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ABSTRACT 

Barron, Cristian A., The Implementation and Comparison of Fuzzy Logic Control Systems to 

Modern Control Methods on Low-Cost Hardware. Master of Science in Engineering, December 

2020, 84 pp, 8 tables, 49 figures, 20 titles. 

 Modern control engineering provides many options to automate systems for which a 

mathematical model is required. Another control does not rely on the mathematical model of the 

system and is known as fuzzy logic control. In this study, a literature review is conducted on 

existing control systems strategies such as proportional integral and derivative (PID), linear 

quadratic regulator (LQR), and fuzzy logic controller (FLC), the complexity of the systems they 

control, and their strengths and weaknesses. In addition, a series of experiments are conducted, 

both through simulations in MATLAB Simulink and using their implementation using the actual 

physical hardware to test the effectiveness of said controllers. The effect of changing fuzzy logic 

membership functions is also determined. The settling times of controllers are compared using a 

physical prototype of a mechanical arm. Lastly, dead zone correction techniques are addressed 

and implemented. 
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CHAPTER I 

INTRODUCTION 

 Control systems are prevalent in almost every part of modern-day life: automobiles, 

phones, power plants, and airplanes, all utilize control strategies and systems to achieve desired 

response and stable operating results. To achieve reliable and effective control systems, there are 

many variables that must be accounted for, both in modeling of the system as well as through 

standard engineering implementation and practice, and through the design and simulation. There 

are numerous methods that one could use to implement a control system into a system design; 

however, they are similar in terms of how they measure feedback and perform the control 

actions. Perhaps one of the most important parts of designing a control system is being able to 

measure the output of the system. A control system that cannot measure or estimate the current 

state of what it is controlling is like navigating without a notion of speed and direction. As such, 

it is necessary to implement a reliable method of observing the system state; nevertheless, this 

task poses its own challenges that can ripple throughout the design. Parameters and constraints 

such as sample rate, computational processing power, and the control system’s governing 

equations all must work together to form a viable whole setup. Any one of these variables that 

could be improperly considered could cause the entire system to fail or become unstable. For 

example, a system with a sample rate too low will not be able to respond to rapid changes, 

whereas a system whose sample rate is too high may be demanding too much computational 
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processing power, delaying the response of the system to the point that it might be too late for 

adequate and safe control. In this situation, balance is important, and this topic will be discussed 

in later chapters. For the control system in this project, the goal is design and implement fuzzy 

logic control systems and compare them to traditional methods. A system that has shown to be a 

good standard for testing is the inverted pendulum. The inverted pendulum is a well-studied 

system that is governed by nonlinear differential equations. This system has many practical uses 

in both the medical and robotics fields to keep objects balanced during transportation. These 

equations can be difficult to evaluate analytically, and even more difficult for a control system to 

keep track of all at once while responding in real time. Therefore, it is a common technique to 

linearize, and discretize the equations to arrive at a quick-to-compute solution (Akhtaruzzaman 

& Shafie, 2010). As presented in later chapters, this simplification makes the equations much 

easier to use in microcontroller implementation; but they cannot be used to accurately represent 

the full range of motion of the system away from the operating point used for the linearization. 

While there has been extensive research about the inverted pendulum system, this study focuses 

on the ability to implement a controller using low-cost and relatively low computational power 

components. Ideally, if this can be achieved, the implication is that some of these systems could 

be controlled without the active aide of expensive computers or software. While using higher 

cost methods are perfectly valid for controlling a system, the goal is to make it work adequately 

at a low-cost implementation. 
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CHAPTER II 

LITERATURE REVIEW 

To implement a control system, there must first be a system to control. Take the example 

of an inverted pendulum as shown in Figure 2.1. 

                           

Figure 2.1: Typical Inverted Pendulum 

There are several different techniques that could be used to implement a control system such as 

the proportional-integral-derivative controller (PID) or a linear-quadratic regulator (LQR). These 

controllers work with the equations that represent the system model and operate using a similar 

principle: changing the output based on the behavior of the error of the variable to be controlled. 

𝜃 
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The PID controller works by taking the output of the system, comparing it against a reference 

value, to get the error, which becomes the input to the controller to generate the controller output 

to act on the actuators of the system. In the case of a PID, each term has a constant which the 

designer can determine to change the response of the system as shown below: 

 𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝑘𝑑

𝑑

𝑑𝑡
𝑒(𝑡)  (2.1) 

where 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 are the proportional, integral, and derivative constants multiplied against 

error 𝑒(𝑡), its integral, and derivative, respectively. These constants could change for some 

control strategies at different operating points of the system. This algorithm has been shown by 

researchers at the University of Michigan to be capable of stabilizing the angle of an inverted 

pendulum (Messner & Tilbury, 2019). However, in their example, while the angle was stabilized 

the position of the cart would increase indefinitely. Thus, the researchers also used an LQR to 

demonstrate its effectiveness against a PID. An LQR functions on weighting the states of a 

system and prioritizing them against each other. Take the following state space system: 

[

�̇�
�̈�
�̇�
�̈�

] = [

0 1 0 0
0 0 3 0
0 0 0 1
0 0 5 0

] [

𝑥
�̇�
𝜃
�̇�

] + [

0
2
0
4

] [𝑢] (2.2) 

In this system, the four states are 𝑥, �̇�, 𝜃, and �̇� (position, velocity, angular position, angular 

velocity). From this representation, it is possible to place priorities for the states considered the 

most important. This is done through a matrix that places weights on all the states of the system. 

The higher the number on a state variable, the more priority that state variable is given. 

𝑄 = [

1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 100

] (2.3) 
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With the above example matrix Q, where the diagonal of the matrix represents the weights of the 

states of the system, respectively. In this Q matrix, the highest priorities are given to angular 

velocity (the fourth state) and angular position of the pendulum, while position and velocity of 

the cart have the lowest priority (first and second states respectively). This matrix is then used in 

the following integral, which is the cost function of the system to be optimized. This integral 

represents the performance of the system, sometimes considering fuel consumption or how far 

away values get from the reference. To minimize this integral is to minimize the cost of 

stabilizing the system. (Brunton & Kuts, 2019) 

∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)
∞

0
𝑑𝑡   (2.4) 

In this integral, u represents an applied force to stabilize the system (such as the traction force of 

the wheels on a rail,) while R represents the cost paid to use force u (fuel used for an engine, 

limited battery life, durability of the part, etc.). In this case, the higher the R value, the more the 

system should be hesitant about using higher values of force u to stabilize the system. This 

integral can be minimized in MATLAB for a controllable state-space model using the command 

“lqr()” to create an optimal method for stabilizing and controlling the inverted pendulum and cart 

system. This can be very effective for multivariable control if one output needs to be controlled 

more strictly than another (Brunton & Kuts, 2019). Generally, this has been shown to be a rapid 

method due to its low computational cost and work needed to fine tune the controller (Bakaráč, 

Klaučo, & Fikar, 2018). In simulations using LQR, it was possible to regulate both position and 

angle (Messner & Tilbury, 2019). This also meant achieving the effective stabilization of both 

translational and angular position of the pendulum, something that could not be achieved with a 

single PID loop. The reason the single PID loop was insufficient was that it would balance the 

pendulum, but the cart’s velocity was be non-zero. This meant that the pendulum would be 
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balanced but the cart would need to always be in motion, which is not practical. While this 

initially demonstrates LQR to be the superior choice for this situation, it is important to look at 

other factors such as the observability of the system, the speed at which both controllers can 

operate, and if either can be hybridized (combined with another controller to get rid of the flaws 

of both). 

 As discussed earlier, there is a need for fast computational power as a delay would cause 

the system to output a late response. This means that for a system that can only measure two out 

of the four variables, there is not only limited observability, but also there is the possibility the 

system response will be out-of-sync with the states of the system. In the literature, an experiment 

was performed testing the effectiveness of 3 different controllers on an inverted pendulum 

(Bakaráč, Klaučo, & Fikar, 2018). The controllers used were the PID controller, the LQR, and a 

model predictive controller (MPC). An MPC controller make a series of predictions for how the 

system behaves within a set number of time increments in the future. Then, it compares the 

measured results from the system with its predictions and gives an output based on how close its 

predictions were (Ulusoy, 2017). In the setup, the researchers imported measurements from the 

system into MATLAB, which would output the controller response back to the system. The 

results of this experiment reinforced the limitation of the PID controller to control both position 

and angle at once as they were unable to control both variables; however, both LQR and MPC 

were able to control both position and angle (Bakaráč, Klaučo, & Fikar, 2018). This 

demonstrates that PID alone for this application is unlikely to be practical, despite its incredible 

power in managing many complex systems around the world. This suggests that a PID is better 

suited to systems with a single input and single output; but there are ways to use PID in other 

cases with some additional modifications. For example, it may be possible to employ a PID in 
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conjunction with another control method or have multiple PID loops. A PID controller is very 

versatile and has many available software packages across different platforms that make it very 

easy to implement regardless of the hardware. This means that a PID should not be discounted in 

the design phase. It is possible the effectiveness of LQR may be hindered if the calculations for 

an observer is too much for a microcontroller to estimate the states. An MPC has potential to be 

a rapid system; however, there are fewer developed libraries and toolkits available to include one 

on a microcontroller.  

Many mathematical models for an inverted pendulum rely on the system to be observed 

in continuous, real time; however, this cannot always be achieved, and it could be difficult, and 

can be expensive to accurately implement. As will be seen in Chapter IV, the system might be 

able to measure some of the state variables. This means it is important for the controller and 

model to be capable of operating with an observer for the other state variables which could be 

possible with present techniques in modern control engineering. Rather than measure each 

variable of the system in real time, it is sometimes more practical to use what can be read in the 

system and the mathematical model of the system to estimate the other state variables. This 

technique is known as “observing” the system and models or programs that handle this 

estimation are known as observers (Ogata, 2010). Since the inverted pendulum is a system that is 

dependent on the movement of the cart, it may be possible to build an observer that only requires 

the real input of position or angle while the velocity and angular velocity are estimated by the 

computer program. There are multiple ways to construct an observer system, including full-order 

state observers, where all the state variables in the system can be estimated, reduced-order 

observers for which where the number of variables estimated is less than the system total, and 

finally minimum-order state observers where the bare minimum variables are observed (Ogata, 
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2010). These types of observers require different amounts of processing power to operate 

because measuring a variable takes less processing power than running calculations to estimate 

the variable. This method of only estimating part of the system is known as constructing a 

reduced order observer, while a system that estimates all the states is known as a full order 

observer (Ogata, 2010). Using a reduced order model has been shown to be effective in other 

fields such as in micro electrical mechanical systems (MEMS) (Li, Ying, & Xue, 2009). By 

using a reduced order model, the researchers were able to run simulations much faster than if 

they had used a full order observer. It should also be noted, however, that not all systems can be 

accurately estimated using observers. In those cases, a system may have states not related or 

dependent on the outputs; therefore, the state would be unobservable because it cannot be 

accurately predicted. In the case of the inverted pendulum, it has been documented in literature 

to be fully observable (Messner & Tilbury, 2019). Since the system can be observed, it is 

important to account for any error that may occur from using this estimation. This error is based 

on how far away the estimated values are from the measured values. However, by careful 

placement of the closed-loop characteristic equation roots, it is possible to get the observer 

exactly in line with the real-world model (Ogata, 2010). This demonstrates the power of the 

method to accurately represent the system. The effectiveness of observers has been documented 

in experiments including an inverted pendulum on a circular track (Suphatsatienkul, 

Banjerdpongchai, & Wongsaisuwan, 2017). In their model, the only two states able to be 

measured were the pendulum angle and position on the cart. This meant that the states of 

velocity and angular velocity had to be estimated using an observer. Through their efforts, they 

discovered it was possible to get the system to reach the steady state position faster when using a 

reduced order observer compared to a full order observer. This proves that the state variables that 
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are accurately measured, the easier it is for the control system to compute the required action. 

Observer based control systems can be expressed in both state-space and as a series of transfer 

functions. This allows them to be used in low cost microcontrollers and traditional simulation 

software like MATLAB. 

As stated previously, to use a transfer function on a microcontroller, it is necessary to 

convert the equations from continuous to discrete form. The discrete domain operates by taking 

inputs at a set interval with the microcontroller operating using a sampling rate. Discrete 

functions often must take the previous values in the system into account when calculating the 

next values. This transformation from continuous to discrete is described as discretization of the 

system model (Ibrahim, 2006). 

Accurately modeling a system yields much insight on how to control it; however, it is 

also possible to use fuzzy control methods to control certain systems. Fuzzy logic is a different 

approach to the traditional logic in controllers that is used by most systems. For example, some 

digital systems have an on or off state (0 or 1), whereas fuzzy logic allows for values between 0 

and 1 in order to make decisions. Fuzzy logic controllers (FLC) allow for a response tailored to 

the current state of the system. For example, there can be several configurations that are deemed 

stable, and the controller will only react strongly if the system veers out of one of those 

configurations. The way fuzzy logic works is through a multistep process that involves the 

initialization (setup of the functions and rules), fuzzification (conversion of hard, crisp data 

values into fuzzy values), inference (the application of rule sets and evaluation of each), and 

finally defuzzification (the conversion of fuzzy values back to hard data). To determine if fuzzy 

logic is a viable option, regardless of the success of other control options, it is important to know 

how it works from a mathematical perspective. Fuzzy logic uses a combination of linguistic rules 
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and geometric calculation to determine an output to control the system. The way this is 

conducted is by categorizing input values for the system. For example, a set of temperatures 

could be classified as too cold, too hot, or just right. These categories and all the values they 

contain are called membership functions. These functions can be overlaid atop each other to 

determine what values belong to multiple categories. For example, let us consider an incubator 

system where the target temperature is 30°C. Temperatures above 30°C are considered too hot, 

temperatures below 30°C are considered too cold, and temperatures within 10 degrees of 30°C 

are considered to be just right. Each of these functions have values on the y-axis that go from 0 

to 1. These values represent how closely they match that category. (A temperature of 30°C has a 

value of 1 on the Just Right membership function and 0 on the other membership functions, 

while a temperature of 50°C has a value of 1 on the Too Hot membership function and a value of 

0 on the others. As can be seen from the graph below, when these functions overlaid, there are 

values that belong to multiple categories.  

 

Figure 2.2: Input Membership Functions Example 
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As can be seen from the above graph, there are sections where the three functions 

intersect. If a temperature value were to have a nonzero value for multiple functions, it would 

belong partly to both. To see how this function is read, take the example input temperature of 

28°C. At this temperature, the function is interpreted as follows: 

 

Figure 2.3: Reading Membership Functions Example 

If the measured temperature were 28°C, the Cold function and the Just Right function would 

return values of 0.1333 and 0.8, respectively (as indicated by the dotted line), while the Hot 

function returns 0. Before these data can be used to create a response, there must be functions to 

describe the possible output. Output membership functions work similarly to input membership 

functions; but, instead the value of the x-axis is what needs to be solved. An example of output 

membership functions can be seen below in Figure 2.4: 
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Figure 2.4: Fuzzy Logic Output Membership Functions Example 

The shape of the output functions affects what values they will return. In the case for triangular 

membership functions, the peak of the triangle will be the ideal value for that function. For 

example, if the above system was told to “Heat Up”, then the value returned would be 30 volts. 

The reason for this is because the output is based on the centroid of the shape. Before the 

centroid calculations can be discussed; however, it is important to discuss how membership 

functions interact. Fuzzy logic operates using a set of linguistic rules that dictate how the input 

membership functions affect the output. They can be written as a set of “and, if, and or” 

statements to set conditions for certain outputs. An example for the previous membership 

functions would be “if cold, heat up.” This phrase literally tells the system to heat up if the input 

temperature is considered cold. A fuzzy logic controller requires rules for each combination of 

inputs to be assigned to an output value. In a control system with multiple inputs, this creates an 

𝑛𝑚 number of required rules where n is the number of membership functions and m is the 

number of inputs (assuming each input has the same number of membership functions). 
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Consequently, in the above example, there are 31 required rules. These three rules can be seen in 

the table below: 

INPUT OUTPUT 

Cold Heat Up 

Just Right No Change 

Hot Cool Down 

 

Table 2.1: Fuzzy Logic Rules Example (3x1) 

Taking the previous values of 0.1333 Cold and 0.8 Just Right, it is possible to apply rules to get 

an output voltage. Applying these rules means that our output response would be 0.1333 of the 

“Heat Up” function, 0 of the Cool Down function, and 0.8 of the “No Change” function. This 

can be visually demonstrated in Figure 2.5: 

 

Figure 2.5: Modified Voltage Response with Rules Applied Example 
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This graph is the same as the previous output graph, however, the maximum value allowed to be 

reached for the “Cool Down,” “No Change,” and “Heat Up” functions are 0, 0.8, and 0.1333, 

respectively. The process of changing the geometry of the output membership functions is an 

example of fuzzification. However, to get a usable response from the control system, a 

defuzzification process is required next. There are many ways to defuzzifying a system, one of 

which is called the “centroid method” where the centroid of the intersecting areas is found, and 

its response given. Another, slightly faster, method is called the “weighted average method.” 

This method defuzzifies by taking the average of each function’s peak output value per input. 

For this example, it would look like the following equation: 

0∗10 𝑉+0.8∗20 𝑉+0.1333∗30 𝑉

0+0.8+0.1333
= 21.42 𝑉  (2.5) 

As can be seen, this defuzzification method is a simple calculation that gives an approximate 

answer but is extremely viable for symmetric output functions. The same fuzzy system can be 

constructed in MATLAB to return the following graphs: 

 

Figure 2.6: Fuzzy System MATLAB Example 
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These graphs are the same as the input and output graphs above; however, the voltage response 

is slightly higher at 21.7 V at the same input of 28°C. This is because MATLAB uses the 

centroid method to defuzzify, which returns a more “geometrically accurate” response. This does 

not mean that the weighted average method is incorrect, but rather that the defuzzification 

technique is different. In both cases, they are approximating a response through human linguistic 

rules and bounds, so a small difference from using a faster technique is inconsequential. What 

matters the most is that both techniques return the same values at key points such as when the 

temperature is 30°C (in which both techniques return 20 V). Should more precision be required, 

it is possible to modify the number and size of input functions to become more precise as certain 

values are approached, but if extreme precision is truly desired, then fuzzy logic is best avoided 

in place of another control technique. The use of the centroid or weighted average alongside 

linguistic to find the appropriate response makes fuzzy logic highly geometric and intuitive and 

is one of its greatest strengths. Like a PID however, it must be fine-tuned, therefore, one must 

take that into consideration before implementing it. 

 The above example is a simple case with one input and one output, but it is possible to 

account for more than one input. For example, the rate of change of temperature could be 

accounted for as an input, then, creating membership functions for it. The ruleset would then 

have to be updated to include every combination of inputs. The controller would then be 

complete, but if more precision is required, one would need to update the membership functions 

through a fine-tuning/debugging phase. 

 As an example of how to include multiple inputs, take a similar system to the temperature 

controller where both temperature and rate of change in temperature are taken into account. 

Using an example plant, the block diagram of the control system is as follows: 
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Figure 2.7: Temperature Control Example Block Diagram 

Note, in the above diagram, there are saturation blocks present on the inputs to the FLC. This is 

to avoid any errors that may arise from temperatures winding up outside the operating range of 

the FLC. As will be seen above, when using trapezoidal membership functions, the intention is to 

designate values outside a certain range as too hot or too cold. This means the saturation blocks 

do not affect the fuzzy logic calculations. 

Before building the controller, it is important to know what the goal is and how it will operate. 

For this example, the plant is controlled by three values, heat transfer into the system from 

external sources, the current atmospheric temperature, and the heat transfer from our “heating 

mechanism” that is directly controlled by the FLC. In this example, the desired temperature will 

be 70 +/-0.5°C. The process to create a controller for this is like the previous example: 
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Figure 2.8: Fuzzy Logic 2-Input Example 

The above diagram represents the fuzzy logic interface in MATLAB where the number of inputs 

is shown on the left, and the number of outputs is shown on the right. Note that the figures inside 

the boxes in Figure 2.8 do not represent any real values and are only used to distinguish one from 

the other. In this case, the two inputs will be the temperature error (how far away it is from the 

desired value) and the rate of change in temperature; and the output is the power (in Watts) by 

the heating element. The block in the middle represents the fuzzy logic rule application, 

converting fuzzified input values on the left into defuzzified output values on the right. 
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Figure 2.9 Input Membership Functions for Temperature Error 

As can be seen in the figure 2.9, the triangular membership function is much narrower than in 

Figure 2.2. In this example, the goal was to get within half a degree of the setpoint, so the values 

for the membership functions are in the table below: 

Membership Function Name Membership Function Parameters 

Too_Hot [-120.5 -120 -0.5 0] 

good [-0.5 0 0.5] 

Too_Cold [0 0.5 120 120.5] 

 

Table 2.2: Temperature Membership Function Parameters 

The values +/-0.5 in the table represent the half-degree window to get to the desired temperature. 

Anything greater than 0.5°C in magnitude is considered no longer considered a temperature 
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classified under the “good” membership function. Likewise, the membership functions and 

parameters for change in temperature are as follows: 

 

Figure 2.10 Input Membership Functions for Temperature Change 

Membership Function Name Membership Function Parameters 

Heating_Up_Fast [-21.25 -20 -1.25 0] 

Staying_Constant [-1.25 0 1.25] 

Cooling_Down_Fast [0 1.25 21 21.25] 

 

Table 2.3: Output Membership Function Parameters 

In this case, the value 1.25 was used after measuring the response of the plant without the 

controller. Anything greater in magnitude than 1.25 is considered fast.  
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Figure 2.11: Output Membership Function Example 2 

The output is very similar to the previous example. Here, the peaks of the triangular membership 

functions are is the output of the controller (0, 100, 200). The values of -100 and 300 are shown 

in the operating window to keep the graphs symmetrical for the centroid calculation. With inputs 

and outputs created, the controller now needs rules. 

            Temp. Error 

Temp. Change 

Too_Hot good Too_Cold 

Heating Up Fast LOW_POWER LOW_POWER MEDIUM_POWER 

Staying Constant LOW_POWER MEDIUM_POWER MAX_POWER 

Cooling Down Fast MEDIUM_POWER MAX_POWER MAX_POWER 

Table 2.4: Fuzzy Logic Example Rules 2 (3x3) 

With these rules in place, the FLC was complete and could be used in Simulink. The results are 

below: 
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Figure 2.12: 2-Input Fuzzy Logic Example, Temperature (°C) vs Time (s) 

As can be seen from the above figure, the temperature manages to stabilize to 70°C, 

however, there is some temperature oscillation about the setpoint occurring. This is indicative of 

a too extreme response close to the desired temperature. This can be somewhat alleviated by 

widening the membership functions to be less extreme. The graph below was made with the 

same system, but membership function values of +/-0.5 were replaced with +/-1. 
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Figure 2.13: Widened Membership Functions, Temperature (°C) vs Time (s) 

By widening the membership functions, the response is less extreme, and the hysteresis levels 

out. This example demonstrates how to incorporate fuzzy logic onto a 2-input system as well as 

the benefits of fine-tuning membership function parameters. 

To demonstrate the effectiveness of this method, the results of using fuzzy logic and PID 

controllers to control an inverted pendulum system were compared (Afaq, Asghar, Abbasi, 

Wallam, & Saeed, 2015). Their experiment involved using three controllers, a PID, a fuzzy logic 

controller, and a hybrid fuzzy-PID controller. The results were compared in terms of both 

settling time, steady-state error, and the force applied to the system. They found that the settling 

time for the three controllers was similar, however, the fuzzy-PID used the least amount of force 

to stabilize the system. They found that the use of this method allowed for a much easier control 
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of the system since it did not rely on a transfer function (and therefore discrete function) to 

operate. This method of creating a controller based on the condition of the system rather than the 

model makes it especially effective at handling non-linear systems difficult to model accurately. 

This demonstrates the power of this method, as it does not require a full computational model, 

however, it is still important for the designer creating the controller to understand how the 

system should respond. A rule set was needed to accurately describe what the system should do 

in response to the different operating conditions (Afaq et al. 2015). They assembled a large table 

of fuzzy logic rules that described all possible configurations of angular position and angular 

velocity and how to respond to them. That model used the reading of both angle and angular 

velocity to build its logic; therefore, if it were to be implemented into the proposed design, there 

would be a need for a way of measuring angular velocity, or use another variable that will yield a 

mathematically equivalent result, like rapidly taking the derivative of the position. Using a fuzzy 

logic controller to control an inverted pendulum by taking the inputs to be the angular position 

and velocity is possible. (Peng & Wei, 2010). This account for velocity shows that sometimes 

more information is needed from the system for the controller to give an appropriate response; 

however, even when velocity cannot be directly measured, it is possible to account for similar 

variables like the change in position between steps (Akmal et al. 2017). It was also shown that a 

faster settling time was possible for an inverted pendulum if more fuzzy logic rules are used 

(Akmal, Jamin, & Abdul Ghani, 2017). It appears that the FLC is a reliable method for 

stabilizing a nonlinear system such as the inverted pendulum. Fuzzy logic can handle these 

systems and gets more precise the more rules are implemented. Fuzzy logic has been shown to 

require low computational power to run and it is simple to program. However, as stated earlier, 

as the number of inputs increases, so does the number of rules, exponentially. For this reason, 
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fuzzy logic is best used in systems with less variables to track. R.E. King et al. (1994) stated that 

a major drawback of fuzzy logic is the extensive debugging phase when designing a controller 

(King, Magoulas, & Stathaki, 1994). This has logical merit as the foundation of the controller’s 

mechanism requires more linguistic “soft-computing” methods that are founded in human 

understanding of the system; therefore, the system contains human error. This makes optimizing 

a fuzzy controller difficult, but if it can stabilize the system correctly, the benefits may outweigh 

the drawbacks. R.E. King et al. (1994) demonstrated that for a multivariable fuzzy logic, the 

table of scenarios built by rules expands exponentially. As explained by the example before, 

there was a 31 vector of rules with one input. If there were more inputs, it could become a 32 

table of rules with 2 inputs, or 33 rules with three inputs. This can lead to very complex 

geometry with many inputs. To smooth out the response in a complex system, R.E. King et al. 

(1994) suggested a “meta rule” for handling it where adjacent responses in the ruleset to have 

output responses close to each other. In other words, the system should not go from a low to a 

high response suddenly, it should transition smoothly. This helps prevent erratic behavior and 

unnecessary strain on the system components. From their research, they were able to essentially 

simulate a human operator using fuzzy controls. In this case, it was to control a hypothetical 

cement mixing plant where pressure, mill power, and returns (separated cement) were the input 

variables. This resulted in 3 inputs with 5 rules each, making a 53 number of rules. While the 

system was effective in imitating a human operator, it will take more research to determine if 

fuzzy logic controllers are efficient with an even greater number of rules. To determine what rule 

set to use, it is necessary to either build them by hand or to use a computer program. Sunu S. et 

al. (2016) was able to develop a fuzzy logic control scheme through the MATLAB fuzzy logic 

toolbox. This allowed them to construct and simulate a PWM response from a controller using 



 

25 
 

fuzzy logic for high to low values. (Babu & Pillai, 2016). In their system, they utilized a Takagi-

Sugeno fuzzy logic controller, where the membership functions are constants rather than 

geometric shapes (Fast = 255, Medium = 150, Slow = 60, Stop = 0). This version of fuzzy logic 

is less visually intuitive, but functions similarly to the previous examples. In this case, the 

weighted average method is used to determine the output. Since the rules of fuzzy logic are 

linguistic, they were able to easily be transferred to a microcontroller (they used an Arduino 

Mega). Their controller was used to control a human operated vehicle called a Segway, which 

functions identically to a two-wheeled inverted pendulum. The use of an Arduino Mega should 

be noted as it is of similar processing power to common low-cost microcontrollers. That research 

showed a proof of concept by bridging MATLAB code and the language of a microcontroller 

through fuzzy logic. These control methods all have potential to control and stabilize a system, 

even by using drastically different methods. In the following chapter, systems in which these 

control methods can be applied will be modeled and discussed.
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CHAPTER III 

MATHEMATICAL MODELS 

 To apply control systems, it is very useful to have a model for a system one would want 

to control. One such example is an inverted pendulum. The inverted pendulum is a nonlinear, 

unstable system that is affected by both linear and angular positions and velocities. This system 

is very well understood and has been studied for many years; therefore, it is possible to validate 

results by cross-checking them with an already existing model. A typical system is like the one 

by the University of Michigan (Messner & Tilbury, 2019). This inverted pendulum system is 

akin to a vehicle such as the Segway, which uses human input to determine where to go. While 

this can be implemented using MATLAB and LQR as shown in the literature, implementing it on 

less powerful hardware poses its own unique sets of challenges. As such, the model built should 

take this into account. Since available hardware and software packages will influence the 

systems that can be controlled, the experiments in Chapter IV influence the models in this 

chapter. The basics of the inverted pendulum are as follows:  
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Figure 3.1: Annotated Typical Inverted Pendulum 

The above figure represents the standard cart and inverted pendulum system. Because of the 

system’s two components (the cart and the pendulum) two separate, coupled equations must be 

arranged to describe the motion of the system. To establish a foundation for an inverted 

pendulum, the method to acquire the equations of motion for a typical system by the University 

of Michigan is recalled in equations 3.1-3.10. (Messner & Tilbury, 2019). These equations have 

also been linearized and modeled in other works in the literature, but, the principle of how they 

operate is the same (Ogata, 2010). This system has also been broken down into the free body 

diagram below: 

𝜙 

𝛩 

𝑀 

𝑚, 𝐼 

𝐹 

𝑥 

𝑙 

𝑙 



 

28 
 

 

Figure 3.2: Free Body Diagram of Typical Inverted Pendulum 

The equation of motion for the mass of the cart is as follows: 

𝑀�̈� + 𝑏�̇� + 𝑁 = 𝐹  (3.1) 

Where M is the mass of the cart, m is the mass of the pendulum, b is the viscous friction 

coefficient in the x-direction, N and P are the vertical and horizontal forces between the cart and 

the pendulum, and F is the horizontal force applied to the cart (i.e. the wheel traction, or the 

tension of a belt). The mathematical model consists of the following equations: 

𝑁 = 𝑚�̈� + 𝑚𝑙�̈�𝑐𝑜𝑠𝜃 − 𝑚𝑙�̇�2𝑠𝑖𝑛𝜃  (3.2) 

Combining the two equations, we arrive at: 

(𝑀 + 𝑚)�̈� + 𝑏�̇� + 𝑚𝑙�̈�𝑐𝑜𝑠𝜃 − 𝑚𝑙�̇�2𝑠𝑖𝑛𝜃 = 𝐹  (3.3) 

As can be seen from equation 3.3, this equation is nonlinear By assuming small angles around an 

operating point, the system can be linearized: 
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𝑐𝑜𝑠𝜃 = cos(𝜋 + 𝜙) ≈  −1  (3.4) 

𝑠𝑖𝑛𝜃 = sin(𝜋 + 𝜙) ≈  −𝜙  (3.5) 

�̇�2 = �̇�2 ≈  0  (3.6) 

Where 𝜙 represents the angle’s position from equilibrium or 𝜃 = 𝜋 + 𝜙. This transforms 

equation 3.3 into: 

(𝑀 + 𝑚)�̈� + 𝑏�̇� − 𝑚𝑙�̈� = 𝐹   (3.7) 

With a relationship between the cart’s linear acceleration and the pendulum’s angular 

acceleration, it is necessary to derive the equation of motion for the pendulum as well. Using the 

original notation with theta, the equation is: 

𝑃𝑠𝑖𝑛𝜃 + 𝑁𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑙�̈� + 𝑚�̈�𝑐𝑜𝑠𝜃  (3.8) 

By summing the moments about the centroid of the pendulum arm, it is possible to eliminate P 

and N from the equations. The equation simplifies to: 

(𝐼 + 𝑚𝑙2)�̈� + 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = −𝑚𝑙�̈�𝑐𝑜𝑠𝜃  (3.9) 

Where I is the mass moment of inertia of the pendulum about the axis of the hinge. Applying 

equations 3.4 and 3.5, equation 3.9 becomes: 

(𝐼 + 𝑚𝑙2)�̈� − 𝑚𝑔𝑙𝜙 = 𝑚𝑙�̈�  (3.10) 

Using equations 3.7 and 3.10, there is now a linear way of representing the motion of both the 

pendulum and cart system. This can allow for both state space or linear representations that can 

be controlled and simulated in MATLAB. 
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 A second system that will be explored in Chapter IV is a simple motor arm. This simple 

arm has been discussed in a paper by the University of Texas-Pan American (Vasquez, Kypuros, 

& Villanueva, 2010). The full block diagram of the system can be seen within Chapter IV in 

Figure 4.21. It is a simple system with an arm attached to a motor. 

 

Figure 3.3: Motor Arm Diagram 

The transfer function relating voltage applied to the motor to the angular position of the arm is as 

follows: 

𝜃(𝑠)

𝐸𝑖𝑛(𝑠)
=

1

𝑠
(

𝑅𝑎𝑁

𝐿𝑎(𝑁2𝐽𝑚+𝐽𝐿)𝑠2+[𝐿𝑎(𝑁2𝑏𝑚+𝑏𝐿)+𝑅𝑎(𝑁2𝐽𝑚+𝐽𝑙)]𝑠+𝑅𝑎(𝑁2𝑏𝑚+𝑏𝐿)+𝑘𝑏
2𝑁2) (3.11) 

Where 𝐿𝑎 is the inductance of the motor, 𝑁 is the gear box ratio, 𝐽𝑚 and 𝐽𝑠 are the moments of 

inertia for the motor and load, respectively, 𝑅𝑎 is the motor resistance, 𝑏𝑚 and 𝑏𝐿 are friction 

coefficients due to the motor and bearings, respectively, and 𝑘𝑏 is motor torque constant. Using 

this, it is possible to run simulations based on the voltage applied due to a microcontroller. 
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 Using a micro controller such as Arduino to control the system implies several 

constraints. One constraint is how the Arduino approximates analog voltage input and output. To 

give an analog output, a pulse-width modulation (PWM) is given by the Arduino to fire the 

transistors in an H-bridge at a certain relatively high frequency. This type of output is a sequence 

of high and low values that are analogous to a square wave function whose time on and off is 

changed to adjust its duty cycle. This is because microcontrollers can only send signals as a 

mixture of low and high (0 and 1) values through the digital output pins. What this means for the 

system is that when a value for the motor voltage (between the maximum and minimum value) is 

needed, the microcontroller can approximate it with the duty cycle of the PWM signal. Take the 

example where a motor would need 50% of its strength to balance the system, then, the duty 

cycle of the PWM signal that the microcontroller needs to output is 50%. Effectively this means 

that the motor experiences a voltage equivalent to half the maximum voltage provided by the 

power supply. This method allows microcontrollers to output a wide range of responses. Another 

constraint of using an Arduino to control the system is the time response of the controller. As 

discussed in Chapter II, if the sampling rate is too low, the response of the controller will be out 

of sync with the system, possibly failing to stabilize toward desired setpoint. The sampling rate is 

largely affected by the efficiency of the code and hardware limitations. If the controller is fast 

enough to keep up with the system, a microcontroller can be a substitute for other means of 

control such as human operator. To determine if a system is being sampled fast enough, it is 

possible to use the natural frequency of the system. The equation to find the natural frequency is 

generally as follows: 

𝜔𝑓 = √
𝑘

𝑚
  (3.12) 



 

32 
 

Using the model of the system, it is possible to find this value. So long as the sampling frequency 

is greater than 10 times the natural frequency, the system is sampled sufficiently fast for control 

purposes. (Fadali & Visioli, 2013) It should be noted, in cases with damping, the damped natural 

frequency is used instead. 

In the next chapter, the control systems and the models discussed in the previous chapters 

will replicated and tested. Simulations of models from literature using MATLAB and the 

implementation on microcontrollers will also be tested. 
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CHAPTER IV 

CONSTRUCTION AND TESTING  

 It is important to know if a low-cost microcontroller (like an Arduino UNO) can handle 

the multivariable model and processing power required to control an inverted pendulum. While 

the literature shows that an Arduino is more than capable of controlling complex systems in real-

time, there is still the uncertainty of how it will handle the controlling both the angular position 

and the translational position of the pendulum, for example. To test if this were possible, it was 

important to have a basic hardware setup. An available hardware setup in the form of a ball and 

beam system was used to test code implementation on hardware. This setup was a motor in the 

center of a beam that was about 1 meter long with an ultrasonic sensor on one end. While the 

original setup had yet to be optimized with its own PID controller and code, it was enough to test 

out new control schemes like fuzzy logic and debug design flaws like motor stall due to low duty 

cycle output. To validate that the Arduino did have speed and computational power to handle the 

processing and output of data in real-time, a PID controller was tested. The PID controller used a 

relatively high derivative coefficient compared to the proportional and integral coefficients. The 

values Kp = 3, Ki = 1, and Kd = 100 were obtained after numerous trial-and-error tests. The ball 

was not completely balanced by these values due to the current hardware limitations, but these 

values for the PID’s constants got the ball close before the system became unbalanced (more 

details on these limitations discussed later in the chapter). The system did show the capacity to 
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respond fast to changes, which was a crucial factor. Through use of the built-in serial monitor in 

the Arduino software, it was possible to see how fast the PID controller was responding, which 

was found to be approximately at 34 Hz. While this value is not indicative of the true sampling 

rate because the printing to the monitor itself adds some delay, it is a good indicator that the 

program is not too slow. With this in mind, it was time to test out a fuzzy logic controller on the 

hardware. To start, a simple fuzzy logic test controller built from MATLAB was constructed. It 

had 2 inputs, Error (ball’s displacement from the desired position), and Speed (velocity of the 

ball) with 3 membership functions. The output consisted of 3 membership functions and would 

output a PWM value between -255 and 255. (In this case, a value of -255 functions the same as a 

positive one, but the direction in an H-Bridge is changed). The rules and output response to 

rotate the arm for each combination of inputs were as follows: 

            Position Error 

Velocity Error 

Negative Error Okay Error Positive Error 

Negative Speed Positive Positive Neutral 

Okay Speed Positive Neutral Negative 

Positive Speed Neutral Negative Negative 

 

Table 4.1: Fuzzy Logic Ball-Beam Rules (3x3) 

The membership functions and logic system built are as follows:  
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Figure 4.1: Membership Functions for Error 

 This figure sets up what is considered high error. Anything above 20 cm away from the 

target is considered positive or negative and warrants a response, however, anything within 20 

cm will increasingly belong to the “okay” membership function where the response should be 

lessened. 
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Figure 4.2: Membership Functions for Speed 

 Similarly, the speed variable has anything above 20 cm/s in either direction is classified 

as positive or negative or anything between is “okay” speed with the ideal speed being 0 cm/s for 

the “okay” membership function. The way the centroid calculation will work for having two 

inputs is through the use of proportions. Recall that each input membership function can only 

return a value between 0 and 1. These proportions are what dictate what proportion of the output 

membership function is expressed. In the case of two inputs, the lesser proportion is used. So, 

having a return of 0.5 Negative for position, and 0.3 Negative for speed, will result in a Positive 

output membership function with a height of 0.3. It should be noted that which output 

membership functions are expressed is dependent on what rules are currently in effect and so 

there may be multiple valid rules firing at any given time.  
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Figure 4.3: Output Membership Functions 

The output membership function has 3 peaks at -255, 0, and 255 for the Negative, Neutral, and 

Positive membership functions, respectively. This ensures that the logic system will not exceed 

the range of a PWM response from the microcontroller. In this case, the peaks of the output 

membership functions are the centroids of those functions, so the output will never reach a value 

greater than 255 or less than -255. 
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Figure 4.4: Surface Graph of the Fuzzy Logic Rules 

 Finally, here is a surface representation of how all 9 rules interact with each other. In 

summary, if the speed or distance is too negative, the system will output a positive response to 

counter it and vice versa. While the values selected are mostly arbitrary, the main purpose of this 

is to see how an Arduino Uno will handle these rulesets. Given the above graph, if two inputs 

were selected to be position 7 cm and speed 24 cm/s, the rules would apply as follows: 



 

39 
 

 

Figure 4.5: MATLAB Rules – 2 Inputs 

Notice how there are 9 rows instead of the 3 in Figure 2.6, this is because there is one row per 

rule, as each combination of inputs needs an output. In this case, a position of 7 cm and speed of 

-24 cm/s results in a PWM response of 128. 

 With a logic system created in MATLAB, it was time to transfer it over to Arduino. The 

fastest method to transfer it appeared to be an online converter tool that converted MATLAB’s 

fuzzy logic interface (which is built to be compatible with universal coding languages) into an 

Arduino script. This is because it meant no additional coding had to be done on the Arduino. 

This made it very simple to get the logic onto the board; however, the result was less than 

satisfactory. After merging the codes to get a working input/output system running on fuzzy 

logic, a look at the serial monitor revealed a disparity between sample rates. Compared to the 

previous PID running at 34 Hz, the system was now running at only 5 Hz on the serial monitor. 

This was unacceptable as the ball and beam (and more importantly, the inverted pendulum) can 
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go from one extreme to the other in less than half a second. With this test, it was clear that if 

fuzzy logic was to be implemented, it would need to be using a much more efficient coding style. 

After some investigation, it was discovered that a fuzzy logic library created by Dr. Lira et al. 

(2012) had been included in the official list of Arduino libraries. The library claimed it was 

extremely fast and efficient in the handling of fuzzy logic. To test this, the same fuzzy logic 

interface from MATLAB was recreated from the ground up in Arduino using this library. The 

initial tests using random values seemed to work well and fast, following the rules that had been 

previously established. When the fuzzy logic system was used with the sensors, the result from 

the serial monitor showed a response speed of 33 Hz on the serial monitor. This is akin to the 

PID response and it might be capable of handling fast changing conditions. Due to a combination 

of faulty sensors and a lack of fine-tuning, the ball and beam system was not able to be balanced 

by this fuzzy logic ruleset. To be able to balance complex system like this, more fine tuning and 

debugging would need to take place. As for the sensor, it would sometimes read distance to be 

maximum for a brief period, making the speed calculation inaccurate. Despite this, the test had 

done its job in showing that with the library, it is possible to get a fuzzy logic controller running 

smoothly on a low-cost microcontroller. In addition, it proved that an Arduino can handle a 3x3 

ruleset FLC with 2 inputs. Further testing of the Arduino will be demonstrated on a working 

system later in the chapter. In order to avoid having difficulty with hardware being damaged by 

faulty controllers, the safe option was to build a controller in MATLAB and Simulink and build 

a model around that; however, this comes with the challenge of making a controller that is both 

viable in MATLAB and an Arduino. MATLAB can handle many variables and membership 

functions at the same time and calculate them without having to worry about real time use. As 

such, it is possible to build inputs with many membership functions meant to fine tune the 
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system. The goal would be to create a working model and controller in MATLAB and transfer it 

to Arduino. Of the papers studied, M. I. H. Nour et al. (2007) was able to construct a fuzzy logic 

system that based its outputs on both angular position and angular velocity for an inverted 

pendulum in MATLAB. This logic employed the use of Takagi-Sugeno fuzzy logic, a more 

efficiently computable version than the one discussed earlier. However, in this paper, Fuzzy 

Logic took a backseat role in fine-tuning the constants of an LQR. In this system, an LQR is used 

to stabilize the system, while a fuzzy logic controller fine tunes the control law parameters. 

While this method could be used on a microcontroller, it may not be necessary if the LQR 

parameters are enough to stabilize the system. Another system that used Fuzzy Logic for an 

inverted pendulum was documented in a paper by Yanmei Liu et al. (2009). This system 

operated using a hybrid PID-fuzzy logic controller that took angular position and angular 

velocity as inputs, and outputs the force that act on the cart (Liu, 2009). This is shown in Figure 

4.6. The paper provided enough information to replicate the results in Simulink. Below are both 

the results provided by Yanmei Liu et al. (2009) and the simulation used to replicate their results.  

 

 

Figure 4.6: Transfer Function Block Diagram 
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 The above diagram is a reconstruction of the block diagram by Yanmei Liu et al. (2009). 

It should be noted that instead of taking both angular position and velocity directly as inputs, the 

fuzzy logic controller takes the values of the error through a proportional gain of 8.1 and a 

derivative gain of 0.8, similar to a PID. In the ruleset, the FLC attempts to control both angular 

position and velocity by controlling the output force (the membership functions for these inputs 

are described further into the chapter). Their results, and the one produced by this diagram are as 

follows: 

 

Figure 4.7: Simulation Result of Yanmei Liu et al. (2009) Angular Position (rad) vs. Time 

(s) 
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Figure 4.8: Replication of Yanmei et al. (2009) Results Angular Position (rad) vs. Time (s) 

As can be seen by the above figures, the results from both Yanmei Liu et al. (2009) and the 

results from the attempt to replicate them are similar. With the enhanced image resolution, it is 

easy to see that there is a slight upward trend with the angular position over time. This is because 

in the paper, they set their target angular position to be 0.5 radians, and this position is an 

unstable point, and the system must constantly input work and accelerate for the pendulum to 

stay there. The figure demonstrates what begins to happen with time. 

 

Figure 4.9: Extension of a 0.5 Radian Position Graph  
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Here the upward trend continues to rise, and further simulation reveals that it will continue to do 

so until it sharply jumps toward infinity when outside the operating window of the fuzzy logic. 

At approximately 32 seconds, there is a sharp upward turn in position, which is likely due to a 

rule change. While the other parts of the graph have a rule change with a smooth transition, this 

rule change at the edge acts differently. This is because of the geometry of the membership 

functions and how MATLAB uses the centroid method in calculation.  

 

Figure 4.10: Replication of Output Membership Functions 

The membership functions replicated keep the same notation where the first letter describes the 

sign (N = Negative, P = Positive) and the second letter describes the magnitude (S = Small, M = 

Medium, B = Big), ZE is used to represent 0. At 32 seconds, the force was measured to be 

approximately -20 N which is a peak of the NM membership function. This would mean that the 

most extreme response (NB) would be the next output in line.  
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Figure 4.11: Replication of Input Membership Functions 

However, the NB input membership function is displayed as a half-triangle, In MATLAB, the 

geometric calculations are based on what is displayed in the operating window; therefore, the NB 

input would have less geometric “weight” in the centroid calculation. In other words, the system 

would try to transition from the NM to the NB input membership function, but NM has more 

influence than NB. This would be the case for all inputs with a magnitude greater than 2/3 pi 

radians. One way to fix this issue is to use trapezoidal membership functions at the end to lump 

all values outside a certain range to the most extreme responses. This was the response for a 

system at 0.5 radians, an unstable point. To test the capability of the PID-Fuzzy Hybrid to 

stabilize the system, the target was set to 0 radians. To simulate initial conditions for a transfer 

function, the target angle was set to 0.5 for 0.01 seconds. This was enough to put the pendulum 

in an unstable position to test the controller. 
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Figure 4.12: Angular Stabilization of the PID-Fuzzy controller, Angle (rad) vs Time (s)  

From the above figure, we see that the system reaches a maximum displacement of 

approximately 0.015 radians before returning to 0. This shows that the hybrid controller can keep 

the pendulum stable at the vertical up position. To test the viability of the fuzzy logic controller 

on its own, the proportional and derivative multipliers were set to 1, meaning the controller was 

only taking the direct measurement of those variables into account.  

 

Figure 4.13: Angular Stabilization of Fuzzy Controller, Angle (rad) vs Time (s)  

While there is less overshoot in this case, it appears to be taking longer to reach the 0 radian 

position. Extending this graph reveals that it does not reach 0 and begins to increase again to 

infinity. It would appear, for this setup, such fuzzy logic controller was not enough to stabilize 
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the system. This is further shown by the state space representation where the same problems 

arise if the fuzzy logic controller is left to stabilize a displacement of 0.2 radians on its own: 

 

Figure 4.14: State-Space Fuzzy Logic Test 

To test the ability of the fuzzy logic controller on its own, a state space model was used and 

connected to the fuzzy logic controller without a PID. The initial condition was set to be a 0.2 

rad displacement. 
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Figure 4.15: State-Space Results for 0.2 rad displacement, Error (rad) vs. Time (s)  

This shows that the system follows the same turnaround trend as the previous example, and it 

will continue to do so until it is outside the operating window. The reason this happens is 

because this fuzzy logic controller was tuned to function in tandem with a PID. The PID would 

apply a gain to the angular position and angular velocity, which would result in a stronger 

response from the controller. Without this, the controller is unable to bring the system to a stable 

position and it diverges from it. If a gain is applied to the fuzzy logic controller to apply more 

force to the system, the problem resolves: 
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Figure 4.16: State-Space Results for 0.2 rad Displacement with Gain of 4, Error (rad) vs. 

Time (s)  

The gain after the fuzzy logic in Figure 4.14 was adjusted from 1.3 to 4, and as a result, the 

system behaved in a more stable way as shown in Figure 4.16. There is still a slight offset from 0 

radians, indicating there needs to be more force in areas near the stable point. In other words, the 

angular position is not prioritized as highly without the PID, as a result, the force applied is 

insufficient to bring the system to 0. This could be remedied by fine-tuning the membership 

functions or rules to generate a stronger response in the area near 0 radians.  

 In another paper, it was possible to hybridize both an LQR and FLC to control a two-

wheeled inverted pendulum (Wu & Zhang, 2011). For this, it is possible to replicate the results 

of Jufeng Wu et al. (2011) to test if there is a bridge that can be built between the two methods. 

Unlike the previous example, the two wheeled system used a hybridization of LQR and fuzzy 
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logic. This pattern of hybridization is an indication of the role fuzzy logic can play in modern 

control systems. Using the control law values provided in the literature, it was possible to 

replicate the model in MATLAB using the same values for the cart’s parameters. Unfortunately, 

without knowing the exact weights of their matrix Q, rebuilding the k matrix from scratch was 

not likely to yield the same results. Below are the results provided in the literature for the states 

of a 2 wheeled system with an initial velocity of 0.1 m/s.  

 

Figure 4.17: LQR Controller of Jufeng Wu 

These results can be compared with the results gained from using the same k matrix: 
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Figure 4.18: Replication of LQR Controller 

As can be seen, the results are near identical. Note how in both graphs, the response of all 

variables is stabilized at 0. Using this, it is possible to control multiple variables like distance and 

angle at the same time. A controller could set the initial condition of position to be a variable x 

distance from the destination and the system would attempt to go back to 0. This showcases the 

power of LQR; however, this setup requires the system to be fully observable. Reducing the 

observability of the system is one of the primary challenges in which fuzzy logic may be a 

solution. While a reduced order system allows for the system to have less sensors, it requires 

more calculations to be done on the software side of the controller. This has the possibility of 

reducing the speed of the controller. As such, building an observable system may have its own 

costs that are not easily remedied in a microcontroller implementation. This makes it important 

to test the speed of a new system by checking its response rate in the serial monitor. While LQR 
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is a fast method (Messner & Tilbury, 2019), whether it retains that speed when hybridized 

requires testing.  

    

Figure 4.19: LQR Controller with Set Distance 10 m 

As can be seen in the above figure, when the initial distance is set to 10 m from the 

offset, the LQR attempts to return the position to 0. This means that some weight must have been 

put on the position state during the controller design. This large number is meant to test how this 

set of control law values can get the cart to travel a large distance while still stabilizing the 

pendulum. While the graph shows all variables stabilizing, it should be noted the velocity and the 

angular velocity both reach elevated levels of over 5 m/s and 5 rad/s, respectively. This would 

cause the system to rely heavily on motor selection: a strong, reactive motor would be required. 

Since part of the system’s objective is to be low cost for implementation on a microcontroller, 
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this is unacceptable. To remedy this, it could be possible to use coding to travel this distance 

incrementally, using the LQR to stabilize and using either fuzzy logic or a standard coding loop 

to keep track of the remaining distance. However, rather than using another’s existing control 

law, it would be more efficient to construct one weighted accordingly to the requirements of the 

designer.  

As previously stated, the viability of these methods hinges on the ability for them to be 

run on microcontrollers. Normally, a state space representation is much more easily handled in a 

program like MATLAB, but this would be impractical for a system that is not always going to be 

at the side of a PC. To transfer the model over to a microcontroller would normally require 

discretizing the transfer function; however, using Arduino libraries, it is now possible to 

implement a state space model in matrix form directly into the microcontroller. Furthermore, this 

state space model allows for the implementation of LQR, with estimator (observer), and integral 

control. With the system able to handle these calculations, it was important to check the speed of 

the system. An example system of the one constructed by the University of Michigan was 

included on the library’s page. Acquiring this code, and uploading, it was possible to see how 

fast the program was on actual hardware. Using the serial monitor, the program that included a 

state space inverted pendulum with LQR, observers, and integral control was able to run at a 

steady 84 Hz. This speed is good considering all the calculations that are being performed. 

It may be possible to resolve the position problem using fuzzy logic or coding to increase 

distance incrementally. As stated before, an LQR controller allows for the control of multiple 

variables; therefore, controlling of distance should be possible. However, it is possible that the 

distance is too great for the system to match the expectations of the controller.  



 

54 
 

To test if it was theoretically possible to use both an FLC and LQR on the same microcontroller, 

the model in the Arduino was combined with the fuzzy logic code. This was to test if the codes 

could run simultaneously before implementing a model onto the system. By including a full 

fuzzy logic ruleset into the state-space model code and having them feed into each other, it was 

possible to test the viability of them on the hardware. The result on the serial monitor was a rate 

between 81-84 Hz. This is also acceptable and should be more than capable of handling a real 

model if implemented.  

To implement and validate the above fuzzy logic concepts, it was important to have a 

physical model to test and implement them. Due to limited availability of facilities and 

equipment, a motor arm system was procured by the University of Texas Rio Grande Valley for 

use. This motor arm system consisted of a motor attached to an arm atop bearings with a 

potentiometer at the end to record the arm’s position. This is illustrated in the figure below: 

 

Figure 4.20: Motor Arm Photo 

Motor 
Bearing Bearing 

Arm 

Potentiometer 

Frame 
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The transfer function for the arm’s movement in relation to the input voltage had been previously 

documented. This allowed for the rapid prototyping of controller systems in Simulink. Below is 

the block diagram of the system. (Vasquez, Kypuros, & Villanueva, 2010)  

 

Figure 4.21: Motor Arm Block Diagram with Fuzzy Logic Controller 

To account for the stick-slip friction of the bearings, a dead zone of +/- 1.8 V was added. This 

value came from previous testing of the system as documented in literature. For the Fuzzy Logic 

Controller to work in Simulink, it must be based on a constructed controller with inputs, outputs, 

and rules set up. This controller was created in MATLAB. The membership functions for the 

inputs and outputs, as well as rule table are below. The following image is the Mamdani FLC 

structure for the controller. This system only requires one input and one output, so the structure 

is as follows: 
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Figure 4.22: Input and Output of Fuzzy Logic Controller 

The fuzzy logic controller runs using a single input, “Voltage Error” which is how much the 

voltage of the potentiometer differs from the reference voltage. In this case, each 0.5V 

corresponds to one revolution of the arm. Using this, it is possible to correspond voltage to 

position. The single output is the voltage delivered to the motor.  

 

Figure 4.23: Input Membership Function of Motor Arm 

The input has three membership functions: NEGATIVE, NEUTRAL, and POSITIVE. The 

NEUTRAL membership function is triangular with a peak at 0 and the base being the voltage 
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equivalent of 2 radians in either direction: (-0.1592, 0, 0.1592). The POSITIVE membership 

function is a trapezoidal membership function with anything above 2 radians of error being 

considered wholly part of the POSITIVE function. This value of 2 radians was obtained through 

running experiments in Simulink and was chosen because of its comparable performance to a 

PID controller. Details of these experiments will be discussed later in the chapter. This continues 

up to 5V of error, the maximum value that can be interpreted by an Arduino. Likewise, the 

NEGATIVE membership function is the mirror image of the positive with anything smaller than 

-2 radians of error being wholly part of the NEGATIVE function.  

 

Figure 4.24: Output Membership Function of Motor Arm 

The output membership function consists of 3 triangular membership functions: NEG VOLT, 

NO VOLTAGE, and POS VOLT. These membership functions have peaks at -24, 0, and 24 

volts, respectively. This voltage is based off the power supply in the original model of the motor 

arm system. As will be seen later in this chapter, the voltage value of each function will not 

matter when transferred to a microcontroller.  
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INPUT MEMBERSHIP FUNCTION OUTPUT MEMBERSHIP FUNCTION 

NEGATIVE NEG VOLT 

NEUTRAL NO VOLTAGE 

POSITIVE POS VOLT 

 

Table 4.2: Fuzzy Logic Rules for Motor Arm 

The above table shows the output for each corresponding input. Since there is only one input, 

there are only as many output responses as there are membership functions. With the rules set up, 

it is possible to graph the response versus the input error.  

 

Figure 4.25: Voltage Response versus Voltage Error 
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The above graph represents all possible responses of the output by the fuzzy logic controller. 

With the controller constructed, it was now possible to conduct simulations.  

 

Figure 4.26: Error versus Time Simulink Graph (PID/FLC) 

Above is the graph of the error between the desired position of 1 revolution and the actual 

position versus time. The error of the system quickly decreases to near zero with the fuzzy logic 

controller. The settling time was approximately 3.36 seconds. The steady state value was 8.5mV. 

In comparison, a PI controller with a kp of 10 and ki of 0.01 had a settling time of approximately 

3.6 seconds. The steady state value for the error was 13.6mV. 

 Note, in the above graph, the PI controller used originally took radian error as an input. 

Since the new block diagram for the FLC uses voltage error, it is necessary to convert volts back 
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to radians for the PID controller. As a result, in the block diagram, the fuzzy logic controller is 

replaced with the following: 

 

Figure 4.27: PI Controller in Block Diagram 

The gain of 4pi is derived from the following: 

0.5 (
𝑉

𝑟𝑒𝑣
) ∗

1

2𝜋
(

𝑟𝑒𝑣

𝑟𝑎𝑑
) =

1

4𝜋
(

𝑉

𝑟𝑎𝑑
)  (4.1) 

Converting back to volts is as follows: 

𝑥(𝑉) ∗ 4𝜋 (
𝑟𝑎𝑑

𝑉
) = 4𝜋𝑥 (𝑟𝑎𝑑)  (4.2) 

These results from the FLC are possible because of how close the values composing the 

NEUTRAL membership function are to each other (-0.1592, 0, 0.1592). When membership 

functions are narrow, like this one, it allows for a stronger response near specified operating 

points. If this window is widened, the response may be more gradual. 
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Figure 4.28: Error Graph with Wide NEUTRAL Function, Error (V) vs Time (s) 

To show this, the NEUTRAL membership function was adjusted to be [-1 0 1] with the 

POSITIVE and NEGATIVE membership functions also adjusted accordingly. As can be seen, 

the response is slower and appears to be settling further away from the desired value. This shows 

how narrower membership functions can give more precise results. With a working model in 

Simulink, it was time to transfer this to an Arduino. 

 To transfer the above fuzzy logic onto an Arduino, it was convenient to change the 

membership functions of the Fuzzy Logic Controller into a range of values that can be 

interpreted by an Arduino. An Arduino reads voltage between 0-5V and interprets it as an integer 

between 0-1023. To find the equivalent membership functions, it is possible to change the 

“Range” value in the MATLAB fuzzy logic toolbox and the values will automatically scale up or 

down.  
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Figure 4.29: Motor Arm Scaled Input Membership Functions 

In the above graph, the range was changed from [-5 5] to [-1023 1023]. This caused the 

NEUTRAL membership function to change to [-32.57 0 32.57]. However, because the read from 

the Arduino is an integer value, the error must also be an integer. To accommodate for this, the 

NEUTRAL membership function was changed to [-33 0 33] when transferred to the Arduino. 

The POSITIVE and NEGATIVE membership functions were adjusted in the same way 

accordingly. Like the Ball and Beam FLC, the output membership functions were adjusted to 

have the peaks at -255, 0, and 255, respectively. 
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Figure 4.30: Motor Arm Output Membership Functions for Arduino 

With the membership functions converted, it was now possible to compile the code onto 

an Arduino. Using the embedded Fuzzy Logic Library (eFLL), it was possible to directly 

implement the membership functions. (Lira et al. 2012) It should be noted, however, that eFLL 

only allows for trapezoidal membership functions, meaning that custom and sinusoidal 

membership functions cannot be used in it. This does not pose a problem for triangular 

membership functions, for a triangle can be expressed as a trapezoid with a base of width 0. For 

example, the triangular membership function NO VOLTAGE can be expressed as (-255, 0, 0, 

255) in the Arduino coding language. To transfer the FLC onto an Arduino, all the input and 

output membership functions, as well as the rulesets must be transferred to an Arduino. To do 

this using eFLL, each of the membership function parameters must be first converted to 

trapezoidal format. Notation for MATLAB and Arduino functions will be different due to 

formatting reasons. The input will be referred to as “radianerror” and the output will be referred 
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to as “response.” The tables below will show the new notation for individual membership 

functions as well as their updated parameters. 

MATLAB Name Arduino Name Arduino Parameters 

NEGATIVE neg (-1023, -1023, -33 0) 

NEUTRAL neutral (-33, 0, 0, 33) 

POSITIVE pos (0, 33, 1023, 1023) 

Table 4.3 Input Membership Functions, MATLAB to Arduino 

The input membership functions can be seen in Table 4.3. It should be noted that the value 1023 

and -1023 are repeated twice. This is because eFLL interprets this to include all values beyond 

the range of [-1023, 1023] to belong to either the positive or negative neutral membership 

function. Since an Arduino will never read a value beyond 1023, however, this will not come 

into play.  

MATLAB Name Arduino Name Arduino Parameters 

NEG_VOLT negvolt (-510, -255, -255, 0) 

NO_VOLTAGE novolt (-255, 0, 0, 255) 

POS_VOLT posvolt (0, 255, 255, 510) 

Table 4.4 Output Membership Functions, MATLAB to Arduino 

Similarly, the output membership functions are represented as triangular, with -255, 0, and 255 

being the peaks. With these values, the Arduino will never attempt to output a value greater in 

magnitude than 255. With these membership functions in place, the fuzzy logic rules had to be 

converted over as well. The eFLL has a format for inputting rules, the exact structure can be seen 

in Appendix Figure A.1. In general, the rules in the Arduino follow an IF x THEN y structure. 
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For example, the rule for the negative response is "IF radianerror = neg THEN response = 

negvolt" with each rule from Table 4.2 also following this format. For more details on how this 

structure is formatted, one can refer to the tutorials written by the library’s creator. Once all the 

membership functions and rules are converted to the Arduino’s language, it is time to build the 

code to control the motor that moves the arm.  

Since the FLC does most of the calculations, the remaining code is simple and mostly 

deals with the movement of the arm. In general, the code loops the following steps. Step 1 is to 

read the input voltage from the potentiometer. Step 2 is to use the voltage to calculate the error. 

Step 3 is to input the error into the built FLC. Step 4 is to determine whether the output from the 

FLC is positive or negative for changing the direction of the H-Bridge. Step 5 is to send the 

output to the H-Bridge to turn the motor. Step 6 is to print the response for monitoring purposes.  

Based on the above steps, a value of -255 results in the H-Bridge turning the opposite 

direction with a PWM output of 255. The way this works is by sending a digitally written LOW 

voltage to one part of the H-Bridge and sending the PWM output from the FLC to the other part 

of the H-bridge. Depending on which side receives PWM output, the motor will turn one way or 

the other. The full code for how this is set up can be found in the Appendix Figure A.1 of this 

thesis.  

 As for how the input error is determined, the potentiometer is a 10k Ω resistor with 5 

volts across it. This means that as the motor turns, the wiper voltage will be anywhere between 0 

and 5 volts (0 and 1023 as a 10-bit value) with one full turn of the potentiometer equating to 0.5 

V (102 as a 10-bit value). This value is referred to as “realposition” in the Arduino’s code. The 

value for the desired position could either be an input from a second potentiometer, or a set 

value. To get consistent results, the starting position was written in the code itself to be at the 
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midpoint 10-bit value of 512. This desired value would then be adjusted by one revolution to 614 

is referred to as “desiredposition” in the code. The error is then calculated by the simple line of 

code: “error = desiredposition - realposition;” which is then sent to the FLC in step 3. Through 

this process, the controller can be tested to see how close it gets and how long it takes to reach 0 

error. 

To ensure the arm did not turn too much and break the sensitive potentiometers, voltages were 

recorded in relation to the arm’s position to ensure the microcontroller would output the 

appropriate response. The initial reference voltage was set using another potentiometer so that 

the arm would attempt to match a manual input by turning the knob. However, this can also be 

altered to allow for other means of setting reference, such as a digital remote control. When 

tested physically, the arm would turn until the error read produced a response too weak to turn 

the motor. At this point, the steady state error would have a magnitude of 2 (in the 1023 scale, or 

9mV or 0.12 rad) or less. This meant the controller translated well to the system with most of the 

error due to the stick-slip friction on the arm. To test the results of the FLC in comparison with a 

PID on Arduino hardware, the code was modified to include the same PID controller that was 

tested in Simulink. To include this PID in an Arduino, a PID library called PID_v1 was used. 

This library allows for the implementation of a PID and reduces code size by eliminating the 

need to manually code the calculations for the proportional, integral, and derivative functions. To 

use the same PID as in Simulink, the analog input had to be converted into a form that was 

mathematically equivalent to the radian error. The values for the input were converted from the 

analog input to radians by first converting the input to volts and then to radians using the same 

process used in equations 4.1 and 4.2. The input to the controller was in radians and an output in 

Volts. Unlike the FLC membership functions that were specifically written to have outputs of -
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255 to 255, a mathematical equivalent for the PID’s output in terms of a duty cycle would have 

to be calculated in the Arduino itself. The way this was accomplished was by setting a saturation 

voltage value to be equal to the power supply voltage. If the voltage output of the PID exceeded 

the saturation voltage in either direction, the output of the controller would be +/- 255, depending 

if the error was positive or negative, respectively. All remaining values of voltage would be 

mapped between -255 and 255 using the Arduino’s built in map() function. The full details of the 

code can be found in the Appendix Figure A.2. With the control system uploaded to the Arduino 

board, it was now possible to test it. Once again, the steady state values of the error had a 

magnitude of 3 (in the 1023 scale, or 15.0mV or 0.184 rad), or less. In terms of steady-state 

results, the FLC got the error closer to 0 more consistently. To test for more significant 

differences, the speed of the controllers had to be considered. This was accomplished by setting 

the initial position to be at the halfway point and then having the controller set the desired 

position to be one revolution forward. The time it would take would then be recorded by the 

Arduino. A series of tests were conducted, tracking the settling time of the motor arm. The 

settling time was recorded using the milis() function in the Arduino, recording when the error 

reached 0 (Since there was no overshoot, recording time when the error reached 0 was an 

accurate representation). On average, the Fuzzy Logic Controller had a settling time of 3.266 

seconds. The PID controller settled at an average of 3.200 seconds. 

Both controller types while on an Arduino were still a considerable distance away from 

the target destination, sometimes almost by 10 degrees. The reason why this happened is the 

dead zone that was discussed earlier does not allow small PWM responses to turn the motor. 

Take for the example if the voltage error returned was the 10-bit value of 3 to the Arduino. The 

fuzzy logic calculation would be as follows: 
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Figure 4.31: Fuzzy Logic 10-Bit Error 

This PWM response of 15.7 results in an output of about 0.75 V. This is not enough to turn the 

motor and it will stall before it reaches 0 error. To remedy this, there are a few options that could 

be taken. One would be to rewrite the membership functions of the fuzzy logic code to 

accommodate for the dead zone and restructure the rulesets appropriately. The other is to use the 

coding aspect of the microcontroller to increase output near the target range. This was done by 

multiplying the output by 4 whenever the error voltage was within 15 mV. This segment of code 

is found in within Figure A.1 and is designated as the variable “highoutput.” The result of this 

correction was a steady-state error of 0 mV.  
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CHAPTER V 

 DISCUSSION AND ANALYSIS OF RESULTS 

 Through the testing of multiple control systems, it is clear that many have their own 

strengths and weaknesses. In the replication of the hybrid PID-FLC controller provided by 

Yanmei Liu et al. (2009), it was reaffirmed that a fuzzy logic controller requires an extent of fine 

tuning for it to control a system on its own. With the adjustment of gains, the output can be made 

to be as responsive as a PID controller. This was further validated in the creation of an FLC to 

control a motor arm. Simulations demonstrated that the tightening of the membership functions 

around the stable point allowed for a faster, and more accurate response. This demonstrates that 

through the adjustment of membership functions, either by making them more numerous or 

narrow, it is possible to achieve a result closer to the desired value. Fuzzy logic has been 

described as able to substitute a human operator, and, likewise, fine-tuning the controller requires 

a very “human” approach in identifying what areas should require more precision and what can 

be lumped together as a trapezoidal function. (King, Magoulas, & Stathaki, 1994) The 

simulations have also shown the advantages of using a Fuzzy Logic Controller as compared to an 

LQR in some scenarios. An LQR can control multiple variables and optimize settling time, 

however, its cost function is based on the parameters of the system (transfer function, state-space 

representation) to achieve optimal results. In cases where the system properties are not wholly 

known, or when the system cannot be fully observed, a fuzzy logic controller can be 
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implemented without prior knowledge of the system model. This is demonstrated by the fact that 

the construction of the fuzzy logic membership functions and rule sets did not require the 

equations of motion of the system to be implemented in any way. This makes FLCs very useful 

in being able to control nonlinear systems as they do not require linearization or a transfer 

function to operate. However, it is still very useful to have those equations to run simulations and 

to safely fine-tune the controller, but the actual “logic” of the controller can function wholly 

without it. In terms of ease of implementation, it is like a PID in that one can easily change the 

constants of the controller to get a different response out of the system. Both also have toolboxes 

across many simulation or controller software packages, making them very easy to implement. 

This may be a reason that PID-fuzzy hybrid controllers are so prevalent in literature. Meanwhile, 

in LQR-fuzzy hybrid controllers, the FLC takes more of a backseat role, fine tuning the 

parameters to lower inaccuracies from linearization. From experimental results with a physical 

motor arm, it was clear that Fuzzy Logic could be easily implemented onto an Arduino Uno and 

produce results comparable to the simulations. The speed of the controller was verified both with 

a single input and with multiple input FLCs, meaning that a controller can be complex and 

remain viable for systems such as the inverted pendulum or ball and beam system that require it. 

When it comes to physical comparisons of performance, the Fuzzy Logic and PID controllers 

were both able to correct the error on a motor arm within a similar level of accuracy. In addition, 

the physical tests coincided with the simulations, with Simulink predicting a settling time of 

approximately 3.36 seconds for the FLC and 3.6 for the PID, while the real model tests resulted 

in values of 3.27 and 3.20 seconds, respectively. In addition to this, the steady state voltage 

values are similar, with 8.5mV in Simulink vs 9 mV in Arduino for the Fuzzy Logic compared to 

13.6 for and 15mV for the PID, respectively. In terms of settling time, both controllers 
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performed similarly, with the PID being faster on an average of 0.066 seconds in physical tests. 

This contrasts with the Simulink simulations where the FLC was slightly faster. This result was 

mirrored in the Arduino tests with the steady state error being slightly greater for the PID 

controller. This shows that the physical model and simulation coincide for both controllers 

mutually validating each other.  
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 Modern control engineering has many avenues to automate systems. Among these 

methods is the use of fuzzy logic controllers. These controllers can function as substitutes for 

human operators and allow for many options of control depending on the membership functions. 

In comparison to more traditional methods such as the PID, a FLC can achieve similar results. 

Both require their own kind of fine-tuning to avoid problems such as overshoot or slow settling 

times, but the fuzzy logic controller can function on an easy to comprehend linguistic level. This 

makes it a very beginner-friendly tool for someone designing a controller without knowledge of 

models or the math used by a PID. This easy-to-interpret, linguistic approach is the controller’s 

greatest strength. In addition, the controller does not require a model to be built to acquire a 

control law unlike other methods like LQR. This can make it a very powerful tool for nonlinear 

systems, as fuzzy logic rules can accommodate for multiple operating windows depending on 

how the rules are set up without losing accuracy due to linearization. In addition, a FLC can be 

easily implemented on to a low-cost microcontroller using either existing libraries on an 

Arduino, or manually coding one in the style of a Takagi-Sugeno FLC. As for the 

implementation on a microcontroller, the existing libraries allow for easy implementation of 

fuzzy logic or PID control strategies. The construction and safe simulation of the FLC can be 

done in MATLAB if needed, but all the membership functions can be transferred over to an 
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Arduino through the eFLL’s coding structure. In addition, since a model does not need to be 

constructed for a fuzzy logic controller to work, nonlinear systems can feasibly be controlled 

with an Arduino at multiple operating points without the need to build complex sets of observers 

with a control law. In future works, it should be possible to implement a FLC onto a more 

complex system such as an inverted pendulum or another nonlinear system. Through this, using a 

higher dimensional ruleset for the fuzzy logic rules or attempts of hybridizing the FLC for use on 

a microcontroller can be explored to find effective control solutions. 
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Figure A.1: Arduino Fuzzy Logic Code 

The above code is what was used to control the Arduino in Chapter IV. Note that leftover 

notations indicating how the Fuzzy Logic Rules function are from a guide composed by Dr. Lira 

et al. (2012) to keep track of how the code functions.  
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Figure A.2: PID Arduino Code 

This code is identical to the code in Figure A.1, however, the Fuzzy Logic portion of the 

code is commented out, and replaced with a simple PID controller using the PID toolbox. The 

PID inputs and outputs are also converted to appropriate values by converting to radians and 

using the map() function respectively. 
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