
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

8-2020

Searching for Low Frequency Fast Radio Bursts with VLITE Searching for Low Frequency Fast Radio Bursts with VLITE

Suryarao Bethapudi
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Physics Commons

Recommended Citation Recommended Citation
Bethapudi, Suryarao, "Searching for Low Frequency Fast Radio Bursts with VLITE" (2020). Theses and
Dissertations. 620.
https://scholarworks.utrgv.edu/etd/620

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.utrgv.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/620?utm_source=scholarworks.utrgv.edu%2Fetd%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

SEARCHING FOR LOW FREQUENCY FAST RADIO BURSTS WITH

VLITE

A Thesis

by

SURYARAO BETHAPUDI

Submitted to the Graduate College of
The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2020

Major Subject: Physics

SEARCHING FOR LOW FREQUENCY FAST RADIO BURSTS WITH

VLITE

A Thesis
by

SURYARAO BETHAPUDI

COMMITTEE MEMBERS

Dr. Teviet Creighton
Chair of Committee

Dr. Volker Quetschke
Committee Member

Dr. Soumya Mohanty
Committee Member

August 2020

Copyright 2020 Suryarao Bethapudi

All Rights Reserved

ABSTRACT

Bethapudi, Suryarao, Searching for low frequency Fast Radio Bursts with VLITE . Master of

Science (MS), August, 2020, 61 pp., 15 tables, 28 figures, 26 references.

The VLITE (VLA Low Band Ionosphere and Transient Experiment; http://vlite.nrao.edu)

program performs commensal observations using 16 antennas of the Very Large Array radio

telescope from 320–384 MHz. The VLITE-Fast program searches for short time-scale (<100ms)

transients, such as Fast Radio Bursts (FRBs), in real time and triggers recording of baseband voltages

for offline imaging. Searches are made possible by a 12 node cluster, each housing GPUs for digital

signal processing. A real-time Message Passing Interface (MPI)-based co-adder incoherently sums

the data streams from all the antennas to boost the signal-to-noise. To undo the dispersion effects of

signal propagation through the ionized interstellar medium, the co-added stream is de-dispersed and

matched-filtered to search for transients. This operation is completely performed on GPUs by the

software package Heimdall . A selection logic is applied to the candidates and interesting candidates

with their corresponding data are processed and packaged in a binary file along with a diagnostic

plot. Furthermore, a Machine Learning classification is developed and applied on the reduced data

product and, based on its decision, baseband voltages are recorded. Reduced data products collected

over 126 days of on-sky operation form the VLITE-Fast Pathfinder Survey (VFPS). This pipeline

has triggered on single pulses from 7 known radio pulsars. Lastly, the pipeline capabilities are tested

against pure random noise and simulated injected signals.

iii

DEDICATION

For the dreading drag until death liberates us.

iv

ACKNOWLEDGMENTS

This work would not be what it is if not for the guidance and patience offered by Dr. Matthew

Kerr. I am ever grateful to Dr. Matthew for that.

I am also grateful to all those who have supported me until now.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER I. FAST RADIO BURSTS . 1

1.1 What are FRBs? . 3

1.1.1 Filterbank . 3

1.1.2 Dispersion . 4

1.1.3 Characteristics . 5

1.2 Detections so far . 7

1.3 Thesis outline . 7

1.3.1 VLITE . 7

1.3.2 VLITE as an FRB search engine . 10

1.3.3 Outline . 11

CHAPTER II. INSTRUMENTATION . 12

2.0.1 Overview . 12

2.1 PSRDADA . 13

2.2 Writer . 14

2.3 Process baseband . 15

2.4 MPI Coadder . 15

2.4.1 Need for coaddition . 16

2.4.2 MPI . 16

2.4.3 Coaddition . 17

2.4.4 Reduce . 18

2.4.5 Bookkeeping . 21

vi

2.5 Heimdall . 21

2.6 Trigger mechanics . 22

2.6.1 Trigger dispatch . 23

2.6.2 Trigger hook . 24

2.6.3 Trigger master . 25

2.6.4 Meta response . 25

2.7 Data products . 27

2.7.1 Candidate file . 27

2.7.2 FilterBank jSON . 27

2.7.3 De-dispersed filterBank jSON . 28

2.7.4 Trigger plot . 28

2.7.5 META Voltages . 31

2.8 Codebases . 31

CHAPTER III. VLITE-FAST PATHFINDER SURVEY . 33

3.1 Campaign runs . 33

3.1.1 NB2 . 33

3.1.2 NB8 . 34

3.1.3 MW . 35

3.2 Detection of pulsars . 35

3.2.1 Field of View . 35

3.2.2 Sensitivity . 36

3.3 RFI . 36

3.3.1 RFI contamination . 39

3.3.2 DM=150 pc/cc artifact . 39

3.4 Heimdall triband structure . 41

3.5 Summary statistics . 45

3.6 Simulation runs . 46

3.6.1 Pure noise . 46

3.6.2 Injected . 46

CHAPTER IV. MACHINE LEARNINGS . 50

4.1 Coherent analysis . 50

4.1.1 Coherent analysis with VLITE-Fast . 50

4.2 Machine Learning . 51

vii

4.2.1 Dataset . 51

4.2.2 Model and training . 52

4.2.3 Training results . 53

4.3 VFPS ML inferences . 54

4.4 Ending remarks . 56

BIBLIOGRAPHY . 58

BIOGRAPHICAL SKETCH . 61

viii

LIST OF TABLES

Page

Table 2.1: Metric for comparing the different reduce operations. c.f. with @citesnum[21].
N is number of processes (or number of antennas) and S is the total size of chunk in
each antenna. Rabenseifner although has double the latency, the bandwidth is only
a fraction, hence is suitable for large messages. 21

Table 2.2: Trigger struct definition. Signal here means the signal of interest. See text for
more information. 23

Table 2.3: Description of candidate file. 28

Table 2.4: Description of fbson and dbson. 29

Table 2.5: Schema for Meta dumped for every voltage trigger. 31

Table 2.6: Lines of code (LOC) written in languages part of asgard. 32

Table 3.1: Salient features of the campaign runs. 34

Table 3.2: Observed pulsars . 35

Table 3.3: In-channel smearing at DM s where tscrunching is activated for the lowest and
highest frequency channels. The sampling time is 781.25 µs and frequency channel
width is 655.255kHz. 43

Table 3.4: Trigger rates for different S/N cuts in real data. Since the trigger logic was
different in all the campaigns. These trigger rates are computed only from the MW
campaign where the S/N cut was the least possible. There are 826 924 triggers in
this campaign. See text for more information. 45

Table 3.5: Trigger rates for different S/N cuts. Notice the extremely steep decline in trigger
rate at low S/N. This shows the extent of low S/N being whitenoise triggers. See
text for more information. 46

Table 4.1: The breakdown of VFPSdataset used for ML. See text. 52

Table 4.2: A binary classification confusion matrix. Each row corresponds to what the AI
thought the class would be. Each column is the ground truth. If a candidate actually
belongs to FALSE class (second column), if AI labels it as TRUE, it is treated as False
Positive (FP). See text for more information. 54

Table 4.3: Training results shown in various metrics computed. See text for metrics definitions. 55

Table 4.4: Confusion matrices for different datasets. See text for more information. 55

ix

LIST OF FIGURES

Page

Figure 1.1: Lorimer burst. The first ever FRB detected. The curve in the filterbank (see sub-
section 1.1.1) is due to a propagation effect called dispersion (see subsection 1.1.2).
The sheer strength of the signal is self evident when looking at the amplitude of the
peak. 2

Figure 1.2: DMv/s DM
DMMax

. An updated version of @citesnum[15, 19]. 6

Figure 1.3: A set of repeating FRBs detected @citesnum[6]. Scattering causes the broadening
of the pulse. 7

Figure 1.4: Population of FRBs over time. The exponential trend is what drives VLITE-Fast . 8

Figure 1.5: Population of FRBs over sky. 9

Figure 2.1: VLITE-Fast pipeline block diagram. See text. 12

Figure 2.2: Binomial algorithm for mpireduce.(c.f. @citesnum[21]) It looks like an inverted
binomial tree, hence, the name. This graphic is an frame grabbed from this https:
//youtu.be/p26iZX0sWgQ which is also made by me. 19

Figure 2.3: Rabenseifner algorithm for mpireduce.(c.f. @citesnum[21]). This graphic is an
frame grabbed from this https://youtu.be/cwi5kWgizPc which is also made
by me. 19

Figure 2.4: The linear trend in reduce_coadd (shown in blue) as number of iteration
increases due to overhead on underlying transport protocol. The extremely large
reduce_numant (shown in green) is due to the (TCP) transport protocol hanging.
See text. readbuf (shown in red) is the time taken to a chunk of filterbank data.
The x-axis in the plot is the iteration number. For this plot, the NBIT2 and chunk
size was 8 seconds of data. This is from the early days of VLITE-Fast when 19h

was considered a long run, hence the name perhaps_longest. 20

Figure 2.5: Bowtie plane. S/Nas a function of DMand time. It is called a bowtie plane since
a true dispersed signal produces a bowtie. This is a trigger from Crab pulsar with
S/N= 84.28 and DM= 56.75pc/cc. The data is digitized to uint8 hence takes integer
values in [0,256). 26

Figure 2.6: Top:Dispersed filterbank. Bottom:De-dispersed filterbank. Data is from a Crab
pulsar trigger with S/N= 8.5 and DM= 56.75pc/cc. 27

Figure 2.7: A trigger plot generated on a trigger realtime. This trigger is from the Crab
pulsar. Every trigger is processed and a trigger dump (dbson) and trigger plot
(shown here) are generated. 30

Figure 3.1: Collage of averaged pulses from the detected pulsars. 36

x

https://youtu.be/p26iZX0sWgQ
https://youtu.be/p26iZX0sWgQ
https://youtu.be/cwi5kWgizPc

Figure 3.2: Large FOV of VLITE-Fast understood using PSRJ̈1752-2806 as a marker.
Crosses represent the pointings where triggers from the pulsars were recorded.
Color is coded to represent the number of triggers detected from each pointings. . 37

Figure 3.3: Sensitivity of VLITE-Fast using triggers from pulsars and documented flux
density. Flux density is plotted on x-axis. Triggers received divided by time spent
on sky is plotted on the y-axis. 38

Figure 3.4: Cumulative distribution of number of candidates received in an 8-second gulp.
The lines correspond to 95,99% percentiles which mean 1.125 triggers s−1 and
2.75 triggers s−1. 40

Figure 3.5: Solid black line represents DM=129 pc/cc. 42

Figure 3.6: Solid black line represents DM=137 pc/cc. 42

Figure 3.7: Top: Distribution of triggers contaminated with DM150 RFI. Bottom: De-
dispersed filterbank showing the narrow band RFI. 42

Figure 3.8: DM-Width space of all the Heimdall triggers. Although the maximum width is set
to 100 ms, this plot only extends until 20 ms. This space is expected to be uniform.
The quantization seen in the width for large DMis an affect of heimdall adaptive_dt. 43

Figure 3.9: Histogram of DM of all the triggers recorded. The sharp line at DM=50 pc/cc is
due to the PSRJ̈1752-2806. The sharp lines at DM=350 pc/cc, DM=800 pc/cc and
DM=1000 pc/cc are due to heimdall triband structure. See section 3.4. The very
broad peak at DM=150 pc/cc is due to narrow band RFI. See subsection 3.3.2. . . 44

Figure 3.10: Skymap of time spent on pointing in hours. Axes are Right Ascension/Declination. 45

Figure 3.11: Trigger rates observed at different S/Nwhen only sending random noise through
the pipeline. This figure shows how noise dominated lower S/Nis. For low S/N(6|8),
the relation is exponential. The valley seen at 8 is result of changing trigger cuts
used in dispatch in the MW campaign (See section 3.1). 47

Figure 3.12: Top left: DM v/s showing quantization in at high DM consistent with triband
structure (see text in section 3.4) Top right: Distribution of registered width. Bottom
left: Distribution of registered DM. Bottom right: Distribution of registered S/N.
Injections parameters are derived from a uniform distribution and the same is
expected in the registered S/N, DMand widths. However, due to the triband structure,
it is not achieved. The drop in density at high S/Nis attributed to some percentage
of injected triggers (high DM) are failed to register. 49

Figure 4.1: CNN used in the AI. The numbers adjacent to the block represent the dimension
of the block. Every block is followed bya dropout (@citesnum[23, 7]) and leaky-
ReLU (@citesnum[24]). In addition, blocks with channels 32,128 also have
a batchnormalization (@citesnum[8]). See text for model details. See https:
//github.com/shiningsurya/trishul/tree/master/Python for code. 53

Figure 4.2: Running for 753 epochs. Model still can run for more epochs. GPU-based run
done on Azure cloud took around a minute per epoch. This is a run lasting ∼ 12h. . 55

xi

https://github.com/shiningsurya/trishul/tree/master/Python
https://github.com/shiningsurya/trishul/tree/master/Python

Figure 4.3: DM distribution of AI selected triggers. Red vertical lines correspond to triggers
from known pulsar (see section 3.2). 56

Figure 4.4: A possible FRB candidate found after using AI developed in chapter IV on
VFPS dataset . 57

xii

CHAPTER I

FAST RADIO BURSTS

The domain of Radio Astronomy is full of surprises. What started off as an experiment to

communicate across the Atlantic ocean using radio waves soon took turn when Karl Jansky recorded

radio signals emanating from the direction of our galaxy’s center and established the idea of using

radio telescopes to look at the heavens. Many decades later, the same radio astronomy discovered a

new type of stars which shines but in radio regime and also pulsates like a light house. These were

characterized to be pulsating source of radiation and were aptly named as pulsars. Half a century

later during which thousands of pulsars were discovered and documented, a new type of a signal

emerged. It was a serendiptious detection of a bright millisecond radio burst [12] in the archieval

data which brought into light, the existence of short time-scale, extremely energetic radio signals,

possibly originating from beyond the galaxy. These signals are called Fast Radio Bursts (FRB) and

the search for these signals forms the crux of this thesis.

The first discovered FRBis the [12] in 2007, colloquially known as the Lorimer Burst

(see chapter I). Many theory papers followed but there was no corroborative detection. In the lack

of which, skeptisim arose [3]. Prior to that [11] detected FRB-like pulses with DM as high as 5×103

originating from M87. So, these may very well have been the first detection of FRBs but due to the

limited time/frequency resolution, no substantiative evidence could be established.

Astronomers were not wrong in their dubious nature. Their experience with another species

of signals called Perytons [16] justifies it. Named after the mystical hybrid bird, these signals were

actually caused by the microwave on the observatory site. The premature opening of the microwave

door shuts off the magnetron abruptly, which produces a dispersed-like signal which was then

picked up by the radio telescope. This put more shade on the celestial nature of the Lorimer Burst.

1

Figure 1.1: Lorimer burst. The first ever FRB detected. The curve in the filterbank (see subsec-
tion 1.1.1) is due to a propagation effect called dispersion (see subsection 1.1.2). The sheer strength
of the signal is self evident when looking at the amplitude of the peak.

2

But then came as a surprise, [22] in 2016, almost a decade later, which reported 4 such

bursts and thus set in stone the existence of such species. The hunt was on. Now, four years and

many sophisticated advancements in observatory technologies later, the number of FRBs detected is

in hundreds. The details of this story will be discussed in section 1.2.

Given the amount of shear energy emitted in these bursts, astronomers were not wrong in

maintaining an innate assumption that these events were result of a cataclysmic event. And by

the very nature of such events, FRBs were not expected to repeat. And then came as a surprise,

FRB121102 in 2012, which repeated in time. Over the years since its discovery, FRB121102

is perhaps the most studied FRB with observations done from meter wavelength to milli-meter

wavelength. See [20, 19].

Astronomy wouldn’t be full of surprises, if FRB121102 was the only repeating FRB found.

In 2019, [4, 6] found 4 repeating FRBs (henceforth called repeaters) using the Canadian Hydrogen

Intensity Mapping Experiment (CHIME) telescope which prompted a fresh set of theories to emerge

to explain the same.

All the discovered FRBs are catalogued in FRBCAT [14]. All the theories of FRBs are also

catalogued in FRB-theorycat [17].

1.1 What are FRBs?

Before we go into FRBs, it is crucial to establish certain groundwork known in a radio astron-

omy setting. First being the data representation format widely used: filterbank in subsection 1.1.1.

Second being the phenomenon of dispersion which affects all the radio signals propagating through

the space and reaching the radio telescope. This will be covered in detail in subsubsection 1.1.2.

Then, in subsection 1.1.2, FRBs are characterized.

1.1.1 Filterbank

A popular data representation format for radio astronomers is the time frequency bins, known

as filterbank, where every bin has one or more of the four Stokes parameter. In a typical setting,

of the four, only the Stokes I is recorded. Any radio astronomy setup involves a frequency band

3

[νLOW,νHIGH] of interest discretized into NCHAN frequency channels, yielding frequency channel

width, denoted by FOFF, as bandwidth divided by the number of channels. Time samples are

sampled at a suitable Nyquist Sampling rate commensurate with the bandwidth νHIGH−νLOW. Let

the sampling rate be TSAMP.

With the above definitions in place, starting off with voltage samples, by applying Short

Time Fourier Transform and consequently taking magnitude (essentially Stokes I), filterbank is

produced. In practise, a suitable digitization scheme is employed and data is digitized to NBIT bits

per sample. Every consecutive time sample is separated by TSAMP in time and every consecutive

frequency sample is separated by FOFF. This representation makes it easier to look at the time

frequency variations and hence is popular.

1.1.2 Dispersion

Imagine sending sunlight through a prism. It is common knowledge to expect rainbow

emanating from the prism. This same phenomenon is what brings a rainbow after the rain if the

Sun is up. The physics behind this as follows: White light is made up of the seven colors. And,

when white light goes through the prism, distinct color components get separated, and a rainbow

is observed. This phenomenon is called dispersion and is not just valid for white light (or, visible

band of electromagnetic spectrum). Of course, the properties of the prism changes when going to

a different band of electromagnetic spectrum. But, any part of the electromagnetic spectrum can

get dispersed and its frequency components can get separated. And since different frequencies of

visible light correspond to different colors, we see colors of a rainbow.

Radio waves propagating in space also suffer the same fate. Prisms here are plasma

made of electrons in the space. This plasma exists in the line of sight between the source and

the observatory. A better understanding of the dispersion can be made by using the filterbank

representation. Dispersion causes progressively lower frequencies to receive the signal latter than

their higher frequency counterpart. See fig.

The time difference (also known as dispersion smearing) is calculated with the Equation 1.1.

The DM appearing in the equation is called the Dispersion Measure which is a measure of the electron

4

number density in the column along the line of sight.

∆t = DM×4.15×10−3[1
ν2

LOW
− 1

ν2
HIGH

]
s (1.1)

This effect of dispersion is to be corrected for any analysis and the process is called de-dispersion.

More details about de-dispersion will be covered in chapter II.

Dispersion is purely a propagation effect. Thus, amount of dispersion provides a good

marker of distance. There are two models for electron distribution in the galaxy, NE2001 [5]

and YMW [25]. With the help of a model, given a pointing in Galactic coordinates (l, b), the

DM contribution by the Galaxy can be estimated. This model becomes useful later when talking

about FRB origin in following sections.

De-dispersion In order to compensate for the dispersion effect, de-dispersion is performed.

The de-dispersion is a computationally intensive process.

With a filterbank, de-dispersion can be straightforward where frequency channels are time-

shifted can do the job. However, this does not negate dispersion effects in the frequency channel,

leading to what is called the in-channel smearing. Mathematically, it can be derived by using small

bandwidth approximation to Equation 1.1. See Equation 1.2 where ∆ν is the channel bandwidth

and ν is the frequency of the top end of the channel.

∆τ = DM×4.15×10−3[∆ν

ν3

]
s (1.2)

1.1.3 Characteristics

FRBs are short time-scale (∼ ms), bright (0.001−100 Jy), broadband (present in almost all

frequency channels) and extremely dispersed (very large DM) radio signals. The most distinctive

feature of an FRB is its DMwhich is many fold more than the galaxy could contribute. The galaxy

contribution to a signal detected at an observatory is calculated using the pointing information (at

the time of detection) and using an eletron density model as discussed in subsubsection 1.1.2.

5

Figure 1.2: DMv/s DM
DMMax

. An updated version of [15, 19].

To further appreciate the high DMof FRB , the DMand DM
DMMax

are plotted. DMMax is maximum

galactic contribution for the given pointing. See subsection 1.1.3 also [15, 19]. Clearly, all the FRBs

are atleast multiple times the galactic contribution. This inference, combined with the understanding

that DM is a proxy for distance, provides evidence that FRBs origin from extra-galactic and of

cosmological nature.

FRBs also exhibit other features such as scintillation and scattering. Scintillation is the

twinkling of stars phenomena one can observe. Scintillation presents itself in FRBs as the pulse

disappearing for some frequency channels and appearing back when looking at the filterbank. This

can be observed in the Figure 1.1.3. Scattering is the broadening of the pulse in the filterbank. This

is also seen as an exponential tail in the frequency averaged profile. Also see Figure 1.1.3.

6

Figure 1.3: A set of repeating FRBs detected [6]. Scattering causes the broadening of the pulse.

1.2 Detections so far

Using the catalogued FRBs from FRBCAT mentioned before, a brief summary of the FRBs

population is given. Firstly, section 1.2 summarizes the FRBs detected by various instruments over

time. Figure 1.2 shows the sky distribution of the FRBs. If FRBs are indeed extra-galactic, the sky

distribution would be isotropic.

1.3 Thesis outline

1.3.1 VLITE

This study is a part of the VLA Low Frequency Ionospheric and Transient Experiment

(VLITE). VLITE is a commensual observing system of the Karl G. Janksy Very Large Array radio

telescope (https://science.nrao.edu/facilities/vla) upon which VLITE-Fast is based.

Hence before describing the outline, the VLITE system is described here.

A selected subset of VLA antennas are fitted with low frequency receiver units at the casegrain

7

https://science.nrao.edu/facilities/vla

Figure 1.4: Population of FRBs over time. The exponential trend is what drives VLITE-Fast .

8

Figure 1.5: Population of FRBs over sky.

9

feed. Receivers are tuned to operate in 320−384 MHz giving a bandwidth of 64 MHz. Due to the

Mobile Users Operating System (MUOS) of the Department of Defense, the higher end of the band

receives a lot of Radio Frequency Interference (RFI), as a result, the frequency band is cut off at

361 MHz. Nevertheless, the voltage data is sampled at 128 Mhz (the Nyquist frequency of 64 MHz

bandwidth).

The sampled data from each of the antenna is multicast on the observatory intranet using

the User Datagram Protocol (UDP) in the form of VLBI Data Interchange Format (VDIF) packets.

At the time of writing, there are 16 VLA antennas participating in VLITE. VLITE also consists of 12

compute nodes with one login node which are interconnected by an Infiniband network [18]. Each

compute node houses nVIDIA Graphical Processing Units (GPUs) for all the signal processing and

also has a 500 GB Solid State Disk (SSD) installed.

This infrastructure is shared by two different pipelines: VLITE-SLOW and VLITE-Fast .

VLITE-SLOW is an imaging pipeline which produces short time skymaps and is not the focus of

this thesis. VLITE-Fast is a search pipeline which searches for FRBs.

1.3.2 VLITE as an FRB search engine

VLITE is a well suited engine to detect FRBs. The salient features are summarized here:

Commensal VLITE being a commensal system has uncontested access to the data from the

VLAantennas. This leads to extremely large onsky times which are the times actively looking

for signals of interest.

Large field-of-view (FOV) Each VLITE antenna is a 25−meter dish with center frequency of 350

MHz (0.85 meters in wavelength). The diffraction limit of each antenna is λ

D where D is the

diameter of the dish and λ is the wavelength. VLITE achieves a diffraction limit of 0.034

radians or 1.94o. An ∼ 2o FOV covers a large portion of the sky.

Sensitivity VLITE employs 16 antennas. Use of a large number of antennas helps in reducing the

overall background noise and thereby increases the sensitivity of the signal.

10

Inteferometer An inteferometer is a type of radio telescope with spatially separated antennas. The

spatial separation helps produce a delay between any pair of antennas which is then used to

triangulate (localize) the source of the signal. VLA is an interferometer. And, hence, VLITE is

too. Given how far the FRBs are originating from, any task of localizing the cause/source of

the signal is hindered by the inability to precisely identify the particular pointing in sky from

where the signal has originated. Here lies the strength of VLITE .

With the help of these features, VLITE endevors to be a FRB localizing search engine.

1.3.3 Outline

The goal of the study is to establish and start a search campaign making use of the com-

mensual observation system VLITE of the VLA radio observatory. With this in mind, a robust yet

efficient realtime search pipeline was designed and coded (see chapter II). The data taken became a

part of VLITE-Fast Pathfinder Survey (VFPS). The data is discussed in great detail in chapter III.

A completeness analysis, in which pure random noise was sent through pipeline, is performed to

test the noise response of the pipeline. In addition, artificial signals of interest were inserted into

the pipeline for testing the pipeline in a controlled environment. The data products yielded by

VFPS and the controlled testing have been used to develop an Aritificial Intelligence (AI) which will

be covered in chapter IV. The resulting AI solution is used to vet through the entire VFPS dataset to

identify any unknown signal missed previously. Results of the AI analysis are also reported in the

same chapter.

11

CHAPTER II

INSTRUMENTATION

This chapter explains the various pieces of hardware/software which make VLITE-Fast pos-

sible. As with any data processing/search pipeline, the design consists of various components which

are intermediated by data buffers. Such a design allows for modular component design wherein

every component is assigned to be either producer or consumer depending on its position and makes

it simplier. This practise is not novel in that it is known as the producer-consumer model.

A brief overview of the infrastructure is summarized in subsection 2.0.1. The pipeline is

graphically described in chapter II. All the data products/formats are defined in section 2.7.

Figure 2.1: VLITE-Fast pipeline block diagram. See text.

2.0.1 Overview

Firstly, all the components and the data buffers technology are listed and then approached

into details in separate sections.

PSRDADA Data buffer technology

Writer Baseband data packet capturing and writing

12

Process Baseband Baseband data to filterbank data

Coadder Co-adding filterbank data from all antennas

Heimdall Search program

Trigger mechanics Set of python scripts for various trigger level activities

TriggerHook Identifies slice of data and copies it for future analysis

TriggerMaster Realtime trigger responses

Writer and Process Baseband have been developed, written by Dr. Matthew Kerr. The author

has written Coadder, Trigger mechanics, Trigger Hook and TriggerMaster.

2.1 PSRDADA

The use of an intermediate buffer is ubiqitious in any real time pipeline. In a producer-

consumer model, a producer emits data which is to read by the consumer. In a realtime constrained

pipeline, the datarates may not be consistent all the time which may lead to consumer waiting for

new data (producer is slow), or unable to accept new data (producer is fast). Hence naturally, many

intermdiate buffers are used in VLITE-Fast pipeline design.

VLITE-Fast makes use of DADA as an intermediate buffer technology. DADA is built on SYSV

shared memory model thus makes use of linux system’s kernels and shared memory infrastructure

for offering buffering capability. DADA codebase is in written in C for linux type machines. DADA is

versatile that it can support the following modes:

• Single producer - Single consumer (SPSC)

• Single producer - Multiple consumer (SPMC)

• Multiple producer - Single consumer (MPSC)

• Multiple producer - Multiple consumer (MPMC)

13

Of them all, VLITE-Fast makes use of SPSC, SPMC oweing for a simple logic which involves a

single producer.

DADA can be visualized as an n-element ring buffer with each ring holding b bytes of data.

In addition to the data elements, DADA also offers header blocks which can be used to store data

descriptors and such information is stored in ASCII. Header is defined as key value pair with key

being a string and value being any data type. chapter II shows DADA buffers as the concentric rings

made of blocks.

2.2 Writer

The writer code is wholly contributed by Dr. Matthew T. Kerr

VLITE-Fast is a commensually operated search pipeline. Raw baseband voltage data comes

in VLBI Data Interchange Format (VDIF) packets over User Datagram Protocol network

sent by observatory level program called executor. The job of writer is to intercept these data

packets and write the header and data into DADA buffer.

The raw baseband data consists of two-polarizations, 64MHz bandwidth real sampled at

Nyquist sampling rate of 128MHz. Writer captures these packets, checks for time ordering and

writes into DADA buffer. Time integrity check is of paramount importance since all the following

components assume a time continuous flow of data.

In case writer finds that the incoming packets fail the time continuity check, it is designed to

zero fill the packets in between so at least data is continuous in time. The causes for such are many.

Sometimes, the ethernet network load may be high, or sometimes, the receiving nodes CPU usage

is high that it can’t respond in time. It has also been observed there are some nodes which are more

suspectible to packet drops than other nodes. Such nodes are ignored until the underlying issue is

resolved.

Another job of writer is to respond to voltage triggers (see section 2.6). For every voltage

trigger received, writer writes out one second VDIF file, containing packets, to the Solid State Drive

(SSD) onboard for the duration of the trigger. Care is taken that overlapping triggers don’t cause

duplications of raw voltage files.

14

2.3 Process baseband

The process baseband code contributed by Dr. Matthew T. Kerr

Reading raw baseband produced by writer, process_baseband hereafter, pb, performs

the following operations to output filterbank data into another DADA buffer:

1. Channelization using Fast Fourier Transform (FFT)

2. Polarization addition

3. Bandwidthing and bandwidth normalization

4. Kurtosis filtering

5. Digitization

All the above operations are performed on nVIDIA Graphical Processing Units (GPUs).

Channelization uses CUDA-FFT (cuFFT). All other operations involve user kernel launches. Addi-

tion of polarization yields Stokes I intesity. The upper edge of the VLITE-Fast frequency band is

polluted by the Mobile Users Operation System (MUOS), hence, the maximum frequency is cut off

at 360MHz bringing the effective bandwidth to 42MHz.

For a large chunk (∼ 1s)of data, the bandpass (time averaged frequency profile) is normalized

which removes any frequency variations on the time scales of a second. Since, the signals of interest

are much smaller in time and dispersed, such normalization doesn’t harm them. In addition to this,

there is also a kurtosis based filtering employed which removes any short timescales spurious data.

Last operation performed in this component is digitization which digitizes filterbank data

with NBIT. Digitization scheme employed follows from [9]. Now, the output data is written to

another DADA buffer.

2.4 MPI Coadder

Coaddition is the process of averaging time-aligned data streams to produce an averaged

data stream. The operation of averaging reduces the noise floor and helps boost the signal. The

15

motivation for coaddition is firmly established in subsection 2.4.1. subsection 2.4.2 explains the

workings which make coaddition possible in VLITE-Fast .

From here on, coadder refers to the component of the VLITE-Fast which performs coaddi-

tion. The underlying technology upon which coaddition operation is based is the Message Passing

Interface (mpi), hence, the coadder is also called mpi coadder.

Coadder reads the filterbank data written to DADA buffer by for all the antennas, coadds, and

writes the coadded filterbank data to a DADA buffer residing on a specific node (also called the root

node) for further operations. In short, the coadder performs, read-coadd-write operation in every

iteration.

2.4.1 Need for coaddition

By the Central Limit Theorem, the distribution of the mean of independent identically

distributed (iid) random variables is a Gaussian distribution with mean as the population mean

and standard deviation (std. dev.) as population std. dev.divided by
√

N. Noise in the filterbank

datastream coming from each of the antenna can be modeled as independent Gaussian noise.

Coaddition reduces the standard deviation of the noise and hence helps in bringing out the signal.

The extent of the attentuation of noise is determined by the sample size i.e, the number of antennas.

The signal boosting effect is also established while injecting signals. A large amplitude

dispersed signal has to be injected in a single antenna to produce the same S/Nas in case of coadded

antenna. This will be revisted in subsection 3.6.2.

2.4.2 MPI

Message Passing Interface (mpi) is a technology ubiqitiously used in all High Performance

Computing (HPC) settings. mpioffers various paradigms designed and optimized for parallized

jobs. One such paradigm and also the foundational element is the collective algorithm. mpidefines

a collective algorithm as one in which all the processes have to participate as a collection, hence the

name collective algorithm. Of all the collective algorithms, only two are used in VLITE-Fast and

discussed here:

16

Broadcast One process has data which it needs to send to every other process.

Reduce All processes have data which is to be combined by some operator and the result is to be

made available to a process.

In addition to the above collectives (parlance uesd by the HPC community to describe a collective

operation), there is also the barrier operation which is used to synchronize processes.

The broadcast operation is performed when one process has data (or message) which is

sent to all the other processes. At the end of this operation, all processes have identical data. The

reduction operation is performed when all processes have some data which is to combined (or

reduced) by some operation. The reduced data is present in a pre-defined process called the

mpi also offers capability of tuning by the Multi Component Architecture (MCA). MCA

helps you to configure the various runtime parameters of mpijobs from pre-defined options to

increase the performance. The tuning options used are described in subsection 2.4.4.

2.4.3 Coaddition

The operation of coaddition involves summation of the data from all the participating

processes followed by a scaling. Naturally, the reduce operation with summation operator is a perfect

fit for the summation step. The scaling operation can then be performed locally. The data is read from

DADA buffer (which is written to by). This data has been digitized to NBIT by process-baseband.

The first operation of coaddition is to convert the NBIT data into float32 data. This operation

increases the memory footprint by four folds but prevents any overflows in reduce operation and

is necessary. Next comes the actual mpireduce call after which, the coadded filterbank data (in

float32) is present in

Before any reduction is performed, it is paramount to check if all the data are time-aligned.

This time alignment is checked by the MJDtimestamp of the first datum in the array. The ROOT

timestamp is broadcasted to all the other processes which is then compared against the process’s

own MJDtimestamp. If both the MJDs match, actual filterbank data is used for reduction otherwise a

zero-filled array with the same size as the actual filterbank data is used.

17

The scaling operation done after the mpi reduce call requires the correct number of antennas

which have participated in the collective with real data and not with zero data. This is computed by

another mpi reduce operation which is done on a single integer set to 1 if the process is participating

with real data, otherwise set to 0. This operation reduces the actual number of antennas which have

contributed for the coaddition.

Coaddition is the major bottleneck of the pipeline and it is also the most computationally

expensive step. A typical gulp of the data is 8 seconds which with a typical NCHAN=4096, NBIT8,

and sampling time amounts to 10 MB. Due to the casting to float32, the gulp memory footprint

shoots up to 40 MB. For a typical number of antennas of 15, every iteration of coaddition involves

600 MB of floats summed across 15 antennas, making the total bandwidth of the operation to

600 MB×15 = 4.8 GB. Naturally, the performance of the pipeline depends on the optimizations of

the mpioperations. Two of the major optimizations are discussed in the following sub-sections.

2.4.4 Reduce

Reduction step is the heart of the coaddition. Any sort of delay in the coaddition would

hurt the realtime operations of the coaddition. Consequently, choice of reduction algorithm was

delibrated upon. The following is heavily relied on the seminal paper [21].

The default mpialgorithm for reduce is the binomial tree reduction. The essence of this

algorithm is that one process sends its data and other process receives it and adds it with its own

data. This repeats until there is only one process. It is graphically visualized to be a binomial tree

with individual node’s data as the leaves and the reduced data as the root. See subsection 2.4.4.

Rabenseifner algorithm [21] is an alternate reduce algorithm which is well suited for large

messages. Here, every process instead of reducing the entire message is only responsible for

reducing a chunk of the message. After which, all the processes send their reduced chunk back to

root. The entire process is visualized in Figure 2.4.4.

In order to compare different reduction algorithms, a suitable metric has to be introduced.

Metric employed here is loosely based on [21]. Two factors govern the metric. One, total number of

messages sent. Two, total number of bytes sent. The former measures the latency which is treated

18

Figure 2.2: Binomial algorithm for mpireduce.(c.f. [21]) It looks like an inverted binomial tree,
hence, the name. This graphic is an frame grabbed from this https://youtu.be/p26iZX0sWgQ
which is also made by me.

Figure 2.3: Rabenseifner algorithm for mpireduce.(c.f. [21]). This graphic is an frame grabbed
from this https://youtu.be/cwi5kWgizPc which is also made by me.

19

https://youtu.be/p26iZX0sWgQ
https://youtu.be/cwi5kWgizPc

Figure 2.4: The linear trend in reduce_coadd (shown in blue) as number of iteration increases
due to overhead on underlying transport protocol. The extremely large reduce_numant (shown in
green) is due to the (TCP) transport protocol hanging. See text. readbuf (shown in red) is the time
taken to a chunk of filterbank data. The x-axis in the plot is the iteration number. For this plot, the
NBIT2 and chunk size was 8 seconds of data. This is from the early days of VLITE-Fast when
19h was considered a long run, hence the name perhaps_longest.

as a constant for any size of message. The latter measures the total bandwidth requirement. The

metrics are only mentioned here. Interested readers are requested to refer [21]. The metrics are

tabulated in Figure 2.4.4.

The binomial reduce operation uses less messages but the total number of bytes sent is large.

A linear trend is evident in the reduce_coadd. This issue caused multiple pipeline failures around 6h

mark when the lag in the step gets too high and pipeline cannot function realtime. The choice of

Rabenseifner algorithm provides first aid to this issue. The linear trend is so slowly increasing that

pipeline doesn’t get derailed due to it.

20

Name Latency Bandwidth Local

Binomial log N S S
Rabenseifner 2 log N 2 p−1

p S p−1
p S

Table 2.1: Metric for comparing the different reduce operations. c.f. with [21]. N is number of
processes (or number of antennas) and S is the total size of chunk in each antenna. Rabenseifner
although has double the latency, the bandwidth is only a fraction, hence is suitable for large
messages.

2.4.5 Bookkeeping

The broadcast of MJD is a crucial book keeping step. It ensures only time-continuous data

goes down the pipeline. As discussed above, this is achieved by ROOT keeping MJD and other nodes

comparing their own timestamp with it. This operation involves a broadcast of float32 followed

by simple logic where each process decides to send actual data or zero-filled data.

In the Reduce_numant step, the number of antennas which have participated in the coad-

dition is computed. It is a reduce by sum operation where those processes which participated

send one and those which didn’t send zero. The resultant is stored in ROOT. It was observed that

occasionally the the time required would shoot to impossibly large times causing pipeline failure.

This is observed in Figure 2.4.4. To alleviate this issue, tcp protocol use was dropped.

2.5 Heimdall

The search program employed by VLITE-Fast is Heimdall([2]). Heimdall is a Graphical

Processing Unit (GPU) based search program which performs multiple de-dispersion trials and

tophat matched filtering to identify dispersed signals in the data. GPUs are needed de-dispersion

is extremely computationally intensive operation. Heimdall internally uses dedisp ([1]) for de-

dispersion. Tophat matched filtering helps to boost signals. Lastly, normalization of the time series

prior to searching regularizes the data. A simplified algorithm is shown here:

for dm in {2..1000}

do

for iwid in {1..6}

21

do

de_disperse (dm)

matched_filter (pow (2, iwid))

normalize

find peaks

endfor

endfor

Heimdall in reality is much more sophisticated and performs channel masking, and Radio

Frequency Interference (RFI) excision. Interested readers are encouraged to read [2].

Heimdall reads from the DADA buffer to which coadder writes the coadded data stream.

It reads a gulp size of data at a time (a parameter optimized, set to 24 seconds) and performs

multiple DM-width trials, if the peaks in the resulting de-dispersed, matched-filtered time series data

is significant and over a threshold, a candidate is registered at that particular DM ,width, and epoch.

Heimdall sends out these candidates over to Python server running on the login node from where it

is suitably acted upon (discussed in the following sections). Additionally, Heimdall also writes out

the candidates to a candidate file. See subsection 2.7.1.

2.6 Trigger mechanics

Trigger is a terminology used to denote a candidate which qualifies certain selection rules and

warrants follow up action. Trigger mechanics involve receiving triggers from Heimdall, applying

selection logic, and performing follow up logic. There are two types of triggers:

1. Voltage trigger

2. DBSON trigger

Voltage trigger, as the name implies, triggers raw baseband voltage data. And, dbsontrigger

generates a dbsonfile for every trigger. The course of action varies depending on the type of trigger.

dbsontrigger is treated as the default. If a candidate is to be triggered, then it will always have a

22

Index Name Type Comments

1 i0 double UTC start epoch of signal
2 i1 double UTC end epoch of signal
3 sn float Signal to Noise ratio of the signal
4 dm float Dispersion Measure of the signal
5 wd float Width of the signals in seconds
6 peak_time float Time since UTC epoch start of signal when signal peaks
7 meta char[128] Meta information

Table 2.2: Trigger struct definition. Signal here means the signal of interest. See text for more
information.

dbsontrigger. Each trigger has its own distinct multicast group which makes distinction and follow

up action simple and well separated.

The underlying which is passed around is the same for both the triggers. Table 2.2 shows

the struct definition.

Voltage trigger handling is solely performed by the writer (see section 2.2). dbsontrigger

response is much more sophisticated and will be dealt in the following sub-sections.

2.6.1 Trigger dispatch

Heimdall in addition to writing candidate files, also sends candidate data over to server

which is called the trigger dispatch. The purpose of trigger dispatch is to receive candidates, apply

various candidate selection logics, and multicasts triggers over to the compute nodes. Trigger

dispatch is written purely in Python.

Each selection rule consists of cuts on S/N, DM, and practise, multiple rules are used

simultaneously. Moreover, special notch filters to target pulses from pulsars are also applied. The

type of selection rules used and the triggers received are discussed in great detail in chapter III.

Hence, only a simple example of a rule is provided here:

S/N≥ 8

DM≥ 50 pc/cc

Width≤ 100 ms

23

By default, trigger dispatch only sends out dbsontriggers. More stringent set of rules is

applied in case of voltage triggers. The reason being SSD space required for voltages is much much

more than that required for dbson s. A typical rule for a dbsontrigger to also be a voltage trigger is

a simple cut as, S/N≥ 25. Such a simple rule allows for any serendiptious voltage triggering on

strong triggers.

Throttling Dispatching all the triggers received may sometimes overload the pipeline,

cause lags, and may ultimately fail the pipeline. Hence, a suitable trigger throttling mechanism is

put in place. Trigger rate may skyrocket for a multitude of reasons. It may be so whenever a bright

radio pulsar in in the field-of-view (FOV) of VLITE-Fast . It may also be when Radio Frequency

Interference (RFI) is strong, causing a large number of spurious triggers. Given the frequency band

of operation (320−384 MHz) being not just close to walky-talkies used by on-site engineers but

also being close to MUOS band, VLITE-Fast is more suspectible to RFI. Presence and effects of

RFI is discussed more in detail in section 3.3. Here, only the instrumentation part of the throttling is

described.

Heimdall performs searches in batches. All the candidates from a batch are sent at once

after the batch has been processed. Throttling is done at a sub-batch level. A typical batch size

is 30720 samples (∼ 24 seconds) and the sub-batch is 8 seconds. As discussed in section 3.3, if a

sub-batch sees more than 200 triggers, it is vetoed against not dispatched.

2.6.2 Trigger hook

Any type of follow-up analysis requires the filterbank data spanning for the duration of the

trigger. The job of Trigger hook is to receive the dbsontrigger, slice the appropriate filterbank data,

and write it along with trigger information into DADA buffers.

Input to trigger hook is the same DADA buffer used by Heimdall for its searching. Output of

trigger hook are two separate DADA buffers, one for trigger information (header) and one for trigger

data (data). DADA offers header block in a buffer but the number of headers is hardcoded to 8 which

would severly reduce the number of triggers that can be held in buffer to 8. Hence, two separate

24

buffers are employed.

Trigger Hook reads the buffer and keeps track of the UTC epochs of the first sample in each

data-block as it reads. Then, for a trigger received, with some pointer arithmetic, a slice of filterbank

data is written to the data DADA buffer and trigger information is written to header DADA buffer.

Trigger hook also holds the option to write out a fbson. But, this option is not typically

used since follow up action is performed anyway.

2.6.3 Trigger master

Reading from the buffer to which Trigger Hook has written the sliced filterbank along with

trigger information, Trigger master performs the following:

• Generating:

– De-dispersed filterbank binary JSON (dbson, see subsection 2.7.3)

– Trigger plot (see subsection 2.7.4)

• Machine learning (ML) based classification of the trigger and baseband triggering.

The following only discuss the generation of dbson and trigger plot. The entirity of

classification is discussed in great detail in chapter IV. Firstly, the bowtie plane is introduced. And

then, the de-dispersed filterbank is described. These two are image planes which fully characterize

any trigger. Infact, the ML strategy employed (chapter IV) uses these image planes as input.

The bowtie plane is computed using the Fast De-dispersion Measure Technique (FDMT, [26]).

The low frequency introduces large delays which make the FDMT algorithm extremely slow. Hence,

prior to FDMT, the data is first incoherently de-dispersed to first DMand then FDMT is applied.

2.6.4 Meta response

For every voltage trigger issued, a variety of meta data has to be packaged to do any kind

of analysis with the voltage data. This job is performed by Meta response. Meta data involves the

following:

1. Antenna mappings

25

Figure 2.5: Bowtie plane. S/Nas a function of DMand time. It is called a bowtie plane since a
true dispersed signal produces a bowtie. This is a trigger from Crab pulsar with S/N= 84.28 and
DM= 56.75pc/cc. The data is digitized to uint8 hence takes integer values in [0,256).

26

Figure 2.6: Top:Dispersed filterbank. Bottom:De-dispersed filterbank. Data is from a Crab pulsar
trigger with S/N= 8.5 and DM= 56.75pc/cc.

2. Antenna delays

3. Antenna positions

4. Trigger parameters

This job is done by a Python server running on the login node. This server listens to the

mcast group to which voltage triggers are issued. For a voltage trigger, it outputs a metar file as

described in subsection 2.7.5, and subsection 2.7.5.

2.7 Data products

This section defines all the data products of the pipeline.

2.7.1 Candidate file

A candidate file consists of tab-separated values. Every new line has either two fields or

nine fields. The definition of the file is given in subsection 2.7.1.

2.7.2 FilterBank jSON

FilterBank jSON (fbson) is an Universal Binary JSON (http://ubjson.org/) file format

containing unprocessed filterbank along with header information. Filterbank data is in time major

format with frequency index changing the fastest. The schema is defined in Table 2.7.1.

27

http://ubjson.org/

Type of
data

Number of
fields Data

Pointing 2
Right Ascension in radians
Declination in radians

Candidate 9

Signal to Noise ratio of the candidate
Index of the first sample of the signal since
the start of the observation
Time of the first sample of signal
Filterwidth of the signal
Index of the DM trial
DM of the signal
Number of giants in the group
UTC epoch of the start of the signal
UTC epoch of the end of the signal

Table 2.3: Description of candidate file.

This data product is no longer in use since the trigger processing is currently done in

realtime.

2.7.3 De-dispersed filterBank jSON

De-dispersed filterbank jSON (dbson) is an Universal Binary JSON (http://ubjson.

org/) containing de-dispersed filterbank and bowtie plane digitized to uint8. The schema is

defined in Table 2.7.1.

2.7.4 Trigger plot

Trigger plot is a diagnostic plot generated for every trigger. It is saved in Portable Net-

works Graphics (PNG, https://tools.ietf.org/html/rfc2083) format and rendered used

PGPLOT https://www.astro.caltech.edu/~tjp/pgplot/ library.

A trigger plot consists of bow-tie plane, de-dispersed filterbank, frequency averaged time

profile, and DMprofile. In addition to them, a trigger plot also shows S/N, width, pointing information,

and time information. A typical trigger plot for a known pulsar trigger is given in subsection 2.7.4.

28

http://ubjson.org/
http://ubjson.org/
https://tools.ietf.org/html/rfc2083
https://www.astro.caltech.edu/~tjp/pgplot/

Type Parameter Present Comments

S/N Both Signal to Noise ratio of the trigger
DM Both Dispersion Measure of the trigger
Width Both Width of the trigger in seconds

Time

Peak time Both Peak time of the trigger from the start of the data
Tstart Both MJD of the start of the data
Tsamp Both Sampling time of the data
Duration Both Duration of the data

Frequency
Fch1 Both Frequency of the first channel in MHz
Foff Both Frequency width in MHz
Nchans Both Number of channels in the data

Indices

I0 Both UTC epoch of the first sample of the data
I1 Both UTC epoch of the last sample of the data
Epoch Both UTC epoch of the start of the observation
Nsamps Both Size of the data

Parameters

Nbits Both Number of bits per datum
Antenna Both Station ID
Source name Both Name of the source observing when trigger was recorded
RA Both Right Ascension of the source in radians
Dec Both Declination of the source in radians
Group Both String identifier

DMs DM1 DBSON Start DM in pc/cc in bowtie plane
DMoff DBSON DM width in bowtie plane
NDM DBSON Number of DM trials in bowtie plane

Data FB FBSON Raw filterbank
DD DBSON De-dispersed filterbank
BT DBSON Bow-tie plane

Table 2.4: Description of fbson and dbson.

29

Figure 2.7: A trigger plot generated on a trigger realtime. This trigger is from the Crab pulsar.
Every trigger is processed and a trigger dump (dbson) and trigger plot (shown here) are generated.

30

Type Parameter Comments

Header

S/N Signal to Noise ratio of the trigger
DM Dispersion Measure in pc/cc of the trigger
Width Width of the trigger in seconds
T0 UTC epoch of the start of the signal
T1 UTC epoch of the end of the signal

Delays

VLITE_ANT_ID VLITE Antenna ID
VLA Antenna VLA Antenna
DIFX_HOST Compute node connected to the antenna
DIFX_IFACE Network interface on the compute node
CLK_OFFSET Clock offset in nanoseconds
PAD Antenna string identifier
LO_FIBER RF-over-Fiber delay in nanoseconds
ENABLE If antenna is added to the array

Antprop

CONFIG Array configuration identifier
DATASETID Dataset identifier
CREATION Epoch of creation

EOPSET
Earth Orientation Parameter set.
TAI_UTC, UT1_UTC and
pole information.

dots For each EOPDAY

ANTS
Antenna information.
WIDAR_ID, PAD, X, Y, Z, OFFSET

dots For each antenna

Table 2.5: Schema for Meta dumped for every voltage trigger.

2.7.5 META Voltages

Meta (meta) is an Universal Binary JSON (http://ubjson.org/) containing meta infor-

mation required for any voltage analysis.

2.8 Codebases

There are two pipeline codebases. Writer and process-baseband wholly contributed by Dr.

Matthew Kerr are found in vlite-fast (https://github.com/kerrm/vlite-fast). All the other

codes required for the pipeline (written by me) can be found in asgard (https://github.com/

shiningsurya/asgard).

asgard is the pipeline code written by me which makes VLITE-Fast possible. It is written in

31

http://ubjson.org/
https://github.com/kerrm/vlite-fast
https://github.com/shiningsurya/asgard
https://github.com/shiningsurya/asgard

Language LOC

C++ 10 000
Python 3 600
BASH 300

Table 2.6: Lines of code (LOC) written in languages part of asgard.

C++, Python and BASH. The breakdown of the lines of code (LOC) written are given in section 2.8.

32

CHAPTER III

VLITE-FAST PATHFINDER SURVEY

This chapter summaries the entirity of the data collected in numerous runs of the VLITE-Fast sys-

tem, and follows it up careful statistical analysis. All triggers from known sources are summarized.

The whole data is bundled together as the VLITE-Fast Pathfinder Survey (VFPS).

3.1 Campaign runs

VFPS consists of data collected over multiple settings. Each campaign run is characterized by

the bits of digitization used for filterbank data used and the trigger cuts used. This characterization

breaks the whole of VFPS into multiple campaigns. Firstly, all the campaign runs are enumerated

and described in brief before delving into the details in respective sub-sections.

NBIT = 2 (NB2) This was the first run of VFPSsystem. All the filterbank data was digitized to

2 bits to test the computational capabilities of the pipeline. Conservative trigger cuts were

employed for the same reason.

NBIT = 8 (NB8) The filterbank data bit depth was increased to 8 in this run. The trigger cuts were

somewhat more agressive than before.

Max Warp (MW) The filterbank was digitized to 8 bits same as before. The trigger cuts were

drastically changed to be the most aggressive cuts possible.

The key features are summarized in section 3.1.

3.1.1 NB2

In an epoch from 2019-10-17 to 2019-12-05 spanning for 49 days, VLITE-Fast was

onsky for 27.03 days. This resulted in capturing 10 306 triggers, yielding a trigger rate of∼ 16 hr−1.

33

Label
Start
(YYYY-MM-DD)

End
(YYYY-MM-DD)

On-sky
(day)

Uptime
(%) Triggers

Rate
(/hr) Comments

NB2 2019-10-17 2019-12-05 27.03 55.61 10 306 15.89 Two bit digitization
NB8 2019-12-19 2020-01-21 12.16 36.10 12 028 41.19 Eight bit digitization
MW 2020-01-22 2020-06-27 87.16 55.32 826 294 394.85 Eight bit digitization
ALL 2019-10-17 2020-06-27 126.38 49.79 848 628 279.77 All the campaigns

Table 3.1: Salient features of the campaign runs.

The uptime achieved in this was 55.6%. The main features of this run was that the data was digitized

to NBIT2 hence the name. The trigger cuts were humble:

S/N≥ 8

DM≥ 50 pc/cc

Width≤ 100 ms

This run didn’t have the dbson trigger mechanics in place. Instead, for every trigger, an

fbson file was written to disks at all the antennas including the coadded antenna as well.

3.1.2 NB8

In an epoch from from 2019-12-19 to 2020-01-21spanning 33 days, VLITE-Fast was

onsky for 12.16 days. During which, VLITE-Fast collected 12 028 triggers, yielding an event

rate of ∼ 41 hr−1. Fraction of total time spent on sky was 36.10%. The trigger cuts were a bit more

agressive than NB2 run.

S/N≥ 7.5

DM≥ 50 pc/cc

Width≤ 100 ms

34

PSRJ
RAJ
(hh:mm:ss)

DECJ
(dd:mm:ss)

DM
(pc/cc)

P0
(s)

W50
(ms) N

S400
(mJy)

Time on source
(hr)

J1752-2806 17:52:58.6 -28:06:37.3 50.37 0.562 6.1 2196 1100.0 2.00
J0534+2200 05:34:31.9 +22:00:52.0 56.77 0.033 3.0 24 550.0 0.84
J0742-2822 07:42:49.0 -28:22:43.7 73.73 0.166 4.200 90 296.00
J1745-3040 17:45:56.3 -30:40:22.9 88.37 0.367 6.1 29 66.0 23.72
J2321+6024 23:21:55.2 +60:24:31 94.59 2.256 131.1 4 36.0 0.14
J1935+1616 19:35:47.8 +16:16:39.9 158.52 0.358 6.0 34 242.0 1.72
J1922+2110 19:22:53.5 +21:10:42 217.09 1.077 14.8 10 30.0 9.70

Table 3.2: Observed pulsars

3.1.3 MW

This is the longest campaign run in the VFPS. Starting from 2020-01-22 to 2020-06-27,

in a total length of 157 days, VLITE-Fast achieved 55.32 uptime by being on sky for ∼ 87 days.

Two separate trigger cuts were employed to keep trigger rates in check. The trigger cuts were as

aggressive as possible, hence, collecting 826 294 triggers with trigger rate of ∼ 395 hr−1.

S/N≥ 6.0&S/N ≥ 8.0

DM≥ 50 pc/cc&DM ≥ 50 pc/cc

Width≤ 100 ms&Width ∈ [20,100] ms

3.2 Detection of pulsars

A large onsky time yields many serendiptious triggers caused by pulses from pulsars. These

detections are a field test for VLITE-Fast and are tabulated in section 3.2. Based on these detections,

a rudimentary argument for Field of View (FOV) (subsection 3.2.1) and sensitivity (subsection 3.2.2)

are formulated.

3.2.1 Field of View

It is worthwhile to understand the spatial extent over which the PSRJ̈1752-2806 (from now

on dm50) has been detected. This exercise would help us visualize how large of a field-of-view

35

Figure 3.1: Collage of averaged pulses from the detected pulsars.

VLITE-Fast posses. Angular resolution on the basis of a diffraction limit arguments is ∼ 2o

(c.f. subsection 1.3.2). See subsection 3.2.1.

3.2.2 Sensitivity

The sensitivity of the VLITE-Fast can be understood using the detected set of pulsars.

Since, each pulsar has a documented flux density at 400 MHz, available in PSRCAT([13]). With the

help of number of pulses detected, the sensitivity of VLITE-Fast can be loosely extrapolated on

the basis of the pulsars.

3.3 RFI

One of the major challenges any radio observatory faces is that of Radio Frequency Inter-

ference (RFI). These are spurious radio signals of human origin polluting the frequency band of

interest. In a search pipeline such as VLITE-Fast , RFI causes large number of triggers which tax

the pipeline. One of the main reasons for VLITE-Fast pipeline failing from time to time is the lag

caused by serving many spurious triggers because of RFI. Naturally, with the triggers collected so

36

Figure 3.2: Large FOV of VLITE-Fast understood using PSRJ̈1752-2806 as a marker. Crosses
represent the pointings where triggers from the pulsars were recorded. Color is coded to represent
the number of triggers detected from each pointings.

37

Figure 3.3: Sensitivity of VLITE-Fast using triggers from pulsars and documented flux density.
Flux density is plotted on x-axis. Triggers received divided by time spent on sky is plotted on the
y-axis.

38

far, a strategy can be devised to understand the triggers caused by RFI and mitigate them realtime.

This is described in subsection 3.3.1. also observed recurring RFI which produces a distinct feature

in the DM distribution. This artifact is discussed in subsection 3.3.2.

3.3.1 RFI contamination

Detection of a true signal (of astrophysical origin) is a rare event. Registering a large number

of triggers in a short time is indicative of RFI. This fact is used to measure the amount of RFI

contamination in the data. All the triggers are collected in 8-second batches and counted. If a given

batch has a large number of triggers in it, it is treated as RFI. Figuring out the correct large number

of triggers is done heuristically.

Firstly, the cumulative distribution of the number of triggers in a batch (of 8 seconds) is

computed. See subsection 3.3.1. Understanding that RFI would only be contaminating a small

percent of the whole data. One would expect the cumulative distribution to flatten out for larger

number of triggers in a batch. Another way to interpret the same would be that only a small portion

of the dataset have extremely high trigger activity. A suitable threshold is thus selected which

limits the maximum number of triggers in a batch of 8 seconds but retains most of the triggers.

Mathematically, this threshold which be an inflection point of the cumulative distribution function.

Based on the cumulative distribution, 95,99% percentiles turn out to be 1.125 triggers

s−1 and 2.75 triggers s−1. This is shown as the black dotted line and red solid line in the plot

(subsection 3.3.1).

3.3.2 DM=150 pc/cc artifact

Short time RFI in a single frequency channel does not produce spurious triggers since

bandpass normalization on the time windown containing the RFI cancels its intensity. However,

when there is short time RFI in separate channels, it is a different story. If such a short time RFI is

coincident in time, any search pipeline would register it as a DM=0 pc/cc signal and can be filtered

out easily. But, if the same RFI has a time offset between the frequency channels, it causes the

same search pipeline to register spurious triggers at that DM which culls the time offset and hence

39

Figure 3.4: Cumulative distribution of number of candidates received in an 8-second gulp. The
lines correspond to 95,99% percentiles which mean 1.125 triggers s−1 and 2.75 triggers s−1.

40

are much more difficult to excise.

A short time RFI exisiting only in specific frequency channels having time offset between

the channels behaves like a dispersed signal. And a candidate is registered for that DMwhich aligns

the time offset. This effect is observed in VFPSwhich causes triggers at a range of DM s centered

around DM=150 pc/cc, hence the name. See the de-dispersed filterbank and frequency averaged

profile in subsection 3.3.2.

3.4 Heimdall triband structure

A complete statistical analysis of all the triggers also uncovered the extent of capability

of Heimdall in its DM-width trials. See Table 3.4 which is expected to be uniform in the DM-width

parameter space. However, for large DM s, Heimdall employs a time averaging window (known as

tscrunching) which reduces the sensitivity in the width. This is captured by the quantization seen in

the width space for large DM.

Heimdall performs the tscrunching operation by default. This operation is a feature of the

underlying de-dispersion code called dedisp([1]) which is used by Heimdall. For large DM, the

in-channel smearing (introduced in subsubsection 1.1.2) is very high and at times exceeds the

sampling time. In such a case, time averaging is performed which increases the sampling rate and

the in-channel smearing is kept less than the sampling time. If the in channel smearing is much

more than the sampling time, the signal is lost. Any amount of de-dispersion would not bring out

the signal.

In all the runs so far, the adaptive_dt was enabled. An effect of this feature is that for

weak S/N, large DMsignals if the width is not near any of the quantized widths, the matched filtering

would not boost the signal causing it to be passed as non-detection.

An artifact of this is seen in excess triggers registered at specific DM s beyond which

tscrunching is performed prior to searching. These DM s are found to be DM=347.165 pc/cc and

DM=790.695 pc/cc for which the in-channel smearings at highest, lowest and central frequencies

are tabulated at section 3.4.

41

0.45

Figure 3.5: Solid black line represents DM=129 pc/cc.

0.45

Figure 3.6: Solid black line represents DM=137 pc/cc.

Figure 3.7: Top: Distribution of triggers contaminated with DM150 RFI. Bottom: De-dispersed
filterbank showing the narrow band RFI.

42

Table 3.3: In-channel smearing at DM s where tscrunching is activated for the lowest and highest
frequency channels. The sampling time is 781.25 µs and frequency channel width is 655.255kHz.

DM (pc/cc) Frequency (MHz) Smearing (ms) Time units

347.165
361.941 19.9 25
340.973 23.8 30
320 28.8 36

790.695
361.941 45.3 58
340.973 54.2 69
320 65.6 84

Figure 3.8: DM-Width space of all the Heimdall triggers. Although the maximum width is set to 100
ms, this plot only extends until 20 ms. This space is expected to be uniform. The quantization seen
in the width for large DMis an affect of heimdall adaptive_dt.

43

Figure 3.9: Histogram of DM of all the triggers recorded. The sharp line at DM=50 pc/cc is due to
the PSRJ̈1752-2806. The sharp lines at DM=350 pc/cc, DM=800 pc/cc and DM=1000 pc/cc are
due to heimdall triband structure. See section 3.4. The very broad peak at DM=150 pc/cc is due to
narrow band RFI. See subsection 3.3.2.

44

Figure 3.10: Skymap of time spent on pointing in hours. Axes are Right Ascension/Declination.

3.5 Summary statistics

For a total uptime of ∼ 126 days, the distribution of time spent on each pointing in shown

in section 3.5. The trigger rates are tabulated in Figure 3.5. Since the trigger logic was significantly

changed among campaigns, the trigger rates are only shown for MW campaign.

S/N cut
Trigger
rate (/hr) S/N cut

Trigger
rate (/hr)

6 394.85 7.5 50.28
6.5 165.10 8 33.9
7 85.92 10 13.58

Table 3.4: Trigger rates for different S/N cuts in real data. Since the trigger logic was different in all
the campaigns. These trigger rates are computed only from the MW campaign where the S/N cut
was the least possible. There are 826 924 triggers in this campaign. See text for more information.

45

S/N cut
Trigger
rate (/hr) S/N cut

Trigger
rate (/hr)

6 117.2 7.5 3
6.5 23.1 8 2
7 6.5 10 0.12

Table 3.5: Trigger rates for different S/N cuts. Notice the extremely steep decline in trigger rate at
low S/N. This shows the extent of low S/N being whitenoise triggers. See text for more information.

3.6 Simulation runs

In an effort to better understand the capabilities of VLITE-Fast , data was taken in controlled

enviroments. Those controlled environments and the results of the data taking are surmised here.

3.6.1 Pure noise

In this, VLITE-Fast data coming from the antennas was discarded and replaced with

Gaussian random noise with mean 0 and standard deviation 33.313. Whatever triggers registered in

such a run are purely noise triggers. This simulation was run for ∼ 72 hours collecting ∼ 10 000

triggers.

The distribution of the S/Nregistered is in subsection 3.6.1. The rates are tabulated for

different S/Ncuts in Figure 3.6.1.

This exercise proved fruitful in understanding how the pipeline responds to pure noise. Pure

white noise has no signal content whatsoever. These triggers are result of pure noise data that looks

exactly like a real single. This is picked up by the pipeline. There is no technique, or procedure that

can be applied to alleviate such triggers. Hence, they are only argued upon in a statistical sense.

See Figure 3.6.1. The S/Ncut in the MW run was 6 which yielded a trigger rate of about 395 hr−1.

This exercise shows that about 58% of the triggers are due to pure random noise which is a lot.

3.6.2 Injected

A dispersed signal of known DM, amplitude, and is added on top of random noise, and sent

through the pipeline. The signal is then recovered from the triggers collected. This exercise shows

how receptible VLITE-Fast pipeline is. Since the known signal is embedded on top of random

46

Figure 3.11: Trigger rates observed at different S/Nwhen only sending random noise through the
pipeline. This figure shows how noise dominated lower S/Nis. For low S/N(6|8), the relation is
exponential. The valley seen at 8 is result of changing trigger cuts used in dispatch in the MW
campaign (See section 3.1).

47

noise, there are also many noise triggers which are registered. Such triggers are later filtered by

comparing the time of injection with the time of trigger’s peak.

This simulation run was designed to inject 15 FRBs in 2-minutes, yielding a trigger rate of

450 hr−1. Due to the Heimdall tri-band structure (see section 3.4), which makes the former less

suspectible to high DM triggers for widths far from the quantized width, the trigger rate captured

was 308 hr−1. Fig. 3.6.2 shows four subplots. The triband structure is plotted in top left. The rest

capture the distributions of registered S/N, DM and widths.

The decreasing density for large S/N,DM is because of Heimdall triband structure. Due to the

quantization in the width for large DM, many high DM signals are not registered hence, a downward

trend is observed in S/N, DM.

48

Figure 3.12: Top left: DM v/s showing quantization in at high DM consistent with triband structure
(see text in section 3.4) Top right: Distribution of registered width. Bottom left: Distribution of
registered DM. Bottom right: Distribution of registered S/N. Injections parameters are derived from a
uniform distribution and the same is expected in the registered S/N, DMand widths. However, due
to the triband structure, it is not achieved. The drop in density at high S/Nis attributed to some
percentage of injected triggers (high DM) are failed to register.

49

CHAPTER IV

MACHINE LEARNINGS

This chapter describes the Machine Learning (ML) / Artificial Intelligence (AI) system in

the VLITE-Fast which identifies triggers worthy of a closer look. First and foremost, the motivation

is discussed in section 4.1. The ML model is introduced and described in section 4.2. Lastly, the

newly learnt ML model is applied to the whole of VFPS and results are examined in section 4.3.

4.1 Coherent analysis

VLITE-Fast operates on an incoherent level. In all of the pipeline, only the power is

considered. There is no phase considered anywhere. Hence the name, incoherent. This lack of

phase greatly simplifies the pipeline design but comes at a cost.

For an array of N antennas, co-addition in powers (incoherently) (see subsection 2.4.1) only

boosts the signal (or specifically, the signal-to-noise, S/N) by
√

N. A coherent analysis would boost

the S/N by N. The reason being the phase information.

In addition to the S/N boost, a coherent analysis would also provide good localization

capability. Given a set of relative phases, one can translate to geometric delays and from there

geometric path differences from asrophysical sources. This ability is of great value since FRBs are

known to be originating from outside the galaxy by which small angular variations could lead to

astronomically large separated distances due to large radii.

4.1.1 Coherent analysis with VLITE-Fast

The cost of doing a coherent analysis real time is prohibitive. In order to be able to do

coherent analysis, voltage data has to be recorded. A second of raw voltage data consisting of

two polarization measures about 250 MB. A typical VLITE-Fast compute node has 450 GB of

50

dedicated Solid State Disk (SSD). Meaning, a VLITE-Fast compute can only have 1800 s (or 30

minutes) of raw voltage data before getting filled. Given the extremely large volume of voltage data,

it is impractical to record voltages all the time. Hence, VLITE-Fast performs searches incoherently

and triggers voltages for a coherent follow-up analysis.

It is also not practical to trigger voltages on all the triggers. It would be so as if voltages are

recorded all the time since the trigger rates are high. So only a subset of the triggers received are to

be allowed to trigger voltages. Naturally, such a subset has to be selected on the basis of the signal’s

merit of being a real signal of astrophysical origin. The question of how to decide what triggers to

trigger on is the main goal of this chapter.

4.2 Machine Learning

The objective of the AI is to given a trigger, identify if a following coherent analysis has to be

initiated. In an ideal situation, it would be desirous to have an AI solution which can identify all the

true signals (i.e., the signals of interest). However, training such an AI solution is extremely difficult.

The signals of interest are rare. Hence, any dataset produced would posses this assymmetric, which

then would make training difficult. Hence, this approach is abandoned. Succiently, the mission of

the AI is to select those triggers which are worthy of a second closer look.

Any AI solution is only as good as the data used for training it. Keeping this in mind,

the dataset is carefully created, which is discussed in subsection 4.2.1. The model and training

procedure used is described in subsection 4.2.2. The results from the training are showcased

in subsection 4.2.3.

4.2.1 Dataset

The problem at hand is a binary classification problem. Every input is to be mapped to one

of the two classes, either the TRUE class or the FALSE class. Hence, the dataset used for training is

so judiciously chosen such that it contains good representation of both the classes.

Triggers from known radio pulsars with S/N≥ 7 constitute a part of the TRUE class. All the

injected and received triggers also constitute the TRUE class. RFI is manually selected using the

51

Dataset Class Number

VFPS - 818 848

Injected True 8 480
Pulsars True 23 574
TRUE - 32 054

RFI False 8 207
DM150 RFI False 20 660

FALSE - 28 867

Unseen True 1 716
Unseen False 1 700

Table 4.1: The breakdown of VFPSdataset used for ML. See text.

creiterion described in subsection 3.3.1. The DM150 RFI is also selected and both form the FALSE

class. The actual breakdown of the cardinalities are given in subsection 4.2.1.

A separate dataset is chalked out and treated as unseen dataset. This dataset will not be used

in training or validation but will be used to see how the model performs on data which is not seen

by it in any way.

4.2.2 Model and training

A typical Convolutional Neural Network (CNN) is used here. The design of the CNN is

depicted in subsection 4.2.2. The non-linear activation used is the leaky-rectifier ([24]). To avoid

overfitting dropouts ([7, 23]) are used after every layer. To alleviate the covariant shift seen in deep

layers, a batchnormalization layer is also added ([8]) after certain layers.

The input of the CNN is two 32× 32 image plane of de-dispersed filterbank and bowtie

plane. The output is a two element vector showing the probabilities of the input belonging to both

the classes. A dbsonactually holds bowtie image of size 256× 256 and de-dispersed filterbank

of 64×256. These are reduced by block-means to same size of 32×32 and brought to [0,1] by

dividing by 255.

Training was done in minibatches of 10. Two data augmentation transforms were employed:

1. Frequency axis flip of de-dispersed filterbank.

52

Figure 4.1: CNN used in the AI. The numbers adjacent to the block represent the dimension of
the block. Every block is followed bya dropout ([23, 7]) and leaky-ReLU ([24]). In addition,
blocks with channels 32,128 also have a batchnormalization ([8]). See text for model details. See
https://github.com/shiningsurya/trishul/tree/master/Python for code.

2. Time, DMaxes flip of bowtie plane.

It is ensured that these two transformations don’t cause the model to learn spurious features. Adam

optimizer ([10]) was used for optimizing. A step learning rate was employed. The loss function

was CrossEntropyLoss since this is a classification problem. The script which does the training is

https://github.com/shiningsurya/trishul/blob/master/Python/tscae_ig. Interested

readers are encouraged to read the code.

4.2.3 Training results

The main training results are tabulated in Table 4.2.3. The learning curves are plotted

in Table 4.2.3. The confusion matrices are tabulated in Table 4.2.3.

The metrics used to evaluate the performance are listed below. These metrics are computed

from the confusion matrix. A confusion matrix is a matrix showing how the AI has done the

classification. A member of any class (TRUE or FALSE) can be classified as any other class by

the AI. This breakdown is tabulated in confusion matrix. A typical confusion matrix is shown

in subsection 4.2.3.

A binary classification problem has two classes (TRUE, FALSE). Hence, a total of four

possibilities can arise:

53

https://github.com/shiningsurya/trishul/tree/master/Python
https://github.com/shiningsurya/trishul/blob/master/Python/tscae_ig

TRUE FALSE

TRUE TP FP
FALSE FN TN

Table 4.2: A binary classification confusion matrix. Each row corresponds to what the AI thought
the class would be. Each column is the ground truth. If a candidate actually belongs to FALSE
class (second column), if AI labels it as TRUE, it is treated as False Positive (FP). See text for more
information.

True Positive (TP) When the AI classifies a TRUE class member correctly as a TRUE member.

False Positive (FP) When the AI classifies a FALSE class member incorrectly as a TRUE member.

It is falsely labeled as positive.

True Negative (TN) When the AI classifies a FALSE class member correctly as a FALSE member.

False Negative (FN) When the AI classifies a TRUE class member incorrectly as a FALSE member.

It is falsely labeled as negative.

Using these four definitions, one computes various point statistics to measure the perforamce.

Recall shows the ability of AI to recover all the TRUE cases. Mathematically, it is written as TP
TP+FN .

Precision shows the ability of AI to identify the FALSE cases. Mathematically, it is written as

TP
TP+FP .

Accuracy measures the gross performance of AI to classify both the cases. Mathematically, it is

written as TP+TN
TN+FP+FN+TP .

False Positive Rate measures the fraction of false positives over all the FALSE class. Mathemati-

cally, it is written as FP
FP+TN .

4.3 VFPS ML inferences

Having developed an ML solution trained on a very small subset, the AI is now run on the

entire VFPSdataset. Triggers selected by AI (henceforth just called selected triggers) are analyzed

and reported.

54

Datasets Recall Precision Accuracy FPR

Training 94.92 99.29 97.15 0.006
Validation 94.60 99.24 97.01 0.006
Unseen 73.54 99.14 86.38 0.006

Table 4.3: Training results shown in various metrics computed. See text for metrics definitions.

Training Validation Unseen

22 933 160 5 735 39 1 689 11
1 125 21 017 299 5 236 454 1 262

Table 4.4: Confusion matrices for different datasets. See text for more information.

Figure 4.2: Running for 753 epochs. Model still can run for more epochs. GPU-based run done on
Azure cloud took around a minute per epoch. This is a run lasting ∼ 12h.

55

Figure 4.3: DM distribution of AI selected triggers. Red vertical lines correspond to triggers from
known pulsar (see section 3.2).

The DM distribution of selected triggers is plotted in section 4.3. Naturally, the triggers from

known pulsars are registered in bulk and are selected by the AI showing it’s capability. These bins

are marked by solid red vertical lines. See section 3.2 for the complete list of pulsars detected.

Since the pulsar triggers are already established, to make numbers managable, all known

pulsar triggers are DM-matched and dropped. Performing a manual vetting yields one positive

detection of trigger Figure 4.3. PSRCAT([13]) doesn’t have any pulsar around the DM near the field.

According to YMW16([25]), the Galactic DM contribution is around ∼ 19 implying an extremely

high extra-galactic DM contribution.

4.4 Ending remarks

The AI solution discussed here can be perfected. Moreover, the end goal of this AI is for it

to be incorporated into the VLITE-Fast pipeline for realtime vetting of the model.

56

Figure 4.4: A possible FRB candidate found after using AI developed in chapter IV on VFPS dataset

57

BIBLIOGRAPHY

[1] B. R. BARSDELL, M. BAILES, D. G. BARNES, AND C. J. FLUKE, Accelerating incoherent
dedispersion, , 422 (2012), pp. 379–392.

[2] , Spotting Radio Transients with the Help of GPUs, in Astronomical Data Analysis
Software and Systems XXI, P. Ballester, D. Egret, and N. P. F. Lorente, eds., vol. 461 of
Astronomical Society of the Pacific Conference Series, Sept. 2012, p. 37.

[3] S. BURKE-SPOLAOR, M. BAILES, R. EKERS, J.-P. MACQUART, AND I. CRAWFORD,
FRONEFIELD, Radio Bursts with Extragalactic Spectral Characteristics Show Terrestrial
Origins, , 727 (2011), p. 18.

[4] CHIME/FRB COLLABORATION, B. C. ANDERSEN, K. BANDURA, M. BHARDWAJ,
P. BOUBEL, M. M. BOYCE, P. J. BOYLE, C. BRAR, T. CASSANELLI, P. CHAWLA,
D. CUBRANIC, M. DENG, M. DOBBS, M. FANDINO, E. FONSECA, B. M. GAENSLER,
A. J. GILBERT, U. GIRI, D. C. GOOD, M. HALPERN, A. S. HILL, G. HINSHAW,
C. HÖFER, A. JOSEPHY, V. M. KASPI, R. KOTHES, T. L. LANDECKER, D. A. LANG,
D. Z. LI, H. H. LIN, K. W. MASUI, J. MENA-PARRA, M. MERRYFIELD, R. MCKINVEN,
D. MICHILLI, N. MILUTINOVIC, A. NAIDU, L. B. NEWBURGH, C. NG, C. PATEL, U. PEN,
T. PINSONNEAULT-MAROTTE, Z. PLEUNIS, M. RAFIEI-RAVANDI, M. RAHMAN, S. M.
RANSOM, A. RENARD, P. SCHOLZ, S. R. SIEGEL, S. SINGH, K. M. SMITH, I. H. STAIRS,
S. P. TENDULKAR, I. TRETYAKOV, K. VANDERLINDE, P. YADAV, AND A. V. ZWANIGA,
CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources, , 885 (2019),
p. L24.

[5] J. M. CORDES AND T. J. W. LAZIO, Ne2001.i. a new model for the galactic distribution of
free electrons and its fluctuations, 2002.

[6] E. FONSECA, B. C. ANDERSEN, M. BHARDWAJ, P. CHAWLA, D. C. GOOD, A. JOSEPHY,
V. M. KASPI, K. W. MASUI, R. MCKINVEN, D. MICHILLI, Z. PLEUNIS, K. SHIN, S. P.
TENDULKAR, K. M. BANDURA, P. J. BOYLE, C. BRAR, T. CASSANELLI, D. CUBRANIC,
M. DOBBS, F. Q. DONG, B. M. GAENSLER, G. HINSHAW, T. L. LAND ECKER, C. LEUNG,
D. Z. LI, H. H. LIN, J. MENA-PARRA, M. MERRYFIELD, A. NAIDU, C. NG, C. PATEL,
U. PEN, M. RAFIEI-RAVANDI, M. RAHMAN, S. M. RANSOM, P. SCHOLZ, K. M. SMITH,
I. H. STAIRS, K. VANDERLINDE, P. YADAV, AND A. V. ZWANIGA, Nine New Repeating
Fast Radio Burst Sources from CHIME/FRB, , 891 (2020), p. L6.

[7] G. E. HINTON, N. SRIVASTAVA, A. KRIZHEVSKY, I. SUTSKEVER, AND R. R. SALAKHUT-
DINOV, Improving neural networks by preventing co-adaptation of feature detectors, 2012.

58

[8] S. IOFFE AND C. SZEGEDY, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

[9] F. JENET AND S. ANDERSON, The effects of digitization on nonstationary stochastic signals
with applications to pulsar signal baseband recording, Publications of the Astronomical
Society of the Pacific, 110 (1998), pp. 1467–1478.

[10] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, 2014.

[11] I. R. LINSCOTT AND J. W. ERKES, Discovery of millisecond radio bursts from M 87, , 236
(1980), pp. L109–L113.

[12] D. R. LORIMER, M. BAILES, M. A. MCLAUGHLIN, D. J. NARKEVIC, AND F. CRAWFORD,
A Bright Millisecond Radio Burst of Extragalactic Origin, Science, 318 (2007), p. 777.

[13] R. N. MANCHESTER, G. B. HOBBS, A. TEOH, AND M. HOBBS, The australia telescope
national facility pulsar catalogue, The Astronomical Journal, 129 (2005), p. 1993–2006.

[14] E. PETROFF, E. D. BARR, A. JAMESON, E. F. KEANE, M. BAILES, M. KRAMER,
V. MORELLO, D. TABBARA, AND W. VAN STRATEN, FRBCAT: The Fast Radio Burst
Catalogue, , 33 (2016), p. e045.

[15] E. PETROFF, J. W. T. HESSELS, AND D. R. LORIMER, Fast radio bursts, , 27 (2019), p. 4.

[16] E. PETROFF, E. F. KEANE, E. D. BARR, J. E. REYNOLDS, J. SARKISSIAN, P. G. EDWARDS,
J. STEVENS, C. BREM, A. JAMESON, S. BURKE-SPOLAOR, S. JOHNSTON, N. D. R. BHAT,
P. C. S. KUDALE, AND S. BHAND ARI, Identifying the source of perytons at the Parkes radio
telescope, , 451 (2015), pp. 3933–3940.

[17] E. PLATTS, A. WELTMAN, A. WALTERS, S. P. TENDULKAR, J. E. B. GORDIN, AND

S. KANDHAI, A living theory catalogue for fast radio bursts, , 821 (2019), pp. 1–27.

[18] T. SHANLEY, Infiniband, Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

[19] L. G. SPITLER, J. M. CORDES, J. W. T. HESSELS, D. R. LORIMER, M. A. MCLAUGH-
LIN, S. CHATTERJEE, F. CRAWFORD, J. S. DENEVA, V. M. KASPI, R. S. WHARTON,
B. ALLEN, S. BOGDANOV, A. BRAZIER, F. CAMILO, P. C. C. FREIRE, F. A. JENET,
C. KARAKO-ARGAMAN, B. KNISPEL, P. LAZARUS, K. J. LEE, J. VAN LEEUWEN,
R. LYNCH, S. M. RANSOM, P. SCHOLZ, X. SIEMENS, I. H. STAIRS, K. STOVALL, J. K.
SWIGGUM, A. VENKATARAMAN, W. W. ZHU, C. AULBERT, AND H. FEHRMANN, Fast
Radio Burst Discovered in the Arecibo Pulsar ALFA Survey, , 790 (2014), p. 101.

[20] L. G. SPITLER, W. HERRMANN, G. C. BOWER, S. CHATTERJEE, J. M. CORDES, J. W. T.
HESSELS, M. KRAMER, D. MICHILLI, P. SCHOLZ, A. SEYMOUR, AND A. P. V. SIEMION,
Detection of Bursts from FRB 121102 with the Effelsberg 100 m Radio Telescope at 5 GHz
and the Role of Scintillation, , 863 (2018), p. 150.

[21] R. THAKUR, R. RABENSEIFNER, AND W. GROPP, Optimization of collective communication
operations in mpich, The International Journal of High Performance Computing Applications,
19 (2005), pp. 49–66.

59

[22] D. THORNTON, B. STAPPERS, M. BAILES, B. BARSDELL, S. BATES, N. D. R. BHAT,
M. BURGAY, S. BURKE-SPOLAOR, D. J. CHAMPION, P. COSTER, N. D’AMICO, A. JAME-
SON, S. JOHNSTON, M. KEITH, M. KRAMER, L. LEVIN, S. MILIA, C. NG, A. POSSENTI,
AND W. VAN STRATEN, A Population of Fast Radio Bursts at Cosmological Distances,
Science, 341 (2013), pp. 53–56.

[23] J. TOMPSON, R. GOROSHIN, A. JAIN, Y. LECUN, AND C. BREGLER, Efficient object
localization using convolutional networks, 2014.

[24] B. XU, N. WANG, T. CHEN, AND M. LI, Empirical evaluation of rectified activations in
convolutional network, 2015.

[25] J. M. YAO, R. N. MANCHESTER, AND N. WANG, A new electron-density model for estimation
of pulsar and frb distances, The Astrophysical Journal, 835 (2017), p. 29.

[26] B. ZACKAY AND E. O. OFEK, An Accurate and Efficient Algorithm for Detection of Radio
Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers,
, 835 (2017), p. 11.

60

BIOGRAPHICAL SKETCH

Suryarao "Surya" Bethapudi likes to solve problems. He is always eager to learn new things.

If given a choice and if it was possible, Surya wishes to be a field and be everywhere in this Universe

and see everything and understand everything.

Surya earned a Master of Science in Physics from the University of Texas Rio Grande Valley in

2020.

email: shining.surya.d8@gmail.com

61

	Searching for Low Frequency Fast Radio Bursts with VLITE
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER I. Fast Radio Bursts
	What are FRBs?
	Filterbank
	Dispersion
	Characteristics

	Detections so far
	Thesis outline
	VLITE
	VLITE as an FRB search engine
	Outline

	CHAPTER II. Instrumentation
	Overview
	PSRDADA
	Writer
	Process baseband
	MPI Coadder
	Need for coaddition
	MPI
	Coaddition
	Reduce
	Bookkeeping

	Heimdall
	Trigger mechanics
	Trigger dispatch
	Trigger hook
	Trigger master
	Meta response

	Data products
	Candidate file
	FilterBank jSON
	De-dispersed filterBank jSON
	Trigger plot
	META Voltages

	Codebases

	CHAPTER III. VLITE-Fast Pathfinder Survey
	Campaign runs
	NB2
	NB8
	MW

	Detection of pulsars
	Field of View
	Sensitivity

	RFI
	RFI contamination
	DM=150 pc/cc artifact

	Heimdall triband structure
	Summary statistics
	Simulation runs
	Pure noise
	Injected

	CHAPTER IV. Machine Learnings
	Coherent analysis
	Coherent analysis with VLITE-Fast

	Machine Learning
	Dataset
	Model and training
	Training results

	VFPS ML inferences
	Ending remarks

	BIBLIOGRAPHY
	Biographical Sketch

