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ABSTRACT 

 

Cheng, Chu-Wen, Improving Hardware Implementation Of Cryptographic AES Algorithm And 

The Block Cipher Modes Of Operation. Master of Science in Engineering (MSE), August 2020, 

149 pp., 19 tables, 127 figures, 45 references. 

With ever increasing Internet traffic, more business and financial transactions are being 

conducted online. This is even more so during these days of COVID-19 pandemic when 

traditional businesses such as traditional face to face educational systems have gone online 

requiring huge amount of data being exchanged over Internet. Increase in the volume of data sent 

over the Internet has also increased the security vulnerabilities such as challenging the 

confidentiality of data being sent over the Internet. Due to sheer volume, all data will need to be 

effectively encrypted. Due to increase in the volume of data, it is also important to have 

encryption/decryption functions to work at a higher speed to maintain the confidentiality of 

sensitive data. 

In this thesis, our goal is to enhance the hardware speed of encryption process of the 

standard AES scheme and its four variants such as AES-128, AES-192, AES-256 and new AES-

512 and implement such functions on an FPGA. We also consider the FPGA implementation of 

different modes of AES operation. 

By employing parallelism and pipelining approach, we attempt to speed up various 

computational components of AES implementations using the Quartus II onto Intel’s FPGA. 

This approach shows improvement in the response speed, data throughput and latency.   
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CHAPTER Ⅰ 

INTRODUCTION 

 

With today’s development and expansion of networks and internet-connected devices, 

information security is an issue of increasing concern.  Cryptography plays a key role in 

information security by providing confidentiality when transmitting data. It prevents 

unauthorized access so that data is not disturbed. With the emergence and rapid growth of cloud 

computing, current encryption technologies are often threatened making it important to study the 

characteristics of existing algorithms to match this advancement. Confidentiality is one of the 

focuses in network security for digital communication systems, where large data blocks go 

through a cryptographic algorithm with a cipher key that increases the security and complexity of 

the output ciphertext.  For the past several years, multiple security algorithms have been 

developed as standard to be utilized in the data encryption process, such as the Data Encryption 

Standard (DES), Triple Data Encryption Standard (3DES), and the current one, designated by the 

U.S. National Institute of Standards and Technology (NIST), the Advanced Encryption Standard 

(AES).   

AES, also known as Rijndael algorithm, is a symmetric encryption algorithm that has a 

minimum input data block size of 128-bits which undergo a series of permutations, substitutions, 

and digital logic operations over several rounds.  Encryption algorithms are always improving on 

ciphertext complexity, required hardware storage allocation, and execution time. Field 

Programmable Gate Arrays (FPGA’s) are a hardware alternative for encryption algorithm 
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implementation because, although the logic units in it are fixed, the functions and 

interconnections between them are based on the user’s design which allow for improvement in 

performance and speed. The research presented in this thesis focuses on improving performance 

by analyzing the AES algorithm for efficient implementations, on an Altera Cyclone IV FPGA 

using the Intel Quartus II software and Verilog Hardware Description Language. 

1.1 Problem Statement 

With the emergence of high-performance cloud computing and increase in traditional 

businesses such as shopping and education moving completely on Internet during these days of 

pandemic, it is important to keep confidential data safe. Due to huge volume of data being 

exchanged over Internet, it is even more important for the security encryption schemes to 

efficiently utilize hardware implementations to perform at much higher speeds to provide fast, 

efficient, and secure data transmissions. There have been several AES hardware implementations 

related work done in literature [8-44]. Many literatures have proposed Mix Column Computation 

and S-box hardware lookup table implementations however none of the prior work utilized 

implementation on newer Intel’s Cyclone IV FPGA involving parallelism and pipelining 

together. In this thesis, we hypothesize that various AES components can be made faster by 

utilizing parallelism and pipelining in their computation via  FPGA implementations thus 

improving the overall speed of AES encryption process.   

Some of our published work showed processing  speed improvement for components 

such as AES Mix Columns module [28] and S-box module [45] where parallelism and pipelining 

in the computation were  utilized to improve overall AES performance of those functions. In this 
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thesis, we considered the FPGA implementation for the entire AES algorithm based on 

improvement on these components. This thesis also presents high speed, fully pipelined FPGA 

implementation of AES Encryption in two different operation modes. Furthermore, we also 

evaluated the overall performance for the four variants of AES such as AES-128, AES-192, 

AES-256, and AES-512.  The work in this thesis aims to speed up overall AES encryption by 

reducing processing delays and optimize silicon area for such implementations. Comparisons are 

conducted on both a theoretical basis and through timing simulations on the Intel Quartus II 

software to reveal the implication of increased complexity on the hardware performance of AES. 

Our work in this thesis involves Writing Verilog Code for design and verification of digital 

circuit and Simulating the code on "Quartus II".  

1.2 Symmetric Encryption Algorithm- AES Algorithm  

1.2.1 Background 

The Advanced Encryption Standard (AES), also known as Rijndael, is an electronic data 

encryption specification established by the National Institute of Standards and Technology 

(NIST) in 2001 [1].  AES is a subset of the Rijndael block cipher. Developed by two Belgian 

cryptographers Vincent Rijmen and Joan Daemen, they submitted a proposal to NIST during the 

AES selection process. Rijndael is a series of passwords and block size passwords. 

In the United States, AES was announced by the National Institute of Standards and 

Technology on November 26, 2001 as the US FIPS PUB 197 (FIPS 197) and is now used 

worldwide. It replaces the Data Encryption Standard (DES) released in 1977. The algorithm 
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described by AES is a symmetric key algorithm, meaning that the same key is used to encrypt 

and decrypt data. 

Figure.1 shows the overall structure of the AES encryption process. The cipher takes a 

plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, 32, or 64 bytes (128, 

192, 256, or 512 bits). The algorithm is referred to as AES-128, AES-192, AES-256, or AES-512, 

depending on the key length. The input to the encryption and decryption algorithms is a single 

128-bit block.  

 

Figure 1: AES-128 Structure 
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The cipher consists of rounds, where the number of rounds depends on the key length: 10 

rounds for a 16-byte key, 12 rounds for a 24-byte key, 14 rounds for a 32-byte key, 16 rounds for 

a 64-byte key (Table 1). 

Table 1: AES Parameters 

 Key Size 
(words/bytes/bits)  

4/16/128 6/24/192 8/32/256 16/64/256 

Plaintext Block Size 
(words/bytes/bits)  

4/16/128 4/16/128 4/16/128 4/16/128 

Number of Rounds 10 12 14 16 

Round Key Size 
(words/bytes/bits)  

4/16/128 4/16/128 4/16/128 4/16/128 

Expanded Key Size 
(words/bytes) 

44/176 52/208 60/240 68/272 

 

The overall data computation [1], [2] to obtain Rijndael cipher consists of 

1. An initial “Add Round key’ step to add obscurity 

2. 9/11//13/15 rounds of 4 steps to adds confusion, diffusion, non-linearity 

 Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the 

block 

 Shift-Rows: A simple permutation 
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 Mix-Columns: A substitution that makes use of arithmetic over GF (2^8) 

 Add-Round-Key: A simple bitwise XOR of the current block with a portion of the 

expanded key 

3. A Final 10th/12th/14th/16th step of Substitute bytes, ShiftRows, and AddRoundKey to add 

obscurity 

1.2.2 Substitute bytes 

The forward substitute byte transformation, called SubBytes, is a simple table lookup 

(Figure 2). AES defines a matrix of byte values, called an S-box (Table 2), that contains a 

permutation of all possible 256 8-bit values. Each individual byte of State is mapped into a new 

byte in the following way: The leftmost 4 bits of the byte are used as a row value and the 

rightmost 4 bits are used as a column value. These row and column values serve as indexes into 

the S-box to select a unique 8-bit output value. 

In this layer, each byte in the state will be substituted by values obtained from 

substitution boxes. This is done to achieve more security according to diffusion-confusion 

Shannon's principles for cryptographic algorithms design. 
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Figure2: Substitute bytes 

 

Table 2: S-Box 
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1.2.3 Shift Rows 

The forward shift row transformation, called ShiftRows, is depicted in Figure 3. The first 

row of State is not altered. For the second row, a 1-byte circular left shift is performed. For the 

third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular left shift 

is performed.The following is an example of ShiftRows. 

This layer is to provide diffusion for all the state. It contains two sub-layers to ensure the 

high-degree diffusion after transformation for many rounds. 

. 

 

Figure3: Shift Rows 
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1.2.4 MixColumns 

The forward mix column transformation, called MixColumns, operates on each column 

individually [3]. Each byte of a column is mapped into a new value that is a function of all four 

bytes in that column. The transformation can be defined by the following matrix multiplication 

on State (Figure 4). 

This layer is to provide diffusion for all the state. It contains two sub-layers to ensure the 

high-degree diffusion after transformation for many rounds. 

 

 

Figure4: MixColumns [28] 
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1.2.5 AddRoundKey 

In the forward add round key transformation, called AddRoundKey, the 128 bits of State 

are bitwise XORed with the 128 bits of the round key. As shown in Figure 5, the operation is 

viewed as a columnwise operation between the 4 bytes of a State column and one word of the 

round key; it can also be viewed as a byte-level operation. 

In this layer, the operation is to conduct XOR operation on round key (round key is 

obtained from the extension of secret key operation) and state. This layer is to establish the 

relationship between the key and the cipher-text more complicated and to satisfy the confusion 

principle. 

 

Figure 5: AddRoundKey 
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1.2.6 Key expansion of AES-128, 192, 256, and 512 

The AES key extension algorithm takes a four-word (16-byte) key as input and produces 

a linear array of 44/52/60/68 words (176/208/240/272bytes). This is enough to provide a four-

character round key for the initial AddRoundKey phase and each field, 10/12/14/16 rounds of 

password. The key is copied into the first four words of the extended key. The rest of the 

extended key is filled with four words at a time. Each added word depends on the previous word 

and the word is returned in four positions. In three of the four cases, a simple XOR was used. For 

words in the w array whose position is a multiple of 4/6/8/10, a more complex function is used. 

Figure 6,7,8,9 illustrate the generation of the extended key, using the symbol “⊕”to represent 

the complex function. 

 

Figure 6: AES-128 Key Expansion 
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Figure7: AES-192 Key Expansion 

 

Figure 8: AES-256 Key Expansion  
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Figure 9: AES-512 Key Expansion 

1.3 Block Cipher Modes of Operation 

1.3.1 Background 

A mode of operation is a technique for enhancing the effect of a cryptographic algorithm 

or adapting the algorithm for an application such as applying a block cipher to a sequence of data 

blocks or a data stream. It can be used with any symmetric block cipher algorithm such as DES, 

3DES or AES. NIST originally defined four modes of operation, as part of FIPS 81, through 

which block ciphers can be applied to a variety of applications. However, with newer 

applications the NIST extended the list of federal recommended modes to five in Special 

Publication 800-38A. 
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1.3.2 Modes of Operation 

In this section, we will discuss the different modes of operation of a block cipher. These 

are procedural rules for a generic block cipher. Interestingly, the different modes result in 

different properties being achieved which add to the security of the underlying block cipher. A 

block cipher processes the data blocks of fixed size. Usually, the size of a message is larger than 

the block size. Hence, the long message is divided into a series of sequential message blocks, and 

the cipher operates on these blocks one at a time. 

1.3.2.1 Electronic Codebook (ECB) 

This mode is a most straightforward way of processing a series of sequentially listed 

message blocks. The user takes the first block of plaintext and encrypts it with the key to produce 

the first block of ciphertext. He then takes the second block of plaintext and follows the same 

process with same key and so on so forth. The ECB mode is deterministic, that is, if plaintext 

block p1, p2…, pM are encrypted twice under the same key, the output ciphertext blocks will be 

the same. 

In fact, for a given key technically we can create a codebook of ciphertexts for all 

possible plaintext blocks. Encryption would then entail only looking up for required plaintext 

and select the corresponding ciphertext. Thus, the operation is analogous to the assignment of 

code words in a codebook, and hence gets an official name − electronic codebook mode of 

operation (ECB). It is illustrated as follows – 
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Figure 10: Electronic codebook mode of operation (ECB) [2] 

In reality, any application data usually have partial information which can be guessed. 

For example, the range of salary can be guessed. A ciphertext from ECB can allow an attacker to 

guess the plaintext by trial-and-error if the plaintext message is within predictable. 

For example, if a ciphertext from the ECB mode is known to encrypt a salary figure, then a small 

number of trials will allow an attacker to recover the figure. In general, we do not wish to use a 

deterministic cipher, and hence the ECB mode should not be used in most applications. 

1.3.2.2 Cipher Block Chaining (CBC) 

CBC mode of operation provides message dependence for generating ciphertext and 

makes the system non-deterministic. The operation of CBC mode is depicted in the following 

illustration. The steps are as follows − 

 Load the n-bit Initialization Vector (IV) in the top register. 

 XOR the n-bit plaintext block with data value in top register. 

 Encrypt the result of XOR operation with underlying block cipher with key K. 
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 Feed ciphertext block into top register and continue the operation till all plaintext blocks 

are processed. 

 For decryption, IV data is XORed with first ciphertext block decrypted. The first 

ciphertext block is also fed into to register replacing IV for decrypting next ciphertext 

block. 

 

Figure 11: Cipher block chaining mode of operation (CBC) [2] 

In CBC mode, the current plaintext block is added to the previous ciphertext block, and 

then the result is encrypted with the key. Decryption is thus the reverse process, which involves 

decrypting the current ciphertext and then adding the previous ciphertext block to the result. 
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Advantage of CBC over ECB is that changing IV results in different ciphertext for identical 

message. On the drawback side, the error in transmission gets propagated to few further blocks 

during decryption due to chaining effect. It is worth mentioning that CBC mode forms the basis 

for a well-known data origin authentication mechanism. Thus, it has an advantage for those 

applications that require both symmetric encryption and data origin authentication. 

1.3.2.3 Cipher Feedback Mode (CFB) 

In this mode, each ciphertext block gets ‘fed back’ into the encryption process in order to 

encrypt the next plaintext block. The operation of CFB mode is depicted in the following 

illustration. For example, in the present system, a message block has a size ‘s’ bits where 1 < s < 

n. The CFB mode requires an initialization vector (IV) as the initial random n-bit input block. 

The IV need not be secret. Steps of operation are − 

 Load the IV in the top register. 

 Encrypt the data value in top register with underlying block cipher with key K. 

 Take only ‘s’ number of most significant bits (left bits) of output of encryption process 

and XOR them with ‘s’ bit plaintext message block to generate ciphertext block. 

 Feed ciphertext block into top register by shifting already present data to the left and 

continue the operation till all plaintext blocks are processed. 

 Essentially, the previous ciphertext block is encrypted with the key, and then the result is 

XORed to the current plaintext block. 
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 Similar steps are followed for decryption. Pre-decided IV is initially loaded at the start of 

decryption. 

 

Figure 12: Cipher feedback mode of operation (CFB) [2] 

CFB mode differs significantly from ECB mode, the ciphertext corresponding to a given 

plaintext block depends not just on that plaintext block and the key, but also on the previous 

ciphertext block. In other words, the ciphertext block is dependent of message. CFB has a very 

strange feature. In this mode, user decrypts the ciphertext using only the encryption process of 

the block cipher. The decryption algorithm of the underlying block cipher is never used. 

Apparently, CFB mode is converting a block cipher into a type of stream cipher. The encryption 

algorithm is used as a key-stream generator to produce keystream that is placed in the bottom 

register. This key stream is then XORed with the plaintext as in case of stream cipher. By 

converting a block cipher into a stream cipher, CFB mode provides some of the advantageous 
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properties of a stream cipher while retaining the advantageous properties of a block cipher. On 

the flip side, the error of transmission gets propagated due to changing of blocks. 

1.3.2.4 Output Feedback (OFB) Mode 

It involves feeding the successive output blocks from the underlying block cipher back to 

it. These feedback blocks provide string of bits to feed the encryption algorithm which act as the 

key-stream generator as in case of CFB mode. The key stream generated is XOR-ed with the 

plaintext blocks. The OFB mode requires an IV as the initial random n-bit input block. The IV 

need not be secret.  

 

Figure 13: Output feedback mode of operation (OFB) [2] 
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1.3.2.5 Counter (CTR) Mode 

It can be considered as a counter-based version of CFB mode without the feedback. In 

this mode, both the sender and receiver need to access to a reliable counter, which computes a 

new shared value each time a ciphertext block is exchanged. This shared counter is not 

necessarily a secret value, but challenge is that both sides must keep the counter synchronized. 

Both encryption and decryption in CTR mode are depicted in the following illustration. Steps in 

operation are − 

 Load the initial counter value in the top register is the same for both the sender 

and the receiver. It plays the same role as the IV in CFB (and CBC) mode. 

 Encrypt the contents of the counter with the key and place the result in the bottom 

register. 

 Take the first plaintext block P1 and XOR this to the contents of the bottom 

register. The result of this is C1. Send C1 to the receiver and update the counter. 

The counter update replaces the ciphertext feedback in CFB mode. 

 Continue in this manner until the last plaintext block has been encrypted. 

 The decryption is the reverse process. The ciphertext block is XORed with the 

output of encrypted contents of counter value. After decryption of each ciphertext 

block counter is updated as in case of encryption. 
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Figure 14: Counter mode of operation (CTR) [2] 

It does not have message dependency and hence a ciphertext block does not depend on 

the previous plaintext blocks. Like CFB mode, CTR mode does not involve the decryption 

process of the block cipher. This is because the CTR mode is really using the block cipher to 

generate a keystream, which is encrypted using the XOR function. In other words, CTR mode 

also converts a block cipher to a stream cipher. The serious disadvantage of CTR mode is that it 

requires a synchronous counter at sender and receiver. Loss of synchronization leads to incorrect 

recovery of plaintext. However, CTR mode has almost all advantages of CFB mode. In addition, 

it does not propagate error of transmission at all. 
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1.4 Hardware and Software Design Assessment 

We use the EDA tools available on the Altera website to evaluate our designs [4-7]. 

These tools, the Quartus II Web Edition and the Altera University Program Simulator, allow 

code to be built, compiled, synthesized, simulated, and finally programmed into DE2 hardware. 

In this work, we use Altera's Cyclone IV DE2-115 board EP4CE115F29 platform as shown in 

Figure 15.  Cyclone IV technology was released in 2017. The model EP4CE115F29C7 has a 

density of 114,480 LE and it contains an internal 50 MHz clock. The development board is 

available on the Terasic website. The basic information about the computer we run the 

experiments is shown as Figure 16.  

 

Figure 15: Altera Cyclone IV 4CE115 FPGA Device [7] 
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Figure 16: Basic information about the computer 

1.5 Thesis Outline 

This thesis is organized as follows. The first chapter discusses the introduction of 

cryptography, a brief overview of the symmetric encryption algorithm- AES, a brief overview of 

block cipher mode of operation, and problem statement. Chapter II discusses the Mix Column 

modules in detail and how to improve the computation by parallelism and pipelining. Chapter III 

focuses the S-box modules in detail how to improve the computation  by parallelism and 

pipelining. Chapter IV discusses the performance comparison of AES variants which is the Key 

Expansion in detail. Chapter V gives the experimental results and simulation analysis of AES 

scheme and its four variants including AES-128, AES-192, AES-256 and new AES-512 with 

different modes of operation, on the FPGA platform. Finally, Chapter VI provides conclusion 

and the future work.  
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CHAPTER II 

HARDWARE IMPLEMENTATION OF IMPROVED MIX COLUMN COMPUTATION OF 

CRYPTOGRAPHIC AES 

With today’s development and expansion of networks and internet-connected devices, 

information security is an issue of increasing concern.  Confidentiality is one of the focuses in 

network security for digital communication systems, where large data blocks go through a 

cryptographic algorithm with a cipher key that increases the security and complexity of the 

output ciphertext.  AES is a symmetric encryption algorithm that has a minimum input data 

block size of 128-bits which undergo a series of permutations, substitutions, and digital logic 

operations over several rounds.  Encryption algorithms are always improving on ciphertext 

complexity, required hardware storage allocation, and execution time.  Field Programmable Gate 

Arrays (FPGA’s) are a hardware alternative for encryption algorithm implementation because, 

although the logic units in it are fixed, the functions and interconnections between them are 

based on the user’s design which allow for improvement.  The research presented focuses on the 

development and analysis of an efficient AES-128 Mix Columns algorithm implementation, 

utilized in the data block encryption rounds, on an Altera Cyclone IV FPGA using the Intel 

Quartus II software and Verilog Hardware Description Language. 

2.1 Rijndael Mix Column Computation 

Intensive computation of AES takes place in the Rijndael Mix Column segment. The Mix 

Column transformation operates on each column of the 4-byte by 4-byte matrix formed from the 
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input 128-bit data block. Each byte of the column is mapped into a new value that is a function 

of all four bytes in that column. The implementation of Mix Columns is based on the 

mathematical analysis in the Galois field, GF (2 ). For the AES algorithm this irreducible 

polynomial is: 

 𝑚(𝑥) = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1     (Equation 2.1.1) 

The columns of the matrix are multiplied by modulo 𝑥  + 1 with a fixed polynomial c 

(x), given by: 

 𝑐(𝑥) = [03]𝑥 + [01]𝑥 + [01]𝑥 + [02]     (Equation 2.1.2) 

This polynomial is coprime to 𝑥  + 1 and therefore invertible. Only the multiplication 

module and the 32-bit XOR module of each processing unit (one column) are needed for the 

design because the elements of the multiplication and addition in the Galois field are 

commutative and associative. In Figure 17 shows a Mix Columns computation example. With 

this approach, the function of Mix Columns can be achieved.  

 

Figure17: Rijndael Mix Columns computation example 
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Many researchers have published comparative analysis and optimized the speed of 

hardware implementations on the performance of different modes of operation. The results, from 

[8-20], reveal that the scheme has low hardware resource consumption, high throughput and an 

excellent overall performance ratio. Here, we focus on the development and analysis of an 

efficient AES-128 Mix Columns algorithm implementation in two different approaches. 

2.2 Design Methods and Discussion 

Our first approach involved building the circuit modules around the traditional row-

column multiplication method.  This was done by creating codes for each row of the Rijndael 

mix columns matrix producing a total of four distinct sub-modules (shown in Figure 18).  Each 

module would take 4 bytes (a column of the incoming data block matrix) and produce a single 

corresponding byte of the output matrix.  This approach resulted in a circuit configuration that 

was simplistic in concept, however based on Figure 19, the circuit reveals only partial bit 

parallelization which could potentially deter the performance of the circuit because of misaligned 

clock cycles. 

Our second approach focused on forcing a more parallel behavior into the circuit to align 

the input signals together potentially resulting in decreased delay.   As seen in Figure 20, three 

distinct sub-modules were created that separate the Rijndael multiplication with factors 2 and 3 

and adds an additional module ‘M4’ as a 4-input XOR function.  Each of the 16 bytes of the 

input data block matrix will go through the same sub-modules, aligning them during their clock 

cycles, and producing the 16-byte output matrix at approximately the same cycle.   
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Figure 18:  Internal schematic of each submodule 
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Figure 19: Module block diagram for parallelized configuration approach 



 

29 
 

 

Figure 20: Internal schematic of M4 submodule 

2.3 Result and Analysis 

The following data presented is modeled after previous performance comparison attempts 

mentioned in [8-20]. According to the AES algorithm we mentioned in Section 2, we can 

distinguish Rijndael Mix Column into many operations or functions. In addition, we used the 

Quartus II software to perform the timing simulations for each operation or function in each step, 

as shown in Figure21~25. Finally, we developed the following tables to compare the 

performance. 
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Figure 21: Delay of M2 submodule 

 

Figure 22: Delay of M3 submodule 

 

Figure 23: Delay of M4 submodule 

 

Figure 24: Timing simulation showing delay without parallelism 



 

31 
 

 

Figure 25: Timing simulation showing delay with parallelism 

Function Operation Type Processing Time(ηs) AES 128 

Sub Bytes Substitution (S-Box) 12 10 

Shift Row Assign 7.75 10 

Mix Columns 

M2 (Left Shift + XOR2) 6.84 

 

10.51 

9 

M3(XOR2) 7.02 9 

M4(XOR4) 8.83 9 

Add Round 

Key 
XOR2 7.02 11 

Total Processing Time (ηs) 369.3 

Table 3: Delay of Plaintext Encryption 

The results in Table 3 for Mix Columns were obtained for each submodule operation. 

The final simultaion shows that the delay for each operation combines to give a reduced parallel 

result. 
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Table 4: Time Delay and Memory results of both implementations 

 

Figure 26: Time delay analysis of mixed columns 

The results and calculations shown in Table 3 evaluate the Total Logic Elements (TLE) 

and the Peak Virtual Memory (PVM) of the non-parallelized program “Without parallelism” and 
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the parallelized one “With parallelism”. The graphical evaluation of the gathered data is depicted 

below.  

Compared to the non-parallelized program, the parallelized version showed a significant 

decrease in needed logic elements and virtual memory for implementation.  Based on the data in 

Table 4, at 10 GB of input data the parallelized implementation reduces the Rijndael Mix 

Columns operation delay by approximately 33.4%. 

Based on encryption time for Mix Columns, we created a Delay Evaluation (Table 4) and 

made a plot to show the performance of the different approaches in terms of encryption time. We 

plotted for different file sizes shown in Figure 26 and observed that the 2nd approach, which 

parallelized the circuit signals more, had less time delay than the 1st approach.  It was also 

noticed that the difference in memory allocation and size corresponded to the difference in delay. 

2.4 Conclusion 

In this Chapter, we conduct our study on the most popular encryption algorithm AES. We 

targeted one mode of operation, Cipher Block Chaining (CBC), in terms of encryption time and 

delay on the Mix columns section.  The results in Table 4 reveals that using parallelism in signal 

processing results in reduced time delay, logic elements and virtual memory. In the following 

chapter, we will focus on other sections for parallelization and try to implement AES on the 

FPGA. Finally, we will be able to obtain optimized area and speed hardware implementations of 

AES based on the sub-pipelined architecture.  
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CHAPTER Ⅲ 

A FAST IMPLEMENTATION OF THE RIJNDAEL SUBSTITUTION BOX FOR 

CRYPTOGRAPHIC AES 

Today’s current standard in Cryptography is the Symmetric Advanced Encryption 

Standard (AES) as selected by the US National Institute of Standards and Technology (NIST). It 

is also known as Rijndael Encryption Algorithm. Compared to various components of the AES,  

Rijndael S-box (substitution box) is the only non-linear component of the cryptosystem and 

significantly affects the overall performance of the AES encryption scheme. In this chapter, we 

investigate various implementations for improving the hardware performance of the Rijndael S-

box component of the AES algorithm in terms of delay and size on the Altera Cyclone IV FPGA 

(Field programmable gate arrays) using the Intel Quartus II software and Verilog Hardware 

Description Language (Verilog HDL). 

The AES encryption algorithm accepts blocks of 128 or 192 or 256 bits and applies a series 

of substitutions and permutations [1-2]. A special substitution termed as "SubBytes 

Transformation" is also called Rijndael S-box, named after its designers. S-box is the main core 

structure of every block cipher system and controls the hardware complexity of Rijndael cipher 

elements due to its particular characteristics, a non-linear byte substitution and operating on each 

of the State bytes independently. The purpose of S-box is to produce confusion between the 

ciphertext and the secret key. There are 256 = 16 × 16 possible 8-bit numbers, and so the S-box 

can be represented as a 16 ×16 table mapping inputs to outputs. 
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S-box provides reversible conversion of plain text segments during the encryption process, 

while providing the opposite conversion during the decryption process. It is a single simple 

function that is applied to each byte over and over again during the encryption phase. Each of the 

256 possible byte values is converted to another byte value by the transformation, which is a 

complete permutation as mentioned at Chapter 1. As a result, no two different byte values are 

changed to the same byte values.  

 

Figure 27: Substitute Bytes 

The AES S-box is shown as Figure 27[1-2]. To find the output from the S-box table, the 

byte input is split into two 4-bit halves. The first half provides the row number and the second 
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half provides the column number for the Byte substitution. For example, an S-box transformation 

of 8'b11000011or 0xC3 can be found in a cell at the intersection of a row labeled C0 in 

hexadecimal and a column labeled 03 in hexadecimal. Therefore, 8'b11000011or 0xC3 becomes 

8'b00101110 or 0x2E. 

Several hardware implementations related work is available in literature [8-20]. Many 

literatures have proposed S-box hardware lookup table implementations [21-27]. To reduce LUT 

space requirements, the basic idea of Shannon’s expansion theorem is applied. It helps achieve a 

logical design that has a greater number of levels with less implementation cost. This 

optimization technique reduces the complexity of the whole S-box which means it requires fewer 

arithmetic operations. As it simplifies table indexing, it simply consumes less power. Besides 

this optimization technique, including a smaller number of iterations will decrease the delay 

producing algebraic and matrix operations. In this chapter, we simulate different design 

techniques for the AES non-linear byte substitution in the Quartus-II simulator for a Cyclone IV 

FPGA platform. We verified the output performance of various implementations of the S-box in 

terms of delay and size. 
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Figure 28: S-box table [2] 

 

Figure 29: S-box Matrix Computation in GF (2 ) 
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3.1 Rijndael S-Box Computation 

S-box treats the values as a polynomial in Galois Field in factor 2 (GF (2 )) [1-2, 21-

27], irreducible polynomial uses 𝑥 + 𝑥 + 𝑥 + 𝑥 + 1. It's calculation basically involves two 

steps: 

 The inverse multiplication: derived from multiplicative inverse over GF (2 ).  "00" is 

mapped to itself. 

 The affine transformation: applying the affine (on GF (2 )) transformation. 

Using Rijndael’s finite field for affine transformations the following expresses it as an 

equation for an input vector signal “X”. 

𝐺𝐹(2 ) =
( )

       (Equation 3.1.1) 

Equation 1.1 shows the affine transform in Galois Field (2 ) as a function, with the 

characteristic irreducible polynomial as the denominator.  This polynomial is represented in 

hardware as the binary string “100011011” for Boolean addition operations in the algorithm.  

The matrix representation of this function for S-box is shown in Figure 28.  The input signal 

“b[7:0]” represents the 8-bit multiplicative inverse vector which undergoes Boolean XOR and 

addition operations to obtain the S-box output vector “a[7:0].”  Figure 29 has various equations 

displayed in Boolean logic for quick implementation that represent the vector computation that 

occurs within the Rijndael multiplication and are shown in sequence as equations below.  

𝑠 = 𝑏 ⨁ (𝑏 ≪ 1) ⨁ (𝑏 ≪ 2) ⨁ (𝑏 ≪ 3) ⨁ (𝑏 ≪ 4) ⊕ 63     (Equation 3.1.2) 
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𝑠 =  𝑏  ⊕ 𝑏( )  ⊕ 𝑏( )  ⊕ 𝑏( )  ⊕ 𝑏( )  ⊕  𝑐   (Equation 3.1.3) 

𝑠 = 𝑏 𝑥 31  𝑚𝑜𝑑 257  ⨁ 99      (Equation 3.1.4) 

However, the Rijndael S-box is not economical because it is based on the LUTs and uses 

more resources during implementation. To achieve high throughput and low power consumption, 

many literatures have proposed S-box hardware lookup table implementations [21-27]. In this 

chapter, we focused on how to efficiently implement pipeline technology utilizing FPGA 

platform to make S-box fast and verify the performance of various implementations of S-box in 

terms of latency and size. 

3.2 Design Methods and Discussion 

This research proposes three unique new designs based on restricting the way the S-box 

is implemented.  The baseline implementation is a 256-line Look-Up-Table (LUT) that is 

conducted using sequential logic.  Using the LUT in the design logic can significantly impact the 

amount of logic elements (LE’s) that get used up by the FPGA. This method of adopting the 

basic principles of Shannon's expansion theorem achieves a logical design, which a greater 

number of levels, reduces the space requirement of the LUT, and lowers the implementation 

cost. This optimization technique reduces the complexity of the S-box module which results in 

fewer arithmetic operations. As it simplifies table indexing, it additionally consumes less power. 

This design, along with the reduced number of iterations, significantly lowers the delay for the 

algebraic and matrix operations.  The designs are shown in the figures below and depict how the 
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S-box is segmented to create smaller LUT’s combined with multiplexer (MUX) logic for the 

correct output selection. 

Baseline:  

The baseline Verilog HDL module implements the Substitution Box as a single LUT.  

The Register Translation Language (RTL) shows the baseline LUT module in Figure 30.  This 

module is a direct implementation of the standard Rijndael Substitution Box shown in Figure 2, 

where an 8-bit input vector corresponds to a specific 8-bit output vector.  This module relies on 

sequential logic, which consumes both a significant amount of hardware Logic Elements (LE’s) 

and processing time from input to output. 

 

Figure 30: Baseline RTL 

Design 1 (Row Column Parallelization of S-Box):  

Design 1 aims to parallelize the Substitution Box by determining each corresponding 4-

bit output in the same amount of clock cycles.  This approach for the Substitution Box focuses on 
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separating the rows and columns of the 256-byte LUT (Figures 31-33).  Each value in the row 

and column of the Substitution Box uses a nibble of the input byte-wise vector to determine the 

corresponding substitute value.  This design utilizes 2 LUT’s for each nibble (HIGH and LOW) 

of the input byte-wise vector and generates 16 possible output values that feed into a 16-to-1 

Multiplexer (MUX) which uses the opposite nibble to select the correct 4-bit output.  The 

module then concatenates the output of each MUX to create the correct corresponding output 

byte-wise vector.   

 

Figure 31: Design 1 S-box Segmentation 

 

Figure 32: Design 1 Module Map 
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Figure 33: Design 1 RTL 

Design 2 (Expanded RC Parallelization of S-Box):  

Design 2, shown in Figures 34-36, aims to extend the technique of Design 1 by creating 4 

LUT’s instead of 2 for further parallelization.  This design further segments the LUTs required to 

compute the corresponding substitute value.  Through this LUT segmentation extension of the 

baseline Rijndael LUT S-Box, Design 2 attempts to produce the correct byte-wise output while 

increasing its LUT variable search, compared to Design 1, in the same clock cycle.   
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Figure 34: Design 2 S-box Segmentation 

 

Figure 35: Design 2 Module Map 
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Figure 36: Design 2 RTL 

Design 3 (Reduced LUT Parallization of S-Box): Design 3, shown in Figure 37-38, 

aims to parallelize the Rijndael S-Box by creating size reduced LUT’s from the standard 

Substitution Box, shown in Figure 27.  The standard Substitution Box is separated into 4 LUT’s 
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one for each 8-byte by 8-byte quadrant.  The byte-wise input vector goes through each of the 4 

LUT’s with only a single LUT generating the correct output vector while the others produce a 

logic zero.  The output of all LUT’s are then fed into a 4-to-1 byte-wise adder that combines all 

values to determine the output 8-bit substitution value.  

 

Figure 37: Design 3 RTL 
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Design 4 (Further Re. LUT Parallelization of S-Box): Design 4 aims to further reduce 

the LUT parallelization technique of Design 3 by creating smaller LUT’s from the segmented 

quadrants.  This approach extends the segmentation of the Rijndael S-Box by four times 

compared to Design 3.  The aim of Design 3 and 4 is to parallelize the process of determining the 

correct output value by reducing the memory consumption of the sequential logic used to 

generate the LUT’s.  The use of an adder to determine the output increases the LE cost of the 

module but attempts to significantly reduce the processing delay. 

 

Figure 38: Design 4 RTL 
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Design 5 (Shannon’s Expansion of S-Box): Design 5, shown in Figure 39, uses 

Shannon’s expansion to reduce the processing time and cost consumption of the Substitution 

Box.  This design uses the 8th and 7th MSB’s (most significant bits) of the input byte-wise vector 

to determine the correct output substitute value through MUX logic. The input to the MUX logic 

includes four 6-byte x 6-byte LUT’s that represent the possible outcomes that could be selected 

based on all variations of the 8th and 7th MSB such as “00”, “01”, “10”, and “11”.  This approach, 

like the previous designs, aims to not only increase the searching process on the same clock 

cycle but reduce the LUT size for each search to achieve low LE cost and faster throughput. 

 

Figure 39: Design 5 RTL 
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3.3 Result and Analysis 

The implementation of all Substitution Box designs was simulated on the Cyclone IV 

FPGA using NIST test vectors; the results are shown in Table 5.  The baseline design is the initial 

direct implementation of the Rijndael Substitution Box from [1-2].  The baseline generated an 

average of 11.41 nanoseconds of delay while consuming 208 LE’s.  The results from the first 

implementation, displayed in Table 5, showed an increase in both average delay by 0.11 ns for 

design 1 and 0.52 ns for design 2. Design 3 showed the most efficient output compared to the 

baseline LUT; design 3 was able to generate the correct output 1.08 ns faster and with a 31.3% 

decrease in LE hardware consumption.   

The Substitute Bytes module is repeated a total of 200 times, shown in Table 6, in the final 

implementation of AES-128. Compared to the other submodules that make up the AES-128 

algorithm, only the byte-wide 2-input XOR (XOR2) module was instanced more than Substitute 

Bytes by a total of 120 times (Table 6).  To improve the AES-128 algorithm in efficiency and 

throughput, it is crucial to target the most repetitive submodule since improvements in its 

implementation would be magnified. However, the XOR2 submodule is simply an expanded XOR 

gate that requires significantly less LE consumption than the Substitute Bytes module which is a 

256-byte size LUT. The I/O delay and LE consumption for design 3 would be multiplied by the 

module count and would reduce the total delay of the AES encryption algorithm by approximately 

200 ns compared to the baseline. The concept for design 3 and the other implementations, show 

the effectiveness of pipelining in processor operations.  By segmenting the LUT into separate 

modules, each can be executed on the same clock cycle and reduce the overall delay of the process.  
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This was expected to bring a trade-off between the hardware consumption to reduce the delay 

however design 3 was able to improve on both areas.  

Many literatures have proposed S-box hardware lookup table implementations [21-27]. 

The logic design using the basic principles of Shannon's expansion theorem is achieved. By 

comparing the suggested designs to other reported techniques, analysis of the results indicates that 

the proposed design 3 is capable of significantly outperforming the other four designs in terms of 

delay and area as measured by the simulation. From the simulations of the proposed designs, we 

observed that the throughput can be increased by reducing the delay of the critical path taken by 

the input byte-wise vector specifically in the LUT segment. By targeting one of the most utilized 

modules in the AES computation scheme, the efficiency of the overall implemented algorithm can 

be improved on.  The achieved lower LE cost and faster throughput will multiply based on the 

number of instances of the submodule included in the final design of AES-128 and can lead to 

improvements in the extended iterations of AES such as AES-192, AES-256, and AES-512[30-

40]. 

Table 5: Design Parameter Comparison 

Design Average Delay (ns) Logic Elements Virtual Pins 

Baseline 11.41 208 (<1%) 16 (3%) 

Design 1 11.52 208 (<1%) 16 (3%) 

Design 2 12.33 294 (<1%) 16 (3%) 

Design 3 10.73 65 (<1%) 16 (3%) 

Design 4 18.41 352 (<1%) 16 (3%) 

Design 5 11.36 208 (<1%) 16 (3%) 
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Table 6: Total Module Count for AES-128 

AES-128 Top Level Module 

Sub module Instances 
Peak Virtual 

Memory (MB) 
Pins/529 

Logic Elements 
/114,480 

Substitute Bytes 200 4788 16 (3%) 280 (<1%) 

Mix Column 144 4770 16 (3%) 3 (<1%) 

XOR2 320 4782 24 (5%) 8 (<1%) 

XOR4 144 4770 40 (8%) 8 (<1%) 

Increment Bytes 10 4789 70 (13%) 857 (<1%) 

Subkey Round 10 4769 288 (54%) 128 (<1%) 

 

 

Figure 40: Average Delay (in nanoseconds) Comparison 
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Figure 41: Comparison of Number of Logic Elements used 

3.4 Conclusion 

 This chapter discusses the design and simulation of the AES non-linear byte substitution 

techniques[45]. By simulating the designs in the Quartus-II software on a Cyclone IV FPGA 

platform, we verified the output performance of various implementations of the S-box module 

with pipelining techniques in terms of delay and size as shown in Figure 40-41. From the 

simulations of the proposed designs, we observed that the throughput can be increased by 

reducing the delay of the critical path taken by the input byte-wise vector specifically in the LUT 

segment. The techniques proposed in our most optimized design 3 shows us how to achieve high 

throughput and low power consumption using the effectiveness of pipelining in processor 

operations.  
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CHAPTER Ⅳ 

PERFORMANCE COMPARISON OF AES VARIANTS USING HARDWARE 

IMPLEMENTATIONS ON FPGA 

AES has been extensively analyzed and is now widely used in modern-day technologies. 

It is a symmetric encryption algorithm that has a minimum input data block size of 128-bits that 

undergoes a series of permutations, substitutions, and digital logic operations over several 

rounds. This chapter evaluates AES-128, AES-192, AES-256, and AES-512 on various 

parameters and compares their hardware performance through I/O delays when implemented on 

the Cyclone IV Field Programmable Gate Array (FPGA).  Through this comparison, the research 

presented provides a detailed scope at the complexity versus hardware consumption cost for all 

iterations of AES to conclude the most efficient implementation. 

4.1 Rijndael Key Expansion Computation 

The AES key expansion computation takes a four-word (16-byte) key as its input shown 

as Figure 42. and produces a linear array of 44/52/60/68 words (176/208/240/272 bytes) to 

generate enough exclusive keys to accommodate for the respective round size 10/12/14/16 of 

AES. The key is copied into the first four words of the extended key. The rest of the extended 

key is filled with four words at a time. Each added word depends on the previous word and the 

word is returned in four positions. In three of the four cases, a simple XOR was used. For words 

in the ‘w’ array whose position is a multiple of 4/6/8/16, a more complex function is used. Figure 
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43 illustrates the generation of the extended key, using the symbol “⊕” to represent the complex 

function. 

 

Figure 42: Add Round Key 

 

Figure 43: AES-512 Key Expansion 
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From the AES algorithm [1-2] we can find that the main difference between AES-128, 

AES-192 and AES-256 except for the different rounds is key expansion. As we can see from the 

Figure6~8, the Key Expansion routine for AES-256 is slightly different than for AES-128 and 

AES-192. Here, we chose AES-512 as an example to illustrate how to generate the key needed 

for each round base on the Key Expansion routine for AES-256. 

The process of computing 512-bit round keys are depicted in the Figure 9 and algorithms 

are as follows: 

 The elements of the original input key (512 bits) arranged in words and arranged from the 

most significant byte to the least significant byte key length are divided into four words, 

each word being 32 bits of equal size, thus Six words are formed in each line. 

 All subkeys are stored in the key extension array, the elements are W[0], W[1],..., W[67] 

because there are 17 subkeys for maintaining 16 rounds and 4 iterations. The first subkey 

Key0 is obtained from the first word of the original input key from AES, and the Key0 is 

copied to the first four elements of the key array [W0, W1, W2, W3]. The Key1 is copied 

to the second four elements of the key array [W4, W5, W6, W7], the Key2 is copied to 

the first four elements of the key array [W8, W9, W10, W11], the Key3 is copied to the 

first four elements of the key array [W12, W13, W14, W15], and the remaining subkeys 

Obtained by the steps defined below. 

 All other element of the array is computed as follows:  

If (i mod 16) =0 then 𝑊  =𝑇   ⊕ 𝑊( ) 
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Here 𝑇 = {SubWord (RotWord(𝑊( )))}⊕ 𝑅𝑐𝑜𝑛
( )

 

If (i mod 16) ≠0 and (i mod 4) =0 then 𝑊  = {SubWord (𝑊( ))} ⊕ 𝑊( ) 

If (i mod 16) ≠0 but (i mod 4) ≠0 then 𝑊  = 𝑊( )⊕ 𝑊( ) 

 After calculating all the elements of the word Matrix [W0, W1, ......... W67], we compute 

17 subkeys from K0 to K12 by taking the first four words, so that Key0 = [W0, W1, W2, 

W3], Key1 = [W4, W5, W6, W7], ... Key17 = [W64, W65, W66, W67]. We can also see 

that we only use up to Rcon4. (For AES-128, we use up to Rcon10. For AES-192, we use 

up to Rcon8. For AES-256, we use up to Rcon7.) 

4.2 Design Methods and Discussion 

This research will focus on extending the FPGA implementation to the entire algorithm; 

furthermore, we also evaluate the overall performance for the different variants of AES such as 

AES-128, AES-192, AES-256, and AES-512.  The work in this thesis aims to speed up AES 

encryption overall and reduce processing delays.  Comparisons are conducted on both a 

theoretical basis and through timing simulations on the Intel Quartus II software to reveal the 

implication of increased complexity on the hardware performance of AES in terms of Logic 

Elements (LE’s) and transport delays.   

4.3 Result and Analysis 

According to the AES algorithm we mentioned in section 2, we can distinguish each step 

into several operations or functions. We used the Quartus II software to perform timing 
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simulations for each operation or function in every step, as shown in Figure 44~Figure 51. The 

following data presented is modeled after previous hardware performance comparison attempts 

mentioned in [3, 9-11,17-24]. 

 

Figure 44: Delay of Mix Columns Module 

 

Figure 45: Delay of ShiftRows Module 

 

Figure 46: Delay of Key Module 
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Figure 47: Delay of XOR32 Module 

 

Figure 48: Delay of SBOX1 Module 

 

Figure 49: Delay of Key Expansion Module 

 

Figure 50: Delay of Round Module 
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Figure 51: Delay of Encryption Module 

The performance comparison is based on the timing simulations of the different key sizes 

for the AES variants. The calculation results are shown in the Table 7 and Table 8 and were 

conducted through scalar multiplication of the base processing time in nanoseconds for AES-128 

and AES-192.  The results show a linear trend where an increase in key size results in an 

increase in delay time for the plaintext encryption portion (Table 7); the overall encryption time 

is increased by approximately 14% from the 128-bit key to the 192-bit key, 29% to the 256-bit 

key, and 38% to the 512-bit key.  In contrast, the results for the key expansion portion did not 

follow a similar linear trend; the overall key expansion time is increased by approximately 10% 

from the 128-bit key to the 192-bit key, and 19% to the 256-bit key as well as the 512-bit key.  

The data from the key expansion simulation revealed how the AES-256 and AES-512 variants 

shared a similar processing time despite AES-512 being computational stronger due to its 

extensive architecture. 
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Table 7: Delay of Plaintext Encryption 

Function 
Operation 

Type 
Processing 
Time(ηs) 

AES 128 AES 192 AES 256 AES 512 

Sub Bytes 
Substitution 

(S-Box) 
12 10 12 14 16 

Shift Row Assign 7.75 10 12 14 16 

Mix 
Columns 

M2(Left Shift 
+ XOR2) 

6.84 
 

10.51 

9 11 13 15 

M3(XOR2) 7.02 9 11 13 15 

M4(XOR4) 8.83 9 11 13 15 

Add 
Round 

Key 
XOR2 7.02 11 13 15 17 

Total Processing Time (ηs) 369.3 443.9 518.4 593.0 

Processing Time Percent Increase 

Compared to AES-128 (%) 
16.8 28.8 37.7 

Table 8: Delay of Key Expansion 

Function 
Operation 

Type 
Processing 
Time(ηs) 

AES 128 AES 192 AES 256 AES 512 

RotWord Assign 6.31 

12.17 

10 12 14 16 

SubWord 
Substitution 

(S-Box) 
12 10 12 14 16 

XOR2(32bits) 8.51 50 54 59 56 

Total Processing Time (ηs) 547.2 605.6 672 671 

Processing Time Percent Increase 

Compared to AES-128 (%) 
9.6 18.6 18.5 
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4.4 Conclusion 

The results show how the encryption time varies with key size selection.  It was not only 

found out from the AES algorithm but also from the actual simulation data, that when the key 

size increases, the encryption time for the four function modules of AES also increases. 

However, this increase is not proportional to the increase in key expansion processing time 

(Table 8).  Despite having more rounds and increased complexity, AES-512 was found to be 

slightly computationally faster (or comparable) in processing time for key expansion than AES-

256.  When seeking to secure data confidentiality at the highest level, AES-512 offers this with 

only an 18% increase in processing time compared to the baseline variant AES-128 (which is not 

as secure as AES-512).  
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CHAPTER Ⅴ 

COMPARISON AND ANALYSIS  

5.1 Avalanche Effect 

Each of the encryption technique has its own strong and weak points. In order to apply an 

appropriate technique in a particular application we are required to know these strengths and 

weakness. Therefore, the analysis of these techniques is critically necessary. A desirable property 

of any encryption algorithm is that a small change in either the plaintext or the key should 

produce a significant change in the cipher text. 

However, a change in one bit of the plaintext or one bit of the key should produce a 

change in many bits of the cipher texts. This property is known as Avalanche Effect. Avalanche 

Effect can be calculated by using above equation. 

The performance of proposed algorithm is evaluated using Avalanche Effect due to one-

bit variation in plaintext (before being mapped in various binary codes) keeping encryption key 

constant in a binary code [41]. 

Avalanche Effect is calculated for various combination of plaintext and encryption key 

by mapping them in various binary codes. 

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝒇𝒍𝒊𝒑𝒑𝒆𝒅 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑 𝑡𝑒𝑥𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑒𝑑 𝑡𝑒𝑥𝑡
 

The two characteristics of the symmetric encryption algorithm described in the system 

overview are confusing and spreading. The data in Table 9 and Table 10 are converted into a 

binary column as follows: 
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Table 9: Avalanche Effect of DES [2] 

DES 

Ciphertext C1(binary) 1001 1000 1100 0110 0101 0000 0001 0111 

1010 1001 1100 0001 1101 1101 0101 0010 

Ciphertext C2(binary) 0110 1000 1011 1110 1010 0010 0000 0111 

1001 1100 1101 0101 0010 0111 1111 1000 

Table 10: Avalanche Effect of AES [2] 

AES 

Ciphertext 

C1 (binary) 

 

01010000 00000011 01110010 01011001 00100001 00110111 00110001 00011000 

01010100 01111101 01001100 01101011 00010110 01001101 01001011 00110111  

Ciphertext 

C2(binary) 

 

01110001 01001011 00101101 00111011 00001110 01000100 01001100 00011111 

01011000 00101111 00100001 00111001 01011110 01111000 01100100 01111000 

 

We can observe that the confusion and diffusion of DES is not as good as AES. There are 

too many repetitions of the ciphertext of DES and the ciphertext after changing one bit. The 

changes in ciphertext 0 and 1 are relatively concentrated and not evenly dispersed. Therefore, it 

can be seen that the ciphertext complexity after the encryption algorithm is not enough, in terms 

of individual blocks. The avalanche effect data shows that the avalanche effect of DES is 
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relatively poor, while AES is closer to the theoretical value of 50%, and AES is the advanced 

encryption standard. Although DES encryption can be used, AES is definitely more secure than 

DES in terms of security. When the input (plaintext or key) to any cryptographic algorithm is 

changed slightly, then there must be significant change in the output. It is the most desirable 

property of any cryptographic algorithm is the avalanche effect. It was a term coined by Horst 

Feistel. It accounts for the randomization in the algorithm or can be thought of as a metric for 

diffusion & confusion. Normally, a change of about 50% is desirable as it makes the algorithm 

truly random. 

5.2 Timing Simulation For AES-128, AES-192, AES, 256 and AES-512 in ECB Mode 

Based on my previous works in chapter Ⅱ, Ⅲ, and Ⅳ, I can build the most efficiency 

modules of AES variants in different operation modes [42-44].  In this session, I discuss the 

performance of AES-128, AES-192, AES-256 and AES-512 in ECB mode. Via the Quartus II, 

we can find the device we are using, the processing time, and the total logic elements from the 

compilation report. We can also see the block diagram in register level. By running the timing 

simulation, we can find out the delay for each experiment. 

5.2.1 Timing Simulation For AES-128 

 In order to observe the performance changes, we run the simulation and recorded the 

results of each round as below. 
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Figure 52: Timing Simulation For AES-128 after Round 1 
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Figure 53: Timing Simulation For AES-128 after Round 2 
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Figure 54: Timing Simulation For AES-128 after Round 3 
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Figure 55: Timing Simulation For AES-128 after Round 4 
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Figure 56: Timing Simulation For AES-128 after Round 5 
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Figure 57: Timing Simulation For AES-128 after Round 6 
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Figure 58: Timing Simulation For AES-128 after Round 7 
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Figure 59: Timing Simulation For AES-128 after Round 8 
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Figure 60: Timing Simulation For AES-128 after Round 9 
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Figure 61: Timing Simulation For AES-128 after Round 10 
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 Using the data collected from Figure 52-61, we built the Table 11 and created Figure 62 
and Figure 63.  

Table 11: Delay_AES_128_ECB 

 Key 

(ns) 

KeyAdd /Ciphertext 

(ns) 

Logic elements 

(114480) 

Processing time 

(H:M:S) 

Round1 25.07 24.31 4632 1:41 

Round2 28.84 32.05 9114 3:55 

Round3 38.62 42.21 13604 12:43 

Round4 48.87 54.91 18084 24:43 

Round5 58.28 61.37 22602 37:45 

Round6 67.91 73.24 27095 50:33 

Round7 79.58 85.2 31633 1:05:30 

Round8 95.29 98.96 36113 1:21:45 

Round9 91.57 102.75 40608 1:38:44 

Round10 110.46 116.43 45085 1:54:46 

 

The results in Figure 62 show a linear trend where an increase in round number results in 

an increase in delay time for key expansion and the plaintext encryption portion. However, the 

processing time is not a linear trend as shown in Figure 63, because the processing time is based 

on the operating system.  
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Figure 62: Delay_AES_128_ECB 

 

Figure 63: Processing time_ AES_128_ECB 
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5.2.2 Timing Simulation For AES-192 

 

 

 

 

Figure 64: Timing Simulation For AES-192 after Round 1 
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Figure 65: Timing Simulation For AES-192 after Round 2 
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Figure 66: Timing Simulation For AES-192 after Round 3 
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Figure 67: Timing Simulation For AES-192 after Round 4 
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Figure 68: Timing Simulation For AES-192 after Round 5 
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Figure 69: Timing Simulation For AES-192 after Round 6 
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Figure 70: Timing Simulation For AES-192 after Round 7 
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Figure 71: Timing Simulation For AES-192 after Round 8 
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Figure 72: Timing Simulation For AES-192 after Round 9 
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Figure 73: Timing Simulation For AES-192 after Round 10 
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Figure 74: Timing Simulation For AES-192 after Round 11 
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Figure 75: Timing Simulation For AES-192 after Round 12 
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Using the data collected from Figure 64-75, we built the Table 12 and created Figure 76 and 

Figure 77. 

Table 12: Delay_AES_192_ECB 

 Key KeyAdd 

(Ciphertext) 

Logic elements 

(114480) 

Processing time 

Round1 19.90 24.99 4568 3:57 

Round2 22.75 35.58 8202 8:02 

Round3 30.19 43.34 12668 25:54 

Round4 38.55 55.56 17172 48:53 

Round5 41.65 64.00 20813 1:13:55 

Round6 51.71 71.93 25307 1:41:24 

Round7 62.47 81.24 29400 2:13:31 

Round8 61.23 98.70 33493 2:42:55 

Round9 70.46 106.34 37990 3:16:26 

Round10 80.02 108.71 42524 4:00:45 

Round11 80.34 119.90 46189 4:38:08 

Round12 89.34 126.53 50.547 5:30:47 

 

The results in Figure 76 show a linear trend where an increase in round number results in 

an increase in delay time for key expansion and the plaintext encryption portion. However, the 
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processing time is not a linear trend as shown in Figure 77, because the processing time is based 

on the operation system.  

 

Figure 76: Delay_AES_192_ECB 

 

Figure 77: Processing time_ AES_192_ECB 
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5.2.3 Timing Simulation For AES-256 

 

 

 

Figure 78: Timing Simulation For AES-256 after Round 1 
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Figure 79: Timing Simulation For AES-256 after Round 2 
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Figure 80: Timing Simulation For AES-256 after Round 3 
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Figure 81: Timing Simulation For AES-256 after Round 4 
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Figure 82: Timing Simulation For AES-256 after Round 5 
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Figure 83: Timing Simulation For AES-256 after Round 6 
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Figure 84: Timing Simulation For AES-256 after Round 7 
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Figure 85: Timing Simulation For AES-256 after Round 8 
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Figure 86: Timing Simulation For AES-256 after Round 9 
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Figure 87: Timing Simulation For AES-256 after Round 10 
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Figure 88: Timing Simulation For AES-256 after Round 11 
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Figure 89: Timing Simulation For AES-256 after Round 12 
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Figure 90: Timing Simulation For AES-256 after Round 13 
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Figure 91: Timing Simulation For AES-256 after Round 14 
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Using the data collected from Figure 78-91, we built the Table 13 and created Figure 92 

and Figure 93. The results in Figure 92 show a linear trend where an increase in round number 

results in an increase in delay time for the plaintext encryption portion. However, the processing 

time is not a linear trend as shown in Figure 93, because the processing time is based on the 

operation system.  

Table 13: Delay_AES_256_ECB 

 Key KeyAdd (Ciphertext) Logic elements Processing time 

Round1 * 22.15 3672 1:51 

Round2 * 32.98 8138 3:39 

Round3 * 43.29 12610 12:55 

Round4 * 54.78 17096 23:15 

Round5 * 70.15 21582 34:01 

Round6 * 81.22 26044 46:26 

Round7 * 91.90 30514 59:58 

Round8 * 102.29 35007 1:13:51 

Round9 * 107.28 39476 1:28:01 

Round10 * 124.23 44016 1:41:29 

Round11 * 126.22 48548 2:04:37 

Round12 * 135.30 53076 2:18:57 

Round13 * 135.16 57595 2:32:55 

Round14 * 148.28 61953 2:48:36 
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Figure 92: Delay_AES_256_ECB 

 

Figure 93: Processing time_ AES_256_ECB 
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5.2.4 Timing Simulation For AES-512 

 

 

 

 

 

Figure 94: Timing Simulation For AES-512 after Round 1 
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Figure 95: Timing Simulation For AES-512 after Round 2 
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Figure 96: Timing Simulation For AES-512 after Round 3 
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Figure 97: Timing Simulation For AES-512 after Round 4 
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Figure 98: Timing Simulation For AES-512 after Round 5 
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Figure 99: Timing Simulation For AES-512 after Round 6 
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Figure 100: Timing Simulation For AES-512 after Round 7 
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Figure 101: Timing Simulation For AES-512 after Round 8 
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Figure 102: Timing Simulation For AES-512 after Round 9 
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Figure 103: Timing Simulation For AES-512 after Round 10 
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Figure 104: Timing Simulation For AES-512 after Round 11 
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Figure 105: Timing Simulation For AES-512 after Round 12 
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Figure 106: Timing Simulation For AES-512 after Round 13 
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Figure 107: Timing Simulation For AES-512 after Round 14 
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Figure 108: Timing Simulation For AES-512 after Round 15 
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Figure 109: Timing Simulation For AES-512 after Round 16 
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Using the data collected from Figure 94-109, we built the Table 14 and created Figure 110 and 

Figure 111.  

Table 14: Delay_AES_512_ECB 

 Key KeyAdd 

(Ciphertext) 

Logic elements 

(114480) 

Processing time 

Round1 * 15.17 3520 1:36 

Round2 * 27.84 7040 3:21 

Round3 * 36.01 10560 10:15 

Round4 * 45.20 14080 19:32 

Round5 * 54.18 17600 27:24 

Round6 * 61.80 21120 34:20 

Round7 * 70.92 24640 47:09 

Round8 * 82.98 28160 49:35 

Round9 * 92.25 31680 58:04 

Round10 * 95.86 35200 1:06:20 

Round11 * 108.27 38720 1:16:03 

Round12 * 114.39 42240 1:24:01 

Round13 * 116.78 45760 1:32:30 

Round14 * 138.34 49280 1:42:10 

Round15 * 138.26 52800 1:48:35 

Round16 * 143.36 56128 1:56:01 

The results in Figure 110 show a linear trend where an increase in round number results 

in an increase in delay time for the plaintext encryption portion. However, the processing time is 

not a linear trend as shown in Figure 111, because the processing time is based on the operating 

system. 
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Figure 110: Delay_AES_512_ECB 

 

Figure 111: Processing time_ AES_512_ECB 
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5.3 Timing Simulation For AES-128, AES-192, AES, 256 and AES-512 in CBC Mode 

To implement the AES algorithm in CBC mode, we simply used the module we designed 

for ECB mode twice and we only run the simulation for the final cyphertext of AES-128, AES-

192, AES, 256 and AES-512 in CBC Mode. However, since there are limited logic elements and 

total pins, we had to put the key into the program code. 

5.3.1 Timing Simulation of AES-128 

 

 

 

 

Figure 112: Timing Simulation For AES-128 in CBC Mode 
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Figure 113: Timing Simulation For AES-128_1 in CBC Mode 
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Figure 114: Timing Simulation For AES-128_2 in CBC Mode 
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Figure 115: Timing Simulation For AES-128_3 in CBC Mode 
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Since there are limited logic elements and total pins, we had to put the key into the 

program code. Using the data collected from Figure 112-115, we were able to build the Table 15 

and created Figure 116, 117 and 118.  The results in Figure 116-118 show there are only minor 

differences for delay, total logic elements, and processing time between our design in CBC 

mode. However, the average delay of the first Ciphertext in CBC mode is only 88.52 ns which is 

23.7 % less than the delay of the first Ciphertext in ECB mode. It is because of the design of the 

code that is we had to put the key into the program code. Using the same strategy putting the key 

into the program code, we run the timing simulation for AES-192, AES-256 and AES-512 in 

CBC Mode as shown in Figure 119-121. 

Table 15: Delay_AES_128_CBC 

  Ciphertext 1 Ciphertext 2 Logic elements Processing time 

AES_128 86.22 169.93 70144 2:16:47 

AES_128_1 86.22 169.93 70144 2:23:54 

AES_128_2 92.43 169.44 70144 2:17:29 

AES_128_3 89.22 171.8 70144 2:18:12 

 

Figure 116: Total Logic elements_AES_128_CBC 
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Figure 117: Delay_AES_128_CBC 

 

 

Figure 118: Processing time_AES_128_CBC 
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5.3.2 Timing Simulation of AES-192 

 

 

Figure 119: Timing Simulation For AES-192 in CBC Mode 
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5.3.3 Timing Simulation of AES-256 

 

 

Figure 120: Timing Simulation For AES-256 in CBC Mode 
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5.3.4 Timing Simulation of AES-512 

 

 

 

 

Figure 121: Timing Simulation For AES-512 in CBC Mode 
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5.4 Comparing of Timing Simulation of AES In ECB and CBC Mode 

Table 16: Delay_AES_ECB_KEY 

  AES-128 AES-192 AES-256 AES-512 

Round1 24.3 25.0 22.2 15.2 

Round2 32.1 35.6 33.0 27.8 

Round3 42.2 43.3 43.3 36.0 

Round4 54.9 55.6 54.8 45.2 

Round5 61.4 64.0 70.2 54.2 

Round6 73.2 71.9 81.2 61.8 

Round7 85.2 81.2 91.9 70.9 

Round8 99.0 98.7 102.3 83.0 

Round9 102.8 106.3 107.3 92.3 

Round10 116.4 108.7 124.2 95.9 

Round11   119.9 126.2 108.3 

Round12   126.5 135.3 114.4 

Round13     135.2 116.8 

Round14     148.3 138.3 

Round15       138.3 

Round16       143.4 
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Figure 122: Delay_AES_ECB_KEY 

 From the Figure 122, we can observe that the delay is increasing as the key size becomes 

larger. However, the increase of delay for AES-256 and AES-512 are not absolutely related to 

AES-128 and ASE-256 because the basic method of key expansion is different. We can also 

observe that from the total logic elements for each type of AES shown in Table 17 or Figure 123.   
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Table 17: Total Logic Elements_AES_ECB_KEY 

  AES-128 AES-192 AES-256 AES-512 

Round1 4632 4568 3672 3520 

Round2 9114 8202 8138 7040 

Round3 13604 12668 12610 10560 

Round4 18084 17172 17096 14080 

Round5 22602 20813 21582 17600 

Round6 27095 25307 26044 21120 

Round7 31633 29400 30514 24640 

Round8 36113 33493 35007 28160 

Round9 40608 37990 39476 31680 

Round10 45085 42524 44016 35200 

Round11   46189 48548 38720 

Round12   50547 53076 42240 

Round13     57595 45760 

Round14     61953 49280 

Round15       52800 

Round16       56128 
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Figure 123: Total Logic Elements_AES_ECB_KEY 

 We can observe and assume that ASE-128 and AES-192 are using the same method of 
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Table 18: Processing time_AES_ECB_KEY 

  AES-128 AES-192 AES-256 AES-512 

Round1 101 237 111 96 

Round2 233 482 219 201 

Round3 763 1554 775 615 

Round4 1483 2933 1395 1172 

Round5 2265 4435 2041 1464 

Round6 3033 6084 2789 2060 

Round7 3930 8011 3598 2809 

Round8 4905 9775 4431 2975 

Round9 5924 11786 5281 3484 

Round10 6886 14445 6089 3980 

Round11   16688 7477 4563 

Round12   19847 8337 5041 

Round13     9175 5550 

Round14     10116 6130 

Round15       6515 

Round16       6961 
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Figure 124: Processing time_AES_ECB_KEY 
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than for AES-128 and AES-192. As a result, the processing time is even much less than all 

others.  

 To test the CBC mode in this device, we used 2 different block plaintexts (each block 

plaintext is 128 bits). Since there are limited logic elements and total pins, we had to put the key 

into the program code. The average delay of the first Ciphertext for AES-128 in CBC mode is 

only 88.52 ns which is 23.7 % less than the delay of the first Ciphertext for AES-128 in ECB 

mode. It is because of the design of the code that is we had to put the key into the program code. 

However, from Table 19, we can also observe the delay of Ciphertext 2 is approximately twice 

of Ciphertext 1 due to the block plaintexts are different, and so the delay of each Ciphertext will 

be slightly different.  

Table 19: Performance_AES_CBC_KEY 

  Ciphertext 1 Ciphertext 2 Logic elements Processing time 

AES_128 86.22 169.93 70144 2:16:47 

AES_128_1 86.22 169.93 70144 2:23:54 

AES_128_2 92.43 169.44 70144 2:17:29 

AES_128_3 89.22 171.8 70144 2:18:12 

AES_192 104.28 199.78 84224 2:55:15 

AES_256 113.3 222.46 98304 3:31:42 

AES_512 128.83 251.58 112384 4:11:47 
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Figure 125: Delay_AES_CBC_KEY 

 

Figure 126: Total Logic Elements_AES_CBC_KEY 
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Figure 127: Total Processing time_AES_CBC_KEY 

From Figure 125 -127, we can observe that the results show a linear trend where an 
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CHAPTER Ⅵ 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 Cryptography plays a key role in information security by providing confidentiality when 

transmitting data. In network security for digital communication systems, where large data 

blocks go through a cryptographic algorithm with a cipher key that increases the security and 

complexity of the output ciphertext.  With the emergence and rapid growth of cloud computing 

in the past several years, multiple security algorithms have been developed and utilized in the 

data encryption process, and the current one, designated by the U.S. National Institute of 

Standards and Technology (NIST), the Advanced Encryption Standard (AES).   

 Encryption algorithms are always improving on ciphertext complexity, required hardware 

storage allocation, and execution time. In our previous works, we presented an FPGA 

implementation of the AES Mix Columns module and S-box module where parallelism and 

pipelining in the computation was utilized. From the AES algorithm, we can find that the main 

difference between AES-128, AES-192 and AES-256 except for the different rounds is key 

expansion. The Key Expansion routine for AES-256 is slightly different than for AES-128 and 

AES-192. As the length of the Key changes, the key expansion method and numbers change as 

well. In the current standard, the length of the Key can only go up to 256 bits. Although, several 

AES-512 key expansion implementation related work is available in literature using 22 rounds. 
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According to the basic concept of the standard designed by National Institute of Standards and 

Technology (NIST) and many studies, we decided to choose 16 as the number of rounds. 

 This research focused on extending the FPGA implementation to the entire algorithm and 

will presents high speed, fully pipelined FPGA implementation of AES Encryption in different 

operation modes.; furthermore, we also evaluated the overall performance for the different 

variants of AES such as AES-128, AES-192, AES-256, and AES-512.  The presented work 

attained speed up (i.e. high throughput No. of block processed per second) at the same time, 

silicon area optimization. Comparisons are conducted on both a theoretical basis and through 

timing simulations on the Intel Quartus II software to reveal the implication of increased 

complexity on the hardware performance of AES.  

 The results show how the encryption time varies with key size selection.  It was not only 

found out from the AES algorithm but also from the actual simulation data, that when the key 

size increases, the encryption time for the four function modules of AES also increases. 

However, this increase is not proportional to the increase in key expansion processing time.  

Despite having more rounds and increased complexity, AES-512 was found to be slightly 

computationally faster in processing time for key expansion than AES-256.  When seeking to 

secure data confidentiality at the highest level, AES-512 offers this with users only experiencing 

an 18% increase in nanosecond processing time compared to the baseline variant AES-128.  As 

the information industry continues to introduce a demand for more secure transmissions, users 

wanting to implement stronger variants of AES can default to AES-512 as opposed to AES-256 
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with no detrimental results in the processing speed.  In addition, the increase in key length to 512 

makes the AES algorithm highly resistant to new attacks and has acceptable data encryption 

speed. 

6.2 Future work 

 In the future, we can focus on the other modes which we were not able to implement, and 

we can focus on how to obtain optimized area and speed hardware implementations of AES 

based on the sub-pipelined architecture on the other FPGA. The main thing is to extend and to 

make an AES encrypted block which can be used as in advanced microprocessors or 

microcontrollers. 
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