryptology and Information Security.
Springer, Berlin, Heidelberg, 2001. https://link.springer.com/content/pdf/10.1007%2F3-540-
45682-1_15.pdf.

[23] N. Mentens, L. Batinan, B. Preneeland, and I. Verbauwhede, “A systematic evaluation of
compact hardware implementations for the Rijndael S-box,” in Proc. Topics in Cryptology - CT-
RSA 2005, vol. 3376/2005. San Francisco, CA: Springer Berlin / Heidelberg, Feb. 2005, pp. 323–
333.

147

[24] Canright, David. "A very compact S-box for AES." International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, Berlin, Heidelberg, 2005.
https://www.iacr.org/archive/ches2005/032.pdf

[25] Wong Ming Ming and Dennis Wong Mou Ling, “A new lightweight and high performance
AES S-box using modular design,” in IEEE International Conference on circuits and systems, pp.
65-70, 2013

[26] V. Rijmen, “Effcient implementation of the Rijndael S-box,” in World Wide Web - 171–184

[27] Hossain FS and Ali M.L (2015), "A Novel Byte-Substitution Architecture for the AES
Cryptosystem",PLoS ONE 10(10): e0138457. doi:10.1371/journal. pone.0138457

[28] Aaron Barrera, Chu-Wen Cheng, Dr. Sanjeev Kumar. "Hardware Implementation of
Improved Mix Column Computation of Cryptographic AES." June 2019, 2nd International
Conference on Data Intelligence and Security.

[29] Carlos Cid, Sean Murphy and Matthew Robshaw, “Computational and AlgebraicAspects of
the Advanced Encryption Standard”, Information Security Group, 2008

[30] Toa Bi Irie Guy-Cedric, Suchithra. R. "A Comparative Study on AES 128 BIT AND AES
256 BIT", 31 August 2018, http://www.isroset.org/pdf_paper_view.php?paper_id=782&5-
IJSRCSE-01186.pdf.

[31] Diaa, S., E, Hatem M. A. K., & Mohiy M. H. "Evaluating the Performance of Symmetric
Encryption Algorithms." May 2010, International Journal of Network Security.
http://ijns.jalaxy.com.tw/contents/ijns-v10-n3/ijns-2010-v10-n3-p213-219.pdf.

[32] Sridevi Sathya Priya, S., Karthigaikumar, P. "FPGA implementation of High speed compact
S-Box", https://acadpubl.eu/hub/2018-119-16/1/165.pdf.

[33] Vatchara Saicheur, Krerk Piromsopa. "An implementation of AES-128 and AES-512 on
Apple mobile processor." 2017 14th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-
CON), https://ieeexplore.ieee.org/document/8096255.

[34] Abidalrahman Moh'd, Yaser Jararweh, Lo'ai Tawalbeh. "AES-512: 512-bit Advanced
Encryption Standard algorithm design and evaluation." 2011 7th International Conference on
Information Assurance and Security (IAS), https://ieeexplore.ieee.org/document/6122835.

[35] Awadhesh Kumar and R.R. Tewari, "Expansion of Round Key Generations in Advanced
Encryption Standard for Secure Communication", International Journal of Computational
Intelligence Research ISSN 0973-1873 Volume 13, Number 7 (2017), pp. 1679-1698

148

[36] Barker, E. & Roginsky, A. (2012). Recommendation for Cryptographic Key Generation (p.
26). USA: NIST Special Publication 800-133

[37] J. Takahashi and T. Fukunaga, “Differential Fault Analysis on AES with 192 and 256-bit
Keys,” Cryptology ePrint Archive, Report 2010/023, 2010, http://eprint.iarc.org/

[38] P. Rogaway. “Evaluation of Some Blockcipher Modes of Operation”. Cryptography Research
and Evaluation Committees (CRYPTREC), 2011, available at:
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf.

[39] Christophe Clavier, Julien Francq, Antoine Wurcker, "Study of a Parity Check Based Fault-
Detection Countermeasure for the AES Key Schedule", [Research Report] 2015/877, IACR
Cryptology ePrint Archive. 2015. hal-02486939.

[40] Kazi Huma , Shete Chaitali, Vidhate Amruta, Deshmukh Sneha, "Implementation of AES
using 512 bit key for secure communication", International Journal of Science, Engineering and
Technology Research (IJSETR), Volume 4, Issue 5, May 2015

[41] "Study of avalanche effect in AES using binary codes." Advanced Communication Control
and Computing Technologies (ICACCCT), 2012 IEEE International Conference on. IEEE, 2012

[42] Swati Paliwal, Ravindra Gupta, “A Review of Some Popular Encryption Techniques”,
IJARCSSE Volume 3,2013.

[43] N. Dworkin. “Recommendation for Block Cipher Modes of Operation, Methods and
Techniques”. NIST Special Publication 800-38A Edition 2001, available at:
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[44] Naseema Bhanu, N.V. Chaitanya, "Aes Modes of Operation"', International Journal of
Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-
9, July 2019.

[45] Aaron Barrera, Chu-Wen Cheng, Dr. Sanjeev Kumar. " Improving performance of the
Rijndael Substitution Box for Cryptographic AES", August 2020, 3rd International Conference on
Data Intelligence and Security.

149

BIOGRAPHICAL SKETCH

 Chu-Wen Cheng was born on September 23, 1975. He has completed his Bachelor of

Science in Electrical Engineering from University of Texas Rio Grande Valley, TEXAS, USA in

May 2018. He has completed his Master of Science in Electrical Engineering from University of

Texas Rio Grande Valley, Texas, USA in August 2020. At UTRGV, he was listed on Dean's list

and President's list 3 semesters in a row. He was nominated for Student Employee of the Year

2019 and selected as the outstanding graduate student in 2020. He has received 5 different

scholarships and worked in several positions, such as Research Assistant in Network Research

Lab and Teaching Assistant from May 2018 to August 2020.

Address:

1008 W Champion St. Apt # B

Edinburg, Texas, USA, 78539.

His Publications:

1) Aaron Barrera, Chu-Wen Cheng, Sanjeev Kumar (August 2020), “Improving

performance of the Rijndael Substitution Box for Cryptographic AES”, IEEE-ICDIS

2) Aaron Barrera, Chu-Wen Cheng, Sanjeev Kumar (June 2019), “Improved Mix

Column Computation of Cryptographic AES”, IEEE-ICDIS

3) Nazmul Islam, Rakesh Guduru, Chu-Wen Cheng (2018), “Improving the Micropump

Velocity for Orthogonal Electrode Pattern”, ASME-IMECE

	Improving Hardware Implementation of Cryptographic AES Algorithm and the Block Cipher Modes of Operation
	Recommended Citation

	Microsoft Word - thesis final_cheng_V24

