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ABSTRACT 

Shankara Narayana Rao, Bheemaiah Veena, Two-dimensional Wigner-Ville transforms and 

their basic properties. Master of Science(MS), August 2009, 36 pages, 12 references, 9 titles. 

This thesis deals with Wigner-Ville transforms and their basic properties. The Wigner-Ville 

transforms are a non-linear transform which constitute an important tool in nonstationary signal 

analysis. Wigner-Ville transforms in one dimension and their basic properties are discussed here. 

Special attention is given to formulation of two dimensional Wigner-Ville transform, its inversion 

formula and some of their basic properties. Some applications of Wigner-Ville transforms are also 

briefly discussed. 
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CHAPTER 1 

INTRODUCTION 

Eugene Paul Wigner (1902-1995) was born in Budapest, Hungary on November 17, 1902. 

Wigner was educated at the Berlin Institute of Technology and obtained a doctrate in engineer

ing in 1925. He moved to America in 1930 and joined the Princeton University and in 1938 was 

appointed to the chair of theoretical physics. Wigner remained at Princeton until his retirement in 

1971. 

Wigner made many fundamental contributions to quantum mechanics and nuclear physics. He 

determined that the nuclear force is short-range and does not involve an electric charge, using group 

theory to investigate atomic structure. His name has been given to several formulations, includ

ing the Breit-Wigner formula, which describes resonant nuclear reactions. During World War II 

he worked on the Manhattan Project, which resulted in the first atomic bomb. After beginning his 

association with the Atomic energy Commisssion in 1947, he served as a member of its general 

advisory committee. He won the 1963 Nobel prize in Physics (shared with U.S physicist Maria 

Goeppert-Mayer and German physicist J.H.D. Jensen) for his work on the structure of the atomic 

nucleus, quantum mechanics and law of conservation of parity. Wigner also received other major 

awards, including the Max Planck Medal of the German Physical Society, the Enrico Fermi Prize, 

the Albert Einstein Award, National Science Medal and Atoms for Peace Award. The Wigner dis

tribution or the Wigner transforms was introduced by Wigner in 1932 to study quantum mechanics 

[1]. 

Although Fourier transform analysis has widespread applications in Science and Engineering, it 

cannot be used effectively to analyse nonstationary signals. To overcome this difficulty, other time-

frequency transform such as Gabor transform, Zak transform, Wavelet transform, Wigner transform 

were developed. Also the need for a combined time-frequency representation stemmed from the 

inadequacy of either time domain or frequency domain analysis to fully describe the nature of non-

stationary signals. A time frequency distribution of a signal provides information about how the 
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spectral content of the signal evolves with time, thus providing an ideal tool to dissect, analyse and 

interpret non-stationary signals. 

Later in 1948, Jean Ville a French Mathematician proposed that the Wigner transform can be 

used to analyse time frequency structures of a non stationary signal which led to the development 

of Wigner-Ville transforms [2] 

Wf(t,CO)=J f[t+^f{t-^e-l^dx. (1.1) 

Wigner-Ville transforms are very important in the field of bilinear/quadratic time-frequency 

representations. From both theoretical and application points of view, the Wigner-Ville transforms 

plays a vital role in time-frequency signal analysis for the following reasons. For a non-stationary 

signal it provides a high resolution representation in terms of time and frequency. It satisfies time 

and frequency marginals in terms of instantaneous power in time and energy spectrum in frequency 

and total energy of the signal in the time and frequency plane. Also the first conditional moment 

of frequency at a given time is the derivative of the phase of the signal at that time. The theory of 

Wigner-Ville transforms was reformulated in the context of sonar and radar signal analysis and a 

new function called Woodward ambiguity function was introduced by Woodward in 1953 to mathe

matically analyse sonar and radar systems [3]. In analogy with the Heisenberg uncertainty principle 

in quantum mechanics, Woodward introduced the radar uncertainty principle which says that the 

range and velocity of a target cannot be measured precisely and simultaneously.. 

Even though the time-frequency analysis has its origin almost fifty years ago, there has been ma

jor developments in the past three decades. So the time frequency analysis is a widely recognized 

and applied subject in signal processing. The basic idea of the method is to develop a joint function 

of time and frequency, known as a time-frequency distribution, that can describe the energy density 

of a signal simultaneously in both time and frequency. In principle, the time-frequency distributions 

characterize phenomena in a two-dimensional time-frequency plane. So, the time-frequency signal 

analysis deals with time-frequency representations of signals and with problems related to their def

inition, estimation and interpretation, and it has evolved into a widely recognized applied discipline 

of signal processing. Thus based on studies of its mathematical structures and properties by sev

eral authors including Claasen and Mecklenbrauker [4], Boashash [5], Debnath [6], Wigner-Ville 
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transforms and its applications has been brought to the attention of Mathematical and Scientific 

Community. 

During the last fifty years, considerable attention has been given to the one-dimensional Wigner-

Ville transform for the time-frequency signal analysis. However, hardly any attention is given to 

two-dimensional Wigner-Ville transforms. In this thesis we have formulated the two- dimensional 

Wigner-Ville nonlinear integral transforms , its inversion formula and some of its basic properties. 

Some of the most important applications of Wigner-Ville transforms are also discussed. 

Chapter 1 is Introduction, the history of Wigner-Ville Transform is discussed here. 

Chapter 2 deals with the motivation of Wigner. 

Chapter 3 deals with one-dimensional Wigner-Ville transforms, its definition and interpretation 

of time-frequency marginal integrals and time-frequency energy distribution. 

In Chapter 4 we will see some of its properties such as non linearity, translation, complex con

jugation, modulation, translation and modulation, general modulation, dilation, multiplication, dif

ferentiation, time and frequency moments and its proof [7]. 

Chapter 5 deals with formulation of two- dimensional Cross and Auto Wigner-Ville transforms 

which are nonlinear integral transforms, its definition, inversion formula and energy density func

tion. 

In Chapter 6 some two-dimensional properties of Wigner-Ville transforms like non linearity, 

translation, complex conjugation, modulation, translation and modulation, general modulation, di

lation, multiplication, differentiation are proved. 

In Chapter 7 examples of two-dimensional Wigner-Ville transforms are discussed. 

In Chapter 8 some important applications of Wigner-Ville transforms are briefly discussed. 

Chapter 9 is Conclusion. 
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CHAPTER 2 

WIGNER'S MOTIVATION 

Wigner's original motivation for introducing Wigner distribution was to be able to calculate the 

quantum corrrection to the second viral coefficient of gas, which shows how it deviates from the 

ideal gas law. Classically to calculate this, we need a joint distribution of position and momentum. 

So Wigner devised a joint distribution that gave marginals, the quantum mechanical distributions of 

position and momentum. The quantum mechanics came in the distribution but the distribution was 

used in the classical manner. It was a hybrid method. Also, Wigner was motivated by the work of 

Kirkwood and Margenau who calculated this quantity but Wigner improved on it [8]. 

The Wigner distribution was introduced into signal analysis by Ville, some 15 years after 

Wigner's paper. Ville derived it by a method based on characteristic function. The same type 

of derivation was used by Moyal at about same time. 
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CHAPTER 3 

WIGNER-VILLE TRANSFORMS IN ONE DIMENSION 

The one-dimensional cross Wigner-Ville transform of two functions (or signals) f,g£ L2(R) is 

defined by 

Wfjs{t,(0) = j^ f{t + ^g{t-^e-iandx, (3.1) 

provided the integral exists. 

Introducing a change of variable / + | = x gives an equivalent form of (3.1) 

/

oo 

f(x)g(2t-x)exp(-2i(Dx)dx 
-oo 

= 2exp(2icot)fh(2t,2(o), (3.2) 

where h(x) = g(—x), fh(t,co) is the continuous Gabor transform of a function h e L2(R) with 

respect to the window g e L2(M) defined by 

/

oo 

A(T)l(T-0«-''°)TrfT=(A)ft,0))) 
-CO 

&,O»(T) = g(T-0exp(i(»T) (3.3) 

so that ||g,iQ,|| = ||g||, and hence g,t(a € L2(M). 

Putting / = g in (3.1), Wfj (t, co) = Wf (t, (o) is called the auto Wigner-Ville transform defined 

by 

Wf(t,CO) = £f(t + ?)f(t-?)e-iandX, (3.4) 

/

CO 

f(x)J(2t-x)e\p(-2ia>x)dx, (3.5) 
-co 

= 2exp(2iat)fh(2t,2(o), (3.6) 
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where h (x) = f(—x). 

It follows from (3.4) that the auto Wigner-Ville transform is the Fourier transform of the function 

Mr) = / ( '+ | )7H) 

with respect to T. Hence, Wf(t,co) is a complex-valued function in the time-frequency plane. In 

other words, 

Wf(t,co) = 3{ht(x)} = ht((o), (3.7) 

where ht (co) is the Fourier transform of ht (T) defined by 

/

oo 

e~ianht(z)dz. (3.8) 
-oo 

On the other hand, the Fourier transform of the auto Wigner-Ville transform with respect to co is 

given by 

Wf(t.,a) = / e~ia>aWf(t,co)d(0, 
J —oo 

/

CO /»CO 

e-'wadco ht{r)e-imtdr, 
-co J —oo 

= f0 ht{x)dx r e-ia*z+°)da>, 
J —OO J —CO 

/

CO 

ht{z)8(x + a)dx 

= 2ltht{-c) = 2Kf(t-^)j(t + ^y (3.9) 

Or, equivalently, 

Wf(t,-a) = 2*/(/ + f)/(/-f)- (3-10> 

The formula (3.9) can also be written as 

££.-«»*,(,,.)*. = /(<-f)7(.+f 
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which is, by putting (f + §) = h and (f — §) = h, 

^fl^^'^i-r^)^ = /fe)7^i)- (3J1) 

Putting t\ — 0 and ?2 = f in (3.11) gives a representation of / ( / ) in terms of Wf in the form 

/ ( 0 7 ( 0 ) = - ^ e- f t o ,W/(^a))rfa), (3.12) 

provided / (0) 7̂  0. This is the inversion formula for the Wigner Ville transform. 

In particular, putting t\ = ti = t in (3.11) leads to the inversion formula 

^ j Wf(t,m)d<o = | / ( 0 | 2 . (3.13) 

This means that the integral of the Wigner-Ville transform over the frequency at any time t is equal 

to the time energy density of a signal / (/). 

Integrating (3.13) with respect to time t gives the total energy over the whole time-frequency 

plane (t,a>) 

— J J Wf(t,<o)dtda> = J \f(t)\2dt = (f,f) = \\ff2. (3.14) 

If/(to) = ${f(t)}, the Wigner-Ville transform of the Fourier spectrum /(ft)) is defined by 

-1 / * 0 0 / * 0 0 

dx (3.15) 

/

OO -1 /»DO 

f(x)e~2it0*dx— / /(u)exp[i«(jt-2f)]d" 
27T,/_«, 

where ft) — | = « 

/

oo 

/(jc)/(2f-jc)exp(-2i'0)^)rfx = lV/(f,0)). (3.16) 
-00 

Thus, (3.16) can be used as another equivalent definition of the Wigner-Ville transform due to 
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symmetry between time and frequency, as expressed by the relation (3.9). 

It also follows from (3.15) and (3.16) that the Fourier transform of Wf (t, ft)) with respect to t is 

given by 

/ : 
e-,nWf(t,(0)dt = /(fl)+ l)f((0- l). (3.17) 

Putting T = 0 in (3.17) gives 

/

oo 

Wf(t,<a)dt = f((o)f(co)= /(&)) 
-oo 

(3.18) 

Integrating (3.18) with respect to frequency ft) yields 

OO /"OO 

/ : / 
Wf(t,(o)dtd(0 

/

oo 

-oo 

d(0 = f (3.19) 

Thus, if / G L2(R), then the Wigner-Ville transform satisfies the time and frequency marginal inte

grals (3.13) and (3.18) respectively. Moreover, the integral of the Wigner-Ville transform over the 

entire time-frequency plane yields the total energy of the signal f{t), that is, 

-I /»DO /»00 i / * 00 O /»' 

2zLLm'a)*da = ^ L N d(0=i \f{t)\2dt. (3.20) 

Physically, the Wigner-Ville transform can be interpreted as the time-frequency energy distribution. 

Both the cross Wigner-Ville transform and auto Wigner-Ville transform are referred to as Wigner-

Ville transforms or Wigner-Ville distribution. 
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CHAPTER 4 

PROPERTIES OF ONE-DIMENSIONAL WIGNER-VILLE TRANSFORMS 

Before we discuss some basic properties of the Wigner-Ville transforms, we define the transla

tion, modulation and dilation operators. 

Translation: 

Taf{x) = f(x - a) 

Modulation: 

Mhf(x) = eihxf{x) 

Dilation: 

Dcf{x) = 4 T / ( - ) 
V\c\ -KcJ 

where a,b,c G K and c ^ 0 

Properties: 

Some basic properties of the one dimensional Wigner-Ville transforms are as follows: 

(a) Non linearity: The Wigner-Ville transform is non linear. This follows from the definition 

W/i+yj.tt+K (',<») = Wfltgl(t,<D) + Wf]4S2(t,(o) + Whj!](t,a>) (4.1) 

+Wf2,g2(t,(Q) 

Proof: We have, by definition Wf]+f2gl+g2(t,(o) 
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e-m%dx = £[ / i( r + l)+ / 2( / + l)][^( /-I)+*2('-
/

oo /»oo 

A,+D*'(-l) e""'dz+LA ('+1)l2 (' -1) e"a'dt 

/
oo poo 

T A - ^ _ I ) g - ' » V T 

Again using the definition of the one dimensional Wigner-Ville transform, we get 

= wh ,gi (t,co) + Wf] ̂ (z , a>) + WhJSl (t,(o) + Wf2,82(t, <o) 

(b) Translation: The time shift of signals corresponds to a time shift of the Wigner-Ville transform. 

WTafjag{t,(o) = Wf,g(t-a,co) (4.2) 

Proof: We have, by definition 

W •afJagfra) = j f(t-a + ^)g(t-a-

= Wfig(t-a,<D) 

e',azdx 

(c) Complex Conjugation: 

Wfjs(t,a>) = Wgtf(t,a>) (4-3) 

Proof: We have, by definition 

Wfjs(t,G>) = f~J(>+iW-l)e'"d* 
/

oo 
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(d) Modulation: 

WMbf 0^,(0) = Wfj(t,a>-b) (4.4) 

Proof: We have, by definition 

WMl 

= Wf<g(t,m-b) 

(e) Translation and Modulation: 

WMhTafMhTag{t,o>) = WTaMhfjaMhg(t,(0) = Wf,g(t-a,(D-b) (4.5) 

Proof: Set 

u(0 = MhTaf = eihtf(t-a) 

v(t) = MhTag = eibtg(t-a) 

Thus 

W, 

IT 

= j T A^Df {t-a+D e~ih('-i)g (t-a~l) e~imdx 

/

oo 

= Wf,g(t—a,(Q-b) 

(f) General Modulation: The Wigner-Ville transform of a modulated signal f(t) m(t) is the convo

lution of Wf(t, u) and Wm(t, a>) in the frequency variable. 



i r 

Wfm(t,m) = 2 ^ / Wf(t,u)Wm(t,(0-u)du (4 

Proof: We have, by definition, 

Wfm(t,(0) = ^ / ^ + ^ ) m ( ; + ^ ) 7 ^ - ^ ) m ^ - ^ ) e - ' w ^ 

/

oo 

/I™ ( ' + D B (' ~ I) ̂ '"'̂ fr --')* 

Jm(, + Z)n(,-y-),-«—»dy 
1 Z"0 0 

= 2K I wf(^u)w«(.^a)-u)du 

(g) Dilation: If 

0C/(O = — ^ = / ( - ) , e ^ 0 
id w 

then 

% / , % ( ' . » ) = Wf<g(^,ca>) (4 

Proof: We have, by definition 

~c~Yc) 
I e-iW%dx 

= W, **>c 

(h) Multiplication: If 

Mf(t) = tf(t) 



then 

2tWfig(t,<Q) = WMf,g(t,(D) + Wf,Mg(t,(0) (4 

Proof: We have, by definition, 

2tWfjs(t,a>) = £(t + l + t-l)f(t + ?)g(t-?)e-imdt 

+£HM'+I)*(-I)«^ 
= WMf#(t,(D) + WfiMg(t,<D) 

(i) Differentiation: 

WDf<g(t,a}) + WfjDg(t,(o) = 2icoWf,g(t,(0) (4 

Proof: Applying Fourier transform to L.H.S of (4.9) w.r.t Y, we get 

3{WDU(t,<o)} + 3{WfiDg(t,<o)} = /((» + | ) / ( c o + | ) | ( a ) - | ) 

+<»-|)/(»+f)i(»-£) 
= w(»+|)i(fl>-|) 

= 2ia)3{wy,y(r,(B)} 

= 3{2icoWf%g(t,(o) 

By applying inverse Fourier transform, we get 

WDftg(t,G)) + Wfj)g(t,G)) = 2ia)Wftg(t,(0) 

(j) Time and frequency moments: 
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27T 

Proof: We have, by definition 

-| />OC /»DO /»CO 

- / / tnWf,g(t,(0)dtd(0 = / tnf{t)g{t)dt (4.10) 
' * * J— OO J OO J — CO 

-I ("CO /»OC I i^CO /»CO 

— / / tnWfa(t,(0)dtd(0 = — / / tndtd(0. 
27tJ_cx,J_00 ' 27ZJ_CX,J_00 

CO 

— CO 

/

CO /»CO 

/

CO 

r/(/)f(0* 
-co 

(k) The Pseudo Wigner-Ville Distribution: 

We consider a family of signals ft and g, defined by 

/»(*) = / ( T ) W / ( T - 0 

&(*) = «(T)wg(T-/) 

where w^ and wg are called the window functions. 

For a fixed f, we can evaluate the Wigner-Ville distribution of/, and gt so that, by using (4.6), 

1 /*°° 
^ W ^ w ) = 2 ^ / W / ^ T ^ U ^ ^ T - ^ f i ) - ^ (4.11) 

where ? represents the position of the window as it moves along the time axis. Obviously, (4.11) is 

a family of the WVD, and a particular member of this family is obtained by putting x = t so that 
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WW*,©) = ^ J Wf,g(t,u)WW/Wg(0,(O-u)du (4.12) 

We now define a pseudo Wigner-Ville distribution(PWVD) of/ and g by (4.12) and write 

PWftg(t,(o) = [Wfli8l(<c,<o)]t=t. (4.13) 

This is similar to the Wigner-Ville distribution, but, in general, is not a Wigner-Ville distribution. 

Even though the notation does not indicate explicit dependence on the window functions. The 

PWVD of two functions actually depends on the window functions. It follows from (4.12) that 

PWfjs(t,a>) = ^tWLg(t,0})*WWfWg(t,co), (4.14) 

where the convolution is taken with respect to the frequency variable (O. In particular, 

PWf(t,a>) = —Wf(t,(o)*Ww(t,Q)) (4.15) 

i r 
— I Wf(t,u)WWf(t,(0—u)du. 
•"• J — °o 

2K 

This can be interpreted in following way. The Pseudo Wigner-Ville Distribution of a signal is a 

smoothed version of the original WVD with respect to the frequency variable. 

Moyal's Formulas: 

If fi,8i,f2,g2 belong to L2(R), then the following Moyal's formulas hold: 
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1 /»DO /tOO 

2^/_ /_ Wh^(t,(0)Wh^{t^)dtd(0 = (/i,/2)(gi7^) (4-16) 

1 /»co /*oo 

— y y W/^fl))^^/,©)*^ = (/,g)(7ii) = !(/,«) I2 (4-18) 

Proof: For a fixed f, the Fourier transform of Wf^ (t, a) with respect to a> is 

Wf(t,a) = 2 7 F / ( / - | ) g ( f + | ) . (4.19) 

Thus it follows from Parseval's formula for the fourier transform that 

i r — 

— J Wflgl{t,(o)Whg2(t,(o)d(o 

1 f°° . — 

- />K)*K)A('-?)»('+> 
Integrating both sides with respect to t over R gives 

1 />DO /"CO />QO /"CO 

^J^J_^fxg^t,(o)whS2{t,<D)d(odt = j^jjx[t~-)gl(t+-y 

h(t-\)8i(t + \)dadt 

which is, putting t — j = x and t + ^ = y, 

/

oo 

«i(y)f2(yVy 
-co 

= {f\,f2){g\,gl)-



Thus (4.16) is proved. 

In particular, if/i = f2 = f and gi= g2 = g, then (4.16) reduces to (4.17). 

We use definition (3.1) to replace Wf(t, co) and Wg(t, co) on the left hand side of (4.18) so 

1 /*oo /»co -i /»co poo /»oo />oo 

rnLLWfi,-a)W'{:-a)d'da'TjJJJj('^)K'-r2 

(t + '~ ) 5 U - ;T W M ' ( S _ r)(0]drdsdtd(O, 

it follows that, by replacing the £0- integral with the delta function, 

fJj{'+ri)}{'-rM,+^g{'-^^-r]d"isd' 
- /:/>K)'K)«-H)*HW< 

which is, due to change of variables t + ^=x and t — j = y, 

/

CO /»CO 

f(x)g(x)dx f(y)g(y)dy 
-CO t / — C O 

= (/,*)(ZI) = !(/.*) I2-

Now in the next chapter, we formulate the two dimensional Wigner-Ville transform. 
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CHAPTER 5 

TWO-DIMENSIONAL WIGNER-VILLE TRANSFORMS AND ITS BASIC PROPERTIES 

On two-dimensional time: 

Professor Itzhak Bars of the University of Southern California in Los Angeles found an extra 

time dimension in M-theory in 1995. Bars claims his theory of "two time physics", which he has 

developed over more than a decade, can help solve problems with current theories of the cosmos. 

Four dimensional world consists of three dimensions of space and one of time and six dimensions 

consists of four of space and two of time. 

Definition 

I f / ( t )and g(t) belong to L2(R2), the two dimensional cross Wigner-Ville transform /and g is 

defined by 

DO oo 

Wfjs{t,<o) = f f f{t+^g[t-^e-^dx, (5.1) 
- O O —CO 

where t = (t\,t2), G> = (fiOi,(t>i) and T = (Ti,T2) provided the double integral in (5.1) exists. 

Introducing t+j—x gives an equivalent definition of the two dimensional Wf>g (t,0>) in the 

form 

00 co 

Wftg(t,<a) = 2exp(2zfi)T) / f(x)g(2t-x)exp(-2i<D-x)dx 
—co —00 

= 2exp(2/a)-t)^(2t,2fi>), (5.2) 

where //, (2t, 2fi>) is the two-dimensional Gabor transform and h (x) = g(—x). 

It follows from (5.1) that the cross Wigner-Ville transform is the two dimensional Fourier trans

form of the function 



19 

MT)=/(. + f ) lH) (5-3) 

with respect to T. 

Hence Wf,g (t,0))is a complex-valued function in the time frequency space. In other words 

Wf,g(t,a>)=F{ht(T)} = ht(o>). (5.4) 

On the other hand, the two dimensional Fourier transform of the cross Wigner-Ville transform with 

respect to 0) is given by 

ftfl8(t,0) = e-i(°-aWftg(t,G>)da> 
OO CO OO 

= te-imad(0 f fhtWe-^dt, 
— OO —OO 

OO OO 

= f ht(t)dx f f e-W^da, 
— OC OO OO 

OO 

= (27r)2 Iht(r)8(1 + 0)d-c = (27c)2ht(-o) 
— OO 

= (2;r)2/(t-|)g(t + | ) . (5.5) 

Or equivalently, 

iV / 4 f(t ,-a) = ( 2 7 r ) 2 / ( t + f ) l ( t - f ) . (5-6) 

If/=g in (5.1)-(5.3), then Wfj(t,0)) — Wf(t,to)is called the two-dimensional auto Wigner-Ville 

transform and is defined by 
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OO CO 

Wf(t,») = J j f(t+V)j(t-t^e-i»-*dT, (5.7) 
— OO —OO 

DO OO 

= 2exp(2/fl)T) / / / ( x ) / ( 2 t - x ) e x p ( - 2 / f l ) x ) d x , (5.8) 
— OO —OO 

= 2exp(2/fi)-T)/ft(2t,20>), (5.9) 

where h (x) = / (—x). 

Obviously, results (5.4)-(5.6) hold for the two-dimensional auto Wigner-Ville transform. 

Furthermore, the two dimensional Wigner-Ville transform of a real signal is an even function of 

the frequency vector. More precisely, 

OO OO 

Wf(t,<0) = J / / (* + | ) 7 (t- | ) e-'-'rfT, 
— OO —DO 

OO OO 

- //7H)?K)e'"d* 
— CO —OO 

= w7(t,-a>). 

The result (5.5) can also be written as 

CO CO 

^J fe-ia"Wf<g(t,(»)da=f(t-°)g(t+°). (5.10) 

Substituting t + f = t\ and t — f = t2 in (5.10) gives 

CO CO 

^JJexp[-i(tl-t2)-a>}Wf,g(^-^,a^d<a = f(t2)g(tl). (5.11) 
— OO —OO 

For ti = 0 and t2 = t , we get a representation of / (t) in terms of Wftg in the form 

CO CO m m = w ! I'"'w^ (H* (5-i2) 
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provided g (0) / 0. This is the inversion formula for the Wigner-Ville transform. 

In particular, if ti = t2 = t in (5.11), then the inversion formula for the Wigner-Ville transform 

is 

oo oo 

-T^f fwf4S(t,m)da = f(t)g(t)' (5-13) 
— oo —oo 

When / = g in (5.13), we obtain 

oo oo 

- ^ 1 Jwf(t,a>)d(o = \f(t)\2. (5.14) 
—oo —oo 

This implies that the double integral of Wigner-Ville transform over the frequency at any time t 

is equal to the time energy density of a signal / . 
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CHAPTER 6 

SOME PROPERTIES OF TWO-DIMENSIONAL WIGNER-VILLE TRANSFORMS 

Properties: 

Basic properties of two dimensional Wigner-Ville transforms [9]: 

(a) Nonlinearity: The two-dimensional Wigner-Ville transform is nonlinear. This means that 

the Wigner-Ville transform of sum of two signals cannot be written as the sum of the Wigner-Ville 

transforms of the signals. This follows from the definition 

Wfi+fist+gifr*) = Wfug](t,<0) + Wfug2(t,<0) + Wf2,gl(t,<D) (6.1) 

Proof. By definition, we have 

Wf]+h,g]+g2(t,<D) = f_f_[fl{t + l)+f2{t+l 
l8A^l)+S2(t-l)}e-^dt 

/: />H>.H)— 
J_*K)*H)«-'"* 

+£/>HM<-ik'°*<rt 

Wfl ,gl (t, m) + Wf] ,g2 (t, a) + Wha (t, o>) + whjS2 ( t ,« ) . 

(b) Translation: 

WV./,rrf(t,«) = Wfj!(t-a,a). (6.2) 
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Proof. By definition, 

WTaf,Tag(^) = y^y^/(t-a+|)?(t-a-|)*-'"""</T 

= ^ ( t - a , * ) ) . 

(c) Complex conjugation: 

Wfjs(t,a>) = wgJ (t,a>). (6.3) 

Proof. By definition, 

Now using the transformation, T = —x, we get 

/

oo /»oo 

= W8tf(t,a>). 

(d) Modulation: 

WMt>f,Mhg(t,a>) = Wf,g(t,<0-b). (6.4) 

Proof. We have, by definition, 

/

oo /*oo . tm 

J / H ' + i ) ) f ('+ D e{"""('"?)}S ('-1) '"'**'"' 
= U^(t ,a>-b) . 



(e) Translation and Modulation: 

V%„ra/,Mbrag(t,fi)) = WTaMhf,TaMhg(t,a)) (6 

= Wf<g(t-si,(o-b). 

This follows from the joint application of translation and modulation properties. 

Proof. In order to prove this property, we set 

u (t) = MbTaf = eibtf(t-a), v (t) = MbTag = eibtg (t - a) . 

Then by using the definition, we have 

WU(t,©) = / / u[t+^\v[t-T-)e-i^dX 

X 
a-2 = /_V_^ {''b( t+! ) } /( t-a+De{"'b(" ! ) }K t-

e-mxdX 

= W / i g ( t - a , o> -b ) . 
(f) Dilation: If 

Dcf(t) = -J=/f-

then 

WDc/)DcS(t,fi>) = Wftg(^,ca>y (6 

Proof. By definition, we have 

wDc 
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Now using the tranformation T = c x, we get 

HWt,-) - R£/_>(^ + ^ - ( ^ ) ^ ) X ^ 

^/* I - > ' » ] • 

(g) Multiplication: If 

M/( t ) = t / ( t ) 

then 

2tWf,g(t,(0) = WMf,s(t,<0)+ Wf Ms{t,<0) (6.7) 

Proof. By definition, we have 

/

oo poo y _ 

• / : / : K ) ' H M -
+ / : / : H ) ' K M -

= ww / i g (t, A>) + wfMg (t, o>). 

(i) Differentiation: 

WDf,g(t,a>) + WftDg(t,<o) = 2ia>Wfjs(t,a) 

Proof: Applying Fourier transform to Wof,g(t,to) + Wfpg(t,(o), we get 

(6.8) 

3{wDf,g(t,a>) + wf,Dg(t,a>)} 

Consider Wigner-Ville transform of Fourier spectrum /'and g, 



26 

g^-iy^dx 

OO OO 

— OO —OO 

OO OO ~ OO OO 

— OO —OO -OO —OO 

OO OO OO OO 

OO —OO — DO —OO 

Now using the substitution fl) — | = u in the second integral, we get 

oo oo 00 oo 

= 2Y~ I [f(x)e~im'*dx I /l(u)e''2(fl>-u)(t-!)du 
— OO —CO —OO —OO 

OO OO / OO OO 

= 2e2i<°< J J f'(x)ei0>*dxl -L f j i^e'^^dn 
— OQ — O O y — OO — O O 

OO OO 

= 2e2ia>x ( f f'(x)g{2t-x)e-2imxdx 

= WfJt,G>) 

Therefore , 3 {Wfig(t,a>)} = f (fl) + f ) | ( f l ) - f) 

Similarly 3 {Wfj(t,a)} = f (fl) + \) g' (fl) - f) 

Thus 

3{wftg(t,a>)} = f(° + l)t{a-l) 
= | | / ( x ) e - ' - ( - + i ) - ^ ( « » - | ) 

— CO — O O 

CO CO 

= ;(fl) + |) / (f l ) + ^ ( f l ) - f 

Similarly 3 {Wftg>(t,m)} = i (fl) - f) / (fl) + f) g (fl) -



Therefore 

S{wDfJS(t,a) + Wf,Dg(t,m)} = <(a> + f ) / ( 0 , + IMfl)~D 

= 2Ho3{Wftg(t,(0)} 

= 3{2i<oW/,s(t,a>)} 

Now applying inverse Fourier transform, we get 

wDfJt,<o) + wWt,<») = 2ia>w/d,(t,©). 
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CHAPTER 7 

EXAMPLES OF WIGNER-VILLE TRANSFORMS 

Some examples of two-dimensional Wigner-Ville transforms: 

1. The Wigner-Ville transform of a harmonic signal / (t) = Aexp («fl)n • t) where A is constant. 

We have by definition 

Wf(t,(D) = J J /(t+|)/(t-|)exp(-i<B-T)dT 
oo /»oo 

= AA 

= AA 

= AA 

exp 

exp 

/o>o- t + I)} -icoQ • t exp L ._„ v . 2 

X X 

too • t + /fi>0 • - - iffio • t + ton • -

exp(—i(0-x)dx 

exp(—i(OX)dx 

/

DO /»O0 

/ exp [i'fi>o • *] exp ( - idi • X) dx 
-oo J —oo 

/ o o /»oo 

/ exp[/T(a>0-fi))]rfT 
-oo J —oo 

= \A\2 • (27t)2 • S ((0 - (OQ) 

= A7t2\A\28{(0-(Oo). 

(7.1) 

2. The Wigner-Ville transform of plane waves. If / ( t ) =/4i<?'ft>l'T, g(t) = Aje"02'* represent two 

plane waves, then 

0)l+fi>2 
Wf(t,a>) = 27rAiA2exp[/(o>i-fi)2)-t]5 I ffl-



We have, by definition 

w^> - /"./X'+^H ) exp(—/i ia> • T) dx 

= AVA2 

/

oo /»co 

I exp /©! • I 
-oo J —oo L ^ 

I » l - t + exp -i(02 • t 
f \ l 

/

oo /»oo 

/ e x p 
-CO t / —OO 

= AlA^exp[/((»!-fi>2)-t]2jr-S (<*>-

= 2^AiA2exp[/(fi)i-fl>2)-t]5 ( 0) 

iX • I (O 

©1+0)2 
2 ~ 

fi)l+0>2 

exp(—iG)x)dT 

G>i+fi)2Y 

2 ; 
dr 

(7.2) 

3. The Wigner-Ville distribution of a quadratic phase signal / ( t ) = Aexp^j ^ia{t) >, where t = 

(f i,?2) is a two dimensional vector and (t) = t • t = t\ +1\• 

We have, by definition, 

= AA 

J / ( t + - ) / ( t - - ) exp (-i0> •*)<** 

?:/>[!{K)2-K): 

/
CO /»CO 

/ exp [/at • T] exp (-/'<» • X) dT 
-co , / —oo 

/ o o /»oo 

/ exp [/'T • (at - fl))] dT 
-CO J — C O 

exp(—i(0X)dx 

|A|2(27r)25(fi>-at) 

47t2\A\25(<D-at). 

4. If f(t)=g (t) exp { f ( t ) 21 then Wf (t, m) = Wg (t, (0 - at) where a is the curvature. 

It follows from the definition that 

(7-3) 
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J /( t+2)^( t-2)e X p ( - / 0 >'T ) d T 

oo /»oo 

J —oo v 
t + o ) # ( t " ) e x P 2, i {(^r-^-i)2 

= rsj(,+i)s('-ihp 
exp(—i(OX)dX 

• 2 t T exp(-j 'fi>T)dT 

/

oo /»oo 

= Wg(t,(0-at) (7.4) 
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CHAPTER 8 

APPLICATIONS OF WIGNER-VILLE TRANSFORMS 

In recent years, the Wigner-Ville transform has served as a useful analytic tool in many fields as 

diverse as quantum mechanics, optics, acoustics, communications, biomedical engineering, signal 

processing, and image processing. It has also been used as a method for analysing seismic data, and 

the phase distortion involved in a wide variety of audio engineering problems. In addition it has 

also been suggested as a method for investigating many important topics including instantaneous 

frequency estimation, spectral analysis of non-stationary random signals, detection and classifica

tion of signals, algorithms for computer implementation, speech signals, and pattern recognition. 

In sonar and radar systems, a real signal is transmitted and its echo is processed in order to 

find out the position and velocity of a target. In many situations, the recieved signal is different 

from the original one only by a time translation and the doppler ferquency shift, in the context of 

the mathematical analysis of radar information, Woodward (1953) reformulated the theory of the 

Wigner-Ville distribution. He introduced a new function Af(t, ft)) of two independent variables t, ft) 

obtained from a radar signal / in the form 

Af(t,co) = jy^+Lp^-^e-^dx. (8.1) 

This function is now known as the Woodward ambiguity function and plays a central role in radar 

signal analysis and radar design. The ambiguity function has been widely used for describing the 

correlation between a radar signal and its Doppler-shifted and time-translated version. 

In spite of some remarkable features, its energy distribution is not nonnegative and it often pos

sesses severe cross terms, or interference terms between different time-frequency regions, leading 

to undesirable properties. In order to overcome some of the inherent weakness of the Wigner-Ville 
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distribution, there has been considerable recent interest in more general time-frequency distribu

tions as a mathematical method for time frequency signal analysis. The Wigner-Ville distribution 

has been modified by smoothing in one or two dimensions. In 1966, Cohen introduced a general 

class of bilinear shift-invariant, quadratic time frequency distributions. 

The spectral characteristics of heart rate variability (HRV) are related to the modulation of the 

autonomic nervous system. As the physiological condition is changed by such external stimuli such 

as drugs, anesthesia, or by internal deregulation such as in syncope, adjective autonomic responses 

could alter HRV characteristics. Time-frequency analysis is commonly used to investigate the time 

related HRV characteristics. Time-frequency methods including the shorttime Fourier transform, 

the Choi-Williams distribution, the smoothed pseudo Wigner-Ville distribution (SPWVD), the fil

tering SPWVD compensation, and the discrete wavelet transform are used. One simulated signal 

and two heart rate signals during general anesthesia and postural change are used for this assess

ment. The result demonstrates that the filtering SPWVD compensation and the discrete wavelet 

transform have small spectrum interference from the transient component [10]. 

Inverse synthetic-aperture radar (ISAR) is a technique for improving the cross-range resolution 

of coherent imaging radars. ISAR exploits any relative rotational motion between target and radar 

and is becoming increasingly popular in the airborne maritime radar surveillance role for ship clas

sification. In order to produce well-focused images suitable for classification any linear acceleration 

between target and radar must be measured and compensated for. The Wigner-Ville time-frequency 

transform is one method that has been applied to successfully focus ISAR images of maritime tar

gets [11]. 

Electromigration noise analysis has shown great potential for the nondestructive evaluation of 

electromigration performance of a metal strip. However, contradictory conclusions have been pub

lished from the electromigration noise analysis. These contradictory conclusions mainly stem from 

the complex dynamics of the atomic movement during electromigration, rendering the electromi

gration noise as a nonstationary signal, and, hence, the standard Fourier transform is not adequate. 

Among the various nonstationary signal analysis tools, Wigner-Ville distribution is used for the 

analysis of electromigration noise data for the first time. It is found that much "hidden" and useful 

information in the noise data can be revealed by using this distribution [12]. 
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CHAPTER 9 

CONCLUSION 

The time-frequency representation of a signal / is known as Wigner-Ville distribution (WVD) 

which is one of the fundamental methods that have been developed over the years for time-frequency 

signal analysis. Besides other time-frequency representations, Wigner-Ville distribution plays a 

central role in the field of bilinear/quadratic time-frequency representations. Wigner-Ville distribu

tion has wide range of applications in optics, acoustics, communications, biomedical engineering, 

analysing seismic data. We have extended Wigner-Ville distribution in two-dimensions and have 

proved some of its properties such as non-linearity, translation, dilation, modulation, translation and 

modulation, dilation, multiplication, differentiation. Some examples of two-dimensional Wigner-

Ville distribution are also discussed. Many other important properties of the two-dimensional 

Wigner-Ville transforms and their applications will be discussed in future work. 
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